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Abstract

We introduce Minos, a microarchitecture that imple-
ments Biba’s low-water-mark integrity policy on individual
words of data. Minos stops attacks that corrupt control data
to hijack program control flow but is orthogonal to the mem-
ory model. Control data is any data which is loaded into the
program counter on control flow transfer, or any data used
to calculate such data. The key is that Minos tracks the in-
tegrity of all data, but protects control flow by checking this
integrity when a program uses the data for control transfer.
Existing policies, in contrast, need to differentiate between
control and non-control data a priori, a task made impossi-
ble by coercions between pointers and other data types such
as integers in the C language.

Our implementation of Minos for Red Hat Linux 6.2 on
a Pentium-based emulator is a stable, usable Linux system
on the network on which we are currently running a web
server [3]. Our emulated Minos systems running Linux and
Windows have stopped several actual attacks. We present a
microarchitectural implementation of Minos that achieves
negligible impact on cycle time with a small investment in
die area, and minor changes to the Linux kernel to handle
the tag bits and perform virtual memory swapping.

1 Introduction

Control data attacks form the overwhelming majority of
remote attacks on the Internet, especially Internet worms.
The cost of these attacks to commodity software users ev-
ery year now totals well into the billions of dollars. We
propose a general microarchitectural mechanism to protect
commodity systems from these attacks, namely, hardware
that protects the integrity of control data.

Control data is any data which is loaded into the program
counter on control flow transfer, or any data used to calcu-
late such data. It includes not just return pointers, function
pointers, and jump targets but variables such as the base ad-

dress of a library and the index of a library routine within it
used by the dynamic linker to calculate function pointers.

Minos requires only a modicum of changes to the archi-
tecture, very few changes to the operating system, no binary
rewriting, and no need to specify or mine policies for indi-
vidual programs. In Minos, every 32-bit word of memory is
augmented with a single integrity bit at the physical mem-
ory level, and the same for the general purpose registers.
This integrity bit is set by the kernel when the kernel writes
data into a user process’ memory space. The integrity is set
to either “low” or “high” based upon the trust the kernel has
for the data being used as control data. Biba’s low-water-
mark integrity policy [8] is applied by the hardware as the
process moves data and uses it for operations.

Biba’s low-water-mark integrity policy specifies that any
subject may modify any object if the object’s integrity is not
greater than that of the subject, but any subject that reads
an object has its integrity lowered to the minimum of the
object’s integrity and its own. The only other implementa-
tion of Biba’s low-water-mark integrity policy that we know
of is LOMAC [15] which applied this policy to file opera-
tions and ran into self-revocation problems. This monotonic
behavior is the classic sort of problem with the low-water-
mark policy, which Minos ameliorates with a careful defini-
tion of trust. Intuitively, any control transfer involving un-
trusted data is a system vulnerability. Minos detects exactly
these vulnerabilities and consequently avoids false positives
under extensive testing. We chose to implement an entire
system rather than demonstrating compatibility with just a
handful of benchmarks.

If two data words are added, for example, an AND gate
is applied to the integrity bits of the operands to determine
the integrity of the result. A data word’s integrity is loaded
with it into general purpose registers. A hardware exception
traps to the kernel whenever low integrity data is used for
control flow purposes by an instruction such as a jump, call,
or return.

Minos secures programs against attacks that hijack their
low-level control flow by overwriting control data. The def-



inition of trust in our Linux implementation stops all re-
mote intrusions based on control data corruption. We pro-
tect against local control data attacks designed to raise priv-
ileges but only because the line between these and remote
vulnerabilities is not clear.

Virtually all remote intrusions are control data attacks.
The exceptions are directory traversal in URLs (for exam-
ple, “http://www.x.com/../../system/cmd.exe?/cmd”), con-
trol characters in inputs to scripts that cause the inputs to
be interpreted as scripts themselves, or unchanged default
passwords. These kinds of software indiscretions are out-
side the scope of what the architecture is responsible for
protecting.

We begin by elaborating on the motivation behind Mi-
nos. This is followed by related works in Section 3 to com-
pare Minos to existing and historical methods to add secu-
rity to the architecture and software. Then we describe the
architectural support necessary for the system by consider-
ing its implementation on an out-of-order superscalar mi-
croprocessor with two levels of on-chip cache in Section 4,
followed by Section 5 discussing our implementation of Mi-
nos for Red Hat Linux 6.2 on a Pentium emulator, as well
as another implementation for Microsoft Windows XP. Sec-
tion 6 explains our evaluation methodology and shows that
control data protection is a deeper issue than buffer over-
flows and C library format strings. The results in Section 7
show that Minos is very effective, that the low-water-mark
integrity policy is stable, and that the performance overhead
of virtual memory swapping with tag bits is negligible. A
security assessment of Minos in Section 7.3 attempts to an-
alyze the security of the Minos approach against possibly
more advanced attacks than are available today. This is fol-
lowed by recommendations for future research and conclu-
sions.

2 Motivation

Control data attacks form the overwhelming majority of
remote attacks on the Internet, especially Internet worms,
and are a major constituent of local attacks designed to raise
privileges. These vulnerabilities allow control data such as
return pointers on the stack, virtual function pointers, li-
brary jump vectors, long jmp() buffers, or programmer de-
fined hooks to be overwritten. When this data is read to be
used in a procedure call, return, a jump, or other transfer of
control flow the attacker then has control of the program.

The cost of control data attacks to commodity software
users every year now totals well into the billions of dollars.
The Code Red worm spread by a buffer overflow in Mi-
crosoft’s Internet Information Services (IIS) server, and this
one worm alone is estimated to have caused more than $2.6
billion in damage [23]. It infected approximately 359,000
machines in less than fourteen hours, an unimpressive num-

ber compared to more recent worms and theoretical possi-
bilities [28].

In June of 2001, a month before Code Red, Microsoft
publicly stated that their new Windows XP operating system
contained no buffer overflows because of a thorough code
inspection [33]. Four months later a buffer overflow was
found in the Universal Plug-and-Play functionality [2, CA-
2001-37]. Control data protection problems in Microsoft
software since have been a common occurrence, a batch of
about a dozen can be found in [2, TA04-104A]. All this
suggests that perhaps the persistence of the buffer overflow
problem and control data protection problems in general is
not due to lack of effort by software developers. Every ma-
jor Linux distribution’s security errata lists contain dozens
of control data protection vulnerabilities. This problem is
an architecture problem.

It is inevitable that large, complex systems written al-
most entirely in C are going to have memory corruption
bugs. The architecture’s failure to protect the integrity of
control data, however, amplifies every memory corruption
vulnerability into an opportunity to remotely hijack the con-
trol flow of a process.

An integrity policy was chosen because the confidential-
ity and availability components of a full security policy are
not critical for control data protection. We chose Biba’s
low-water-mark policy over other integrity policies because
it has the property that access controls are based on accesses
a subject has made in the past and therefore need not be
specified. For a more thorough explanation of this property
we refer the reader to [15].

3 Related Work

The key distinction of Minos is its orthogonality to the
memory model. In Minos, integrity is a property of the
physical memory space, therefore Minos is applicable even
to flat memory model machines. Minos should be equally
as easy to implement on architectures with more complex
virtual addressing.

In the flat memory model, memory is viewed as a lin-
ear array of untyped data words. The programmer is not
constrained by the architecture to treat any data word as a
particular type. This has obvious security disadvantages,
but this low-level control is the reason that the flat mem-
ory model survived the vicissitudes of computer architec-
ture when better designed, more secure architectures per-
ished.

Most commodity operating systems, such as Windows,
Linux, or BSD, are based on this memory model and so are
the languages they are built upon: C and C++. The suc-
cess of Linux on dozens of architectures is facilitated by the
two minimal requirements of a paged memory management
unit (MMU) and a port of the gcc compiler. Even the ADI



Blackfin, a DSP, has a paged MMU and can run an embed-
ded version of Linux called uCLinux, but the MMU is not
currently used because uCLinux was intended for a variety
of architectures, not all of which have an MMU. This histor-
ical trend is similar to the one that lead to the flat memory
model and shows that hardware security mechanisms must
be orthogonal and universally applicable to survive.

The network router market is tumultuous enough to ne-
cessitate the same portability and so they also use flat mem-
ory model architectures such as XScale (in Von Neumann
mode) or MIPS and C-based operating systems, leaving
them vulnerable to buffer overflows [2, VU 579324] and
other control data attacks.

A work very similar to Minos was published in [30] and
was developed independently in parallel. The focus in [30]
is on compression techniques and their performance over-
head while Minos’ focus is more at the system level. Also,
both policies in [30] are different from Minos’ policy.

Capability systems [21] were an early attempt to secure
entire systems. A capability is like a key that allows a
program to access some object. Capabilities must not be
forged, and so there are restrictions as to how their values
may be manipulated. Of special interest is the AS/400 [24]
which was loosely based on the System/38 and is still in use
today as the IBM iSeries. The AS/400 has a global, persis-
tent address space shared by all processes and in which all
files and data are present. Pointers are tagged by the oper-
ating system and can only be manipulated through a con-
trolled set of instructions. Thus UNIX-based C programs
can be compiled but only if pointer usage conforms to cer-
tain constraints. Such conformity is not common in com-
modity software.

The Elbrus E2K [6] uses a type-based approach and is
able to compile and run C/C++ programs efficiently if they
obey three draconian measures: 1) no coercion between
pointers and other types such as integers, 2) no redefini-
tion of the new operator, and 3) no references from a data
structure with a longer lifetime to one with a shorter life-
time, such as a pointer on the heap to data on the stack.
All three of these rules are commonly broken. Also worth
noting is the Intel iAPX-432 [27] which was a type-based
capabilities architecture with memory management similar
to Ada scoping rules. Ada scoping rules are certainly not
orthogonal to the flat memory model.

More recent work has aimed to enable new applica-
tions such as running trusted software on an untrusted host
where even the operating system and main memory are not
trusted [29]. There have also been efforts to combat soft-
ware piracy, such as XOM [22, 36] or the Palladium and
TCPA initiatives [31], which has more to do with protect-
ing your data on another person’s machine and does not ad-
dress control data attacks. Code injection attacks are a sub-
set of control data attacks and have been considered with

hardware solutions based on embedding processor-specific
constraints in binaries with semantics-preserving rewriting
techniques [19]. All of these architectures require that ma-
jor portions of a program’s memory be encrypted or moved.

There have, of course, been attempts to combat control
data attacks and code injection with software techniques.
The most notable is StackGuard [13] which places a ca-
nary before every return pointer on the stack to detect stack
smashing attacks. Return pointers are only one type of con-
trol data, and according to our independent analysis of the
Code Red II worm StackGuard would not have prevented
Code Red II which overwrote a function pointer on the
stack, not a return pointer.

PointGuard [12] attempts to protect the integrity of all
pointers by encrypting them when a C program is compiled
using type information. Pointers, even function pointers,
may be the sum of a base pointer with one or more inte-
gers. We agree with Babayan [6] that this coercion between
pointers and other data types forces all control data protec-
tion mechanisms, even Minos, into a fundamental trade-off
between security and compatibility with existing C code.

Secure execution via program shepherding [18] is a soft-
ware technique that prevents attempts to hijack control
flow with a security policy and binary rewriting techniques.
There are performance problems related to virtual memory
and it is not orthogonal to the memory model, however this
paper helped inspire the Minos concept.

Mondrian Memory Protection [35] is an architectural
mechanism that facilitates access controls on individual
words of data, such as readable, writable, or executable.
There is considerable storage and performance overhead be-
cause access controls are dependent on context. A word
may be writable in one context of a program but not another
so permissions must be loaded and applied speculatively.

Minos’ orthogonality to the memory model cannot be
overemphasized. The need to do pointer arithmetic, even
with control data, is not limited to applications. Middle-
ware, such as the GNU linker and loader (ld), uses pointer
arithmetic to relocate shared libraries and do dynamic link-
ing from user space (in an unprivileged context). Moving all
of the library functionality into the kernel space is an unde-
sirable alternative in terms of both portability and security.

Non-executable pages is now available for 64-bit
Pentium-based architectures, but attackers already have
methods for subverting this [25]. Furthermore, we describe
an attack called hannibal in [14] that does not need to use
the stack frame forging techniques of [25].

An interesting work related to how Minos handles vir-
tual memory swapping with tag bits is the AS/400. The
implementation evaluated in [24] stores tag bits by building
a linked list of the tagged pointers in each page on disk us-
ing reserved portions of each 16-byte pointer and storing a
pointer to the head of the list in the disk’s sector header.



Figure 1. Minos in an out-of-order execution mi-
croprocessor core. *Based on size and compatibil-
ity settings. **Ignored for 32-bit loads and stores.

Babayan [6] discusses two implementations of virtual
swapping with tag bits for the Elbrus line. One uses soft-
ware to transfer data and tags to an intermediate buffer large
enough to hold both without using the memory tag bits and
then writes this larger buffer to disk. Another uses special
I/O hardware to do the unpacking.

4 Architecture

The goal of the Minos architecture is to provide sys-
tem security with negligible performance degradation. To
achieve this goal, we describe a microarchitecture which
makes small investments in hardware where the tag bits in
Minos are in the critical path.

At a basic level, every 32-bit word of data must be aug-
mented with an integrity bit. This results in a maximum
memory overhead of 3.125% (neglecting compression tech-
niques), which can be paid for with Moore’s law in 26 days.
The real cost, which we will try to address in this section,
is the added complexity in the processor core. We argue
that this complexity is well justified by the security benefits
gained and the high compatibility of Minos with commod-
ity software. Given increasing transistor densities and de-
creasing performance gains, investments in reliability and
security make sense.

Figure 1 shows the basic data flow of the core of a Minos-
enabled processor. One bit is added to the common data
bus. When data or addresses are transmitted, their integrity
bit is also transmitted in parallel. The reorder buffer and the
load buffer have an extra bit per tag to store the integrity
bit. The reservation stations have two integrity bits, one for

each operand. The integrity of the result is determined by
applying an AND gate to the integrity bits of the operands.
All of the integrity bit operations can be done in parallel
with normal operations and are never in the critical path,
and there is no need for new speculation mechanisms.

The L1 cache in a modern microprocessor, the Pentium
4 for example, is typically about 8KB and is optimized for
access time. To maintain this low access time, we store the
integrity bit with every 32-bit word as a 33rd bit. The total
storage overhead in an L1 cache of this size is 256 bytes.
The on-chip L2 cache, on the other hand, can be as large
as 1MB and is optimized for hit rate and bandwidth. To
keep the area overhead low and the layout simple, we use
the same technique often used for parity bits: have one byte
of integrity for every 256 bit cache line.

All of the floating point, MMX, BCD, and similar ex-
tensions can ignore the integrity bits and always write back
to memory with low integrity. This is because control data,
such as jump pointers and function pointers, are never cal-
culated with BCD or floating point. One possible exception
is that MMX is sometimes used for fast memory copies,
so these instructions should just preserve the integrity bits.
The instruction cache, trace cache, and branch target buffer
must check the integrity bits with their inputs, but do not
need to store the integrity bits after the check. If data is low
integrity, it is simply not allowed into the instruction cache
or branch target buffer. Overall, the L1 cache and processor
core’s area increases will be negligible compared to the L2
cache, so we can produce an estimate of the increase in die
area for Minos by looking at the L2 cache alone.

Intel’s 90 ��� process can store 52 Mbits, or 6.5 MB, in
109.8 ����� with 330 million transistors [16]. A 1 MB L2
cache without the extra integrity bits in this process would
be about 51 million transistors and 16.9 ��� � . Minos would
add to this another 1.59 million transistors and 0.53 ���	�
for an additional 32 KB. The Prescott die area is reported
to be 112 ����� , so the contribution of the extra storage re-
quired by Minos in the L2 cache to the entire die area is less
than one half of one percent. Using the die cost model from
[26] and assuming 300 ��� wafers, 
 = 4.0, and 1 defect
per ����� this is less than a penny on the dollar.

A 32-bit microprocessor without special addressing
modes can address 4 GB of DRAM off chip. This requires
128 MB to store the integrity bits outside the microproces-
sor. We propose a separate DRAM chip which we will call
the Integrity Bit Stuffer (IBS). The IBS can coexist with the
bus controller and store the integrity information for data
in the DRAM. When the DRAM fills requests for data, the
IBS stuffs the stored integrity bits with this data on the bus.

By using a banking strategy that mirrors that of the con-
ventional DRAM chip it can be guaranteed that the integrity
bit will always be ready at the same time as the conventional
data. The bus must be widened from 64 to 66 bits. When



the data bus is driven by other devices for DMA or port I/O,
the IBS assumes high integrity.

The hardware support needed for Minos is almost identi-
cal to what is needed for the soft error rate reduction mecha-
nism proposed in [34]. The same paper discusses other uses
of tag bits. The PowerPC AS has a tag bit per 64-bits and is
used for running the microcode of iSeries programs. A 64-
bit Linux implementation with Minos support on the iSeries
may be possible by using a similar microcode approach.

5 Implementation

In this section we describe our hardware emulation plat-
form and operating system implementation.

5.1 Hardware Emulation

We emulated Minos on a Pentium emulator called Bochs
[1] as a proof-of-concept. For performance reasons archi-
tectural support would be necessary for a real Minos sys-
tem. Our software Minos emulator only achieves about 10
million instructions per second on a 2.8 GHz Pentium 4.

Bochs emulates the full system including booting from
the BIOS and loading the kernel from the hard drive. DMA,
port I/O, and extensions such as floating point, MMX, BCD
and SSE are supported. The floating point and BCD instruc-
tions ignore the integrity of their inputs and their outputs are
always low integrity. A single integrity bit was added to ev-
ery 32-bit word in the physical memory space. All port I/O
and DMA is assumed to be high integrity.

The Pentium is also byte and 16-bit word addressable
but it suffices to only store one integrity bit for every 32-bit
word. Compilers align all control data along 32-bit words
for performance reasons. If a low integrity byte is written
into a high integrity 32-bit word, or a high integrity byte is
written into a low integrity word, the entire resulting word
is then low integrity. The same applies to 16-bit manipu-
lation of data. This is necessary to keep low integrity data
from ever going up in integrity. Also, any misaligned 32-bit
writes will be forced low integrity to prevent attackers from
building arbitrary high integrity 32-bit values using striping.

Every instruction operation applies the low-water-mark
integrity policy to its inputs to determine the integrity of the
result. All 8- and 16-bit immediate loads are low integrity
unless the processor is running in a special compatibility
mode, and all memory references to load or store 8- and
16-bit values also have the low-water-mark integrity policy
applied to the addresses used for the load or store.

The SUN Java SDK was run on Minos and it gave a large
number of false positives while running a Hello World pro-
gram because of the JIT using 8- and 16-bit immediates to
generate control data. We added a compatibility mode to

the architecture and the kernel where 8- and 16-bit imme-
diates are high integrity but the rest of the policy remains
the same. For security reasons it would be better if the JIT
was slightly modified to be compatible with Minos, because
with 8- and 16-bit immediate loads set to high integrity it
may be possible to generate arbitrary high-integrity 32-bit
values.

Any attempt to run a setuid program in compatibility
mode will squash the euid and egid down to the real uid
and gid, similar to a ptrace. It would also be possible to
have a full compatibility mode where all data is high in-
tegrity but we did not find any programs where this would
be necessary.

String operations on the Pentium, such as a memory
copy, go from one segment to another. To give the kernel
the ability to mark data as low integrity as it copies it into a
process’ memory space the reserved 53rd bit in a Pentium
segment descriptor entry is interpreted to mean that data
written into this segment should be forced low integrity. If
the 53rd bit of the segment descriptor is not set then the in-
tegrity bit is simply copied. There is also another special
segment descriptor which, when used in string operations,
causes the source or destination to have a stride of 32 words
and the value copied in or out of this segment is the 32 bits
of integrity information for this 32 word block. This way
the kernel can copy the integrity information from an entire
4 KB page into a 128 byte buffer, or copy the integrity in-
formation of a 128 byte buffer into the integrity bits of an
entire page to enable virtual memory swapping.

5.2 Operating System Changes

These two segment descriptors were added to the Linux
2.4.21 kernel to cover the whole linear address space as do
the existing segment descriptors (this is how a flat memory
model is implemented on the Pentium). A few other small
modifications were made to the kernel, so that now when
data enters a process’ memory space Minos the dreadful
snarls at the gate, and wraps himself in his tail with as many
turns as levels down that shade will have to dwell [5]. An
interrupt traps to the kernel whenever an attempt is made to
transfer control flow with low integrity data.

Ideally, control data should only come from the origi-
nal ELF binary or dynamically linked libraries so that ev-
erything else can be marked low integrity. Unfortunately,
GNU ld does not use a system call for most shared objects,
opting instead to use the read() system call and mmap()s
so that it can relocate them and also to keep library mech-
anisms separate from the kernel. Also, we discovered that
the pthreads library creates lightweight processes with the
clone() system call and then passes them function pointers
to call through pipes. And lastly, sometimes legitimate pro-
grams such as plug-ins and JITs are not implemented with



the normal library code mechanisms.
Consequently, we chose to define trust for our imple-

mentation in terms of how long the data has been part of
the system. In Minos, the kernel keeps a timestamp called
the establishment time before which all libraries and trusted
files were established and after which everything created is
treated as vitriol and forced low integrity. More sophisti-
cated and user friendly definitions of trust and installation
procedures could be devised but we are mostly concerned
with the architecture for this work.

Static binaries can be created after the establishment
time and are trusted for their own control flow and that of
their children by being marked high integrity when the ex-
ecutable ELF binary is mounted (the executable file must
be sync()ed to disk). Any communication where one pro-
cess passes data to another process which is not sharing its
memory space will be forced low integrity, because it will
go through the virtual file system through an inode that was
either established or modified sometime after the establish-
ment time (An inode is a structure that stores information
about objects in the filesystem, such as files, pipes, or sock-
ets). Thus when an attacker’s data comes from the network
it will stay low integrity in the system even if it goes out
to disk and comes back. There is no need to modify the
filesystem on the hard drive.

More specifically, the read() system call forces the data
read by the process to be low integrity unless both the ctime
(time of last inode change) and mtime (time of last modifica-
tion) of the inode are set to a time before the establishment
time of the system, or the file descriptor points to a pipe
between lightweight processes that share the same memory
space. The read() system call in Linux is used for reading
from files, the console, the network, pipes, sockets, and just
about everything else.

It is impossible, even for the superuser, to change a ctime
backward in time. The ctime is used by the kernel to keep
track of inode changes for fault tolerance purposes. The ex-
ception for pipes between lightweight processes was added
for compatibility with pthreads, but it does not diminish
security because the lightweight processes share the same
memory space anyway. A good, concise description of the
Linux virtual filesystem is available in [10].

On an execv() all of the argument variables are forced
low integrity. The readv() and pread() system calls force the
data read to low integrity. All reads from a network socket
are also forced low integrity without exception. Thus, a re-
mote attacker’s data will enter the system low integrity and
will never be lifted to high integrity because of the estab-
lishment time requirement, even if the data goes through
the virtual file system to the disk and back, or to another
process.

When mmap()ed files are mapped by the kernel a check
is done to see if the file meets the establishment time re-

quirement or is the original binary mounted by the user,
otherwise it is forced low integrity.

5.3 Virtual Memory Swapping

When the Linux kernel swaps out a page it first puts the
page in the swap cache, then changes all page table entries
for any processes that reference the page to swap entries,
then writes the page to disk. Any process that then refer-
ences the page either finds it in the swap cache or must wait
for it to be read back from disk. The page is not deleted
from the swap cache until all processes that have swap en-
tries for it get a new mapping. The 4 kilobyte block size on
the swap device matches the 4 kilobyte page size of the Pen-
tium and should not be modified. Also, all reads of pages
from the swap device must be kept asynchronous because
they are often read speculatively in clusters. The swapping
mechanisms are finely tuned so we chose a method of han-
dling the tag bits that does not add to this complexity.

When the Minos-enabled kernel writes the page to disk it
kmalloc()s 128 bytes and copies the integrity tag bits to this
buffer. Any process that trades in its swap entry for a page
mapping will not receive the mapping until the integrity bits
of the page are restored and the 128 byte buffer is kfree()ed,
but this is done lazily when the first request is made so that
the actual read operation remains asynchronous. The per-
formance overhead is negligible which we will demonstrate
in Section 7.

5.4 Windows Implementation

We installed both Microsoft Windows XP and a beta ver-
sion of XP called Windows Whistler with IIS 5.1 on the em-
ulator and changed the hardware emulation so that all reads
from the network device port are low integrity. This is not
secure if the attacker’s input from the network goes to the
disk then comes back and overwrites control data, but with-
out the Windows source code we cannot track this. Virtual
memory swapping was disabled. Both versions of Windows
run in JIT compatibility mode full time.

6 Experimental Methodology

There are three important metrics in a system such as
Minos: 1) the false positive rate, 2) the effectiveness at
stopping the attacks it is intended to stop, and 3) the per-
formance overhead. We have used the Minos system for
months now for various testing and exploit analysis and
only encountered false positives twice, both of which have
been fixed. One happened when a freshly compiled pro-
gram was mounted for execution before it was flushed out
to disk. The binary program was still in the kernel’s file
buffers with low integrity marks because it had been data



Figure 2. The gcc stress test

Figure 3. Linux web server over one month

for the compiler. The solution was to sync() newly mounted
binary executables to disk. Another source of false posi-
tives was the Java just-in-time (JIT) compiler, which was
discussed in Section 5.1.

Figure 2 shows the amount of low integrity data in the
system for a full run of the gcc benchmark from SPEC2000
on the reference inputs. This is just to demonstrate that
monotonic behavior, the usual criticism of Biba’s low-
water-mark integrity policy, is not observed in Minos. This
is because, while data never goes up in integrity during its
stay in the physical memory, it does die and get replaced
with other data. We did not run the full set of SPEC bench-
marks because they are all statically compiled binaries that
do not use the network or dynamic linking so there is noth-
ing interesting in them that could cause a false positive.

Figure 3 shows the amount of low integrity data in the
system for one month of our Apache web server being up.
This graph constitutes trillions of instructions from a whole
system including the kernel where there were no false pos-
itives. This is a usable system on the network that we can
access with a remote shell and send e-mail, surf the web
with lynx, or debug programs with using gdb.

In other studies of secure architectures, it is common to
assert the effectiveness of an approach and then present per-
formance evaluation numbers based on benchmarks [35, 19,
22, 30, 36, 29]. For Minos, we chose an evaluation method-

ology more similar to what is seen in the computer security
research community. This is only because we feel that real
attacks give more insight into our design decisions. To see
the reasoning behind this approach consider the many pa-
pers which motivate return pointer protection using Code
Red as an example although Code Red and Code Red II did
not overwrite a return pointer but instead a function pointer
on the stack. Also, implementations of mechanisms in real
systems often discover that certain assumptions do not hold.
In [32] it was found that return pointers are not always used
in a LIFO manner in Linux, for example.

Our implementation-centric evaluation methodology is
not uncommon. A software attempt to enforce a security
policy on control flow [18] was evaluated for effectiveness
by demonstrating its defense of four real exploits. Perfor-
mance and the false positive rate were tested on 23 bench-
marks. An intrusion detection system was tested with four
known attacks [20]. A protection mechanism for format
string attacks [11] was tested against eight known attacks
and stopped six. A method of disrupting binary code injec-
tion attacks [7] was tested with 14 known attacks.

While the microarchitecture of Minos has been designed
to avoid performance overheads, the operating system must
still save the tag bits during virtual memory swapping. The
cost of extracting and replacing these bits is negligible com-
pared to the seek time and read time of the hard drive, so
only the 128 bytes added to the slab allocator can cause
performance problems by using memory when memory is
scarce. We ran several SPEC2000 benchmarks (which use
enough memory to be interesting) to completion on their
reference inputs with varying amounts of memory. We did
not run the full set because most SPEC2000 benchmarks
do not use more than several megabytes of RAM. We used
mlock()s to lock various amounts of memory in RAM so
that the benchmark would have to share the rest with the
kernel.

All benchmarks were compiled with gcc 3.2 and the “-
O2” option. They were run on a 1.6GHz Pentium 4 with
256 MB of RAM and 512 MB of swap space on the same
physical hard drive as the root filesystem. The operating
system used was Red Hat 9.0 and all services including the
network were disabled. Extracting and replacing integrity
bits was simulated by memcpy()ing 128 bytes. In order to
obtain reproducible results we found it necessary to reboot
the system between data points because Linux changes its
clustering algorithm over time to spread the load over dif-
ferent physical blocks on the disk.

6.1 Exploits and Attacks

This section describes the exploits we tested Minos with
and the actual attacks Minos has detected and stopped.



6.1.1 Exploits for Real Linux Vulnerabilities

Red Hat 6.2 was chosen because of the high number of con-
trol data protection problems with this particular version of
the Red Hat distribution.

The rpc.statd exploit [4, bid 1480] is a remote format
string attack on an NFS locking mechanism which over-
writes a return pointer on the stack to return to arbitrary
code on the stack.

The traceroute exploit [4, bid 1739] is a local exploit
based on a vulnerability where free() is called twice with a
pointer for data that was only malloc()ed once when multi-
ple command line arguments are given with the same flag.
It is not a buffer overflow or a format string vulnerability.

The su-dtors exploit [4, bid 1634] uses a vulnerability in
glibc’s locale functionality where it is possible to link (with
an mmap()) a bogus language module library into a pro-
gram and exploit a format string vulnerability. The .dtors
section of ELF binaries contains pointers to any destructors
that need to be run before the program exits and is the victim
of an arbitrary write primitive in this exploit. This is a lo-
cal attack, but could possibly be exploited remotely through
telnetd.

A remote format string exploit for wu-ftpd [4, bid 1387]
basically can write an arbitrary value to an arbitrary loca-
tion.

An exploit for a different vulnerability in wu-ftpd [4, bid
3581] exploits an error in the file globbing functionality in
a manner similar to the double free() exploit for traceroute.

A more challenging remote exploit to catch is the remote
attack on the innd news server [4, bid 1316], where a news
message is posted and then later canceled. Thus the buffer
overflow is exploited with data that goes to the filesystem
and comes back.

We created a seventh exploit, hannibal, which exploits
the format string vulnerability in wu-ftpd to basically over-
write rename(char *, char *)’s Global Offset Table (GOT)
entry with a pointer to execv(char *, char **)’s Procedure
Linkage Table (PLT) entry. A subsequent request to rename
a file then actually executes a binary file. More details can
be found in [14].

6.1.2 Exploits for Hypothetical Linux Vulnerabilities

We created six hypothetical attacks as local attacks. They
are designed to test setjmp()s and longjmp()s (tigger), string
to integer conversion (str2int), off-by-one vulnerabilities
(offbyone), pointer arithmetic (also str2int), virtual function
pointers (virt), and environment variables (envvar). The
longstr exploit is a standard format string exploit except that
no size specifiers are used (See Section 7.3).

6.1.3 Windows Exploits and Actual Attacks

The Code Red II worm was released just after the Code
Red worm but was built on an entirely different code
base. It attacks the Microsoft IIS web server. It is a
buffer overflow that is caused because a string of the form
“XXXXXX%u1234%uABCD” in an HTTP GET request
has its ASCII characters converted to UNICODE making it
longer than when its length was first calculated. The beta
version of Windows XP called Whistler was used to catch
Code Red II.

Microsoft SQL Server 2000 was installed on the same
version and was attacked first from Germany with a remote
stack buffer overflow based on a vulnerability during au-
thentication [4, bid 5411]. This is not the same vulnerability
as the SQL/Slammer worm exploited. All of the subsequent
attacks to this SQL port on our machine used the same ex-
ploit and came from different places, but we are fairly cer-
tain these were individual attackers and not instances of a
worm. Both this vulnerability and the IIS vulnerability for
Code Red II are exploited daily on our emulated machine
because they listen on ports that are typically not firewalled.

The DCOM vulnerability [4, bid 8205] is a buffer over-
flow in an RPC interface, and the LSASS vulnerability [4,
bid 10108] is a buffer overflow in a security component.
These were exploited by the Blaster and Sasser worms, re-
spectively. We downloaded exploit code for both vulnera-
bilities and attacked the Windows XP machine. Both ver-
sions of Windows XP server that we used do not appear to
be vulnerable to the UPnP buffer overflow vulnerability [2,
CA-2001-37].

6.1.4 Actual Linux Attack

Our Linux web server was attacked from South Korea and
Minos SIGSTOPed the process exactly the way it is sup-
posed to. Analysis was done by launching gdb and attach-
ing to the stopped process. The attack exploited the heap-
globbing vulnerability in wu-ftpd. The exploit itself was not
the same exploit we used for this vulnerability and is quite
interesting. There is a fake NOP sled and a lot of jumps that
change the alignment of the way the opcodes are decoded
in an apparent attempt to make analysis hard.

7 Results

7.1 Exploit Tests

All exploits tested were stopped by Minos. With the
integrity of the addresses of 8- and 16-bit loads not being
checked Code Red II is not caught.

Early in the project we identified three ways in which
low integrity data could become high integrity because of
information flow. Statements such as



Table 1. The exploits that we attacked Minos with.
Exploit Name Real Vulnerability? Remote? Vulnerability Type Caught?
rpc.statd Yes Remote Format string Yes
traceroute Yes Local Multiple free() calls Yes
su-dtors Yes Possibly Format string Yes
wu-ftpd Yes Remote Format string Yes
wu-ftpd Yes Remote Heap globbing Yes
innd Yes Remote Buffer overflow Yes
hannibal Yes Remote wu-ftpd format string Yes
Windows DCOM Yes Remote Buffer overflow Yes
Windows LSASS Yes Remote Buffer overflow Yes
tigger No Local long jmp() buffer Yes
str2int No Local Buffer overflow Yes
offbyone No Local Off-by-one buffer overflow Yes
virt No Local Arbitrary pointer Yes
envvar No Local Buffer overflow Yes
longstr No Local Hypothetical format string attack Yes

Table 2. The exploits that others actually attacked Minos with.
Attack Known Exploit? Remote? Vulnerability Type Caught?
Linux wu-ftpd No Remote Heap globbing Yes
Code Red II Yes Remote Buffer overflow Yes
SQL Server 2000 No Remote Buffer overflow Yes

if (LowIntegrityData == 5)
HighIntegrityData = 5;

HighIntegrityData =
HighIntegrityLookupTable[LowIntegrityData];

HighIntegrityData = 0;
while (LowIntegrityData--)

HighIntegrityData++;

give an attacker control over the value of high integrity data
via information flow.

These were supposed to be pathological cases, but they
are not in the case of 8- and 16-bit data because of the way
functions such as scanf() and sprintf() handle control char-
acters and also because of translations between strings and
integer values such as atoi() or conversion from ASCII to
UNICODE as was exploited by Code Red II.

7.2 Virtual memory swapping

For most SPEC2000 benchmarks tested the performance
of the Minos-enabled kernel and the performance of the un-
modified kernel are indistinguishable. The interesting case
is mcf which uses a lot of memory and has a large working
set. Figure 4 shows that there is a “cliff” as the amount of
RAM available crosses the threshold of the working set size
of the benchmark. The Minos-enabled kernel starts thrash-
ing several megabytes before the unmodified kernel because
of the extra 128 byte allocation for every page swap. This
is easily ameliorated by investing in more RAM.

7.3 Security Assessment

We have demonstrated that Minos stops a broad range of
existing control data attacks, but we must address the se-
curity of Minos against future attacks developed with sub-
version of Minos in mind. A useful way to think of how
attacks more advanced than simple buffer overflows are de-
veloped is to consider that vulnerabilities lead to corruption,
corruptions lead to primitives (such as an arbitrary write),
and primitives can be used for higher level attack techniques
[17].

We will compare the security of Minos specifically to
the AS/400 [24], the Elbrus E2K [6], a similar architecture
with a different policy [30], and the current best practices.
Our estimation of the current best practices is execute per-
missions on pages, random placement of library routines in
memory, and return pointer protection such as StackGuard
[13].

The following three classes of control data attacks must
be considered: 1) Can an attacker overwrite control data
with untrusted data undetected? 2) Can an attacker cause
the program to load/store control data to/from the wrong
place? and 3) Can an attacker cause the program to load
control data from the right place but at the wrong time?

The AS/400 tags all pointers and these pointers can only
be modified through a controlled set of instructions, so an
attacker cannot overwrite control data or pointers to control
data securing it against the first two classes of attacks. This



Figure 4. Virtual memory swapping performance
results

architecture also has a very large address space (64-bits) so
memory need not be reused, securing it against the third
kind of attack. The AS/400 is secure against control data
attacks when this pointer protection is enabled, but these
protections are disabled for Linux on the iSeries [9] simply
because C programs written for Linux do not have the se-
mantic information to distinguish pointers from other data.

The Elbrus E2K uses strong runtime type-checking to
protect the integrity of all pointers, and pointers may not
be coerced with other data types such as integers. To pro-
tect itself against temporal reference problems C/C++ pro-
grams may not have unchecked references from data struc-
tures with a longer lifetime to those with a shorter lifetime
(such as from the stack to the heap) and C++ programs may
not redefine the new operator. These constraints are very
draconian but would be necessary to totally secure C/C++
programs against all three classes of control data attacks.

The current best practices disallows the execution of ar-
bitrary code with non-executable pages, and tries to thwart
return-into-libc [25] attacks by protecting the integrity of
return pointers on the stack and putting libraries in random
locations in memory. Unfortunately this is not enough. We
assumed these protections on our default Red Hat Linux 6.2
installation and were able to hijack control flow of the ftp
server daemon with an attack named hannibal, which is de-
scribed in more detail in [14]. It takes advantage of the fact
that the statically compiled binary uses a Procedure Link-
age Table (PLT) to call library functions when it does not
know where they will be mapped.

Minos stops this kind of attack because Minos protects
the integrity of all control data, not just return pointers on
the stack. The possible security problems we foresee for
Minos are copying valid control data over other control data
(which falls in the second class), dangling pointers to con-
trol data (which falls in the third class), and generating ar-
bitrary high integrity values through legitimate control flow
(which falls in the first class).

Minos prevents all attacks that overwrite control data
with untrusted data. To stop attacks that copy other high
integrity data over control data Minos would need to check
the integrity of addresses used for 32-bit loads and stores,
as is done in the both policies of [30]. To see why this is
infeasible consider this example of how Doug Lea’s malloc
(which is used in glibc) stores management information on
the heap and uses it to calculate pointers:

chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| prev_size of previous chunk (if p=1) | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| size of chunk, in bytes |p|

mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User data starts here... .
. .
. (malloc_usable_space() bytes) .
. |

nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| size of chunk |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



The size field is always divisible by eight so the last bit
(p) is free to store whether or not the previous chunk is in
use. The addresses of all chunks are calculated using the
size and pre size integers (note that this is a violation of the
Elbrus E2K’s constraint that pointers may not be coerced
with integers). These sizes may be read directly from user
input so you would expect them to be low integrity. That
means that all heap pointers will be low integrity if the in-
tegrity of these sizes is checked, and if it is not checked then
an attacker can use this fact to modify heap pointers unde-
tected. These sizes are never bounds-checked because they
are supposed to be consistent with the size of the chunk.

If all heap pointers are low integrity then all control data
or pointers to control data on the heap will also become low
integrity when they are loaded or stored using these point-
ers. An example of control data or pointers to control data
on the heap might be C++ virtual function pointers or plug-
in hooks. This will create a lot of false positives. That is
why both 1) the integrity of addresses used for loads and
stores of control data and 2) the integrity of all operands
to an operation cannot be checked without producing false
positives. Thus the first policy of [30] does the first and
Minos does the second but neither is able to do both.

The second policy in [30] attempts to do both by assum-
ing that all low-integrity values that are used in a compare
operation or a logical AND/OR are bounds checked and
therefore safe to be lifted to high integrity. The bit p from
the malloc header above is extracted with a logical AND
from the size field but this is not a bounds check so an at-
tacker could write an arbitrary even integer into the size field
and it would become high integrity.

Arbitrary copy primitives appear to be much harder to
achieve than arbitrary write primitives. One possibility
would be to overwrite both the source and destination point-
ers of a memcpy(void *, void *, size t), but both arguments
would have to in writable memory. The strcpy(char *,
char*) function manipulates data at the byte level so the
integrity of the addresses is checked by Minos.

We do not believe arbitrary copy attacks will be a prob-
lem, but if they are we propose a Sandboxed PLT (SPLT),
which splits pointers to critical library functions (such as
execv(), system(), or chroot()) in the GOT into two pieces
with an XOR using a 32-bit hash value of the library’s sym-
bol. Then the attacker would need not just an arbitrary copy
primitive but an arbitrary copy and XOR at the same time.
Calls to the SPLT would run special sandboxing code to
check their validity.

We do not believe that dangling pointers are practical
to exploit in Minos either, because the attacker cannot put
arbitrary data into the location where the valid control data
is expected, it would have to be high-integrity data, so in
practical terms they would need an arbitrary copy primitive.

Note that an arbitrary read primitive and an arbitrary

write primitive (both of which are trivial with, for exam-
ple, a format string vulnerability) do not give the attacker
an arbitrary copy primitive in Minos because any data which
goes through the filesystem and comes back will be low in-
tegrity.

One method of generating high integrity arbitrary val-
ues might be to exploit a format string vulnerability but use
“%s” format specifiers instead of “%9999u”, where “%s” is
supplied a pointer to a string that is 9999 characters long (a
controlled increment). Fortunately, this arbitrary value will
be low integrity in our Minos implementation because the
count of characters is kept by adding 8-bit immediates to an
initially zero integer and our policy treats all 8- and 16-bit
immediates as low integrity.

We cannot say peremptorily that Minos is totally secure
against control data attacks for every possible program but
we will assert that it is very “securable.” Slight modifica-
tions to the library mechanisms and sandboxes in key areas,
such as the SPLT, could secure a Minos system with a high
degree of assurance by taking away primitives such as arbi-
trary copies or controlled increments, and would constitute
code changes in centralized locations but not a change to
the memory model expected by applications.

8 Future Research

Because Minos catches attacks at the precise moment
when control flow is being hijacked and because the mem-
ory layout is identical to a vulnerable system all forensic
information is preserved. We plan to investigate in collab-
oration with other researchers if it is possible to detect and
stop unknown polymorphic worms in their incipiency this
way.

Recently, the Linux kernel was found to have an ex-
ploitable integer overflow in the do brk() function allowing
users to get root privileges [2, VU 301156] once they al-
ready have a shell. The Minos approach could be extended
to the kernel and to other kinds of data.

9 Conclusions

The use of Biba’s low-water-mark integrity policy in Mi-
nos allows a very general defense against control data at-
tacks without complicated, program-specific security poli-
cies that are difficult to adapt to new applications and ex-
ploits. Our results show that deployed Minos-enabled Linux
and Windows systems can stably provide real services and
catch actual attacks in real time, even discovering previ-
ously unknown attacks. Given the popularity of control data
attacks, we believe that the Minos approach has great po-
tential and will lead to more secure systems in a variety of
domains.
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