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Abstract

Sensor network devices are no less vulnerable to re-
mote attacks, such as malicious worms, than their gen-
eral purpose computer counterparts, and are presented with
unique threats because of the hostile environments sen-
sors are placed in. It is well known that sensor devices
place challenging constraints on any attempt to secure them
against these attacks, including small performance and
power budgets, infrequent patch updates, and long service
lives. However, in this paper we demonstrate that security
can be built into sensor devices “from the ground up.”

In this paper we apply dynamic information flow
tracking (DIFT) to sensor devices, where network data is
tagged as untrusted and then these tags propagate through-
out the system. Our results demonstrate that minor hard-
ware modifications to sensor devices can provide suffi-
cient security guarantees against remote control data at-
tacks. To make these guarantees we address all five dy-
namic information flow dependency types (copy, compu-
tation, load-address, store-address, and control), whereas
DIFT schemes for general purpose computers are empiri-
cally only able to address the first two. Rigorous testing
of eight applications shows that no modifications to exist-
ing operating systems, compilers, applications, or binaries
is necessary.

1 Introduction

Securing sensor networks before they are deployed is
critical. Today, these systems are being deployed in mili-
tary and medical applications, yet are still built on top of
architectures with simple memory models using the C lan-
guage, or variants of C such as nesC [16]. Memory corrup-
tion vulnerabilities can lead to worm attacks [17] and other
remote intrusions that allow adversaries to completely take
control of the network. Even Harvard architectures, where
instructions and data are kept in separate memories, are
susceptible to these kinds of attacks [15].

The dynamic information flow tracking (DIFT)
scheme that we present in this paper marks all data that
is read from the network (typically from a radio device)
as untrusted using a tag bit, sometimes also called a raint
bit (throughout this paper we use the terms untrusted and
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tainted interchangeably). Tags are propagated throughout
the system by the architecture, with no need for modifi-
cation to the program binaries. No untrusted data can be
used as the target address for a control flow transfer such
as a jump, call, or return. This makes attacks that overwrite
control data, such as buffer overflows and related attacks,
impossible. Control data includes return addresses, func-
tion pointers, the bases and offsets of linked library func-
tions, and more. Thus the architecture we present stops any
attack that overwrites control data and hijacks control flow
to take control of a network sensor.

The key insight behind our work is that sensor net-
work applications have very regular and predictable pat-
terns of memory management, when compared to general
purpose systems. DIFT [29, 8, 9, 22, 6, 25] has been pro-
posed as an attractive solution to memory corruption vul-
nerabilities because, if all possible information flow depen-
dencies are addressed, DIFT schemes can secure commod-
ity code with very minor modifications to the hardware.
Unfortunately, memory management in general purpose
systems is very complex, so that in DIFT schemes for these
systems the load- and store-address dependencies, where
information can flow based on the address with which a
piece of data is loaded or stored, cannot be tainted without
rendering the system unusable due to false positives [28].
By not tracking load- and store-address dependencies, cur-
rent DIFT schemes are open to attacks that use multiple
levels of pointer indirection [7, 10, 23]. One study [9] even
found that existing attacks not designed to subvert DIFT
can evade detection and reduce existing DIFT schemes to
the same level of security as NX (non-executable) pages,
which has been shown to not stop attacks even when com-
bined with various other limitations on the attacker [27, 4].

What we demonstrate in this paper, however, is that
DIFT schemes for sensor networks need not be as lim-
ited, and can provide real security guarantees without re-
quiring any modifications to existing application source
code, program binaries, compilers, or operating systems
and only minor modifications to the hardware. We have
implemented a DIFT scheme on the MICA?2 platform that
is secure against all control data attacks. Through rigorous
testing of eight applications, we demonstrate that tracking
load/store address dependencies does not break existing ap-
plications nor require any modifications to the application



source code, program binary, compiler, or operating sys-
tem. Then through dynamic testing and manual code in-
spection of these eight applications we determine that all
control dependencies in the applications are benign. Thus,
whereas existing DIFT schemes have not provided satis-
factory security guarantees against remote control flow hi-
jacking attacks on general purpose systems, our scheme
demonstrates that it is possible to do so for sensor network
applications.

The rest of this paper is organized as follows. Sec-
tion 2 discusses the five types of data dependencies that
DIFT schemes must track and gives some basic definitions
that are used throughout the rest of the paper. Our imple-
mentation is described in Section 3 followed by the results
of testing and manual analysis of the applications in Sec-
tion 4. In Section 5 we discuss current limitations and how
they can be addressed in future work, and this is followed
by related works and the conclusion.

2 Definitions

In this section we discuss how information can flow,
using Suh et al.’s [29] categorization of information flow
dependencies into five types: copy dependency, compu-
tation dependency, load-address dependency, store-address
dependency, and control dependency. This section is meant
to make it clear what is and is not secure with regards to
how a particular DIFT scheme tracks these dependencies.

A remote control flow hijacking attack is when an at-
tacker sends data to a remote computer or sensor and causes
the control flow of a service to be diverted to the code of
the attacker. Without user intervention, virtually all remote
attacks such as worms are typically of this form. Also note
that the code of the attacker need not be machine instruc-
tions, return-into-libc [21] or more advanced attacks [27, 4]
are possible.

Control data attacks, such as buffer overflows, are the
most common form of remote control flow hijacking at-
tacks, in which control data such as return addresses, func-
tion pointers, and jump targets are overwritten by the at-
tacker so that low-level control flow is diverted.

A copy dependency occurs when data is copied from
one storage object to another, such as register-to-register,
memory-to-register, or register-to-memory. When this hap-
pens, the tag bit of the destination should be set to the value
of the tag of the source. A computation dependency occurs
when an operation such as an arithmetic operation or bit
manipulation is performed on one or more source regis-
ters, and the result is written to a destination register. In
this case, most DIFT schemes will apply a low-water-mark
policy, where the destination is tainted as untrusted if any
of the source registers are tainted.

Another way for information to flow in a system
is through dependencies on the memory addresses used
for loads and stores. For example, consider the C code

in Figure 1 for converting data read over the network
(InputArray) from one format into another using a lookup
table (LookupTable) and storing the result in another
buffer (ConvertedArray).

Each byte of input from the network is used as the
offset in an address for looking up converted values in the
lookup table. It is important to taint the value that gets
loaded if the calculated address is tainted, because an at-
tacker could send data over the network that would no
longer be tainted after conversion but would still be data
in the system that had come from the attacker. An ex-
ample of how this can lead to attacks not being detected
by DIFT schemes is the Code Red worm. Most exist-
ing DIFT schemes ignore these load-address dependencies,
so the UNICODE decoding routine that caused the buffer
overflow vulnerability exploited by Code Red also removes
the taint mark of the network input before overwriting the
structured exception handler on the stack. Thus control
flow is hijacked, but existing DIFT schemes will not de-
tect the attack. Minos [8, 9] tracks load-address dependen-
cies for 8- and 16-bit loads and is able to stop the Code
Red buffer overflow, but does not track 32-bit load-address
dependencies. No existing DIFT scheme has successfully
addressed load-address dependencies in the general case.

Store-address dependencies are also important. With-
out tracking these dependencies by tainting the stored value
for any store where the address is tainted, indirect attacks
are possible. In addition to the possibility that an attacker
could use multiple levels of pointer indirection to subvert a
DIFT scheme [7, 10, 23, 28], testing has shown that even
attacks not designed specifically for DIFT schemes can hi-
jack control flow undetected due to store-address depen-
dencies [9].

No existing DIFT scheme for general purpose com-
puters can sufficiently track information flow through load-
and store-address dependencies. The reason is that, even
for normal systems that are not vulnerable and not under
attack, information flow from the network into heap and
stack pointers is common. Using heuristics to determine
which address dependencies are acceptable and which con-
stitute avenues of attack is infeasible because of the com-
plexity of dynamic memory allocation in general purpose
applications. Fortunately, our results show that, due to the
relatively simple and regular memory management of sen-
sor devices, all load- and store-address dependencies can
be tracked in sensor network applications.

A control dependency occurs when the value of one
piece of data affects the execution path of the program,
which in-turn affects the value of another piece of data. As
an example, consider the following C code:

if (x == 1)
y=1
else
y = 0;



for (Loop = 0; Loop < Size; Loop++)

ConvertedArray[Loop] = LookupTable[InputArray[Loopl];

Figure 1: An example of a load-address dependency.

Clearly, information flows from x to y but there is
no explicit assignment and no address dependencies be-
tween these two variables. In confidentiality settings, this
is referred to as an implicit flow. Methods exist for track-
ing implicit flows dynamically, including temporarily taint-
ing the program counter on conditional control flow trans-
fers [13, 12] and annotating the machine code with label
transformations [30], but these methods are not practical
without modifying the compiler or performing static anal-
ysis and binary rewriting.

Where control dependencies become a security prob-
lem for DIFT is when it is possible for the attacker to laun-
der the taint bit, so that a value under their control is no
longer tainted. An example of this is the following:

UntaintedData = 0;
while ((TaintedData--) !'= 0)
UntaintedData++;

After the above code is executed, the value of
TaintedData will be copied into UntaintedData but the
latter will not be tainted in the process, so that data from the
attacker is now marked as trusted. An example of a benign
control dependency that cannot be exploited by the attacker
for control data attacks is the following:

if (TaintedData == 0)
HandleRequestTypeA();
else if (TaintedData == 1)
HandleRequestTypeB();
else
HandleRequestTypeCQ);

In this case, a conditional control flow transfer is
made based on untrusted data from the network, but an at-
tacker can only choose which path to take by sending a
different kind of request over the network. Thus the at-
tacker has only as much control over the control flow of the
program as a regular client.

Another difference between confidentiality and in-
tegrity settings is that typically the former assumes that the
code being executed is chosen arbitrarily by the attacker,
whereas in most integrity settings like DIFT the source
code of the trusted application being executed is assumed
not to maliciously attempt to untaint data. Nonetheless,
for general purpose systems it has been shown that reg-
ular code for operations such as printf ()-style format
string conversion and other format conversions can lead
to attacker-controlled data becoming untainted and lead-
ing to attacks that evade DIFT schemes [9]. In Section 4
we demonstrate that no similar problems exist in the eight
sensor network applications that we tested. Here we define
laundering as follows.

A control dependency that causes information to flow
from a tainted variable z in state s to an untainted variable
y in state ¢ is benign if and only if I(zs;y:) << H(xs),
i.e., the mutual information between the two variables af-
ter the operation is much less than the entropy of the tainted
variable. Thus an attacker cannot cause her inputs to be un-
tainted without a consequent loss of entropy, which takes
away her ability to arbitrarily corrupt data. A control de-
pendency that is not benign is said to be laundering.

Another important distinction is that of first-order
control dependencies vs.  higher-order dependencies.
When tainted data is used in a conditional control flow
transfer this causes a first-order dependency in which in-
formation can flow into untainted values. If a first-order
dependency were not benign then it would be necessary to
taint additional data that could lead to additional higher-
order dependencies, where conditional control flow trans-
fers that would not have depended on tainted data now do.
If all first-order dependencies are benign, then there is no
possibility for high-entropy, laundering second-order de-
pendencies. Thus in Section 4 we need only to consider
first-order dependencies, because all of these are found to
be benign.

Existing DIFT schemes [8, 29, 22, 6, 25] do not con-
sider control dependencies. In our scheme for sensor net-
work devices, we have not added any special support for
control dependencies because testing and manual analysis
revealed that no control dependencies in the applications
we tested are laundering, i.e., they are all benign.

3 Implementation

In this section, we describe our emulated DIFT
scheme for the MICA?2 platform, and the method we used
to locate first-order control dependencies.

3.1 Emulated DIFT scheme

We modified ATEMU (ATmel EMUlator) [24] to ini-
tiate, propagate, and check tags. ATEMU is an instruction-
level emulator that emulates the AVR processor ATmega
128L that is part of the MICA2 platform. ATEMU also im-
plements all of the needed peripheral devices, e.g., CC1000
radio chip, ADC (analog to digital converter), LEDs (light-
emitting diodes), and SPI (serial peripheral interface), as
plug-in libraries. A bit-per-byte mark extension, or tag, is
used for the registers and the SRAM as an indication if that
location is tainted or not. All bytes in the SRAM or regis-
ters have an associated tag. Our tainting scheme can be di-
vided into three separate functionalities: faint source, taint
propagation, and taint check.



Application Main Functionality Setup Pass
AntiTheft Detects and reports theft Three nodes, a root binary and two with same bi- | Yes
nary

BaseStation Bridges serial and radio links Two nodes, different binaries Yes

RadioSenseToLeds Samples default sensor and broadcasts readings in an AM packet Two nodes, same binary Yes

RadioCountToLed Maintains a 4Hz counter and broadcasts its value in an AM packet | Two nodes, same binary Yes
when updated

Oscilloscope Samples the default sensor and broadcasts a message every 10 read- | Two nodes, same binary Yes
ings

BlinkToRadio Increments a counter and sends a radio message whenever a timer | Two nodes, same binary Yes
fires

TestAM Tests radio active messages Two nodes, same binary Yes

Blink Blinks the 3 mote LEDs One node Yes

Table 1: Application functionalities and test results.

Taint source: When the sensor device boots, all data is
considered trusted. All data that is received over the net-
work, which is the taint source in our scheme, is tagged as
untrusted.

Taint propagation: Our taint propagation scheme cor-
rectly handles copy, computation, load-address, and store-
address dependencies. Existing DIFT schemes only con-
sider the first two, although sometimes the latter two are
handled in a limited way. For single-operand instructions
such as bit rotations (e.g., ROR) the register simply retains
its tag. For instructions with multiple operands (e.g., ADD,
SUB, AND) we taint the destination register if any source
register is tainted. This is known as a low-water-mark pol-
icy because any data that depends on tainted data is itself
tainted. Register-to-register copies of data also copy the
tag. PUSH and POP propagate the tag of the register or mem-
ory location that is pushed or popped onto or off of the
stack. Load (LD) and store (ST) operations apply the low-
water-mark policy not only to the source data that is loaded
or stored, but also to the address used for the load or store
(which is always stored in the X, Y, or Z registers). Thus
if the source of a load or store is untainted but the address
used is tainted, the destination will always be tainted so that
load-address and store-address dependencies are correctly
handled. Conditional control flow transfers do not taint the
program counter because all sensor network applications
that we tested had only benign control dependencies.
Taint check: Our scheme checks the tags of target ad-
dresses (whether they are explicit operands or unstacked
inputs) for all control flow transfers. This includes RET
(subroutine return), RETI (interrupt return), ICALL (indi-
rect call), EICALL (extended indirect call), IJMP (indirect
jump), and EIJMP (extended indirect jump). If the target
address is tainted, then this indicates an attempted attack
and the node is reset.

3.2 Locating first-order control dependencies

The AVR instruction set has conditional control flow
transfers that work in a way that is similar to those of the
Pentium instruction set architecture. Some instructions,
e.g., CMP (compare) and arithmetic expressions, set vari-

ous flags to indicate properties of their arguments such as
equality, sign or less-than, overflow, efc. Conditional con-
trol flow transfer instructions such as JE (jump if equal)
check these flags and either jump to a hardcoded jump tar-
get or simply move on to the next instruction depending on
the value of the flag.

To locate all first-order control dependencies, we
modified the emulator as follows. When an instruction sets
a flag, the tag of the flag is set using a low-water-mark pol-
icy based on the operands of the instruction. When a con-
ditional control flow occurs based on a flag that is tainted,
and therefore based on untrusted data, the program counter
for the location of that conditional control flow transfer is
recorded. Using a variety of tools it is possible to locate the
corresponding nesC code.

4 Results

Our experimental methodology sought to answer
three key questions with respect to applying DIFT to sensor
network devices and applications:

1. Is it possible to track load- and store-address depen-
dencies, in addition to the copy and calculation depen-
dencies tracked by conventional DIFT systems, with-
out modifying the application, compiler, or operating
system in any way? Our results demonstrate that the
answer is yes.

2. Is it necessary to add special taint propagation rules to
handle control dependencies? Our results indicate that
the answer is no, since all first-order control depen-
dencies in the applications we analyzed are benign.

3. Does our scheme detect the attacks that it is de-
signed to detect, including attacks with load- and
store-address dependencies? Our results confirm that
it does detect control data attacks.

To answer the first question we tested all applica-
tions that we were able to obtain that could be executed on
the ATEMU emulator. While our hardware DIFT scheme
can secure any application for any operating system on



//The receiver code
10. void overflow(uint8_t *rcm)

20. {

30. char buf[3];

40. uint16_t *ptr[4];

50. strcpy(buf, rcm);

60. // copy receive()’s stack pointer into caller()’s stack pointer
70. *ptr[0] = *ptr[i];

80. // copy receive()’s ret address into caller()’s ret address
90. *ptr[2] = *ptr([3];

100. }

110. void caller(uint8_t *rcm)

120. {

130. .

140. overflow(rcm);

150. e

160. }

170. event message_t* Receive.receive(message_t* bufptr, void* payload, uint8_t len)
180. {

190.  uint8_t *rcm = (uint8_t*) payload;

200. e

210. caller(rcm);

220. ..

230. }

Figure 2: Receiver code containing a vulnerability with load- and store-address dependencies.

//The sender code

10. payload = (char *) call Packet.getPayload(&packet, NULL);
20. strcpy(payload, "\x22\x33\44\xd9\x10\xe0\x10\xd7\x10\xde\x10");

30. call AMSend.send(AM_BROADCAST_ADDR, &packet, 11);

buf
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ptr[1] overflow()’s locals
ptr[2]
ptri3]
10d9
SPeaer caller() calls
10d7 RAcaer overflow()
i
i caller()
1
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(a) A general view of the
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(b) The stack after the
strcpy() in overflow()
overflows the buffer

(c) The stack after

RA G, e and_ SPalier
are overwritten

Figure 4: Stack trace during the attack.

the MICA2 platform without any software modifications,
we were only able to run TinyOS [20] applications on the
ATEMU emulator due to limitations of the emulator (other
OSes either are not available for the MICA2 platform or
do not work with the ATEMU framework). TinyOS is by
far the most commonly used operating system for sensor
network applications. The eight applications that we tested
use a wide variety of TinyOS’ functionalities, as shown in
Table 1. Table 1 also shows that rigorous testing of all of
the applications’ functionalities yielded no false alerts. The
third column describes the network setup for the applica-
tion, and the fourth column indicates that all applications

passed rigorous testing without producing any false alerts.

We answered the second question through a combina-
tion of testing the applications to locate the first-order con-
trol dependencies and then manual analysis of the source
code for these control dependencies to determine if they
are laundering or benign. We identified thirty first-order
control dependencies, which we do not list here due to
space limitations. We determined first-order dependencies
by printing an alert with the program counter every time
a conditional control flow transfer was made using a test
of tainted data. All first-order control dependencies in all
applications were determined to be benign through man-



ual code inspection. This means that, for all applications
tested, no special mechanism is needed to propagate tags
for control dependencies and thus no higher-order control
dependencies need be considered.

The third question is more of a claim to be confirmed
than a question, since tracking all possible data dependen-
cies will stop any attack that overwrites control data with
untrusted data from the network. Whereas existing DIFT
schemes measure “false positives” and “false negatives,’
our scheme for sensor network nodes makes satisfactory
security guarantees that ensure that no remote control-flow
hijacking attack based on memory corruption of control
data can succeed. Nonetheless, we tested various attacks
against our scheme to confirm that an alert was indeed
raised in all cases. The attacks we tested include all at-
tacks described by Francillon et al. [15] and Gu et al. [17],
as well as an attack we developed to test the tracking of
load- and store-address dependencies.

The vulnerability illustrated in Figures 2 and 3
demonstrate how load- and store-address dependencies can
be exploited to arbitrarily copy untainted data from one
place to another. No previous DIFT schemes can stop an
attack of this kind. Basically, four pointers on the stack
are overwritten by the attack, then used as the source and
destination addresses of two copy operations. Any DIFT
scheme that does not consider address dependencies will
copy data from an arbitrary source address to an arbitrary
destination, both chosen by the attacker, without tainting
the result. This can lead to attacks not detected by these
DIFT schemes [7, 10, 23]. We tested our DIFT scheme
with such an attack based on the vulnerability in Figure 2
and an alert was raised, demonstrating that our scheme is
secure with respect to address dependencies.

Figure 4 (a) shows the layout of the stack on the re-
ceiver side after receiving the message coming from the
sender and then executing the following sequence of func-
tion calls: receive() calls caller (), and then caller ()
calls overflow(). The stack shows how the local vari-
ables and activation records (including return addresses and
stored stack pointers) are laid out on the stack. Figure 4
(b) shows the exact values that will occupy the local vari-
ables of overflow() right after line 50 is executed. Note
that the strcpy() in line 50 has overflowed the buffer
buf with more data than it has room to store. The ex-
tra data overflows the four pointers right after the buffer
buf. Figure 4 (c) shows the stack contents after the exe-
cution of lines 70 and 90. The stack pointer of caller ()
has been changed to that of receive (), and the return ad-
dress of caller () has been changed to that of receive (),
Note that the return address has not been overwritten by
strcpy (), but changed using a tainted pointer. Now when
overflow() returns it returns to receive () directly, by-
passing the caller () function, and will continue function-
ing as normal. Existing DIFT schemes will not detect this
attack because they do not track load- and store-address de-
pendencies. We tested this attack on our scheme and it was

indeed detected. While the vulnerability in Figure 2 is a
hypothetical example, vulnerabilities with load- and store-
address dependencies are not uncommon in real application
code, as discussed in Section 2.

5 Discussion and Future Work

While the focus of this paper has been on sensor net-
work nodes, an interesting question is what other systems
can DIFT schemes that check load- and store-address de-
pendencies scale up to. Researchers have explored address
dependencies on general purpose systems [28], finding that
the complex memory management of these systems makes
tracking these dependencies infeasible. It is an open ques-
tion whether a DIFT scheme that tracks address dependen-
cies would be practical on other embedded devices with
more complex memory management than sensor network
nodes. Many false alerts could be ameliorated by untaint-
ing tainted data under certain conditions. We leave this as
the subject of future work.

It is well known that attacks can hijack control flow
or otherwise take control of a machine without overwriting
control data [5]. After control data and low-level control
flow is secured then this can serve as a foundation for se-
curing other types of data. Furthermore, it would be pos-
sible to extend our DIFT scheme to enforce various type
systems by increasing the number of bits and allowing for
more complex taint propagation rules. The Elbrus line of
machines as described by Babayan [3] implemented this
type of security for C programs, where any memory cor-
ruption attack that is a type violation (virtually all are) is
prevented, but general purpose applications must be rewrit-
ten for reasons related to memory management. Whether
sensor networks can be secured against non-control data
attacks in this fashion and the impact this would have on
power and performance are questions left for future work.

Because all first-order control dependencies in the ap-
plications that we tested were benign, we did not imple-
ment any special taint propagation rules for control depen-
dencies. For applications that do have laundering control
dependencies it would be possible to give developers an
automated way of finding these and a secure way to taint
them, perhaps by annotating their source code.

DIFT can be implemented simply by adding an ex-
tra bit to every byte in the registers, pipeline, and mem-
ory, and some simple logic gates where operations oc-
cur [29, 8]. The performance and power overheads are neg-
ligible. While any pipeline modification requires adoption
of a DIFT scheme by chip manufacturers, several reasons
make it more likely that sensor network applications will
benefit from DIFT than general purpose computers. One
reason that hardware DIFT support has not been adopted by
chip manufacturers for general purpose computers is that
for these systems DIFT provides no real security guaran-
tees. In contrast, we demonstrate in this paper that satisfac-



tory guarantees of security against a major class of attacks
can be achieved for sensor network applications. Also,
the economics of embedded devices presents less barriers
to hardware support for security, testing, reliability, etc.,
as evidenced by successful extensions such as JTAG [18].
Lastly, the MCU and memory of sensor network nodes are
often packaged as one device so only one chip needs to be
changed, whereas proper DIFT support for general purpose
computers would require new DRAM chips, a motherboard
with extra bits for sockets and buses, and operating system
support for virtual memory swapping with tag bits.

6 Related Work

Gu et al. [17] showed that remote control data attacks
can be exploited on sensor network nodes, and Francillon et
al. [15] demonstrated that after exploiting a buffer overflow
an attacker can even reprogram instruction memory with
the SPM instruction. Our DIFT scheme for sensor network
applications stops any attack that corrupts control data.

Ferguson et al. [14] propose a defense against control
data attacks on sensor nodes that is similar to Control Flow
Integrity [1, 2]. This incurs significant power and perfor-
mance overhead and requires modifications to the program
binary. Furthermore, attacks are not detected after control
flow is hijacked until the attacker executes some code that
transitions to another function. This is because the con-
trol flow sequence check is performed at the end of each
function. Furthermore, the function marks are stored on
the stack for function calls and are therefore also subject to
corruption, and because they are 8 bits in length they can
also be guessed with a brute force attack. Lastly, interrupt
routines are not considered in the control flow sequence.

Kumar et al. [19] use software-based fault isolation
to provide a coarse-grained form of memory protection
for sensor applications and the operating system. Yang et
al. [31] present a defense that is based on software diver-
sity, where multiple versions of an application are created.
Regehr et al. [26] implement efficient type and memory
safety on a small, 8-bit embedded device. This requires
modifications to the entire compilation chain, and even af-
ter optimization some applications can have more than a
35% increase in code size and a 6% performance overhead.
Our proposed DIFT scheme would require hardware modi-
fications, but would work with existing compilers and bina-
ries with no need for binary rewriting, and have negligible
power and performance overhead.

DIFT was introduced by Suh ef al. [29]. Crandall
and Chong [8] and Crandall et al. [9] explored various
policy tradeoffs for DIFT schemes and higher-level sys-
tems issues such as virtual memory swapping, and Vig-
ilante [6] employed DIFT for automated worm defense.
Further research focused on making DIFT more flexible
either in software [22] or through more flexible hardware
extensions [11]. Argos [25] is a widely-deployed honeypot

technology based on DIFT. Researchers have also analyzed
the security and applicability of DIFT [7, 10, 23, 28].

Our scheme is the first DIFT scheme for sensor net-
work applications. As discussed earlier in this paper,
no existing DIFT schemes for general purpose computers
address load-address, store-address, or control dependen-
cies in a way that supports satisfactory security guarantees
against control data attacks. Our scheme tracks all load-
and store-address dependencies, and through testing and
manual analysis we determined that all sensor network ap-
plications that we tested had only benign control depen-
dencies. While flexible DIFT schemes [11, 22] could allow
any policy to be enforced, nobody has actually specified
a DIFT policy that secures general purpose systems. Re-
search suggests that this is impractical for general purpose
systems due to address dependencies [28], and even exist-
ing attacks not intended to evade DIFT have been shown to
not be detected by existing DIFT policies [9].

Control Flow Integrity (CFI) [1, 2] uses binary rewrit-
ing and checks to ensure the validity of all control flow
transfers. CFI requires no hardware modifications, and
gives strong security guarantees even in an attack model
where the attacker can read or write any location in mem-
ory. However, CFI requires significant changes to the
compiler and library linking infrastructure. Furthermore,
an implementation of something similar to CFI for sensor
network nodes showed significant performance and power
overheads, as well as a large increase in code size [14].
Without further research, it is not clear if these overheads
were due to the particular implementation or are inherent
to CFL

7 Conclusion

We have presented a DIFT scheme for sensor network
applications that is secure against remote control data at-
tacks because all data dependencies are either tracked or
shown to be benign. Whereas existing DIFT schemes for
general purpose computers consider only two of the five
data dependency types (copy, calculation, load-address,
store-address, and control), our scheme tracks the first four
and testing and manual analysis of applications demon-
strates that the fifth is always benign (for the applications
we tested, other sensor network applications could easily
be tested in a similar manner). Testing of eight applications
also showed that no modifications to the compiler, operat-
ing system, application source code, or program binaries
is necessary. We expect that, whereas DIFT has not yet
led to secure general purpose systems, DIFT will lead to
secure sensor network devices with security built-in “from
the ground up.”
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