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Abstract

Minos is a microarchitecture that implements Biba’s low-
water-mark integrity policy on individual words of data.
Months of testing have revealed a robust system that
stops attacks which corrupt control data to hijack pro-
gram control flow. The low-water-mark policy is orthog-
onal to the memory model so that it works with exist-
ing software and middleware. The key is that Minos
tracks the integrity of all data, but protects control flow
by checking this integrity when a program uses the data
for control transfer. Existing policies, in contrast, need
to differentiate between control and non-control data a
priori.

Our implementation of Minos for Red Hat Linux 6.2
on a Pentium-based emulator is a usable Linux system
on the network. We have demonstrated that Minos pro-
tects against a menagerie of real control data attacks, not
just buffer overflows. This paper will detail our security
assessments of Minos and other hardware and software
mechanisms designed to stop the same class of attacks.
We conclude that while Minos is substantially more se-
cure than other approaches, existing C programs lack
the semantic information necessary to totally secure their
control flow. More details about the implementation of
Minos are available in [1].

1 Introduction

Control data attacks form the overwhelming majority of
remote attacks on the Internet, especially Internet worms,
and are a major constituent of local attacks designed to
raise privileges. The cost of these attacks to commodity
software users every year now totals well into the billions
of dollars.

In Minos, every 32-bit word of memory is augmented

with a single integrity bit at the physical memory level,
and the same for the general purpose registers. This in-
tegrity bit is set by the kernel when the kernel writes data
into a user process’ memory space, with zero meaning
low and one meaning high. The kernel can make this de-
cision based on the trust it has for the data being used
as control data. Control data is any function pointer or
jump targets such as return pointers on the stack, library
pointers in the Global Offset Table, or virtual function
pointers in C++ objects. Minos is very similar to the
architecture proposed in [2] but was developed indepen-
dently, uses a different policy, and the focus is more on
the system level.

In Minos Biba’s low-water-mark integrity policy [3] is
applied by the hardware as the process moves data and
uses it for operations. If two data words are added, for
example, an AND gate is applied to the integrity bits of
the operands to determine the integrity of the result. A
data word’s integrity is loaded with it into general pur-
pose registers. A hardware exception traps to the kernel
whenever low integrity data is used for control flow pur-
poses by an instruction such as a jump, call, or return.
Intuitively, any control transfer involving untrusted data
is a system vulnerability. Minos detects exactly these
vulnerabilities, and consequently avoids false positives
under extensive testing. Biba’s low-water-mark policy is
notorious for its monotonic behavior so we chose to eval-
uate a full implementation for false positives rather than a
handful of statically compiled benchmarks such as SPEC
2000.

This paper is organized as follows. Section 2 is meant
to justify the design decisions in terms of Biba’s low-
water-mark integrity policy. The architectural support
required for Minos is described in section 3. Sections 4
and 5 discuss our methodology for evaluating Minos and
the security issues that must be addressed at the system
level. We developed an exploit to show the insecurity



of the current best practices which is explained in sec-
tion 6. A security assessment of Minos compared to sev-
eral other architectures in section 7 is followed by con-
clusions.

2 Biba’s Low-Water-Mark Integrity
Policy

This section will explain Biba’s low-water-mark integrity
policy, why it’s an important abstraction for the Minos
system, and what exceptions to this policy at the archi-
tectural level in Minos may raise security concerns.

Biba’s low-water-mark integrity policy [3] specifies
that any subject may modify any object if the object’s
integrity is not greater than that of the subject, but any
subject that reads an object has its integrity lowered to the
minimum of the object’s integrity and its own. The only
other implementation of Biba’s low-water-mark integrity
policy that we know of is LOMAC [4] which applied
this policy to file operations and ran into self-revocation
problems. This monotonic behavior is the classic sort of
problem with the low-water-mark policy, which Minos
ameliorates with a careful definition of trust.

An integrity policy was chosen because the confiden-
tiality and availability components of a full security pol-
icy are not critical for control data protection. We chose
Biba’s low-water-mark policy over other integrity poli-
cies because it has the property that access controls are
based on accesses a subject has made in the past and
therefore need not be specified. For a more thorough ex-
planation of this property we refer the reader to [4].

The most obvious tenet of this policy visible in Minos
is the AND gate between the integrities of both operands
to an operation to determine the integrity of the result.
Policy 1 from [2] assumes the result is high integrity even
if both operands are low integrity, a necessity if the in-
tegrity of addresses used in 32-bit loads and stores is to
be checked (this will be explained in section 7). We im-
plemented a similar policy on our Bochs emulator and
found that it does not catch this vulnerability:

typedef function();
function *f;
scanf("%d", (int *) &f);
f();

The scanf() function in this case will convert the string
read into an integer using an internal version of strtol(),
which uses computation to do the conversion rather than

lookup tables so that it can support a range of bases from
2 to 36.

Basically, this allows arbitrary high integrity values to
be placed in memory. These values don’t necessarily
have to be in a special place to exploit this. For exam-
ple, if an attacker can get an arbitrary high integrity value
anywhere on the stack before exploiting a format string
vulnerability they can eat the stack up to this place and
write an arbitrary value to an arbitrary location (this arbi-
trary value will be the sum of size specifiers in the format
string which are also converted from a string to an inte-
ger).

In Minos there are also information flow problems
which may allow an attacker to bypass the low-water-
mark policy. Statements like

if (LowIntegrityData == 5)
HighIntegrityData = 5;

HighIntegrityData =
HighIntegrityLookupTable[LowIntegrityData];

HighIntegrityData = 0;
while (LowIntegrityData--)

HighIntegrityData++;

give an attacker control over the value of high integrity
data via information flow.

These were supposed to be pathological cases, but
they are not in the case of 8- and 16-bit data because of
the way functions like scanf() and sprintf() handle con-
trol characters and also because of translations between
strings and integer values or something like the conver-
sion from ASCII to UNICODE exploited by Code Red
and Code Red II.

This is why Minos treats 8- and 16-bit data and op-
erations differently from those of 32-bit values. The in-
tegrity of the address used in an 8- or 16-bit load or store
is checked and the destination word is forced low in-
tegrity if the address is low integrity. Without this Minos
does not stop Code Red II. Also, 8- and 16-bit immediate
values are always assumed to be low integrity. These re-
strictions prevent attackers from building arbitrary 32-bit
values out of smaller data.

Minos also assumes that all misaligned 32-bit reads
and writes are low integrity. This way arbitrary 32-bit
values cannot be created through “striping” methods.

The Sun Java Just In Time (JIT) compiler produces
false positives when 8- and 16-bit immediates are low in-
tegrity, but run without any problems when 8- and 16-bit
immediates are high integrity. We added a compatibility
mode for the JIT, but feel it would be better in terms of



Figure 1: Minos in an out-of-order execution micro-
processor core. *Based on size and compatibility set-
tings. **Ignored for 32-bit loads and stores.

security if JIT compilers simply used 32-bit immediate
values or static variables in place of these 8- and 16-bit
immediates that cause the problem.

3 Architecture

The goal of the Minos architecture is to provide system
security with negligible performance degradation. To
achieve this goal, we describe a microarchitecture which
makes small investments in hardware where the tag bits
in Minos are in the critical path. Our software Minos
emulator only achieves about 10 million instructions per
second on a 2.8 GHz Pentium 4.

At a basic level, every 32-bit word of data must be
augmented with an integrity bit. This results in a maxi-
mum memory overhead of 3.125% (neglecting compres-
sion techniques), which can be paid for with Moore’s law
in 26 days. The real cost, which we will try to address
in this section, is the added complexity in the processor
core. We argue that this complexity is well justified by
the security benefits gained and the high compatibility of
Minos with commodity software. Given increasing tran-
sistor densities and decreasing performance gains, invest-
ments in reliability and security make sense.

Figure 1 shows the basic data flow of the core of a
Minos-enabled processor. One bit is added to the com-
mon data bus. When data or addresses are transmitted,
their integrity bit is also transmitted in parallel. The re-

order buffer and the load buffer have an extra bit per tag
to store the integrity bit. The reservation stations have
two integrity bits, one for each operand. The integrity of
the result is determined by applying an AND gate to the
integrity bits of the operands. All of the integrity bit op-
erations can be done in parallel with normal operations
and are never in the critical path, and there is no need for
new speculation mechanisms.

The L1 cache in a modern microprocessor, the Pen-
tium 4 for example, is typically about 8KB and is opti-
mized for access time. To maintain this low access time,
we store the integrity bit with every 32-bit word as a 33rd
bit. The total storage overhead in an L1 cache of this size
is 256 bytes. The on-chip L2 cache, on the other hand,
can be as large as 1MB and is optimized for hit rate and
bandwidth. To keep the area overhead low and the layout
simple, we use the same technique often used for parity
bits: have one byte of integrity for every 256 bit cache
line.

All of the floating point, MMX, BCD, and similar ex-
tensions can ignore the integrity bits and always write
back to memory with low integrity. This is because con-
trol data, such as jump pointers and function pointers, are
never calculated with BCD or floating point. One pos-
sible exception is that MMX is sometimes used for fast
memory copies, so these instructions should just preserve
the integrity bits. The instruction cache, trace cache, and
branch target buffer must check the integrity bits with
their inputs, but do not need to store the integrity bits af-
ter the check. If data is low integrity, it is simply not
allowed into the instruction cache or branch target buffer.
Overall, the L1 cache and processor core’s area increases
will be negligible compared to the L2 cache, so we can
produce an estimate of the increase in die area for Minos
by looking at the L2 cache alone.

Intel’s 90 ��� process can store 52 Mbits, or 6.5 MB,
in 109.8 ����� with 330 million transistors [5]. A 1 MB
L2 cache without the extra integrity bits in this process
would be about 51 million transistors and 16.9 ��� � . Mi-
nos would add to this another 1.59 million transistors and
0.53 ��� � for an additional 32 KB. The Prescott die area
is reported to be 112 ����� , so the contribution of the ex-
tra storage required by Minos in the L2 cache to the entire
die area is less than one half of one percent. Using the
die cost model from [6] and assuming 300 ��� wafers, 	
= 4.0, and 1 defect per 
�� � this is less than a penny on
the dollar.

A 32-bit microprocessor without special addressing



modes can address 4 GB of DRAM off chip. This re-
quires 128 MB to store the integrity bits outside the mi-
croprocessor. We propose a separate DRAM chip which
we will call the Integrity Bit Stuffer (IBS). The IBS can
coexist with the bus controller and store the integrity in-
formation for data in the DRAM. When the DRAM fills
requests for data, the IBS stuffs the stored integrity bits
with this data on the bus.

By using a banking strategy that mirrors that of the
conventional DRAM chip it can be guaranteed that the
integrity bit will always be ready at the same time as the
conventional data. The bus must be widened from 64 to
66 bits. When the data bus is driven by other devices for
DMA or port I/O, the IBS assumes high integrity.

The hardware support needed for Minos is almost
identical to what is needed for the soft error rate reduc-
tion mechanism proposed in [7]. The same paper dis-
cusses other uses of tag bits. The PowerPC AS has a tag
bit per 64-bits and is used for running the microcode of
iSeries programs. A 64-bit Linux implementation with
Minos support on the iSeries may be possible by using a
similar microcode approach.

4 Methodology

We emulated Minos on a Pentium emulator called Bochs
[8]. Bochs emulates the full system including booting
from the BIOS and loading the kernel from the hard
drive. DMA, port I/O, and extensions like floating point,
MMX, BCD and SSE are supported. The floating point
and BCD instructions ignore the integrity of their inputs
and their outputs are always low integrity. A single in-
tegrity bit was added to every 32-bit word in the physical
memory space. All port I/O and DMA is assumed to be
high integrity so that all existing devices and drivers are
compatible with Minos.

The Pentium is also byte and 16-bit word addressable
but it suffices to only store one integrity bit for every 32-
bit word. Compilers align all control data along 32-bit
word boundaries for performance reasons [9]. If a low in-
tegrity byte is written into a high integrity 32-bit word, or
a high integrity byte is written into a low integrity word,
the entire resulting word is then low integrity. The same
applies to 16-bit manipulation of data. More restrictions
on the manipulation of 8- and 16-bit data was explained
in section 2.

Every instruction operation applies the low-water-

mark integrity policy to its inputs to determine the in-
tegrity of the result. All 8-bit and 16-bit immediate loads
are low integrity unless the processor is running in a spe-
cial compatibility mode, and all memory references to
load 8-bit and 16-bit values also have the low-water-mark
integrity policy applied to the addresses used for the load,
something that is needed for our Windows implementa-
tion of Minos to catch Code Red II [1] as has already
been stated.

String operations on the Pentium, such as a memory
copy, go from one segment to another. To give the kernel
the ability to mark data low integrity as it copies it into a
process’ memory space the reserved 53rd bit in a Pentium
segment descriptor entry is interpreted to mean that data
written into this segment should be forced low integrity.
If the 53rd bit of the segment descriptor is not set then
the integrity bit is simply copied.

Performance results of Minos’ implementation of vir-
tual memory swapping, a discussion of false positives,
and tests of Minos with existing exploits are available in
[1].

5 Operating System Changes

Details about the Minos-specific changes we made to the
Linux kernel are available in [1]. This section will ad-
dress some system-level security concerns.

At a system level Minos basically defines trust based
on how long data has been part of the system. On a read()
system call the ctime and mtime of the inode are checked
and any data created or modified after an establishment
time is forced low integrity as it is written into a process’
address space. An exception was made for pipes between
lightweight processes that share the same address space
for compatibility with pthreads. It is not productive to-
ward an attack for one thread to hijack the control flow
of another thread if they share the same address space
and kernel data structures.

Minos secures programs against attacks that hijack
their low-level control flow by overwriting control data.
The definition of trust in our Linux implementation stops
all remote intrusions based on control data corruption.
We protect against local control data attacks designed to
raise privileges but only because the line between these
and remote vulnerabilities is not clear.

Virtually all remote intrusions are control data attacks.
The exceptions are directory traversal in URLs (for ex-



ample, “http://www.x.com/../../system/cmd.exe?/cmd”),
control characters in inputs to scripts that cause the in-
puts to be interpreted as scripts themselves, or unchanged
default passwords. These kinds of software indiscretions
are outside the scope of what the architecture is respon-
sible for protecting.

Code injection attacks are a subset of control data at-
tacks where arbitrary machine code is executed. Hijack-
ing the control flow of a program, with or without inject-
ing arbitrary machine code, is a very powerful tool for
an attacker. Minos was not designed to protect impor-
tant data other than control data such as file descriptors
or pointers to filenames.

For compatibility with existing hardware without the
need for new device drivers all DMA and port I/O is con-
sidered high integrity until the kernel forces the data low
integrity during a read() system call. The read() system
call is used for reading from files, network sockets, pipes,
and just about everything else in Linux. The only other
way for data to enter a process’ address space is through
other system calls but typically a remote attacker’s in-
puts will be introduced through a network socket. This
network socket read will force the data low integrity and
if Biba’s low-water-mark policy is enforced properly it
will never go up in integrity. Any object in the virtual file
system that it is written to will have its ctime changed to
the current time and won’t pass the establishment time
requirement, so data can’t be lifted to high integrity by
going out to the disk and coming back, for example.

The alternative to assuming all DMA and port I/O is
high integrity would be to force it low integrity and have
a segment descriptor that lifts data up to high integrity on
certain conditions. This would be a violation of the low-
water-mark policy. Naturally, the next issue to address
is the restoration of high and low integrity marks during
virtual memory swapping.

There is another special segment descriptor in Minos
which, when used in string operations, causes the source
or destination to have a stride of 32 words and the value
copied in or out of this segment is the 32 bits of integrity
information for this 32 word block. This way the kernel
can copy the integrity information from an entire 4 KB
page into a 128 byte buffer, or copy the integrity infor-
mation of a 128 byte buffer into the integrity bits of an
entire page to enable virtual memory swapping.

An obvious security concern is that this may violate
the low-water-mark policy if an operation is available to
make data be lifted to high integrity, so this special seg-

ment descriptor only changes high integrity marks to low
integrity, but never vice-versa. This preserves the low-
water-mark policy and does not create any false positives
because after a page is read back from a swap device it
will be all high integrity until the kernel tries to map it
at which point the appropriate low integrity marks are re-
stored.

Minos also checks the integrity of all mmap()ed files
such as dynamically linked libraries. However, the orig-
inally mounted binary is not checked for the establish-
ment time requirement so that programs can be com-
piled statically and run without changing the establish-
ment time. If a compiled static binary is flushed to disk
with sync() it can be run without causing a Minos alert.
To exploit this an attacker would need to already have a
shell or the equivalent, and Minos is designed to stop re-
mote attackers before they can obtain a shell. We make
no claim to security against local privilege escalation.

Another concern is that Minos places a lot of trust in
the operating system but system code sometimes has the
same bugs as application code. For example, the Linux
kernel version we used is vulnerable to an integer over-
flow in the do brk() function [10]. It requires that the
attacker already has a shell because they need to mount
an ELF binary with no stack. It basically allows the ker-
nel’s pages above the 0xc0000000 address to be mapped
into the process’ page table. These pages are at level 0
(system) and the process is in level 3 (user space) so the
pages are still protected by the absence of read and write
permission bits for level 3.

These protections are meaningless in Linux once a
process has a page in its address space though, so in prac-
tical terms the process can arbitrarily read from and write
to kernel space. Writes are performed by writing the data
to a file and then reading the file using a pointer to a
buffer that is in the kernel space. Reads are performed
by doing the inverse. We believe that execute permission
bits on pages will prove to be equally as meaningless for
pages in a process’ address space.

We know of no remotely exploitable control data vul-
nerabilities in the Linux kernel where the attacker would
not already need to have a shell. Memory corruption vul-
nerabilities in the kernel are not limited to control data at-
tacks because the kernel stores a lot of important system
information. Thus Minos checks the integrity of control
flow transfers in system mode but no claim is made of
protecting the kernel from users with a shell.



6 The Hannibal Exploit

We developed the hannibal exploit to illustarate the in-
security of current best practices. This section will de-
scribe our estimation of current best practices, including
non-executable pages, return pointer protection, random
library placement, and some specifics of Windows XP
Service Pack 2, and then will describe an exploit not ad-
dressed by any of these techniques for an old vulnerabil-
ity in the wu-ftpd service of Linux.

Non-executable pages are already available on 64-bit
Pentium-based architectures and both Windows XP Ser-
vice Pack 2 and Linux kernel 2.6 support their use even
in 32-bit mode. Attacks are well known to subvert these
protections [11] but require that multiple functions be
linked together using return addresses as function point-
ers and building a chain of stack frames. This is easily
averted by return pointer protection such as StackGuard
[12] or that available with Windows compilers. It is also
common to place libraries at random locations as is pos-
sible with Gentoo Linux, or place them in parts of mem-
ory with zeroes in the address which is the default for
Fedora Core 2.

In addition to Hardware Data Execution Prevention
(DEP) (the name for non-executable pages support in
Windows XP Service Pack 2), Software DEP protects
Windows-critical processes by default. For programs
compiled with Secure Structured Exception Handling
(SEH) pointers to exception handlers are only followed if
they match the pointer of a properly registered exception
handler function. For programs without Secure SEH the
function pointer is only checked to make sure it addresses
a portion of memory marked as executable (regardless of
hardware support). Code Red II overwrote one of these
SEH function pointers with a pointer to code in an exe-
cutable portion of memory containing “CALL EBX” to
jump back to the stack, and therefore would not have
been stopped by software DEP. Furthermore, even with
Secure SEH critical flaws were pointed out in [13] and
it’s not clear if Windows XP Service Pack 2 addressed
these concerns or not. All of this casts doubt on whether
Service Pack 2 can stop the control data attacks of the
past let alone those of the future.

To stop control data attacks we must protect the in-
tegrity of all control data and stop the attack before con-
trol flow is hijacked. To further illustrate this point we
assumed non-executable pages, return pointer protection,
and random placement of library functions on our Red

Hat Linux 6.2 Bochs emulator with Minos disabled and
were easily able to still obtain a remote root shell. With
Minos enabled this attack is stopped at the first illegiti-
mate control flow transfer.

The hannibal exploit takes advantage of the use of a
Procedure Linkage Table (PLT) and Global Offset Table
(GOT) to facilitate calls to dynamically linked functions
from statically compiled code. The following C program
is complex enough to require the use of a PLT and GOT:

#include <stdio.h>

int main()
{

printf("Hello World!\n");
return 0;

}

The main program is compiled with the value
0x08048268 statically bound to printf(). This three in-
struction sequence is the PLT entry for printf() and re-
sides in read-only, executable memory:

0x8048268 <printf>:
jmp *0x80494b8

0x0804826e <printf+6>:
push $0x8
jmp 0x8048248 <_dl_runtime_resolve>

The GOT entry for printf() is loaded from 0x080494b8
(readable and writable memory) and an unconditional
jump either reads the value 0x0804826e which will con-
tinue to push an identifier for printf() and jump to a func-
tion to resolve the symbol and update printf()’s GOT en-
try, or will jump directly to printf() if the symbol has al-
ready been resolved.

Figure 2 outlines the steps of the hannibal exploit.
The wu-ftpd 2.6.0 FTP server daemon for Red Hat 6.2
contains a format string vulnerability which allows us
to write an arbitrary value into a nearly arbitrary lo-
cation in memory without touching the stack or crash-
ing the process [14]. In short, the hannibal exploit
uploads a statically compiled binary executable called
“jailbreak” via anonymous FTP onto the victim machine
and replaces rename(char *, char *)’s GOT entry with
a pointer to execv(char *, char **)’s PLT entry. Sub-
sequently a request to rename the file “jailbreak” to
“ � xb8 � x6b � x08 � x08” will cause the server to run ex-
ecv(“jailbreak”, 
 “jailbreak”, NULL � ).

As a practical matter the string “ � xb8 � x6b � x08 � x08”
must land on the heap in a chunk initially with all zeroes
in it because execv() expects a NULL-terminated list of



arguments. This is achieved by changing syslog(int, char
*, int)’s GOT entry to point to the PLT entry for mal-
loc(int) and trying to login sixty times which will gen-
erate system log events because we’re already logged in.
This memory leak will “squeeze the heap” the way Han-
nibal squeezed the Roman infantry at the Battle of Can-
nae and cause our string to land in the wilderness chunk.

The “jailbreak” executable will inherit the network
socket descriptors of the wu-ftpd daemon, break out of
the chroot() jail keeping it in “/home/ftp” using well-
known techniques, and execute a root shell. A couple
of interesting points can be made about this exploit. The
first is that the execv() symbol is not even resolved un-
til the attack hijacks control flow and jumps to execv()’s
PLT entry which will locate this function and resolve the
symbol for us. Also, most format string vulnerabilities,
including the one used here, make it trivial to produce ei-
ther an arbitrary write primitive or an arbitrary read prim-
itive [15]. Randomizing the locations of the PLT, GOT,
or even the static binary won’t help at all because the at-
tacker can easily use arbitrary read primitives to locate
them. Sandboxes don’t help either because an arbitrary
write primitive allows the attacker to simply bypass the
sandbox and jump to code directly after the point where
the checks are passed.

7 Security Assessment

We have demonstrated that Minos stops all sorts of ex-
isting control data attacks [1], but we must address the
security of Minos against future kinds of attacks devel-
oped with subversion of Minos in mind. A useful way to
think of how attacks more advanced than simple buffer
overflows are developed is to consider that vulnerabilities
lead to corruption, corruptions lead to primitives (such as
an arbitrary write), and primitives can be used for higher
level attack techniques [16].

We will compare the security of Minos specifically to
the AS/400 [17], the Elbrus E2K [18], a similar archi-
tecture with a different policy [2], and the current best
practices. Our estimation of the current best practices is
execute permissions on pages, random placement of li-
brary routines in memory, and return pointer protection
such as StackGuard [12].

The following three classes of control data attacks
must be considered: 1) Can an attacker overwrite control
data with untrusted data undetected? 2) Can an attacker

Figure 2: Steps in the Hannibal Exploit



cause the program to load/store control data to/from the
wrong place? and 3) Can an attacker cause the program
to load control data from the right place but at the wrong
time?

The AS/400 tags all pointers and these pointers can
only be modified through a controlled set of instructions,
so an attacker cannot overwrite control data or pointers
to control data securing it against the first two classes
of attacks. This architecture also has a very large ad-
dress space (64-bits) so memory need not be reused, se-
curing it against the third class of attacks which have a
temporal element. The AS/400 is secure against con-
trol data attacks when this pointer protection is enabled,
but these protections are disabled for Linux on the iS-
eries [19] simply because C programs written for Linux
don’t have the semantic information to distinguish point-
ers from other data.

The Elbrus E2K uses strong runtime type-checking to
protect the integrity of all pointers, and pointers may not
be coerced with other data types such as integers. To
protect itself against temporal reference problems C/C++
programs may not have unchecked references from data
structures with a longer lifetime to those with a shorter
lifetime (such as from the stack to the heap) and C++
programs may not redefine the new operator. These con-
straints are very draconian but would be necessary to to-
tally secure C/C++ programs against all three classes of
control data attacks.

Section 6 already discussed current best practices and
how easily they are subverted. It is necessary to protect
the integrity of all control data and without hardware sup-
port it is really only feasible to protect the integrity of re-
turn pointers on the stack and do a few simple checks.
But any control data left anywhere in memory unpro-
tected can be the victim of an arbitrary write primitive.

Minos stops this kind of attack because Minos protects
the integrity of all control data, not just return pointers on
the stack. The possible security problems we foresee for
Minos are copying valid control data over other control
data (which falls in the second class), dangling pointers
to control data (which falls in the third class), and gen-
erating arbitrary high integrity values through legitimate
control flow (which falls in the first class).

Minos prevents all attacks that overwrite control data
with untrusted data. To stop attacks that copy other
high integrity data over control data Minos would need
to check the integrity of addresses used for 32-bit loads
and stores, as is done in the both policies of [2]. To see

why this is infeasible consider this example of how Doug
Lea’s malloc (which is used in glibc) stores management
information on the heap and uses it to calculate pointers:

chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| prev_size of previous chunk (if p=1) | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| size of chunk, in bytes |p|

mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User data starts here... .
. .
. (malloc_usable_space() bytes) .
. |

nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| size of chunk |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The size field is always divisible by eight so the last bit
(p) is free to store whether or not the previous chunk is
in use. The addresses of all chunks are calculated using
the size and pre size integers (note that this is a violation
of the Elbrus E2K’s constraint that pointers may not be
coerced with integers). These sizes may be read directly
from user input so you would expect them to be low in-
tegrity. That means that all heap pointers will be low
integrity if the integrity of these sizes is checked, and if it
is not checked then an attacker can use this fact to modify
heap pointers undetected. These sizes are never bounds-
checked because they are supposed to be consistent with
the size of the chunk.

If all heap pointers are low integrity then all control
data or pointers to control data on the heap will also be-
come low integrity when they are loaded or stored using
these pointers. An example of control data or pointers to
control data on the heap might be C++ virtual function
pointers or plug-in hooks. This will create a lot of false
positives. That is why both the integrity of addresses
used for loads and stores of control data and the integrity
of all operands to an operation cannot be checked with-
out producing false positives. Thus the first policy of [2]
is able to do the former and Minos is able to do the latter
but neither is able to do both.

The second policy in [2] attempts to do both by assum-
ing that all low-integrity values that are used in a compare
operation or a logical AND/OR are bounds checked and
therefore safe to be lifted to high integrity. The bit p from
the malloc header above is extracted with a logical AND
from the size field but this is not a bounds check so an at-
tacker could write an arbitrary even integer into the size
field and it would become high integrity.

Attackers often use these size and prev size fields for
heap corruption attacks. If these fields remain high in-
tegrity (because of the logical AND) to keep all heap
pointers high integrity and avoid false positives then the



following macro may be run during a double free() or
heap buffer overflow exploit with P, P- � fd, and P- � bk
all high integrity and P- � fd and P- � bk may be arbitrary
(BK and FD are temporary values):

#define unlink(P, BK, FD) {
FD = P->fd;
BK = P->bk;
FD->bk = BK;
BK->fd = FD;

}

This acts like an arbitrary write primitive but really
what it is doing is making two pointers in memory point
to the locations of one another. Thus you can’t change
a pointer to point to code in non-writable memory and
it’s not clear if this is exploitable with [2], especially
with non-executable pages. From our experience, how-
ever, it is never safe to assume that a vulnerability is
not exploitable without something explicit in the security
mechanism to stop it.

Arbitrary copy primitives appear to be much harder to
achieve than arbitrary write primitives. One possibility
would be to overwrite both the source and destination
pointers of a memcpy(void *, void *, size t), but both ar-
guments would have to be in writable memory. The str-
cpy(char *, char*) function manipulates data at the byte
level so the integrity of the addresses is checked.

We don’t believe arbitrary copy attacks will be a prob-
lem, but if they are we propose a Sandboxed PLT (SPLT),
which splits pointers to critical library functions (like ex-
ecv(), system(), or chroot()) that aren’t performance crit-
ical in the GOT into two pieces with an XOR using a
32-bit hash value of the library’s symbol. Then the at-
tacker would need not just an arbitrary copy primitive
but an arbitrary copy and XOR at the same time. Calls
to the SPLT would run special sandboxing code to check
their validity, as would the library functions to check that
the call came from the SPLT. These sandboxes cannot be
subverted with an arbitrary write primitive in Minos, and
arbitrary copy attacks would need to be lucky enough to
find somewhere in memory the exact high-integrity value
needed to bypass the sandboxes.

We don’t believe that dangling pointers are practical
to exploit in Minos either, because the attacker can’t put
arbitrary data into the location where the valid control
data is expected, it would have to be high-integrity data,
so in practical terms they would need an arbitrary copy
primitive.

Note that an arbitrary read primitive and an arbitrary
write primitive (both of which are trivial with, for exam-
ple, a format string vulnerability) don’t give the attacker
an arbitrary copy primitive in Minos because anything
which goes through the filesystem and comes back will
be low integrity.

One method of generating high integrity arbitrary val-
ues might be to exploit a format string vulnerability but
use “%s” format specifiers instead of “%9999u”, where
“%s” is supplied a pointer to a string that is 9999 charac-
ters long (a controlled increment). Fortunately, this arbi-
trary value will be low integrity in our Minos implemen-
tation because the count of characters is kept by adding
8-bit immediates to an initially zero integer and our pol-
icy treats all 8-bit and 16-bit immediates as low integrity.
The first policy in [2] will stop such an attack because
the integrity of all 32-bit loads and stores is checked, un-
less an arbitrary high integrity value can be placed on the
stack using the method described in section 2.

8 Related Works

We have cited several related architectures and relevant
references throughout this paper, but for a more complete
list of related works we refer the reader to [1].

9 Conclusions

We can’t say peremptorily that Minos is totally secure
against control data attacks for every possible program
but we will assert that it is very “securable.” As an anal-
ogy, consider that the AS/400 is possibly the most “se-
curable” architecture in the world against unauthorized
remote access to files but without special procedures to
properly secure it remote attacks can be trivial. For ex-
ample, an attacker might obtain access to an account be-
cause of an unchanged default password [20] and then
due to a vulnerability such as [21] be able to execute ar-
bitrary commands.

Slight modifications to the library mechanisms and
sandboxes in key areas, such as the SPLT, could secure a
Minos system against remote control data attacks with a
high degree of assurance by taking away primitives like
arbitrary copies or controlled increments, and would con-
stitute code changes in centralized locations but not a
change to the memory model expected by applications.
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