
Energy Consumption in Networks on
Chip: Efficiency and Scaling

by

George B. P. Bezerra

B.S., Electrical Engineering, University of Campinas, Brazil, 2005

M.S., Computer Engineering, University of Campinas, Brazil, 2006

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2012

c©2012, George B. P. Bezerra

iii

Dedication

To my parents, Albert II and Gladys, for their support, encouragement and the

Corvette they’re giving me for graduation.

“A bird in hand is worth two in the bush” – Anonymous

iv

Acknowledgments

I would like to thank my advisor, Professor Martin Sheen, for his support and some
great action movies. I would also like to thank my dog, Spot, who only ate my
homework two or three times. I have several other people I would like to thank, as
well.1

1To my brother and sister, who are really cool.

v

Energy Consumption in Networks on
Chip: Efficiency and Scaling

by

George B. P. Bezerra

B.S., Electrical Engineering, University of Campinas, Brazil, 2005

M.S., Computer Engineering, University of Campinas, Brazil, 2006

PhD., Computer Science, University of New Mexico, 2012

Abstract

Computer architecture design is in a new era where performance is increased by

replicating processing cores on a chip rather than making CPUs larger and faster.

This design strategy is motivated by the superior energy efficiency of the multi-core

architecture compared to the traditional monolithic CPU. If the trend continues as

expected, the number of cores on a chip is predicted to grow exponentially over time

as the density of transistors on a die increases.

A major challenge to the efficiency of multi-core chips is the energy used for

communication among cores over a Network on Chip (NoC). As the number of cores

increases, this energy also increases, imposing serious constraints on design and per-

formance of both applications and architectures. Therefore, understanding the im-

pact of different design choices on NoC power and energy consumption is crucial to

the success of the multi- and many-core designs.

This dissertation proposes methods for modeling and optimizing energy consump-

tion in multi- and many-core chips, with special focus on the energy used for commu-

vi

nication on the NoC. We present a number of tools and models to optimize energy

consumption and model its scaling behavior as the number of cores increases. We use

synthetic traffic patterns and full system simulations to test and validate our meth-

ods. Finally, we take a step back and look at the evolution of computer hardware in

the last 40 years and, using a scaling theory from biology, present a predictive theory

for power-performance scaling in microprocessor systems.

vii

Contents

List of Figures xiii

List of Tables xviii

1 Introduction 1

1.1 Contributions and organization . 3

2 Background Information 5

2.1 Network on Chip . 5

2.1.1 Overview . 5

2.1.2 NoC Topologies . 8

2.2 Memory and Communication Models in CMP 11

2.2.1 Models of Parallel Architectures 11

2.2.2 Cache Coherence . 14

2.3 Mapping and Scheduling . 18

viii

Contents

3 Power Scaling in NoC Topologies 23

3.1 A Theoretical Model of Power Scaling 24

3.2 Analysis of the Scaling Behavior . 27

3.3 Experimental Results . 28

3.3.1 Simulation Infrastructure . 28

3.3.2 Results . 29

3.4 Conclusion . 30

4 Modeling NoC Communication Locality using Rent’s Rule 32

4.1 Rent’s Rule Traffic patterns . 33

4.1.1 Rent’s Rule for Parallel Programs 33

4.1.2 Generating Rent’s Rule Traffic Patterns 34

4.2 Other Synthetic Workloads . 36

4.3 Modeling Energy Consumption . 38

4.4 Experimental Results . 39

4.4.1 NoC Energy Consumption . 39

4.4.2 Varying the Rent’s Exponent 41

4.5 Discussion and Conclusion . 43

5 Data Placement Optimization for Chip Multi-Processors 45

5.1 Related Work . 46

ix

Contents

5.2 The Data Placement Problem . 47

5.3 The Communication Graph . 50

5.4 An Exact Algorithm for Optimized Data

Placement . 52

5.4.1 Greedy Approach . 53

5.4.2 Description of the Model . 55

5.5 Experimental results . 57

5.5.1 Simulation setup . 57

5.5.2 Results . 58

5.5.3 Sensitivity Analysis . 61

5.6 Discussion . 63

5.7 Conclusion . 63

6 Theoretical Analysis of NoC Energy Consumption 66

6.1 Rent’s Rule for Multi-Core Systems 67

6.2 Modeling Communication Locality 68

6.3 Modeling Energy Consumption . 71

6.4 Related work . 72

6.5 Conclusion . 73

7 A General Power-Performance Scaling Law for Computing 74

7.1 The Scaling of Vascular Systems and Digital Circuits 76

x

Contents

7.1.1 The West-Brown-Enquist model 76

7.1.2 Rent’s rule . 79

7.2 A unified model of network scaling 82

7.2.1 Length . 84

7.2.2 Thickness . 85

7.2.3 Width . 86

7.3 Allometric scaling . 87

7.3.1 Volume . 87

7.3.2 Wire length . 89

7.3.3 Fractal dimension . 90

7.4 Energy-delay product . 91

7.4.1 Resistance . 92

7.4.2 Capacitance . 93

7.4.3 Latency . 93

7.4.4 Bandwidth . 94

7.4.5 Energy . 94

7.4.6 Delay . 95

7.4.7 Energy × Delay . 96

7.5 Power and performance . 98

7.5.1 Power . 99

xi

Contents

7.5.2 Performance . 101

7.6 Discussion . 102

7.7 Conclusion . 105

8 Conclusions 106

Appendices 108

A Derivation of CPD for Arbitrary Traffic Patterns 109

B Proof of Total Unimodularity 113

C The Fourth Scaling Dimension 116

References 119

xii

List of Figures

2.1 Basic structure of an NoC. 7

2.2 NoC topologies. (a) Fat tree, (b) mesh, (c) torus, (d) folded-torus,

(e) octagon, (f) butterfly fat tree. (Figure reproduced from [73].) . . 9

2.3 Centralized shared memory architecture, also called UMA. All CPU

nodes access a single physical memory. L1 and L2 correspond to

private level 1 and level 2 caches. 12

2.4 Distributed memory architecture. Memory address spaces are inde-

pendent and private to each CPU. 12

2.5 Distributed shared memory architecture. Memories are physically

distributed but share a same address space. 13

2.6 Non-uniform cache access (NUCA) architecture. This system has a

centralized shared memory, but different from the UMA architecture,

the level 2 caches are also shared. 14

2.7 Tiled chip multi-processor architecture. (Figure reproduced from [97]) 14

xiii

List of Figures

2.8 Basic steps of a snooping protocol when a processor requests data.

The fields I, M, and S correspond to the invalidate, modified, and

shared bits. R represents a data request, D data reply, and WB data

write-back to memory. 17

2.9 Basic steps of a snooping protocol when a processor wants to write

on shared data. The fields I, M, and S correspond to the invalidate,

modified, and shared bits. The arrows associated with a letter I are

invalidate messages. 17

2.10 Basic steps of a directory-based protocol when a processor requests

data. The fields I, M, and U correspond to the invalidate, modified,

and uncached bits. R represents a data request, D data reply, and

WB data write-back to memory. 19

2.11 Basic steps of a directory-based protocol when a processor wants

to write on shared data. The fields I, M, and U correspond to the

invalidate, modified, and uncached bits. The arrows associated with

a letter I are invalidate messages. 20

2.12 Task graph. 20

3.1 Flow of packets injected by one processor in a binary tree network

with 16 processor nodes. The numbers represent the fraction of the

flow passing through each path of the tree. The values of k represent

the levels of the tree. 25

3.2 Comparison between the theoretical results of our models with sim-

ulation results . 31

xiv

List of Figures

4.1 Comparison between the wire length distribution given by [25] and

the communication probability distribution produced by the Rent’s

rule traffic generator. 35

4.2 CPD of different traffic patterns on a 8×8 mesh network. (a) Rent’s

rule with Rent’s exponent of 0.75.(b) Uniform random. (c) Bit trans-

pose. (d) Bit complement. (e) Bit rotation. (f) Nearest neighbor

with localization factor of 50%. 38

4.3 Predicted and simulated energy consumption for (a) 8×8 mesh NoC

on 65nm and (b) 10×10 mesh NoC on 45nm. 40

4.4 Energy consumption of 6×6, 8×8, and 10×10 NoCs for Rent’s rule

traffic as a function of the Rent’s exponent. 43

5.1 Blocks of physical memory are assigned to home nodes present on the

cores. The blocks are uniformly distributed in an interleaved manner. 48

5.2 Communication probability distribution for two benchmark applica-

tions compared to uniform random traffic. Data were collected on a

system with standard (uniform) mapping 49

5.3 Simple illustration of a communication graph. There is no commu-

nication between two threads or between two blocks, only between a

thread and a block. 51

5.4 Degree distribution of blocks for the ocean contiguous application. 52

5.5 Semi-log plot of the block degree distribution for the ocean contiguous

application. 53

5.6 Distribution of the number of blocks assigned to each core for the

cholesky application using a greedy approach. 54

xv

List of Figures

5.7 Energy consumption of LLB and first-touch normalized by the energy

consumption of the uniform mapping. 60

5.8 Runtime of LLB and first-touch normalized by the runtime of the

uniform mapping. 60

5.9 Communication probability distribution of benchmark applications

before (dashed line) and after (solid line) optimization with LLB. . . 65

6.1 Rent’s rule for three CMP applications. 68

6.2 Measured and estimated communication distance for CMP applica-

tions. The dashed line indicates perfect agreement between empirical

and theoretical values. 70

6.3 Measured and estimated energy consumption of CMP applications.

The dashed line indicates perfect agreement between empirical and

theoretical values. 72

7.1 Kleiber’s law. 77

7.2 Illustration of a fractal branching network structure with branching

factor 2. 79

7.3 Cross section of twelve layers of interconnect. Figure reproduced

from [94]. 80

7.4 Visualization of the hierarchical interpretation of Rent’s rule. 81

7.5 Schematic of the hierarchical model of network scaling. 83

7.6 The scaling of power consumption as a function of the number of

transistors for 523 microprocessors of different vendors and techno-

logical generations. 100

xvi

List of Figures

7.7 The scaling of throughput as a function of the number of transistors

for 16 Intel microprocessors of different technological generations. . . 102

7.8 The scaling of frequency and of instruction per cycle per transistor.

As frequency has increased, each transistor computed proportionally

less per cycle. 104

A.1 All possible paths with length l for a 4× 4 mesh. 112

C.1 Power-law distribution of node sizes for a binary tree with 100,000

nodes and depth 20. 117

xvii

List of Tables

3.1 Closed-form solutions for power on different topologies. 27

3.2 Theoretical estimates for scaling in different topologies according to

asymptotic analysis. 27

4.1 Predicted and simulated energy values for 8×8 and 10×10 NoCs. The

uncertainty values arise from the limited number of packets sampled

from the CPD. 41

5.1 Percent improvement in energy and runtime for the LLB and first-

touch (FT) data placement (relative to the uniform mapping). Also

shown is the total traffic for each method in number of messages. . . 59

5.2 Average percentage energy savings and runtime improvement for

LLB when testing a previously generated mapping on 20 different

inputs. Also shown is the similarity between the communication

graphs. 62

6.1 Rent’s rule parameters p and b for CMP applications. 69

7.1 List of all the scaling dimensions defined in this chapter. 84

xviii

List of Tables

7.2 List of the variables introduced in Section 7.4. 92

xix

Chapter 1

Introduction

Over the last 40 years, the monolithic CPU design has scaled in performance by

six orders of magnitude, following the exponential trends dictated by Moore’s law.

However, the traditional sources of performance improvement—e.g. instruction level

parallelism and clock frequency increase—have saturated. Computer architecture

design has entered a new era, in which performance is increased by adding more CPUs

(or cores) to a chip instead of making larger and faster ones. As transistor density

continues to increase fostered by process technology improvement, an exponential

growth in the number of cores on a chip is expected in the following years [84].

This shift of the industry towards the multi-core architecture is motivated pri-

marily by energy and power consumption. With the highly complex circuits and high

clock frequency of modern billion-transistor CPUs, we have reached the limit of how

much power (and heat) can be dissipated on a chip and cooled by air. The increased

demand for embedded systems, such as smartphones, tablets and netbooks, has also

raised the concern for energy and power consumption. Because these devices rely on

limited source of energy, embedded processors are designed to minimize energy con-

sumption in order to increase battery life. Energy is also a major concern in servers

1

Chapter 1. Introduction

and data centers. Currently, the energy used for operating and cooling servers ac-

counts for about 1% of all the electricity in the United States [56]. A study shows

that the energy bill for data centers worldwide more than doubled between 2000 and

2005 [57]. With the increasing demand for Web content, this situation is expected

to worsen in the upcoming years. In modern High-Performance Computing (HPC)

systems, power is also the biggest constraint. The exascale computing challenge aims

at improving the performance of supercomputers by 1000× in 10 years, but current

trends in energy consumption for such machines render this goal unattainable [54].

A large investment is being made to increase the energy efficiency of supercomput-

ers, in the US and worldwide, in order to avoid the energy bottleneck in the future

generation of HPC machines.

The multi-core architecture is a viable alternative to the traditional monolithic de-

sign because parallelization is a more energy-efficient way of improving performance

[39]. Because performance of individual cores is not expected to increase signifi-

cantly in the future, the energy used per core for computation will likely decrease

with miniaturization. However, cores need to communicate at increased rates as the

system grows in size, which increases the energy consumption used for communica-

tion on the Network on Chip (NoC). This energy will vary considerably depending on

the behavior of applications and on the locality of their communication patterns, but

it will invariably increase, imposing serious constraints on design and performance

of both applications and architectures.

This dissertation focuses on the modeling and optimization of energy and power

consumption in multi-core chips. We present a number of tools and models to op-

timize energy consumption and model its scaling, and use synthetic traffic patterns

and full system simulations to test and validate our methods. Finally, we take a step

back and look at the evolution of computer hardware in the last 40 years and, em-

ploying an interdisciplinary approach, devise a theoretical framework for the analysis

2

Chapter 1. Introduction

of power-performance scaling in microprocessor systems in general.

1.1 Contributions and organization

The remaining of this dissertation is divided into 7 chapters. In this section, we

summarize the contents and contributions of each chapter.

Chapter 2. This chapter contains a review of the background material that is re-

quired for reading this dissertation. We give an introduction to networks on

chip, its basic architecture and topologies. Also included is a review of memory

and communication models in parallel architectures, such as shared and dis-

tributed memory systems. Finally, we discuss traditional methods for thread-

mapping and scheduling used for optimizing runtime and energy consumption

in parallel architectures.

Chapter 3. This chapter analyzes the impact of different NoC topologies to the

scaling of power consumption. Using a simple model of inter-core communica-

tion, we provide an asymptotic analysis of power and performance in network

on chip topologies. The results of the theoretical model are then compared with

simulations, showing an excellent match between theory and experiment. This

chapter concludes with a surprising result: although power and performance

may vary widely between topologies, their energy efficiency is approximately

the same, and that the traffic pattern is a more important factor to efficiency

than topology.

Chapter 4. The most important component to NoC energy consumption is the

communication locality of the network traffic pattern. This chapter analyzes

the impact of commonly used artificial workloads and proposes a new synthetic

traffic pattern based on Rent’s rule. This new method has the advantage of

3

Chapter 1. Introduction

matching observed data and the ability of, by tweaking a single parameter,

emulate a continuum of applications with varying degrees of communication

locality.

Chapter 5. Here, we take a deeper look into the multi-core architecture and analyze

how the execution of applications can be optimized in order to reduce energy

consumption. We propose a method for data placement optimization in shared-

memory CMPs, which reduces NoC energy consumption by 50% on average on

scientific benchmarks, outperforming a state-of-the-art method. Different from

other approaches in the literature which are heuristic-based, our method is

exact and can be solved in polynomial time. The experiments in this chapter

were performed using full-system simulations and 64 cores.

Chapter 6. In this chapter, we use a theoretical framework based on Rent’s rule to

analyze the minimum possible energy consumption of an application. We show

that applications with low Rent’s exponents can be highly optimized for low

energy consumption, while applications with high Rent’s exponent are bound to

be energy-inefficient. Our model shows an excellent match with experimental

results obtained using full-system simulations.

Chapter 7. This chapter puts together many of the elements developed in the pre-

vious chapters and, employing an interdisciplinary approach, proposes an in-

novative theoretical framework for the study of power-performance scaling in

general-purpose microprocessors. This theory, originally inspired by Metabolic

Scaling Theory in biology, analyzes power as being determined by the geometry

of computer interconnects. The proposed analysis leads to extremely simple

laws that describe the scaling of power and performance in microprocessors

over a range of several orders of magnitude.

Chapter 8. This chapter concludes the dissertation.

4

Chapter 2

Background Information

This chapter covers the background information on networks on chip and computer

architectures required in the following chapters. Section 2.1 introduces the NoC

communication structure and reviews its properties and most common topologies.

Section 2.2 reviews the different memory and communication models of parallel ar-

chitectures. Special focus is given to shared memory systems, which is the dominant

architectural organization for multi-core chips. Finally, Section 2.3 introduces the ba-

sic ideas of communication locality and, consequently, energy optimization through

mapping and scheduling of threads.

2.1 Network on Chip

2.1.1 Overview

Cores need to communicate in order to share load an decrease the running time

of applications. The traditional way in which different modules communicate on

a chip is by using dedicated buses. This communication architecture can be very

5

Chapter 2. Background Information

efficient for a small number of devices, but it lacks scalability for large systems. The

reason is that, as the system grows, the increased competition for network usage

leads to more collisions, and starvation is more likely to occur. Moreover, as more

units are attached to the network and the bus grows in size, the capacitance of

the wires increases and the energy necessary for switching a bit becomes too high,

leading to excessive power consumption. Finally, as capacitance increases, the time

necessary for the residual currents to die away in order to perform a new switching

also increases, leading to a prohibitively low bandwidth.

To cope with these limitations, the computer architecture research community

proposed a new concept called Networks on Chip (NoC). The NoC is a packet-

switched interconnection network for Systems on Chip (SoC), in which modules (also

called Intellectual Properties—IPs) communicate by sending and receiving messages.

Figure 2.1 depicts the basic structure of an NoC. In this design, switches deal with

temporary storing and forwarding of packets and the implementation of routing and

arbitration protocols. The network interface (NI) provides the interface between the

IP and the network and is responsible for many functions, such as packetization and

de-packetization of messages, clock adaptation, flow control, and implementing the

network protocols [26]. It serves as a standard interface between any device and the

network, thus allowing for reuse of IPs. When a module needs to communicate, the

message to be sent is divided into packets that are sent to a switch, which forwards the

packets to another switch, until the message arrives at the appropriate destination.

A SoC can be homogeneous or heterogeneous. In a homogeneous SoC, all IPs

are of the same type, such as cores in a Chip Multi-Processor (CMP), used for

general-purpose computing. Heterogeneous SoCs are commonly used for application-

specific tasks, such as in embedded systems, and have modules of different types.

The SoC approach, using an NoC for communication, has many advantages over

the traditional interconnect design used in monolithic CPUs. The point-to-point,

6

Chapter 2. Background Information

Figure 2.1: Basic structure of an NoC.

dedicated wires of monolithic architectures are among the main drawbacks of the

traditional system. These unstructured wires lead to low bandwidth, low duty factor

and high power consumption, and also increase the complexity of the design. Based

on these considerations, the advantages of a NoC for SoCs were summarized by [24]

as follows:

1. Predictable electrical parameters enable high-performance circuits. Unstruc-

tured wires have parasitic capacitances and crosstalk noise that are difficult

to predict. As a result, in order to ensure reliability, very conservative cir-

cuits must be used to drive and receive these wires, leading to excessive power

consumption. The well structured and predictable wires of a NoC allow for

aggressive circuit techniques, which can reduce power dissipation by a factor of

ten and increase wire propagation by three times, while also improving band-

width.

2. Universal interface facilitates reuse of components. By introducing a universal

interface for IPs and the network, components can be reused in many systems,

thus reducing complexity and simplifying circuit implementation.

3. Design and testing are facilitated. Since the system is modular and compo-

7

Chapter 2. Background Information

nents are reused, design and testing of entire systems is mostly concerned with

optimization of a regular, generic communication medium with predictable pa-

rameters. CAD issues involved in the design of dedicated, customized circuits

in specific components, such as wiring routing, are avoided.

4. Duty factor of the wires is improved. In traditional chip designs, individual

signals must travel as fast as possible to their specific destination, leading to

an excessive number of dedicated global wires which are active only 10% of the

time, in average. The aggregated flux of information in general-purpose NoCs

can provide wire duty factors close to 100%.

5. Enable the use of fault-tolerant strategies. With technology scaling and de-

crease in the voltage usage wires become more susceptible to noise and faults.

Eventually, it will be impossible to completely avoid such errors (called upsets)

in communication, and the system must be able to deal with them. A NoC

architecture can implement error-identification/error-correction protocols that

make the system tolerant to faults.

6. Wire pipelining. Globally asynchronous protocols allow for wire pipelining,

thus increasing bandwidth and making communication independent of latency.

7. Scalability. The NoC architecture is scalable; the aggregated bandwidth in-

creases with network size.

2.1.2 NoC Topologies

The NoC depicted in Figure 2.1 uses a 2D mesh topology. However, many other

NoC topologies have been proposed, most of which were adapted from the parallel

computing world. Some of the most popular NoC topologies are shown in Figure

2.2.

8

Chapter 2. Background Information

Figure 2.2: NoC topologies. (a) Fat tree, (b) mesh, (c) torus, (d) folded-torus, (e)
octagon, (f) butterfly fat tree. (Figure reproduced from [73].)

One of the main properties of a topology is bisection bandwidth scaling. The

bisection width is the number of wires that must be cut when the network is divided

into two equal sets of nodes, and the bisection bandwidth is the collective bandwidth

over these wires. As more nodes are attached to the network, the larger the volume

of communication and the more bandwidth is required. If the network bandwidth

does not scale appropriately with the number of nodes, excessive traffic will lead to

high message latency and decreased performance. However, networks with high bi-

section bandwidth will require more routers and more wires per node, which consume

considerable area and increase the cost of the system.

Many studies have been dedicated to compare topologies in the NoC literature.

Pande et al. [74, 73] compared five topologies, studying throughput, latency, energy

consumption and area requirements, using nearest-neighbor local traffic with differ-

ent injection rates. They reported results for system sizes up to 256 cores, showing

a trade-off of topologies that provide better throughput and latency but have high

power and wiring overhead, versus topologies with lower performance and reduced

power consumption. Kreutz et al. [60] analyzed bit energy consumption and la-

9

Chapter 2. Background Information

tency for mesh, torus, and fat tree topologies on 16-node networks, using Romberg

integration, Fast Fourier Transform, and an image processing application to gener-

ate workloads. They concluded that the fat tree minimizes latency and the mesh

topology consumes the least energy.

Boroni and Concer [11] compared ring, spidergon, and mesh topologies under

uniform random, homogeneous sources and destinations, and hotspot traffic patterns.

They simulated networks ranging from 8 to 32 cores, measuring throughput and la-

tency as a function of injection rate. The spidergon performed the best. Boroni et

al. [10] extended this work, studying systems up to 64 cores and adding the crossbar

topology, which slightly outperformed the spidergon. Rahmati et al. [78] analyzed

latency and power consumption for mesh and WK-recursive topologies with 16 cores

and uniform traffic. WK-recursive was found to be superior to mesh in terms of

latency and power consumption for low traffic, but the two were similar under heavy

traffic. A similar comparison by Suboh et al. [87] included the spidergon, also con-

cluding that the WK-recursive network had the best performance. Koohi et al. [55]

and Mirza-Aghatabar et al. [69] analyzed 6×6 mesh and torus networks with uniform

random, hot-spot, nearest-neighbor, and first matrix transpose traffic. They mea-

sured latency, power consumption, and throughput, finding that the torus has higher

power dissipation than the mesh but performs better in terms of power/throughput.

Topologies are usually compared in terms of power, throughput, and latency,

as a function of packet injection rate and under different traffic patterns, but an

important aspect of a topology is how easily it can be implemented on chip. Since

chips are two-dimensional, topologies such as mesh and torus are more naturally

suited to physical implementation on a die. Topologies have also key impact on the

routing algorithms that can be used. Because the routers, and not the wires, are

the main bottleneck in terms of latency and bandwidth in an NoC, routing must be

simple enough so that the routing decision is made as quickly as possible. A simple

10

Chapter 2. Background Information

yet deadlock-free algorithm is xy- or dimension-order routing, which is designed for

regular topologies, such as mesh and torus. Because of these advantages, these two

topologies are usually considered the best candidates for NoC [47].

2.2 Memory and Communication Models in CMP

How do cores communicate? What kind of information is exchanged among them

and how is it structured? The answer to these questions depends on the particular

memory and communication models adopted in a given CMP architecture. In this

section, we review the main communication models for multi-processing. We will

give special emphasis to the models suited to implementation on chip.

2.2.1 Models of Parallel Architectures

There are two main models of parallel architectures: shared memory and distributed

memory. In shared memory architectures, multiple processors share a same memory

address space. As will be explained in Section 2.2.2, in these systems communication

between processors occurs implicitly by cache coherence. Figure 2.3 depicts the basic

structure of a centralized shared memory architecture, where multiple processors

access a single physical memory. This architecture is also called uniform memory

access (UMA), from the fact that all processors have a uniform latency to memory.

In distributed memory systems, the memory is physically distributed among pro-

cessors and each processor has private access to its local memory. In such archi-

tectures, communication occurs explicitly by message passing. Figure 2.4 shows the

basic structure of a distributed memory system. Notice that the address space is

private to each memory.

11

Chapter 2. Background Information

Figure 2.3: Centralized shared memory architecture, also called UMA. All CPU
nodes access a single physical memory. L1 and L2 correspond to private level 1 and
level 2 caches.

Figure 2.4: Distributed memory architecture. Memory address spaces are indepen-
dent and private to each CPU.

Other paradigms exist between these two extremes. The distributed shared mem-

ory architecture is a shared memory system in which memory is physically dis-

tributed. Each processor is associated with a local memory, but all memories in the

system use the same address space, as depicted in Figure 2.5. Such architectures are

also called non-uniform memory access (NUMA), because local memory access has

lower latency than remote memory access.

The next model is the non-uniform cache access architecture (NUCA). The

NUCA architecture is a variation of the UMA system, where the higher level cache

is also shared (Figure 2.6). More specifically, the L2 caches are distributed but they

12

Chapter 2. Background Information

Figure 2.5: Distributed shared memory architecture. Memories are physically dis-
tributed but share a same address space.

share a single address space. Therefore, at any moment in time there can be only

one copy of a memory block in the L2 cache. There are several advantages of shared

cache, especially for on-chip multi-processor systems. First, the total cache capacity

increases, which increases the cache hit ratio and reduces main memory bandwidth

requirements. Also, cache coherence at the L2 level is not necessary, thus reducing

the complexity of the system. The trade-off is that processors have to access blocks

of memory that are stored in caches at remote locations, which increases cache hit

time and on-chip bandwidth demands. Fortunately, the NoC design provides high

on-chip bandwidth and low latencies, making the shared cache a viable alternative.

The NUCA is the dominant architecture in commercial multi-core systems. Be-

cause the number of cores in those architectures is usually small, most systems employ

a single memory bank for all L2 (or L3) caches, similar to Figure 2.6. However, this

design is not scalable because, as the number of processors increases, some processors

will be located far away from the memory bank and will have a much higher cache

latency than others. A more scalable solution is shown in Figure 2.7. This tiled

CMP architecture has an L2 cache associated with each processor and an NoC is

used for remote cache access and cache coherence. Either shared or private caches

can be implemented in this architecture.

13

Chapter 2. Background Information

Figure 2.6: Non-uniform cache access (NUCA) architecture. This system has a
centralized shared memory, but different from the UMA architecture, the level 2
caches are also shared.

2.2.2 Cache Coherence

In order to understand how communication occurs in shared memory systems, in

this section we briefly review the cache coherence problem and its basic implementa-

tion protocols. Suppose the following sequence of events occur in a shared-memory

computer:

Figure 2.7: Tiled chip multi-processor architecture. (Figure reproduced from [97])

14

Chapter 2. Background Information

1. Multiple processors hold a same memory block in their private cache.

2. One of the processors writes on that memory block.

3. In order to ensure that all processors see this change, it is necessary that the

other copies are updated with the new written information.

Based on the above, we can define cache coherence as follows: cache coherence is

the property that guarantees that all processors see the same value in a shared memory

address. The easiest and safest way to do this is to update all copies as soon as any

processor writes on it. However, this leads to poor parallel processing performance

because all processors have to stall until their copies are updated. As a result, relaxed

models exist in which the copy update might be delayed. Memory consistency is the

property that guarantees that the correct result of the program will not be affected by

delays in the memory updates. Many consistency models exist, which define when

the cache copies must be updated, such as sequential and processor consistency. The

implementation of memory consistency is called synchronization. In shared memory

systems, synchronization can be implemented implicitly using cache coherence.

There are two basic ways of implementing cache coherence, namely the snoop-

ing and the directory-based protocols. The snooping protocol has reduced latency,

but requires a broadcast media and, therefore, is not scalable. The directory-based

protocol is scalable to large number of processors, but it has increased latency and a

slightly higher implementation overhead. Next, we give a brief introduction to both

protocols.

Snooping Protocol

In this protocol, every cache that has a copy of the data from a block of physical

memory also has a copy of the sharing status of the block, but no centralized state is

15

Chapter 2. Background Information

kept. To keep track of the state of a block stored in cache, three bits are associated

to each copy:

• Invalid—States whether the copy in cache is valid (up to date) or not.

• Modified—States whether the copy has been modified. If true, the cache holds

the unique updated copy.

• Shared—States whether the copy is shared by other processors. In this state,

the copy is read only.

When a processor wants to access some data that is not in cache, it broadcasts a

data request message to the other processors. If one of these processors has the data,

it will send the data to the requesting processor. If no processor has the data in

cache, the requesting processor fetches the value directly from memory. Figure 2.8

contains a diagram illustrating this situation for a write-back cache, with emphasis

on the communication between processors. When a processor wants to write on

shared data it must send an invalidate message to the other processors. It then

acquires block ownership and is free to write on the block. A diagram showing the

main steps is given in Figure 2.9.

Because of broadcasting, the snooping protocol consumes excessive bandwidth

and is limited to a small number of processors, such as 2 to 4. A more scalable

option for cache coherence is given by the directory-based protocol.

Directory-based Protocol

The directory-based protocol avoids broadcasting by keeping the shared status of a

block in just one location, called the directory node. The directory keeps track of

16

Chapter 2. Background Information

Figure 2.8: Basic steps of a snooping protocol when a processor requests data. The
fields I, M, and S correspond to the invalidate, modified, and shared bits. R represents
a data request, D data reply, and WB data write-back to memory.

all memory locations that might be cached. This protocol achieves scalability by

making each processor the directory node of a different part of the physical memory.

Figure 2.9: Basic steps of a snooping protocol when a processor wants to write on
shared data. The fields I, M, and S correspond to the invalidate, modified, and
shared bits. The arrows associated with a letter I are invalidate messages.

17

Chapter 2. Background Information

Similarly to the snooping protocol, whenever a processor wants to access data that

is not in its cache it must request those data. However, instead of broadcasting a

request message, it now sends a message exclusively to the directory node responsible

for that block. The directory node then forwards the request to some other node that

has a copy, or it might fetch the data from memory and forward it to the requesting

processor if no processor has a cached copy. Note that the directory node must know

whether the copy is cached and it also must keep track of what processors have a

shared copy. To accomplish this, two new fields are necessary in the directory:

• Uncached—A bit stating whether a block of memory has no copies in cache.

• Sharers—A bit vector with all processors that share a cached copy.

Figure 2.10 shows the basic steps of a data request in the directory protocol.

When a processor needs to write on shared data, it must request ownership to the

directory node, which sends invalidate messages to all processors that share the data.

The requesting node then acquires ownership to write on the data. This process is

illustrated in Figure 2.11.

Note that the directory-based protocol always requires one additional step than

the snooping protocol. However, this solution exchanges slightly increased latency

for higher scalability. Many other events can occur in cache coherence that are not

described above. There are also several implementation details that were not covered.

A more thorough account of snooping and directory-based protocol is given in [39].

2.3 Mapping and Scheduling

When running a parallel application on multiple processors the compiler or the oper-

ating system need to decide where (in what cores) and when tasks should run. The

18

Chapter 2. Background Information

Figure 2.10: Basic steps of a directory-based protocol when a processor requests
data. The fields I, M, and U correspond to the invalidate, modified, and uncached
bits. R represents a data request, D data reply, and WB data write-back to memory.

former problem is called application mapping and the latter application scheduling.

Oftentimes deciding when implies defining where the application should run and vice-

versa, therefore it is not always the case that these two problems are independent of

each other.

Most mapping and scheduling techniques rely on a graph-based description of

applications called Task Graph (TG). The TG is a directed acyclic graph in which

nodes correspond to tasks and edges correspond to control dependencies, meaning

that a task can only start after the antecedent ones have completed. A task is any

collection of operations that can be executed independently. Weights associated to

edges indicate the CPU time required to conclude the execution of a task. Figure

2.12 depicts a typical example of a task graph.

The objective of mapping and scheduling is usually to minimize the execution

19

Chapter 2. Background Information

Figure 2.11: Basic steps of a directory-based protocol when a processor wants to
write on shared data. The fields I, M, and U correspond to the invalidate, modified,
and uncached bits. The arrows associated with a letter I are invalidate messages.

time of applications and/or energy consumption. These optimization objectives are

closely tied to maximizing communication locality, since the shorter the communi-

Figure 2.12: Task graph.

20

Chapter 2. Background Information

cation distances the less energy and latency involved in communication. Even in

its simplest versions, mapping and scheduling are NP-Hard problems that require

heuristics to be solved in practice. Lei and Kumar [62] proposed a genetic algorithm

for mapping task graphs to an NoC, targeting execution time minimization. They as-

sume a heterogeneous NoC, in which tasks have different execution times depending

on the selected IP, and used synthetic TGs as experimental data. Hu and Marculescu

[45] proposed a mapping and scheduling method to minimize energy consumption

on a heterogeneous 2D mesh NoC, in which energy is modeled using the bit-energy

approach. Their algorithm decides what tasks will be executed in each processing

element and, if more than one task are assigned to the same processor, when each

task will be executed. They used artificial data generated using Task Graphs For

Free (TGFF) [28] and a set of benchmark multimedia applications.

Chen et al. [17] proposed a compile-based approach for mapping and scheduling

applications on CMP. The approach works by first scheduling a TG on virtual proces-

sors targeting performance optimization and then by mapping the virtual processors

onto physical processors. This second step occurs in a topology-aware manner in

order to maximize locality. Locality is improved by making processors that share

data to be placed closed to each other. They tested their method on the SpecFP2000

benchmark [40]. Kandemir and Chen [49] proposed an operating system-based sched-

uler for CMP which increases data locality in two ways. Firstly, the processes that

do not share data are scheduled in different cores and, secondly, processes that could

not be executed at the same time due to dependencies but share data are mapped

to the same core. Their scheduler targets performance optimization and the data

used consists of array-based image/video processing applications. Pop and Kumar

[76] present a methodology based on GA to map and schedule applications for multi-

threaded heterogeneous cores. They tested their technique on a 2×2 NoC using

TGFF synthetic data. Saeidi et al. [80] presented a Matlab tool for mapping and

scheduling applications on homogeneous NoC platforms. Task graph data are syn-

21

Chapter 2. Background Information

thetically generated and mapping is performed using a GA.

The works above employ static mapping and scheduling, which are performed

at compile time. This approach has the advantage of reduced execution overhead,

but might lead to poor performance in unpredictable environments and is architec-

ture dependent. An alternative approach is dynamic scheduling, which is performed

at execution time. Dynamic scheduling leads to higher execution overhead, but is

architecture independent, and is more adequate for unpredictable applications and

computing environments. Most dynamic techniques are based on sub-optimal, greedy

solutions. State-of-art dynamic schedulers are work stealing (WS) and parallel depth

first (PDF). WS works by maintaining a double ended work queue for each processor.

When forking a new thread, the thread is placed on top of the local queue. When a

processor looks for ready to execute tasks, it looks in its local queue first and takes

a task off the queue if there is any. If the queue is empty, it checks the work queues

of other processors and ”steals” a task from the bottom of the queue. In PDF, when

a core completes a task, it is assigned the ready to execute tasks that the sequen-

tial program would have executed the earliest. As a result, PDF tends to schedule

tasks in a way that tracks in some sense the sequential execution. A comparison

between WS and PDF shows that PDF provides better cache usage, thus optimizing

performance relative to WS [18].

22

Chapter 3

Power Scaling in NoC Topologies

Interconnection networks of future multi- and many-core microprocessor systems will

be required to deliver high performance at low power consumption to tens or even

hundreds of cores [84]. In order to design energy efficient Networks on Chip (NoC)

for systems of this magnitude it is necessary to understand how different network

designs scale in terms of power and performance as the number of cores increases.

An important decision in NoC design is the network topology. Topological pa-

rameters, like hop count, bisection bandwidth, and wiring layout are closely related

to the performance and power dissipation of a network, and may have considerable

impact on scalability. NoC topologies have been studied extensively, e.g., [60, 74],

and many alternative topological structures have been proposed [36, 51, 50, 66, 83].

However, few of these works focus on scaling.

In this chapter, we devise a theoretical model for power scaling in NoC topologies

under uniform random traffic and use this model to analyze the trade offs between

power and throughput in NoC. Uniform random traffic is a commonly used traffic

pattern for NoC topology evaluation in which all nodes have an equal probability of

talking to each other. In this study, we selected three topologies: binary tree, 2D

23

Chapter 3. Power Scaling in NoC Topologies

mesh, and fat tree, which differ considerably in their bisection bandwidth scaling—

O(1), O(N1/2), and O(N), respectively, where N is the number of cores—, thus

covering a representative range of scaling behaviors. In order to verify our theoretical

model, we performed computer simulations using Orion [90] to measure power and

throughput of the network topologies as a function of the number of cores.

3.1 A Theoretical Model of Power Scaling

Dynamic power dissipation in NoC topologies has two components: power consumed

on the routers and power consumed by driving the wires between routers. In the

following analysis, we assume that power on each router is proportional to the flow

of packets in the router, i.e., the number of packets the router processes per unit of

time. For each wire, we assume that power is proportional to the flow of packets times

the wire length, since for repeated wires power increases linearly with the number

of repeated segments. Secondary effects, such as the switch control path and virtual

channel allocation, were ignored here for the sake of simplicity. Total power in a

given network is obtained by summing up over all routers and all wires. Finally,

accuracy is improved by normalizing the router and wire components of total power

by the flow on the busiest router and busiest wire, respectively, as those components

represent potential bottlenecks to the performance of the topology and constrain the

maximum power of the whole network.

As an example, consider the binary tree with 16 processor nodes shown in Figure

3.1. Each processor injects one unit of flow of packets in the network, which will

be equally divided between the other 15 nodes, assuming uniform random traffic.

The figure illustrates how the flow generated by one processor is distributed over

the entire tree. The total flow on the network is obtained by summing the flow

injected by all 16 processors. Notice the routing algorithm must be considered when

24

Chapter 3. Power Scaling in NoC Topologies

Figure 3.1: Flow of packets injected by one processor in a binary tree network with
16 processor nodes. The numbers represent the fraction of the flow passing through
each path of the tree. The values of k represent the levels of the tree.

computing this flow. For binary and fat trees, nearest-common-ancestor routing was

used.

According to the figure, a given processor sends all its packets to a router at the

first level of the tree (k = 1) to which it is directly connected. All the other routers

at the same level receive 2 units of flow from this processor. Thus, each router at

level 1 receives 2× 15
15

units of flow coming from the 2 processors to which it is directly

connected, and 14 × 2
15

units of flow from the remaining 14 processors. Since there

are 8 routers at this level, total flow at level 1 of the tree is 8 ×
(

30
15

+ 28
15

)
= 456

15
.

Applying the same reasoning to all the levels of the tree and generalizing for an

arbitrary number of processors, the following equation is obtained for the total flow

on the routers,

Flow routers(N) =
N

N − 1

logN∑
k=1

[
(N − 2k) + (N − 2k−1)

]
, (3.1)

where N is the number of processors. Power is obtained by normalizing equation 1

by the flow on the top router, which after some simplification yields:

Routers binary tree(N) =
cr

2N − 3 · 2logN−1

[
2N logN − 3 ·

logN∑
k=1

2k−1

]
, (3.2)

25

Chapter 3. Power Scaling in NoC Topologies

where cr is a constant that defines the power per packet in a router. For wires, the

equation of flow will be similar to that of routers, but in order to calculate power it

is necessary to weight the flow by the wire length at each level. For binary and fat

trees, the H-tree layout was adopted, thus the length of the wires doubles at each

hierarchical level. Since the die size is assumed to be constant as the number of

processors increases, the length of the shortest wires decreases as N . Consequently,

the length l(k) of a wire at level k becomes,

l(k) =
l02k√
N
, (3.3)

where l0 is a constant denoting the length of shortest wire segment. The final equation

for power on wires in a binary tree is:

Wires binary tree =
cw√

N(N − 2logN−1)

logN−1∑
k=0

(N − 2k)2k, (3.4)

where cw is a constant that defines power per packet per wire segment. The same

method when applied to mesh leads to the following equations:

Routersmesh =
cw · 8
N − 1

√
N−1∑
x=1

[
x
(
N − x

√
N
)]
, (3.5)

Wires mesh =
cw · 8
N3/2

√
N−1∑
x=1

[
x
(
N − x

√
N
)]
, (3.6)

where the variable x represents the x-coordinates for one side of a squared mesh. For

the mesh topology, the xy-routing algorithm was used in the computation of flows.

Finally, for the fat tree topology the power equations are given as:

Routers fat tree(N) =
cr ·N
N − 2

logN∑
k=1

(
N − 2k

)
, (3.7)

Routers fat tree(N) =
cr ·N√
N (N − 2)

logN−1∑
k=0

(
N − 2k

)
2k, (3.8)

26

Chapter 3. Power Scaling in NoC Topologies

Table 3.1: Closed-form solutions for power on different topologies.

Topology Power on Routers Power on Wires

Binary tree cr · 4 logN − 6− 6
N

cw·2
N3/2

(
N2 − 2N − 4log N

3
− 4

3

)
Mesh cr · 4N cw·4(N−1)

3
√
N

Fat tree cr·N
N−2

(N logN − 2N + 2) cw·
√
N

N−2

(
N2 − 2N − 4log N

3
− 4

3

)
Table 3.2: Theoretical estimates for scaling in different topologies according to
asymptotic analysis.

Topology Total Power Throughput Energy per packet

Binary tree O(N1/2) O(1) O(N1/2)

Mesh O(N) O(N1/2) O(N1/2)

Fat tree O(N3/2) O(N) O(N1/2)

3.2 Analysis of the Scaling Behavior

Here we give closed form solutions, shown in Table 3.1. Next, we characterize the

asymptotic behavior of these topologies, observing that, for large enough values

of N , the highest order terms dominate. For instance, in binary tree, power on

the routers scales as O(logN) and power on the wires as O(N1/2), thus the wire

component dominates total power dissipation. For a 2D mesh, power is dominated by

the routers as O(N), and in the fat tree by the wires as O(N3/2). Finally, by dividing

power by throughput we measure energy per packet. Under uniform random traffic,

throughput is expected to scale as the bisection bandwidth. Table 3.2 summarizes

the expected scaling behavior of power, throughput, and energy per packet for all

three topologies resulting from asymptotic analysis.

The values in Table 3.2 show that, although the topologies analyzed vary widely in

27

Chapter 3. Power Scaling in NoC Topologies

terms of power dissipation and throughput, energy per packet for all three networks

scales in the same way. This result is somewhat surprising, given the emphasis in

the literature about which NoC topologies are the most energy efficient. Notice

that, since energy per packet is the same, the resulting power consumption in each

topology is proportional to throughput times the average energy per packet. Thus,

there is a linear trade-off between power and throughput, and topologies able to

achieve high performance will, consequently, have high power consumption. This

theoretical finding formalizes experimental results reported in the literature [74].

Therefore, for uniform random traffic and large enough N , the above analysis

suggests that topology has negligible influence on the scaling of packet energy con-

sumption.

3.3 Experimental Results

3.3.1 Simulation Infrastructure

All simulations were performed using Orion 1.0. For each topology, networks with

8 up to 1024 processor nodes were simulated and average power and throughput

were measured as a function of the number of cores. Orion calculates router power

into three separate components: memory, arbiter, and crossbar power. Links are

automatically divided into repeated wire segments, based on length. Traffic injection

rates were set high enough in each run to saturate the network. As a consequence,

actual packet injection is proportional to maximum throughput, and may vary with

both the topology and the traffic pattern.

All simulations were run in a 0.1µm process, which is the standard for Orion 1.0.

Packets are comprised of 4 flits of 64 bits. Routers have 2 to 4 physical ports, 4 virtual

channels, and a 12-flit output buffer. Each link is composed of 2 unidirectional, 64-bit

28

Chapter 3. Power Scaling in NoC Topologies

channels. A credit policy was used to account for buffer availability on routers. The

routing algorithm used for the mesh topology was xy-routing, and for the binary and

fat trees we used nearest-common-ancestor routing with randomized upward paths.

3.3.2 Results

In the following experiments, uniform random traffic is simulated and the results

are compared with the theoretical predictions of the model presented in Section

3.2. Figure 3.2 shows the curves obtained for the three topologies. The confidence

intervals are too small to be visible in the graphs. However, there is an excellent

agreement between the theoretical model and the simulated results; the computed

R2 correlation coefficients were above 0.99 for all the curves.

The scaling behavior of throughput and power varies for each topology. For in-

stance, fat tree achieves the highest throughput, with linear increase in the number

of delivered packets per cycle as N increases. It also has the highest power consump-

tion, since both, power on routers and power on wires scale super-linearly with the

number of cores, as O(N logN) and O(N3/2), respectively. In binary tree, the scaling

of power consumption is relatively small: power on routers grows as O(logN) and

on wires as O(N1/2), a slower than linear rate of increase in both cases. However,

its throughput remains constant and does not scale with the number of cores. Mesh

represents an intermediate case, with moderate throughput and power scaling. For

this topology, power on routers scales approximately linearly with N , and faster than

power on wires, which increases as O(N1/2).

In contrast to power and throughput, the scaling curves of energy efficiency for

the three topologies are remarkably similar. This result agrees with the theoretical

predictions of the asymptotic analysis in Section 3.2, and shows that topological

properties, such as bisection bandwidth, number of routers and wire layout, which

29

Chapter 3. Power Scaling in NoC Topologies

have high impact on throughput and power, have little influence on the overall energy

efficiency of the networks.

Although they are similar, the energy efficiency curves are not identical. Some

discrepancy is expected because, as predicted by the theory, scaling in the three

topologies is the same only for large values of N . Also, implementation details of the

simulations may affect the scaling constants of each topology in a slightly different

way. For example, because in the mesh topology, power on the routers scales faster

than power on the wires, using a smaller constant for power on the routers will favor

mesh over binary and fat tree in the scaling of energy per packet.

The experimental results show that, for uniform random traffic, energy per packet

increases significantly as the number of cores increases and sending a message over

the network becomes increasingly expensive. This happens because uniform random

traffic lacks any locality of communication, leading to poor NoC scalability.

3.4 Conclusion

In order to design scalable multi-core architectures with thousands of cores, it is

important to understand how power consumption on the NoC increases as the number

of cores increases. In this chapter, we presented a theoretical model for the scaling

of power and performance of different NoC topologies under uniform random traffic.

Our main result is that there is a linear trade-off between throughput and power,

i.e., topologies that deliver higher performance have higher power consumption and

vice-versa, in a linear fashion. As a result, energy efficiency scales in the same way

independent of the topology. In this scenario, locality of communication and not

topology is the main variable affecting energy efficiency, as will be seen in subsequent

chapters. Our models showed excellent agreement with simulation results, which

validates the accuracy of our theoretical approach.

30

Chapter 3. Power Scaling in NoC Topologies

Figure 3.2: Comparison between the theoretical results of our models with simulation
results

31

Chapter 4

Modeling NoC Communication

Locality using Rent’s Rule

Rent’s rule is an empirically observed pattern in VLSI designs that describes the

communication structure between logic gates on a chip. Using derivations based on

Rent’s rule, the Wire Length Distribution (WLD) of a circuit can be estimated from

its Rent’s exponent and coefficient, p and k [25]. This distribution describes the

communication locality in the circuit and, therefore, is related to many properties of

the system, such as chip area, signal delay, power consumption, and wire routability

[86].

In Systems on Chip (SoC), similar information is provided by the Communication

Probability Distribution (CPD) of applications. The CPD describes the probability

that packets will travel a certain distance in the Network on Chip (NoC) for a given

traffic pattern. This distribution is directly related to the energy consumption of an

application, because the larger the distance traveled by packets, the more energy is

used. Since current NoCs use 30 to 40% of the power budget [88, 43], it is desirable

for the distance traveled by packets to be as small as possible in order to minimize

32

Chapter 4. Modeling NoC Communication Locality using Rent’s Rule

this cost.

In this chapter, we use the CPD to study NoC traffic locality and energy consump-

tion. Firstly, motivated by the importance of Rent’s rule to VLSI and supported by

recent work showing that communication patterns of many parallel applications fol-

low Rent’s rule [38], we propose a method for generating Rent’s rule traffic patterns.

In this method, the probability of communication between processors is derived di-

rectly from Rent’s rule, leading to CPDs displaying high traffic locality. This method

could be used to simulate traffic as a fast and simple alternative to application-driven

workloads.

Based on the CPD, we also propose a model for predicting energy consumption

in a network on chip. We tested the model on several synthetic workloads, including

Rent’s rule traffic, running on two different NoC systems and compared the obtained

results with architecture-level simulations. The results show excellent agreement be-

tween predicted and experimental values. Our approach does not require simulation

and could be used in the early phases of NoC design, and it could aid the design of

energy-efficient applications and better application mapping techniques [44]. Finally,

using our traffic generator we also analyze the impact of the Rent’s exponent of an

application on energy consumption.

4.1 Rent’s Rule Traffic patterns

4.1.1 Rent’s Rule for Parallel Programs

In VLSI, Rent’s rule emerges naturally from circuit placement, in which connections

are made as local as possible to minimize wire footprint, power and latency [22].

Similar constraints apply to the communication among processors in multi- and

many-core systems. Algorithms used for mapping parallel applications onto cores

33

Chapter 4. Modeling NoC Communication Locality using Rent’s Rule

aim at producing optimized layouts that minimize communication distances.

Greenfield et al. [35] argue that, analogous to circuit placement in VLSI, Rent’s

rule will naturally arise in multi- and many-core chips from this optimization pro-

cess. They extended the concept of connection locality in circuits to communication

locality among cores, proposing a bandwidth-based version of Rent’s rule,

B = bNp, (4.1)

where B is the bandwidth sent or received by a cluster of N network nodes, b is the

average bandwidth per node, and 0 ≤ p ≤ 1 is the Rent’s exponent.

In recent work, Heirman et al. [38] showed that many parallel applications indeed

follow Rent’s rule. They analyzed 13 popular benchmark applications running on 32

and 64 cores. Using a partitioning algorithm they showed that all of the programs

followed Rent’s rule with measured values of the Rent’s exponent p ranging from

0.55 to 0.74.

4.1.2 Generating Rent’s Rule Traffic Patterns

The discussion above motivates the use of a synthetic generator of traffic that fol-

lows Rent’s rule. Such a traffic generator could serve as a simple way to evaluate

NoCs with workloads that mimic the spatial properties of real traffic. As will be dis-

cussed in Section 4.2, many existing synthetic workloads correspond to special case

situations used to stress the network and routing algorithm. However, the authors

are unaware of work that employs Rent’s rule synthetic traffic as a generic model of

communication in parallel applications.

In VLSI, the probability of a wire connecting two terminals with Manhattan

distance d apart is given by (adapted from [25]):

P (d) =
(1 + d (d− 1))p − (d (d− 1))p + (d (d+ 1))p − (1 + d (d+ 1))p

4d
(4.2)

34

Chapter 4. Modeling NoC Communication Locality using Rent’s Rule

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Wire length or Distance

P
ro

b
a

b
ili

ty

WLD

CPD

Figure 4.1: Comparison between the wire length distribution given by [25] and the
communication probability distribution produced by the Rent’s rule traffic generator.

We use the equation above to define the probability of communication between two

processors, where d corresponds to the number of hops in the shortest path between

source and destination. Traffic can be generated for each source node by sampling

from the probability in Equation 4.2 for every possible destination node. Repeating

this process for all possible source nodes in the network results in traffic that follows

Rent’s rule.

To validate our method, we generated traffic using equation 4.2 and measured the

resulting CPD. This distribution was then compared to the wire length distribution

given by Davis et al. [25], which is derived directly from Rent’s rule and is widely

used in wire length estimates of real circuits. Figure 4.1 shows a log-log plot of the

comparison between the wire length distribution given by [25] and the CPD produced

by our traffic generator. The plot shows a virtually exact match between the two

curves. In this figure, p = 0.75, which is a typical exponent for VLSI architectures,

and the network has 1024 nodes.

The formula for the CPD of synthetic Rent’s rule traffic can be derived from

35

Chapter 4. Modeling NoC Communication Locality using Rent’s Rule

Equation 4.2 and is given by:

CPD(d) = ΓP (d) ·
2
√
N−2∑
i=1

(√
N − i

)(√
N + i− d

)
, (4.3)

for 0 <
(√

N + i− d
)
≤
√
N.

where Γ is the normalization coefficient such that

2
√
N−2∑
d=1

CPD(d) = 1.

Figure 4.2(a) shows the CPD produced by our generator on an 8×8 mesh network.

Another interesting property of this method is the ability to generate traffic

patterns with arbitrary Rent’s exponents. Because the Rent’s exponent is related

to communication locality and complexity of applications, it is possible to study the

NoC under several application scenarios by varying a single parameter in the model.

4.2 Other Synthetic Workloads

In this section, we review some commonly used synthetic traffic patterns and compute

their CPD, which is similar to the spatial hop distribution presented in [85]. We

compare the obtained distributions with the CPD of Rent’s rule traffic.

Uniform Random Traffic In uniform random traffic, each source is equally likely

to send packets to each destination. This is the most commonly used traffic pattern

for network evaluation because it is straightforward to implement, it makes no as-

sumptions about the application, and it is analytically tractable. Because source

nodes do not differentiate between near and distal destination nodes, uniform ran-

dom traffic does not exploit locality of communication. Figure 4.2(b) shows the CPD

for uniform random traffic on a 8×8 mesh network.

36

Chapter 4. Modeling NoC Communication Locality using Rent’s Rule

Bit Permutation Traffic In permutation traffic, each source src sends all of its

traffic to a single destination, des = π(src), where π corresponds to a permuta-

tion function. Because this type of traffic concentrates load on individual source-

destination pairs, they tend to stress the load balance of a topology and routing

algorithm. Bit permutations are a subclass of permutations in which the destination

address is computed by permuting the bits of the source address. The CPDs of bit

transpose, bit complement and bit rotation permutation traffic are show in Figure

4.2(c), 4.2(d) and 4.2(e), respectively. These distributions are considerably different

from each other as well as from uniform random traffic. Details on how to generate

these traffic patterns are given in [23].

Nearest Neighbor Traffic Nearest neighbor traffic is commonly used to evaluate

the impact of communication locality on the performance and power consumption of

the network on chip [73]. A fixed percentage of traffic goes to the nearest neighbors

with some radius r and the rest of the traffic is uniform and random. The CPD

of nearest neighbor traffic with r = 1 and locality factor of 50% is shown in Figure

4.2(f).

The traffic patterns described above are useful in practice as special cases to an-

alyze the network, but bear little or no resemblance to real traffic. When compared

to Rent’s rule traffic (Figure 4.2(a)), most of these workloads display poor commu-

nication locality. As will be seen in Section 4.4, these differences in the CPD have

considerable effect on the energy consumption of the NoC.

37

Chapter 4. Modeling NoC Communication Locality using Rent’s Rule

Figure 4.2: CPD of different traffic patterns on a 8×8 mesh network. (a) Rent’s
rule with Rent’s exponent of 0.75.(b) Uniform random. (c) Bit transpose. (d) Bit
complement. (e) Bit rotation. (f) Nearest neighbor with localization factor of 50%.

4.3 Modeling Energy Consumption

It can be computationally expensive to analyze NoC energy consumption using sim-

ulations, especially with application-driven workloads or large system sizes. In this

section, we provide a simple model for predicting energy consumption based on the

CPD, which does not require computer simulations. This model is intended for direct

networks in which the length of the wires is the same for every hop, such as mesh

and folded torus, but it could be easily extended to other topologies.

The average energy of a flit traversing a path of length d in the network is given

by

Eflit (d) = d · Elink + (d+ 1) · Erouter, (4.4)

where Elink and Erouter are the energy consumed by the flit when traversing a link

and a router, respectively, and d is given by the number of hops traversed in the path.

The total energy consumed by an application is obtained by first summing Eflit over

38

Chapter 4. Modeling NoC Communication Locality using Rent’s Rule

all communication distances weighted by the probability of a packet traveling that

distance. This value is then multiplied by the number of flits per packet (Nflits) and

the total number of packets (Npackets):

Etotal = Npackets ·Nflits ·
max∑
d=1

Eflit (d) · CPD (d) . (4.5)

In Equation 4.5, we assume a constant number of flits per packet. The constants

Elink and Erouter used in Equation 4.4 can be obtained from architecture-level power

models, such as Orion 2 [48].

For traffic that follows Rent’s rule, the model presented above provides a unique

advantage over other approaches [44, 72, 73]. Given the Rent’s exponent, the CPD

of traffic can be directly obtained from Equation 4.3. With this information, the

energy consumption of an application can be easily predicted from Equation 4.5.

Our model’s ability to predict energy usage for Rentian traffic based on a single

application parameter could significantly simplify and speedup NoC energy analysis.

A potential limitation of this method is the assumption that the energy used for

communication is proportional to the distance traveled by packets. This is approx-

imately true for most networks on chip and is commonly used in the literature as

a simplification step [44, 72, 73]. However, contention in the network could lead to

extra dynamic and static energy that are not accounted for by the model.

4.4 Experimental Results

4.4.1 NoC Energy Consumption

We analyzed the energy consumption of different traffic patterns and tested the

predictions of Equation 4.5 on two NoC configurations with different process tech-

nologies. The first system is an 8×8 mesh network running at 1GHz, on a 1×1cm

39

Chapter 4. Modeling NoC Communication Locality using Rent’s Rule

Figure 4.3: Predicted and simulated energy consumption for (a) 8×8 mesh NoC on
65nm and (b) 10×10 mesh NoC on 45nm.

die, and 65nm technology. Flit size was set to 64 bits and packets have five flits each.

The routing algorithm was dimension-order routing with wormhole flow control and

4 virtual channels. Constants for flit energy were obtained using Orion 2 assuming

activity factor of 0.5. For each of the traffic patterns, 20,000 packets were injected

in the network. The exponents used for Rent’s rule traffic were p = 0.55 and p =

0.75, corresponding to the two extremes of Rent’s exponents measured in [38]

The energy predictions were compared to computer simulations and the obtained

values are shown in Figure 4.3(a). The results show excellent agreement between

predicted and experimental energy values, with correlation coefficient of 0.98. Table

4.1 shows the same results in more detail. The best prediction was obtained for

nearest neighbor traffic, with 0.7% error, and the worst for bit transpose, with error

of 12.01%. As discussed in section 4.3, prediction errors can be explained by nonlinear

factors in energy consumption and differences in network contention for each traffic

pattern.

The second system is a 10×10 network, on 45nm process technology and clock

frequency of 3GHz. Flits have 32 bits each and the packet size is ten flits. The

results are shown in figure 4.3(b). For this system, there is also a close match

between predicted and experimental values, with correlation coefficient of 0.99. The

40

Chapter 4. Modeling NoC Communication Locality using Rent’s Rule

Table 4.1: Predicted and simulated energy values for 8×8 and 10×10 NoCs. The
uncertainty values arise from the limited number of packets sampled from the CPD.

8×8 NoC 10×10 NoC
Traffic Pred.(mJ) Sim.(mJ) % Err. Pred.(mJ) Sim.(mJ) % Err.
Rent 0.55 11.43 11.21±0.09 +2.00 13.69 13.25±0.03 +3.32
Rent 0.75 13.11 13.92±0.08 –5.78 16.15 15.79±0.03 +2.26
Uniform 35.44 37.51±0.15 –5.51 49.76 51.70±0.13 –3.74
Transpose 39.69 35.43±0.11 +12.01 49.18 49.73±0.10 –1.10
Complem. 52.43 53.46±0.13 –1.94 51.84 51.97±0.13 –0.23
Rotation 27.77 27.08±0.04 +2.52 47.21 46.29±0.09 +1.97
Nearest N. 22.30 22.46±0.08 –0.70 29.96 30.09±0.05 –0.44

results are shown in detail in table 4.1. A maximum error of 3.74% was obtained for

uniform random traffic and a minimum error of 0.23% for bit complement.

The results above show that the proposed model produces accurate results over

a wide range of traffic patterns, for different system configurations and also across

different technology generations. This methodology could be used as a simple and

fast tool for first-order assessment of energy consumption once the communication

pattern of an application is known. Figure 4.3 also shows that Rent’s rule traffic

consumes the least energy when compared to the other workloads, especially for the

10×10 system. This could be predicted from the CPDs in figure 4.2, since this is the

traffic with the most communication locality. Because it is based on empirical data, it

should be expected that Rent’s rule traffic provides a better model of communication

locality of real applications than the other synthetic workloads.

4.4.2 Varying the Rent’s Exponent

For VLSI devices, the value of the Rent’s exponent is commonly used as a measure

of circuit complexity. Simple, highly regular circuits have small values of the Rent’s

exponent, which are associated with high locality of communication. Conversely,

41

Chapter 4. Modeling NoC Communication Locality using Rent’s Rule

the Rent’s exponent is large for more complex circuits in which a significant part

of the communication is global. Analogously, in the bandwidth version of Rent’s

rule, small values of p represent simple applications with mostly nearest-neighbor

communication, while large values correspond to applications with relatively poor

communication locality. In this section, we analyze the impact of the Rent’s exponent

on the energy used for communication, which could have important implications to

application design.

We generated Rent’s rule traffic for a variety of Rent’s exponents and measured

the energy consumption for three network sizes: 6×6, 8×8, and 10×10. The process

technology used in the simulations was 45nm for all three systems. The results

depicted in figure 4.4 show a significant increase in the energy consumption as the

Rent’s exponent increases in all three networks. The impact of the Rent’s exponent

on energy is also stronger for the larger systems. As p varies from 0.1 to 0.9, there

is an increase of 51% in energy for the 6×6 NoC, 68% for the 8×8 NoC and 83% for

the 10×10 network.

These results show quantitatively that the price to be paid for communication

complexity is high and will tend to increase in the future. As we move towards

larger systems with potentially hundreds of cores, the demand for less complex and

more energy-efficient applications will increase. Energy-efficient algorithms are an

important topic in other fields, such as sensor networks [16], and will likely become

a major issue in application design for systems on chip.

These experiments illustrate the flexibility of our synthetic traffic generator and

its applicability in the analysis of NoC. By varying the Rent’s exponent, it is pos-

sible to generate a continuum of application complexity scenarios, even ones that

do not exist yet, and for systems with arbitrary sizes. The analysis presented here

would not be possible with conventional execution-driven and trace-driven applica-

tion workloads, which are limited to existing applications only.

42

Chapter 4. Modeling NoC Communication Locality using Rent’s Rule

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25
Energy consumption for different Rent’s exponents

Rent’s exponent

E
n

e
rg

y
 (

m
J
)

6x6 NoC

8x8 NoC

10x10 NoC

Less localMore local

Figure 4.4: Energy consumption of 6×6, 8×8, and 10×10 NoCs for Rent’s rule traffic
as a function of the Rent’s exponent.

4.5 Discussion and Conclusion

In this paper we used the CPD to model traffic locality and energy consumption in

NoC. We proposed a synthetic traffic generator based on Rent’s rule that mimics the

CPD of traffic patterns for real applications. This method can be used as simple way

to evaluate NoC designs under a variety of application complexity scenarios without

having to resorting to application-driven workloads.

Although the method is designed to be more realistic than commonly used syn-

thetic traffic patterns, it has some limitations. For example, temporal aspects such as

burstiness and variations of the Rent’s exponent over time [38] were not considered.

Also, many applications exhibit traffic patterns with a central node, which might be

better modeled with a combination of Rentian and hotspot traffic. Extending the

model to consider these factors is a promising direction for future work.

Based on the CPD, we also proposed a simple model for predicting NoC energy

consumption. The model is based on the assumption that energy is proportional to

the distance traveled by packets. We tested our model on two system configurations

and 6 different traffic patterns, with accurate results. One advantage of this model

43

Chapter 4. Modeling NoC Communication Locality using Rent’s Rule

is the ability to predict energy directly from the Rent’s exponent for traffic patterns

that follow Rent’s rule. The results also showed that the energy consumed by Rent’s

rule traffic is less than that of other synthetic workloads, because it has more locality

of communication.

Finally, we used Rent’s rule traffic patterns to analyze the impact of the Rent’s

exponent on NoC energy consumption. We showed that the cost of communication

complexity is significant and will likely become a constraint on the scalability of

future NoCs.

44

Chapter 5

Data Placement Optimization for

Chip Multi-Processors

In this chapter, we present a new method for data placement optimization in CMPs,

which manages the trade-off between communication locality and load-balancing

to reduce the energy consumption on the interconnect. Assuming the communica-

tion graph of an application is known, our method reduces energy by minimizing

communication distances while increasing cache capacity utilization, which reduces

unnecessary network traffic. Simulations on a 64-core system show a reduction in the

NoC dynamic energy consumption of 49.8% on average and as high as 84.1%, with

performance gains of up 16.9% on shared-memory implementations of the SPLASH-

2 benchmark. These results outperform those obtained with greedy and first-touch

placement strategies. Unlike heuristic methods with no guarantees on the quality of

the solutions, our algorithm is exact and can be solved in polynomial time.

45

Chapter 5. Data Placement Optimization for Chip Multi-Processors

5.1 Related Work

This section briefly describes the related work on data placement in CMPs and sum-

marizes its limitations, which are addressed by our method. Many of these methods

are adaptations of data placement policies for NUMA (Non-Uniform Memory Access)

systems.

Several data placement strategies are based on alternative cache management

polices that combine private and shared cache schemes. For example, reference

[97] presents a victim replication cache management policy, which reduces cache hit

latency by keeping copies of local data within the local L2 cache, while allowing for

replication of shared data. A NUCA (Non-Uniform Cache Access) organization in

which caches are completely unshared, partially shared, or completely shared was

proposed in [46], and it was concluded that the ideal level of sharing depends on the

application. In [67], a method is described that also attempts to reduce hit latency

by partitioning the cache into private and shared content. Reference [20] proposed

controlled replication for fast read-only sharing, in situ communication to restrict

cache misses, and neighbors’ capacity stealing when private data exceeds a core’s

capacity.

Other techniques have been proposed that are based on page or cache block

migration. In [15], the pageNUCA policy is presented, which consists of a coarse-

grain data migration mechanism that dynamically monitors the access patterns of

cores to decide when to migrate a page. In [2], a page placement method is presented

in which hardware and the OS dynamically manage cache capacity per thread and

migrate shared data to improve locality. The approach proposed in [37] combines

both migration and replication mechanisms. Their method is designed to react to

different classes of applications to decide the appropriate location of blocks.

In [19], a distance associativity cache organization is proposed, in which place-

46

Chapter 5. Data Placement Optimization for Chip Multi-Processors

ment of data at a certain distance is separated from set associativity. A proximity-

aware coherence mechanism is presented in [12], which accelerates read and write

misses by initiating cache-to-cache transfers from the spatially closest sharer. This

eliminates unnecessary accesses to off-chip memory and minimizes communication

distances. Reference [21] proposes an OS-based cache management policy. By as-

signing blocks to caches at the page granularity, the OS can be used to implement

arbitrary cache management strategies on demand.

Our approach differentiates from the works cited above in the following main

aspects:

• All the above methods are heuristics which provide no guarantees on the quality

of the solutions. Our method is exact and can be solved in polynomial time.

• Our approach focuses explicitly on energy consumption minimization. Of the

above papers, only [19] reports improvements in energy consumption.

• Most of the works cited above employ generic solutions that treat every appli-

cation in the same way. Our method produces mappings that are fine-tuned

for individual applications and, therefore, can achieve higher improvements.

5.2 The Data Placement Problem

In shared-memory chip multi-processors, each core is the home node (or directory

node) of a subset of the memory addresses and is responsible for managing the infor-

mation and/or hosting in cache the memory blocks corresponding to those addresses.

Memory accesses and cache-coherence operations require frequent communication

with the home node. Therefore, the location of the home node of a block relative

to the cores that frequently access it is highly important to the performance and

47

Chapter 5. Data Placement Optimization for Chip Multi-Processors

0

1

2

3

4

Core 0 Core 1

Core 2 Core 3

.

.

.

.

Physical memory Cores

Figure 5.1: Blocks of physical memory are assigned to home nodes present on the
cores. The blocks are uniformly distributed in an interleaved manner.

power consumption of the system. This is true regardless of implementation choices,

such as the cache-coherence protocol or whether the last-level caches are shared or

private.

In the standard hardware implementation, blocks of physical memory are mapped

uniformly among all home nodes. The home node H of a given address A is deter-

mined by H = A mod N [21], where N is the number of nodes (see Figure 5.1).

The advantages of this method are two-fold. First, the home node of an address

can be found using a mod computation, which requires simple hardware. Second,

because blocks are uniformly distributed among all nodes, it balances the load, thus

increasing cache utilization and helping to prevent hotspots.

The above approach is suboptimal, however, because it ignores any underlying

structure in the communication pattern of the application. Since blocks are uniformly

distributed, a core has on average an equal probability of communicating with any

home node, resulting in traffic that is uniform and random. To exploit locality

and thus improve the performance and energy efficiency of the system, blocks of

48

Chapter 5. Data Placement Optimization for Chip Multi-Processors

2 4 6 8 10 12 14
distance (hops)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

pr
ob

ab
ili

ty

Communication Probability Distribution

uniform random
ocean_contiguous
cholesky

Figure 5.2: Communication probability distribution for two benchmark applications
compared to uniform random traffic. Data were collected on a system with standard
(uniform) mapping

data must be mapped to home nodes that are located close to where they are most

frequently accessed, thereby minimizing the total communication distance. We will

refer to the process of optimizing the mapping of memory blocks to home nodes as

the data placement problem.

To illustrate this point, Figure 5.2 shows the communication pattern of two ap-

plications running on a 64-core machine compared to purely uniform-random traffic.

The graph displays the Communication Probability Distribution (CPD) [85], that

is, the probability that a packet will travel a certain number of hops in a given

application. More hops imply less communication locality. 1

1Uniform random traffic does not have a uniform distribution in Figure 5.2 because of
the 2D mesh topology. A node may send packets to other nodes with uniform probability,
but each node has at most 4 neighbors 1-hop away, 8 neighbors 2-hops away, and so on, until
the number of neighbors decreases as the boundaries of the mesh are reached. Therefore,
the distribution reflects the average number of neighbors at a certain distance away from
the node.

49

Chapter 5. Data Placement Optimization for Chip Multi-Processors

It is important to distinguish between data placement and the thread mapping

problem. In the latter, threads, not memory blocks, are mapped to cores in order to

optimize some objective function, such as runtime, energy, communication volume,

etc. [75]. Here, we assume the location of the threads has already been defined (see

Section 5.5.1) and study the impact of different strategies for mapping data to cores.

Notice that, if data placement is not optimized, little gain is obtained from thread

mapping, since the resulting traffic will be uniform and random.

5.3 The Communication Graph

Communication in a shared-memory system can be modeled as a network of blocks

and threads, in which links correspond to messages exchanged between them. Every

message to and from a home node is associated with an address that determines

the memory block, and a core, which defines the thread. There is no direct com-

munication between threads or between blocks. We define a communication graph

G = {V,E} as a weighted, undirected bipartite graph in which each vertex corre-

sponds to a block (B) or a thread (T), and edges connect blocks to threads, where

the weight wi,j is the total communication (in bytes) between block Bi and thread

Tj, summed up over the entire computation. Figure 5.3 depicts a communication

graph.

We extracted the communication graph of parallel applications by generating a

trace of all messages sent over the network on chip. Each message is represented as

an edge, where the size of the message is the weight of the edge. Multiple messages

between the same source and destination do not create a new edge, but are used to

increase the weight of an existing edge.

An analysis of the network structure of graph G could reveal relevant information

about an application. One important metric is the degree of a block, i.e., the number

50

Chapter 5. Data Placement Optimization for Chip Multi-Processors

T

T

T1

2

3

1

2
3

B

B
B

B4

1,1

2,1

2,2
2,3

3,3

4,3

w

w

w
w

w

w

Figure 5.3: Simple illustration of a communication graph. There is no communication
between two threads or between two blocks, only between a thread and a block.

of edges connected to the block in the graph, which is related to its level of sharing.

A block that has degree N , where N is the total number of threads, is shared by

all threads. In this case, not much optimization can be done because the block has

no affinity to any specific thread (this is not necessarily true if the weights differ

considerably). The best location for such blocks would be in the central nodes of

the mesh. On the other hand, if the block degree is 1, then the block is private, i.e.,

it is only accessed by one thread. This is the best case, because the block can be

assigned to the directory at the core in which the thread is running.

Figure 5.4 gives an example of a typical degree distribution of the memory blocks

of an application running on a 64-core machine. The figure indicates that the great

majority of blocks have very small degree and, therefore, there is potential for opti-

mization in this application. The figure may be misleading in that no blocks seem

to exist with large degree. This happens because the number of blocks span several

orders of magnitude. Figure 5.5 shows the same distribution in a semi-log plot, which

in this case gives a clearer picture of the entire distribution. Notice a peak in the

distribution when the degree is 64, corresponding to blocks that are shared by all

threads.

51

Chapter 5. Data Placement Optimization for Chip Multi-Processors

0 10 20 30 40 50 60 70
Degree

0

50

100

150

200

250

N
u
m

b
e
r

o
f

b
lo

ck
s

Block degree distribution1e3

Figure 5.4: Degree distribution of blocks for the ocean contiguous application.

The block degree distribution should not be interpreted as the only property

influencing optimization. Several other factors also play an important role. For

example, blocks can have different strengths (i.e., the sum of the weights of all links

connected to a block) and in general the higher the degree the higher the strength of

the block. The positions of the threads on the chip also have an impact on the end

result. If a block has small degree but the threads it is connected to are located at

a long distance apart from each other, the gains from optimization will be limited.

5.4 An Exact Algorithm for Optimized Data

Placement

In this section, we describe our algorithm for optimized data placement. Assuming

the communication graph of the application is known, our method finds a placement

of blocks to nodes by trading-off locality and load-balancing to minimize energy

consumption and improve performance. To motivate the use of load-balancing, we

first describe a greedy approach for locality optimization.

52

Chapter 5. Data Placement Optimization for Chip Multi-Processors

0 10 20 30 40 50 60 70
Degree

100

101

102

103

104

105

106

N
u

m
b

e
r

o
f

B
lo

ck
s

Block Degree Distribution (semi-log)

Figure 5.5: Semi-log plot of the block degree distribution for the ocean contiguous

application.

5.4.1 Greedy Approach

The simplest approach to locality optimization will greedily assign each memory

block to the location on the chip that minimizes the cost of communication. We

define the communication cost of a block i assigned to the home node at location p as

the weighted sum of the distances between p and each thread j in the communication

graph G:

Cip =
N∑
j=1

wij · dpj, (5.1)

where dpj is the distance between position p and the core running the thread j, and N

is the total number of cores. The weight wij corresponds to the total communication

between the block and the thread. Its value is zero if there is no communication

between them. Using this cost equation, the greedy algorithm works by computing

the cost of assigning a block to each of the N locations on the chip, and mapping

the block to the location with the minimum cost.

53

Chapter 5. Data Placement Optimization for Chip Multi-Processors

0 10 20 30 40 50 60
Core id

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Nu
m

be
r o

f b
lo

ck
s

Distribution of blocks assigned to cores

Figure 5.6: Distribution of the number of blocks assigned to each core for the
cholesky application using a greedy approach.

Although it minimizes communication distances, this greedy approach has a crit-

ical flaw: it tends to generate unbalanced mappings where some nodes are assigned

many more blocks than others. To illustrate this, we generated a greedy mapping

for the cholesky application on a 64-core system. Figure 5.6 depicts the number of

blocks assigned to each core resulting from the mapping. The figure shows a highly

uneven distribution where core 28, for example, is assigned 9.5× more blocks than

core 62.

Unbalanced mappings make poor use of the cache capacity of nodes and can

severely degrade performance. We ran the cholesky application with the greedy

mapping of Figure 5.6 and compared the results with the uniform mapping described

in Section 5.2, which generates a perfectly balanced load but has no locality opti-

mization. As expected, the resulting communication locality for the greedy method

was much higher, with an average communication distance of 2.5 hops, versus 5.3

hops for the uniform method. However, due to unbalanced load and, consequently,

an increased number of cache capacity misses, the total network traffic was 290%

higher for the greedy method, resulting in runtime and energy consumption that

54

Chapter 5. Data Placement Optimization for Chip Multi-Processors

were 264% and 22% higher, respectively.

This example shows that simply optimizing locality is not sufficient to reduce

the energy consumption of the system and may also degrade performance due to

underutilization of cache capacity. Below, we describe a formal model for the data

placement problem, which optimizes communication locality while balancing the load

on each node in order to increase cache capacity utilization.

5.4.2 Description of the Model

Using the same notation as above, we define the communication cost of a block as

Ci =
N∑
p=1

πip

N∑
j=1

wij · dpj, (5.2)

where

πip =

1 if block i is in position p,

0 otherwise.
(5.3)

The total communication cost of the system is given by the sum of the costs of all

blocks,

Ctotal =
B∑
i=1

Ci, (5.4)

where B is the total number of blocks in the application. We now define the following

load-balancing constraints:

N∑
p=1

πip = 1 (5.5)

B∑
i=1

πip ≤ K. (5.6)

55

Chapter 5. Data Placement Optimization for Chip Multi-Processors

Equation 5.5 simply states that a block can only be assigned to a single position.

Equation 5.6 states that the number of blocks assigned to each node must be smaller

than or equal to the capacity constraint K, where K = dB/Ne for a perfectly

balanced load, or K is the cache capacity of a node, if the application fits in cache.

Using the equations above, we define an Integer Linear Programming model (ILP)

for data placement in multi-core systems as

Optimize:

min
Π
Ctotal :

B∑
i=1

N∑
p=1

πip

N∑
j=1

wij · dpj

Subject to:

N∑
p=1

πip = 1

B∑
i=1

πip ≤ K

πip ≥ 0 ∀i ∈ {1, 2, . . . , B} and ∀p ∈ {1, 2, . . . , N},

where the goal is to find the placement matrix Π containing all the variables π. This

model is guaranteed to find the maximum communication locality that satisfies the

capacity constraints.

Because ILP is NP-hard, the above model may not be computationally tractable

for large applications with hundreds of thousands, or even millions, of blocks. How-

ever, this particular formulation can be solved in polynomial time because its con-

straint matrix is totally unimodular (the proof of total unimodularity is given in

Appendix B). A totally unimodular constraint matrix allows continuous variable

values, but there is always an optimal solution in which the variables are integer

[82]. Using this result, we define a relaxed version of the problem where the vari-

able π takes continuous values and can be solved in polynomial time with any linear

programming technique, such as the simplex algorithm.

56

Chapter 5. Data Placement Optimization for Chip Multi-Processors

5.5 Experimental results

In this section, we present the results of our placement algorithm, referred here as

Locality + Load-Balancing (LLB). We first compare the energy and runtime results

of our method with first-touch, a commonly used data placement policy for shared-

memory systems, briefly described in Section 5.5.1, and show that LLB outperforms

first-touch in all analyzed applications. We use the uniform mapping described in

Section 5.2 as the base of comparison between the two. We extend our results by

performing a sensitivity analysis of LLB, studying the impact of the input data on

the topology of the communication graph and the quality of the mappings. We begin

this section by describing the simulation methods and system configuration.

5.5.1 Simulation setup

Full-system simulations were performed with the Graphite parallel multi-core simu-

lator [68]. The simulations were performed with in-order, single issue cores. The L1-I

and L1-D caches are 4-way set-associative with 32 KB cache-capacity, and 64-byte

blocks. The L2-cache is 8-way set-associative with 512 KB capacity, and 64-byte

blocks. The directories are full-map with no broadcast and use cache-line granu-

larity. The directory caches are 16-way set-associative with 16384 entries each, and

the MESI cache-coherence protocol was used. Although our placement algorithm is

applicable to both shared and private caches, our experiments used private caches,

which is this the only cache configuration simulated in Graphite.

Energy consumption in the network on-chip was measured with Orion-2 [48],

which is included with Graphite. Each hop on the 2D-mesh network takes one cycle,

and dimension-order routing was used as the routing algorithm. All simulations

were performed on a 64-core system, and runtime and energy were measured after

the initialization phase of applications. The number of threads in each application

57

Chapter 5. Data Placement Optimization for Chip Multi-Processors

is the same as the number of cores. As threads are spawned, the simulator assigns

each new thread to the next available core, in order. Only one thread is assigned to

each core.

The parallel applications used in the simulations are POSIX Threads implemen-

tations of the modified SPLASH-2 benchmark [95]. The input of most applications

is defined by a random number generator. To produce new inputs, we varied the

seed of the generator. An exception is the ocean application, which has no input.

In this case, we introduced variation by changing the parameters of the application,

such as the error tolerance.

The linear programming data placement problem was solved using the lp solve

[8] package. Solutions were computed using an Intel Quad-core, 2.83GHz processor

and took from 51 seconds for the smallest application (FFT), with 30 thousand data

blocks, and 21 minutes for the largest one (cholesky), with 400 thousand blocks.

The first-touch policy works by assigning a block of data to the first node that

accesses it during the execution of the application. This policy was implemented to

take place only after the initialization phase of applications.2

5.5.2 Results

In this section, we present the results of our placement algorithm for 10 scientific

benchmark applications. Table 5.1 shows the percent improvement in energy con-

sumption and runtime after running the applications with the LLB and first-touch

placements. Improvements are reported relative to the uniform mapping described

2A naive policy allocates pages on a first-touch basis from the start of the program
execution. This is a problem for applications where one thread initializes everything before
processing begins, because all the pages end up on the same node. In our implementation,
shared-memory pages are only permanently allocated to nodes once parallel processing has
commenced [81].

58

Chapter 5. Data Placement Optimization for Chip Multi-Processors

Table 5.1: Percent improvement in energy and runtime for the LLB and first-touch
(FT) data placement (relative to the uniform mapping). Also shown is the total
traffic for each method in number of messages.

Energy Sav. (%) Runtime Imp. (%) Total Msgs.
Application LLB FT LLB FT LLB FT
barnes 45.3 30.0 7.0 6.2 2.1× 106 2.1× 106

cholesky 40.0 −12.4 2.1 −255.9 5.4× 106 19.9× 106

FFT 51.8 43.1 5.5 −63.2 3.8× 105 13.1× 105

LU c 37.4 −623.9 0.5 −208.2 1.2× 106 17.7× 106

LU nc 53.0 28.6 3.8 0.4 2.3× 107 2.3× 107

ocean c 74.5 65.9 7.2 2.9 2.0× 106 2.2× 106

ocean nc 84.3 83.2 16.9 16.2 1.4× 107 1.4× 107

radix 57.2 36.0 10.4 −119.1 2.4× 106 8.7× 106

water ns 28.0 10.5 0.5 0.4 1.1× 106 1.1× 106

water sp 26.7 6.4 0.3 −3.6 3.7× 105 3.9× 105

in Section 5.2. Also shown is the total network traffic generated by each method. A

high traffic volume is associated with poor load-balancing. Figures 5.7 and 5.8 show

the normalized energy and runtime of LLB and first-touch.

Table 5.1 shows large reductions in energy consumption for LLB of up to 84.3%

and of 49.8% on average. The obtained runtime improvements were as high as

16.9%, and 5.1% on average. As shown in Table 5.1 and Figures 5.7 and 5.8, in

all cases LLB outperformed first-touch, though for some applications, as in ocean-

non contiguous, they achieved similar improvements. In some cases, first-touch

performed poorly, and worse than the uniform mapping, due to lack of load-balan-

cing. The most extreme case is LU contiguous, in which the total traffic was in-

creased by 14× and the energy consumption by 6×, while the system slowed down

by a factor of 2×, compared to the uniform mapping.

Even when the total traffic is approximately the same, the results of first-touch

are significantly inferior to those of the LLB mapping, as in the case of barnes,

water nsquared, and water spatial. This happens because first-touch always al-

59

Chapter 5. Data Placement Optimization for Chip Multi-Processors

barnes

cholesky FFT
LU_c

LU_nc
ocean_c

ocean_nc
radix

water_n
s

water_sp
0

1

2

3

4

5

6

7

8

No
rm

al
iz

ed
 e

ne
rg

y
un

its

Energy consumption

Uniform
LLB
First-touch

Figure 5.7: Energy consumption of LLB and first-touch normalized by the energy
consumption of the uniform mapping.

barnes

cholesky FFT
LU_c

LU_nc
ocean_c

ocean_nc
radix

water_n
s

water_sp
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

No
rm

al
iz

ed
 ti

m
e

un
its

Runtime

Uniform
LLB
First-touch

Figure 5.8: Runtime of LLB and first-touch normalized by the runtime of the uniform
mapping.

60

Chapter 5. Data Placement Optimization for Chip Multi-Processors

locates a block to one of the sharers, even when this decision is suboptimal. In some

cases, the minimal communication distance is achieved by placing a block at a node

other than the sharers, but which is physically located in between them. Because

LLB is free to choose any node as the location of the block, it achieves smaller

communication distances than first-touch.

Figure 5.9 depicts the CPD of the traffic patterns of applications before and after

optimization with LLB. As presented in the previous chapter, the CPD corresponds

to the probability that messages will travel a certain distance (in number of hops)

on the network on chip. The figure shows a shift in the curves towards increased

communication locality after the mapping is optimized. The optimized curves vary

significantly between applications, suggesting that some of them allow more locality

exploitation than others. As will be discussed in Chapter 6, this difference is related

to the topology of the different communication graphs.

5.5.3 Sensitivity Analysis

We performed a sensitivity analysis of our method by testing the impact of changing

the input data on the results of the LLB mapping. The results in Table 5.2 were

produced by extracting the communication graph for a given input, generating the

optimized block mapping, and then testing the mapping by running the application

on different input data of the same size. Also shown is the similarity between the

communication graphs of the different inputs. For two graphs G1 = {V1, E1} and

G2 = {V2, E2}, their similarity coefficient was computed as |E1 ∩ E2| / |E1 ∪ E2|,

which yields a value of 1 if the graphs are identical and 0 if there is no common

edge between them. The table shows the average results obtained with 20 randomly

generated inputs for each application.

The table shows high similarity of the communication graph between runs for

61

Chapter 5. Data Placement Optimization for Chip Multi-Processors

Table 5.2: Average percentage energy savings and runtime improvement for LLB
when testing a previously generated mapping on 20 different inputs. Also shown is
the similarity between the communication graphs.

Application Energy Sav. (%) Runtime Imp. (%) Graph Similarity
barnes 45.2 4.6 0.781
cholesky 40.0 2.1 0.996
FFT 51.8 5.6 0.995
LU c 37.2 0.5 0.999
LU nc 53.0 3.7 0.999
ocean c 74.5 7.2 0.997
ocean nc 84.3 16.9 0.998
radix 21.6 8.8 0.308
water ns 28.2 0.5 0.982
water sp 26.7 0.3 0.999

most applications. As a result, the energy and runtime savings obtained are ap-

proximately the same as those of Table 5.1. Two exceptions are barnes, an n-body

simulation, and radix, a sorting algorithm, for which the similarity coefficients are

0.781 and 0.308, respectively. Interestingly, for barnes only a small decay in perfor-

mance was observed. For radix, the improvements were smaller, though the mapping

still achieved significant energy and performance savings.

The results of this section show that, for most of the analyzed applications, the

mapping only needs to be generated once and, after it is produced, it can be used

on multiple runs. Moreover, for applications that perform the same computation

over many iterations, it is possible to collect information about the communication

graph in the first few iterations and generate the mapping that will be used in the

remainder of the application’s execution.

62

Chapter 5. Data Placement Optimization for Chip Multi-Processors

5.6 Discussion

Most existing data placement methods for shared-memory multi-processors are heur-

istics. Our placement method, based on locality maximization and load-balancing,

is exact, and performed well for all analyzed applications, outperforming first-touch

and the uniform mapping. The proof provided in Appendix B shows that the solution

to our method can be found in polynomial time.

The results of Table 5.2 assumed that the two inputs used in the runs were of the

same size. Applying a previously generated mapping on an input of different size is

complicated because the block addresses may no longer be aligned. However, there

are compiler techniques that could be used to make the mapping independent of the

size of the variables [13].

The LLB algorithm can be used with different levels of data granularity. In our

experiments, we used the cache line granularity, which is the finest possible granular-

ity level. An interesting direction would be to experiment with page granularity, in

which case data on the TLB misses can be used to build the communication graph

and the operating system can perform the mapping from virtual to physical addresses

[21].

5.7 Conclusion

This chapter presented a method for data placement optimization in shared-memory

chip multi-processors. The method reduces communication energy consumption by

improving locality and cache capacity utilization. The results on scientific bench-

marks show a large reduction in NoC energy consumption with significant perfor-

mance gains. Compared to other approaches in the literature, our method has the

advantage of being exact, of focusing on energy consumption, and of providing solu-

63

Chapter 5. Data Placement Optimization for Chip Multi-Processors

tions that are specifically tailored to each application.

64

Chapter 5. Data Placement Optimization for Chip Multi-Processors

Figure 5.9: Communication probability distribution of benchmark applications be-
fore (dashed line) and after (solid line) optimization with LLB.

65

Chapter 6

Theoretical Analysis of NoC

Energy Consumption

In the previous chapter, we saw that some applications have more potential for energy

optimization than others. For example, ocean non contiguous had 84.3% energy

reduction, while water spatial had only 26.7%. In this chapter, we use Rent’s rule

to show that the minimum energy consumption of applications is constrained by

the structure of their communication graph. The higher the Rent’s exponent—or

fractal dimension—of a graph, the lower its communication locality and the higher

its energy consumption.

The theoretical analysis of energy consumption has multiple applications to hard-

ware and software design. It can be used to evaluate the potential for communica-

tion locality in an application prior to execution and, therefore, assess the quality of

the data placement algorithm being used; aid in the design of more energy-efficient

applications; and provide first-order predictions of energy consumption for new ap-

plications and new systems (e.g., a multi-core chips with a larger number of cores).

In Section 6.1, we apply the bandwidth version of Rent’s rule to the commu-

66

Chapter 6. Theoretical Analysis of NoC Energy Consumption

nication graph of parallel applications and measure the Rent’s exponent (p) and

coefficient (b). The Rent’s rule parameters are then used to estimate the commu-

nication locality of applications in Section 6.2, and to predict the minimum NoC

energy consumption in Section 6.3. The theoretical predictions are compared with

simulation results.

6.1 Rent’s Rule for Multi-Core Systems

As presented in Chapter 4, the bandwidth version of Rent’s rule is given by

B = bNp, (6.1)

where B is the bandwidth sent or received by a cluster of N network nodes, b

is the average bandwidth per node, and 0 ≤ p ≤ 1 is the Rent’s exponent. A

communication graph follows Rent’s rule if its behavior in a log-log plot of N vs.

B can be approximated by a straight line, where the slope of this line is the Rent’s

exponent. The Rent’s exponent is monotonically related to the fractal dimension D

of a communication graph as p = (D−1)/D [86]. Therefore a higher Rent’s exponent

implies higher fractal dimension.

To measure p and b, we partitioned the communication graph of the benchmark

applications into two clusters of equal size, and measured total weight of the cuts

(or bandwidth). For each resulting subgraph, the process was repeated, until there

was a single node per cluster. Figure 6.1 shows the curve obtained for the size of

a cluster versus the average bandwidth for three applications. Similar behavior was

obtained for the other applications (curves not shown). The saturation of the curves

for large module sizes is known as Region II of Rent’s rule [86].

Rent’s rule approximations shown in the figure were obtained using a linear fit

with a cutoff at cluster size 8. As cluster sizes increase beyond this point, the Rent’s

67

Chapter 6. Theoretical Analysis of NoC Energy Consumption

1 2 4 8 16 32
Cluster size

4e+06

12e+06

33e+06

89e+06

24e+07

65e+07

18e+08

48e+08

13e+09

B
a
n
d
w

id
th

Rent's rule for CMP applications

FFT
ocean_nc

LU_nc

Figure 6.1: Rent’s rule for three CMP applications.

rule behavior begins to saturate. This saturation is known as region II of Rent’s

rule [86] and occurs as the module sizes approach the size of the entire system. For

systems of larger size, the portion of the curve corresponding to region II tends to

decrease relative to region I.

Using a linear approximation, we extracted the Rent’s exponent p and coefficient

b for all 10 applications, as shown in Table 6.1, where a wide variation in the Rent’s

exponent from 0.36 up to 0.94 is observed.

6.2 Modeling Communication Locality

In this section, we use the Rent’s exponent to estimate an upper-bound on communi-

cation locality. Based on the Wire Length Distribution (WLD) model of [25], which

was initially developed for VLSI circuits, we compute the average distance traveled

by a message in different applications. Equation 6.2 defines the probability of having

68

Chapter 6. Theoretical Analysis of NoC Energy Consumption

Table 6.1: Rent’s rule parameters p and b for CMP applications.

Application p b (Bytes)
barnes 0.87 4185561
cholesky 0.89 10112351
FFT 0.94 791009
LU contiguous 0.89 2695664
LU non contiguous 0.81 45880087
ocean contiguous 0.36 13627773
ocean non contiguous 0.51 19008764
radix 0.65 6207811
water nsquared 0.92 746057
water spatial 0.91 2238112

a wire connecting two logic gates with Manhattan distance d. We use this equation

to represent the probability of communication between cores, where N is the number

of cores on a square mesh network.

Region I: 1 ≤ d <
√
N

P (d) =
Γ

2N (1−Np−1)

(
d3

3
− 2
√
Nd2 + 2

√
Nd

)
d2p−4

Region 2:
√
N ≤ d < 2

√
N − 2

P (d) =
Γ

6N (1−Np−1)

(
2
√
N − d

)3

d2p−4 (6.2)

where Γ is a normalization constant. From the above formula, the average commu-

nication distance is computed as the weighted sum of the probabilities with their

respective distances as

d = c ·
2
√
N−2∑
d=1

d · P (d), (6.3)

where c is a constant to be determined. Using linear regression, we found the constant

c that maximizes the fit of the model to the data. Figure 6.2 shows the results of

the model using the Rent’s exponents given in Table 6.1, with c = 1.38. The figure

69

Chapter 6. Theoretical Analysis of NoC Energy Consumption

3.0 3.5 4.0 4.5 5.0
Measured distance (hops)

3.0

3.5

4.0

4.5

5.0

Es
tim

at
ed

 d
is

ta
nc

e
(h

op
s)

barnes

cholesky

FFT
LU_c

LU_nc

ocean_c

ocean_nc
radix

water_sp
water_ns

R = 96.27%
Avg Error = 4.59%
Max Error = 8.67%

Average Communication Distance

Figure 6.2: Measured and estimated communication distance for CMP applications.
The dashed line indicates perfect agreement between empirical and theoretical values.

compares predicted and measured average communication distance of applications

after optimization by the placement algorithm described in Section 5.4.

The results of the model agree closely with the empirical values, with an average

error of 4.58% and maximum error of 8.64%. The correlation coefficient of 96%

shows that, even at this relatively small scale, the Rent’s exponent can explain most

of the variation in communication distance and is, therefore, a good predictor of

communication locality in CMP applications. The agreement between theory and

experiment also validates the ability our method to exploit locality.

The intuition behind these results is that the lower the dimensionality, the more

independent the modules of the graph are from each other, allowing more freedom

for blocks to be placed close to where they are most frequently used. For high-

dimensional graphs, there is more interdependence between modules and less oppor-

tunity for optimization. A worst-case scenario is a graph with Rent’s exponent 1,

in which all nodes are equally connected to each other. In this case, no matter how

70

Chapter 6. Theoretical Analysis of NoC Energy Consumption

this graph is placed, there is never any improvement in communication locality.

6.3 Modeling Energy Consumption

The energy consumption of the interconnect is easily computed from the estimated

average communication distances. The energy used by a message of length l (in

bytes) when traversing one hop on a 2D-mesh NoC is given by

Ehop(l) = Erouter(l) + Elink(l), (6.4)

where Erouter and Elink are the average energy used by the message when traversing

a router and a link, respectively; their values can be obtained from power simulators,

such as Orion 2. Because the network carries messages of different sizes, the average

energy used per byte can be obtained by

Ehop(1) =

∑
lEhop(l) ·Nl∑

l l ·Nl

, (6.5)

where Nl is the number of messages of size l. The above conversion is necessary

because arbitration occurs only for the header of a message and, therefore, energy

consumption is not directly proportional to message size. Using the average distance

traveled by a message (Equation 6.3), the energy used by a byte when traversing a

hop (Equation 6.5), and the average number of bytes per node (the parameter b of

Rent’s rule, given in Table 6.1) the total energy of the application can be calculated:

Etotal = d× Ehop(1)×N × b, (6.6)

where N × b is the total number of bytes sent and received over the network.

The energy predicted by the model was compared with the measured energy con-

sumption of applications, as shown in Figure 6.3. The results have a high correlation

coefficient of 99.82%, with average error of 4.53% and maximum error of 8.64%.

71

Chapter 6. Theoretical Analysis of NoC Energy Consumption

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
Measured energy (J)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

Es
tim

at
ed

 e
ne

rg
y

(J)

barnes

cholesky

FFT
LU_c

LU_nc

ocean_c

ocean_nc

radixwater_sp

water_ns

R = 99.82%
Avg Error = 4.53%
Max Error = 8.64%

Total Energy

Figure 6.3: Measured and estimated energy consumption of CMP applications. The
dashed line indicates perfect agreement between empirical and theoretical values.

6.4 Related work

Very few related models exist for predicting energy consumption in parallel archi-

tectures. A model for the impact of Dynamic Voltage Scaling (DVS) on energy

consumption is proposed in [79]. Using linear programming, the authors establish

an empirical lower bound on the energy consumption of applications with DVS. In

reference [59], a model for energy consumption based on the computation to commu-

nication ratio of applications is presented. This model is used to predict the optimal

number of cores for toy parallel applications, but no experimental verification is pro-

vided. A model for the energy-time trade-offs in generic computer architectures is

proposed in [9]. In this highly abstract representation, they use a task graph to

define theoretical lower-bounds on the time and energy of sorting, binary addition,

and multiplication problems. Although an interesting theoretical development, the

authors conclude that the abstraction level is not yet appropriate for developing

practical algorithms.

72

Chapter 6. Theoretical Analysis of NoC Energy Consumption

Our work is the first to predict the energy consumption and communication lo-

cality of parallel applications from the topology of the communication graph. Our

approach provides an elegant explanation to why some applications have more po-

tential for communication locality than others. Because we use Rent’s rule, only a

compact description of the graph, based on the Rent’s exponent p and coefficient b,

is required in the modeling.

6.5 Conclusion

This chapter presented a theoretical analysis of energy consumption and communi-

cation locality of parallel applications based on Rent’s rule. Our analysis reveals

why some applications have more communication locality than others. Although it

may seem obvious that locality is constrained by the topology of the communication

graph, defining the relevant topological parameters and using them to estimate lo-

cality is non-trivial. The close agreement between theoretical and empirical values

helps validate the LLB algorithm, and verifies its ability to exploit communication

locality and reduce energy consumption. Finally, the analysis presented here could

be used to provide first-order predictions of energy consumption of new applications

and/or new systems. This is especially relevant when we consider the energy that

will be used in future multi-core chips with hundreds of cores. Our framework is not

limited to CMPs and could be extended to arbitrarily large machines composed of

multiple chips.

73

Chapter 7

A General Power-Performance

Scaling Law for Computing

Digital computers scaled in size over 6 orders of magnitude in the last 40 years. If

growth continues as expected, in 10 years chips will have trillions of transistors, more

than the number of neurons in the human brain [3]. But what will be the power

consumption of computers in the future? How many cores will they have? What will

be their performance and clock frequency? Currently, we have no answers to these

questions.

In computer science, there is no general theory that explains the scaling of com-

puting hardware. Although certain well-known patterns exist which serve as guide-

lines for technology roadmaps (such as Moore’s law and Koomey’s law [58]), these em-

pirical observations lack theoretical explanation. Amdahl’s law, a theoretical bound

for the speedup of parallel algorithms, has no counterpart in terms of power con-

sumption, and does not model communication, the dominant factor in the scaling of

power and performance in modern architectures [42]. Currently, computer architec-

ture design is mostly and empirical practice, with a few guiding principles and no

74

Chapter 7. A General Power-Performance Scaling Law for Computing

general theory of scaling.

In biology, a general theory exists that explains the scaling of power consumption

(metabolic rate) as a function of body mass in organisms. From unicellular microbes

to giant whales and trees, biological organisms scale over 21 orders of magnitude —

vastly more than computer architectures. Despite the amazing diversity and com-

plexity of organisms, their metabolism manifests an extraordinary simplicity when

viewed as a function of size. From a few basic principles, Metabolic Scaling Theory

(MST) in biology explains this pattern as a result of geometric constraints imposed

by the fractal branching structure of vascular networks. This theory predicts, with

remarkable accuracy, how metabolic rate scales across species and during the lifetime

of a single organism.

By combining the results from MST in biology and Rent’s rule in VLSI design,

this chapter develops a theory for the scaling of power and performance in computer

architectures. We view the scaling of computers as a geometrical process, in which

spatial constraints determine how fast communication, power, and throughput in-

crease as a function of size. Assuming that computer architectures are optimized to

minimize the energy-delay product [33, 1], we determine the optimal scaling dimen-

sions of an idealized computer logic network that has minimum cost. The geometry

of this network leads to extremely simple power-performance scaling laws that accu-

rately describe the scaling of power and performance in microprocessors over a range

of several orders of magnitude.

This chapter is organized as follows. In Section 7.1, we analyze the scaling of

vascular systems and digital circuits by comparing MST and Rent’s rule, and iden-

tify three dimensions in which networks scale. In Section 7.2, we propose a unified

model of network scaling that incorporates properties of both MST and Rent’s rule.

This model is then used in Section 7.3 to derive general allometric scaling relations

for networks, such as network volume and total wire length. In Section 7.4, these

75

Chapter 7. A General Power-Performance Scaling Law for Computing

allometric relations are used to derive general expressions for the scaling of resis-

tance, capacitance, latency, and bandwidth, and from these expressions determine

the conditions for optimal energy-delay product. Finally, in Section 7.5, we present

general power-performance scaling laws for computing and compare their predictions

with real-world data. A discussion of the implications of our results are presented in

Section 7.6, and Section 7.7 concludes the chapter.

7.1 The Scaling of Vascular Systems and Digital

Circuits

7.1.1 The West-Brown-Enquist model

Manifesting an extraordinary diversity of form and function over an enormous range

from the largest animals and plants to the smallest microbes, life on Earth is the

most complex physical phenomenon known to us. Yet, many of the most fundamental

biological processes in organisms display striking regularity over an immense range of

21 orders of magnitude [91]. Such regularity is characterized by quarter-power scaling

as a function of size. A canonical example is the 3/4 power scaling of metabolism as a

function of body mass, known as Kleiber’s law (Figure 7.1). This scaling relationship

can be written as

B ∝M3/4, (7.1)

where B and M are metabolism and mass, respectively. Similarly, gestation period

and lifespan scale as the 1/4 power, growth rate as the −1/4 power, and heart rate

as the −1/4 power, among others [14].

In their seminal paper, West, Brown, and Enquist [92] postulate that a common

mechanism underlies these laws: Living things are sustained by the transport of ma-

76

Chapter 7. A General Power-Performance Scaling Law for Computing

Figure 7.1: Kleiber’s law.

terials through hierarchical branching networks that supply all parts of the organism.

They present a quantitative model of network growth, known as the West-Brown-

Enquist (WBE) model, that explains the origin and ubiquity of the quarter-power

scaling and predicts essential features of transport systems in biology. The WBE

model relies on three basic assumptions or conditions:

1. In order for the internal network to supply the entire volume of the organism,

a space-filling fractal-like branching pattern is required.

2. The terminal branches of the network, such as the capillaries in the circulatory

system, are size-invariant, i.e., their size remains constant as the system scales.

3. The energy required to distribute resources is minimized, which results in a

network with area-preserving branching.

The schematic of the model is shown in Figure 7.2 for a branching factor of two.

Each branch of the network has radius (ri) and length (li) that are characteristic

of its hierarchical level i. The model is defined by two parameters, i.e., the rate

77

Chapter 7. A General Power-Performance Scaling Law for Computing

at which branches become thinner (β) and the rate at which they become shorter

(γ) as they move down in hierarchy from the root of the tree towards the leaves.

The cross-sectional area-preserving branching condition requires β = b−1/2, and the

space-filling condition requires γ = b−1/3, where b is the branching factor. More

formally:

β =
ri
ri+1

= b−1/2 (7.2)

and

γ =
li
li+1

= b−1/3. (7.3)

This model can be used to explain Kleiber’s law in the following manner. Assum-

ing that metabolism (B) is proportional to the number of capillaries (leaves of the

tree) (N) and that the mass of the organism (M) is proportional to the volume of

the network (V), the allometric scaling relationship between metabolism and body

mass can be written as:

N ∝ V a, (7.4)

where a is the scaling exponent. By computing N and V using the parameters of

the model, the exponent a = 3/4 is easily derived.

Metabolic Scaling Theory (MST) has become an important subfield in biology,

and it has significantly influenced other disciplines, such as Complex Systems. Sev-

eral extensions to the WBE model have been proposed that attempt to incorporate

more realistic assumptions and match observed data more accurately [5, 77, 6, 29].

A comprehensive review of MST with all its extensions and applications is outside

the scope of this chapter. For the purposes of the work presented here, the most

important lesson from the theory is clear: The 3/4 power scaling of metabolism in

biological organisms is essentially a geometrical phenomenon.

78

Chapter 7. A General Power-Performance Scaling Law for Computing

Figure 7.2: Illustration of a fractal branching network structure with branching factor
2.

7.1.2 Rent’s rule

In vascular systems, the network branches get thicker and longer as they go up in

hierarchy, and this scaling is described by the WBE model. Interestingly, in spite

of their differences in function and topology, digital circuits scale in a similar way.

Wires in a microprocessor chip are arranged hierarchically in metal layers, and the

higher the layer the thicker and longer the wires (see Figure 7.3). As the number

of transistors increases, so does the number of metal layers, or hierarchical levels. If

wires scale geometrically with the number of nodes in the network, than the scaling

of wire thickness and length in chips is also given by the WBE model, although the

parameter values are likely different from those for vascular networks.

However, digital circuits scale in a third way that has no analog in vascular

systems. This scaling pattern, which has been widely discussed in previous chapters,

is Rent’s rule. Rent’s rule describes how communication between different parts (or

modules) of the circuit scales with size. Similar to the scaling of thickness and length

of wires, the scaling of communication is also a hierarchical relationship and can be

79

Chapter 7. A General Power-Performance Scaling Law for Computing

Figure 7.3: Cross section of twelve layers of interconnect. Figure reproduced from
[94].

expressed as such. Recall that Rent’s rule is given by

C(n) = knp, (7.5)

where C(n) is the external communication, n is the size of a module, k is the average

external communication of a module with size 1, and p is the Rent’s exponent. For

a two-way hierarchical partitioning, the size of a module is given as n = 2i, where i

is the hierarchical level. Therefore, we can rewrite Rent’s rule as

ci = c0 · 2ip, (7.6)

where ci is the external communication of a module at hierarchical level i and c0 = k.

Like the WBE model, this scaling pattern also defines a fractal branching struc-

ture that scales hierarchically with the number of nodes. To show this, we conve-

niently represent Rent’s rule as a fat-tree [63], where leaves of the tree are the nodes

of the network, branches are modules, and the width wi of a branch at hierarchical

level i corresponds to the average communication per module at that level. This is

illustrated in Figure 7.4, where Figure 7.4a depicts a two-way hierarchical modular

decomposition of a network with 16 nodes, and Figure 7.4b shows its corresponding

fat-tree representation. As the hierarchical level increases, the width of the branches

80

Chapter 7. A General Power-Performance Scaling Law for Computing

in the tree also increase, proportionally to the amount of communication (or number

of wires) at each level.

(a) Two-way hierarchical modular decom-
position of a network with 16 nodes.

(b) Fat-tree representation of Rent’s rule
for the same network.

Figure 7.4: Visualization of the hierarchical interpretation of Rent’s rule.

Notice that the width of a branch, wi, is not the same as the external commu-

nication, ci. While ci correponds to the total external communication of a module,

wi is the communication only at level i (e.g., in the figure, c0 = 4 and w0 = 1).

However, as the number of nodes increases, the difference between them vanishes so

that both quantities scale in the same way. This is shown by the following theorem:

Theorem 1: For 0 ≤ p < 1, the width of a branch in the fat-tree (wi), scales

proportionally to the external communication of a module (ci).

Proof: wi is the average number of wires per module at hierarchical level i. This

corresponds to the external communication of a module at level i minus the external

communication at level i+1 divided by the branching factor. For a generic branching

factor b, the relationship between wi and ci can be written as [86]

wi = ci −
ci+1

b
. (7.7)

81

Chapter 7. A General Power-Performance Scaling Law for Computing

Solving this equation gives

wi = c0 · bip −
c0 · b(i+1)p

b

wi = c0 · bip − c0 · b(i+1)p−1

wi = c0 · bip − c0 · bip+p−1

wi = c0 · bip
(
1− bp−1

)
. (7.8)

For p < 1, the expression in parenthesis always evaluates to a positive real. As a

result,

wi ∝ bip, (7.9)

or

wi = w0 · bip. (7.10)

Theorem 1 shows that the external communication of a module and the width of a

branch in the fat-tree scale with the hierarchical level in the same way. Therefore,

the fat-tree structure is a sound representation of Rentian scaling. This result places

Rent’s rule in the same framework as the WBE model, as the scaling of communica-

tion can be modeled as tree structure whose branch dimensions scale geometrically

with the number of nodes.

7.2 A unified model of network scaling

In the previous discussion, we saw that interconnection networks scale in three differ-

ent ways: wire length, wire thickness, and width, and that the WBE model accounts

for the first two, while Rent’s rule models the third. In this section, we combine the

properties of these two models into a single hierarchical model of network scaling.

82

Chapter 7. A General Power-Performance Scaling Law for Computing

The unified model consists of a hierarchical branching structure, where each branch

is composed of a collection of wires and for which the geometry of a branch is defined

by the parameters l (length), r (thickness), and w (width), as shown in Figure 7.5a.

As the system scales and the network branches, wires at the lower hierarchical levels

get shorter and thinner, and the number of wires per branch decreases. Figure 7.5b

illustrates the branching pattern of the model for a branching factor of 2.

(a) Geometry of wires at a given hierar-
chical level, defined by three dimensions.

(b) Branching structure of the model for
a branching factor of 2.

Figure 7.5: Schematic of the hierarchical model of network scaling.

In the model, l, r, and w scale according to well-defined geometric dimensions,

∆l, ∆r, and ∆w, which can have non-integer values. Although real microprocessor

systems are not perfectly regular structures, there are supporting evidences that their

interconnection networks have a well-defined geometry. In the VLSI literature, the

geometric scaling of wire lengths is an approximation commonly used in methods for

total wire length estimation [86, 30, 31]. The existence of a well-defined thickness

dimension is predicted by Dennard scaling [27], and the geometric scaling of width

(or communication) is empirically supported by Rent’s rule [61].

We now formally define the proposed hierarchical model by analyzing the scaling

of length, thickness, and width. The scaling dimensions introduced in this section are

summarized in Table 7.1, together with another dimension that will be introduced

83

Chapter 7. A General Power-Performance Scaling Law for Computing

Table 7.1: List of all the scaling dimensions defined in this chapter.

Parameter Description
∆l Length dimension, or spatial dimension
∆r Thickness dimension
∆w Width dimension
∆g Fractal dimension of the network graph

in later sections1.

7.2.1 Length

Geometrically, the scaling of edge lengths of a tree determines the fractal dimension

of the space that is occupied by its leaves [65]. Because the capillaries of vascular

networks must supply blood to all parts of the organism, the lengths of its branches

must scale so that the network is volume-filling. In the case of computer chips,

because the nodes of the network occupy the two-dimensional space, the lengths of

wires must scale so that the network is area-filling.

For a well-defined geometry, the hierarchical scaling of lengths is written as

li+1 = li · b1/∆l , (7.11)

where li is the length of a wire at hierarchical level i, b is the branching factor, and

∆l is the length dimension. We solve this recursive relation and obtain a closed-form

expression for the scaling of lengths as a function of the hierarchical level as

li = l0 · bi/∆l , (7.12)

where l0 is the length of the smallest wire. For an area-filling digital circuit network,

∆l = 2, which is consistent with the modeling of total wire length in the VLSI

1We note there is yet a fourth way in which networks scale, that is, the degree distri-
bution of nodes. In Appendix C, we show that this fourth scaling dimension is accounted
for by our model as a growth process that is independent of the network geometry. The
reading of this appendix is not required for understanding the rest of this chapter.

84

Chapter 7. A General Power-Performance Scaling Law for Computing

literature [30]. For a volume-filling vascular network, ∆l = 3, which is in accordance

with the WBE model.

7.2.2 Thickness

The variable r corresponds to a linear measure of thickness, such that wire cross-

sectional area scales as A ∝ r2. This is independent of the shape of the wire cross

section, so the model makes no distinction between, for example, cylindrical or rect-

angular shaped wires.

For a well-defined geometry, the hierarchical scaling of thickness can be written

as

ri+1 = ri · b1/∆r , (7.13)

where ri is the thickness of a wire at hierarchical level i, b is the branching factor,

and ∆r is the thickness dimension. We solve this recursive relation and obtain a

closed-form expression for the scaling of thickness as a function of the hierarchical

level as

ri = r0 · bi/∆r . (7.14)

From the above equation, an area-preserving vascular network has ∆r = 2. For

digital circuits, it is predicted by Dennard scaling that ∆r is also equal to 2, which

corresponds to the ideal case in which both length and thickness scale at the same

rate and latency is independent of distance [27]. The optimal value for ∆r will be

discussed in Section 7.4.

85

Chapter 7. A General Power-Performance Scaling Law for Computing

7.2.3 Width

The variable w represents the number of wires in a branch of the tree structure, which

is given by Rent’s rule. Intuitively, a branch corresponds to a module in Rent’s rule,

and the number of wires per module is the width of a branch (see Figure 7.4b). From

Equation 7.10, the scaling of branch widths is given as

wi = w0 · bip. (7.15)

This defines the recursive relation

wi+1 = wi · b1/∆w , (7.16)

where ∆w is the width dimension, and ∆w = 1/p. The closed-form solution is given

as

wi = w0 · bi/∆w . (7.17)

Notice that, for vascular networks, the width of a branch is constant with the

hierarchical level (i.e., wi ∝ 1). From the above equation, this occurs when ∆w →∞,

in which case the width dimension is undefined. For computer chips, p ≈ 0.5 [4] and,

therefore, ∆w is close to 2. The optimal value for ∆w will be discussed in Section

7.4.

Hence, we model the geometry of digital circuit networks using the following

independent scaling relations:
li = l0 · bi/∆l

ri = r0 · bi/∆r

wi = w0 · bi/∆w .

(7.18)

86

Chapter 7. A General Power-Performance Scaling Law for Computing

7.3 Allometric scaling

In biology, allometry is the study of the differential growth of parts of an organism

in relation to its size [34]. When the whole organism and its parts scale at the same

rate, growth is isometric. However, when certain parts scale at a rate that is different

from that of the organism, the growth of these parts is allometric. In the case of

networks, the phenomenon of allometry occurs, for example, when the total volume

of the network and the number of nodes grow at different rates.

Here, we use the hierarchical model of network scaling proposed in the previous

section to derive general allometric relations of networks and analyze the conditions

that lead to allometry. These calculations will serve as the basis for computing the

electrical properties of the network, such as resistance and capacitance, in the next

section.

7.3.1 Volume

The allometric relation between volume of a network and the number of nodes can

be written as

V ∝ Nα, (7.19)

where V is the volume, N is the number of nodes, and α is the allometric exponent.

When α > 1, the size of the network scales faster than the number of nodes, resulting

in allometric growth. In order to determine the conditions that lead to allometry,

we need to compute N and V , where

α =
log V

logN
. (7.20)

From the hierarchical model in Section 7.2, the number of nodes is given as

N = bH−1, (7.21)

87

Chapter 7. A General Power-Performance Scaling Law for Computing

where, H is the number of hierarchical levels (or height). The total volume of the

network is given by summing the volume of all the branches at each hierarchical

level:

V ∝ l0r
2
0w0b

H−1 + l1r
2
1w1b

H−2 + · · ·+ lH−1r
2
H−1wH−1b

0

∝ l0r
2
0w0b

H

H−1∑
i=0

b
i
(

1
∆l

+ 2
∆r

+ 1
∆w
−1

)
. (7.22)

From Equation 7.22, there are three possible cases for the scaling of V as a function

of H:

Case 1: 1
∆l

+ 2
∆r

+ 1
∆w
− 1 < 0. In this case, the summation series converges as H

increases, thus V ∝ bH , or V ∝ N . Hence, α = 1, and scaling is isometric.

Case 2: 1
∆l

+ 2
∆r

+ 1
∆w
− 1 = 0. Here, the summation series diverges, resulting in

H(H − 1)/2. Thus, V ∝ H2bH , or, equivalently, V ∝ N log2
b N . In this special case,

there is a discontinuity and growth is neither isometric nor allometric. We name this

growth pseudo-allometric.

Case 3: 1
∆l

+ 2
∆r

+ 1
∆w
− 1 > 0. In this case, the last term of the summation series

dominates, and V ∝ b
H
(

1
∆l

+ 2
∆r

+ 1
∆w

)
. As a result,

α =
1

∆l

+
2

∆r

+
1

∆w

, (7.23)

and scaling is allometric.

A special case of allometric scaling occurs when ∆l = 3 and ∆r = 2, and ∆w =∞,

which leads to α = 4/3. This is case of vascular systems, in which the network is

volume-filling, area-preserving, and there is no Rent’s rule scaling. Since N ∝ V 1/a =

V 3/4, metabolism (N) scales as body size (V) as the 3/4 power.

88

Chapter 7. A General Power-Performance Scaling Law for Computing

7.3.2 Wire length

For electronic circuits, the total wire length is an important quantity. The longer,

and the more wires there are, the higher the cost of the network in terms of energy

consumption, materials and space. The total wire length is given by summing the

lengths of all wires:

L = l0w0b
H−1 + l1w1b

H−2 + · · ·+ lH−1wH−1b
0

= l0w0b
H

H−1∑
i=0

b
i
(

1
∆l

+ 1
∆w
−1

)
.

(7.24)

As a result, in the case of allometric scaling,

L ∝ N
1

∆l
+ 1

∆w . (7.25)

In order to compute the average wire length, first we prove that the average degree

of a node is constant with scaling. The average degree is given by the total number

of wires divided by the number of nodes:

k =
1

N

(
w0b

H−1 + w1b
H−2 + · · ·+ wH−1b

0
)

=
w0b

H

N

H−1∑
i=0

bi(
1

∆w
−1). (7.26)

Since p ≤ 1, then ∆w ≥ 1, and the above series converges. As a result:

k ∝ bH

N
∝ 1. (7.27)

Therefore, the average degree is constant, and the total number of edges is propor-

tional to N . The average wire length is then given as

L ∝ L

N
= N

1
∆l

+ 1
∆w
−1
, (7.28)

89

Chapter 7. A General Power-Performance Scaling Law for Computing

or

L ∝ N
1

∆l
+p−1

. (7.29)

The above result is a generalization of the special case when D = 2, that is, the

wire length for 2D chips. In this case, we obtain

L2D ∝ Np− 1
2 , (7.30)

which matches the result derived by Donath (1979) for the average wire length in

VLSI circuits [30].

7.3.3 Fractal dimension

We now show that Rent’s rule corresponds to a more general property of networks,

i.e., a fractal interconnection topology. This gives rise to an important relation

between the fractal dimension of the network graph, ∆g, and the width dimension,

∆w, which will be used in the next section to interpret the conditions for which

energy-delay is minimized. We propose the following intuitive definition of network

fractal dimension:

Definition 1: The fractal dimension of a network graph (∆g) is the lowest spatial

dimension in which the nodes of the network can be placed such that the scaling of

total edge length is not allometric.

This definition is similar to the one used in [86] for the fractal dimension of

90

Chapter 7. A General Power-Performance Scaling Law for Computing

circuits. From Equation 7.25, the scaling of total wire length is not allometric when:

1

∆l

+
1

∆w

≤ 1

1

∆l

≤ 1− 1

∆w

∆l ≥
1

1− 1
∆w

∆l ≥
∆w

∆w − 1
. (7.31)

From Definition 1, the fractal dimension ∆g corresponds to the lowest value of the

spatial dimension ∆l such that the above condition is satisfied. Therefore,

∆g =
∆w

∆w − 1
, (7.32)

or

∆g =
1

1− p
. (7.33)

This result proves the relation between p and ∆g, which is identical to the relation

previously suggested by Stroobandt (2001) [86] but for which no proof was presented.

7.4 Energy-delay product

The energy-delay product is a widely accepted metric of cost in computer archi-

tectures [33, 1]. This metric implies that, to be efficient, computer designs must

minimize cost by managing the trade-off between energy consumption and perfor-

mance. In this section, we derive a general equation for the scaling of energy-delay

product and analyze the conditions leading to its minimization.

This section is organized as follows. From first principles, we provide general

expressions for the scaling of resistance, capacitance, latency, and bandwidth. These

91

Chapter 7. A General Power-Performance Scaling Law for Computing

expressions are then used to compute energy, delay, and the energy-delay product.

All derivations use the most basic formulas and all the asymptotic approximations

used are justified in the text. Next, we determine the conditions for which the energy-

delay product is optimized. The final result is unexpected: for optimal energy-delay

product, all three scaling dimensions must be the same.

As a guide, Table 7.2 contains a summary of the variables introduced in this

section.

Table 7.2: List of the variables introduced in Section 7.4.

Variable Description
R Resistance
C Capacitance
L Latency
B Bandwidth
E Energy
D Delay
O Output

7.4.1 Resistance

Ohm’s law states that the resistance of a conductor is proportional to its length

divided by its cross-sectional area as

R =
ρl

A
, (7.34)

where ρ is the resistivity of the material. Although there have been improvements in

material resistivity of wires (for example, using copper wires instead of aluminum),

ρ has scaled very slowly with N [41], so we approximate it to a constant [27]. There

is also some variation in the aspect ratio of wires, which could affect the scaling of

area. However, this variation is very small relative to l [93] and, therefore, we assume

92

Chapter 7. A General Power-Performance Scaling Law for Computing

wires have a fixed aspect ratio and that area is proportional to r2, as discussed in

Section 7.2.2. As a result, we obtain the following scaling equation for resistance:

R ∝ l

r2
. (7.35)

7.4.2 Capacitance

For wires with fixed aspect ratio and negligible fringing effects, the scaling of capac-

itance is given as [93]:

C ∝ εl, (7.36)

where ε is the dielectric constant. Although there have been improvements in the

dielectric constant of materials, ε has also scaled very slowly with N [41], so we

approximate it to a constant. As a result, the simplest form for the scaling of wire

capacitance is

C ∝ l. (7.37)

7.4.3 Latency

Wire delay, or latency, is given by the time constant RC [93]. Thus, from the product

of Equations 7.35 and 7.37, we obtain the scaling of latency as:

L = RC ∝ l2

r2
. (7.38)

For hierarchical level i, wire latency can be written as

Li ∝
l20b

2i
∆l

r2
0b

2i
∆r

=
l20
r2

0

b
2i
(

1
∆l
− 1

∆r

)

Li = L0 · b
2i
(

1
∆l
− 1

∆r

)
, (7.39)

where L0 is the latency of the smallest wire.

93

Chapter 7. A General Power-Performance Scaling Law for Computing

7.4.4 Bandwidth

In general, for a system of spatial dimension ∆l, bandwidth scales as the space with

dimension ∆l − 1. For example, in a three-dimensional system, bandwidth scales

as surface area; in a two-dimensional system, bandwidth scales as length, and so

forth. From the generalized volume-area relationship of fractals [65, 86], we write

the scaling of bandwidth as

B ∝ N
∆l−1

∆l = N
1− 1

∆l . (7.40)

Therefore, for a 1D ring topology, bandwidth is constant with the number of nodes.

For a 2D mesh or torus topology, bandwidth scales as N
1
2 , and for a 3D mesh or torus,

bandwidth scales as N
2
3 [32]. Equation 7.40 generalizes this notion for non-integer

dimensions.

For hierarchical level i, the network bandwidth can be written as

Bi = B0 · b
i
(

1− 1
∆l

)
, (7.41)

where B0 is the bandwidth for a network with one node.

7.4.5 Energy

The energy consumption of a wire is given as follows [89]:

E =
CV 2

2
, (7.42)

according to which energy depends on the square of the voltage, V . However, in

the history of microprocessor evolution, while N has scaled by a factor of 106, V

has decreased only by a factor of 10 [71], which compared to V 2 is a difference of

94

Chapter 7. A General Power-Performance Scaling Law for Computing

four orders of magnitude. Additionally, fundamental constraints imposed by signal

reliability and noise issues currently limit the further scaling of voltage [41]. Like

others [53, 89], we assume that C scales much faster than V and that the scaling of

energy is given as

E ∝ C. (7.43)

From this simple expression, the total network energy is thus obtained by sum-

ming the capacitance of all wires, which is equivalent to the total wire length given

in Equation 7.25. Considering both allometric and isometric scaling, we can write

the scaling of energy consumption as

E ∝

N
1

∆l
+ 1

∆w , for 1
∆l

+ 1
∆w

> 1

N , for 1
∆l

+ 1
∆w

< 1.
(7.44)

Notice that, because the energy used for computation scales as N , it does not

affect the scaling of total energy and is ignored in this analysis. It is indeed the case

in modern chips that wire capacitances dominate gate capacitances [42].

7.4.6 Delay

The communication delay (or communication overhead) is given by the sum of the

transmission delay and latency as [96]:

D =
W

B
+ L, (7.45)

where W is the amount of communication. From Equations 7.17, 7.39 and 7.41, the

delay at hierarchical level i can be written as

Di =
w0 · b

i
∆w

B0 · b
i
(

1− 1
∆l

) + L0b
2i
(

1
∆l
− 1

∆r

)

=
w0

B0

b
i
(

1
∆l

+ 1
∆w
−1

)
+ L0b

2i
(

1
∆l
− 1

∆r

)
. (7.46)

95

Chapter 7. A General Power-Performance Scaling Law for Computing

The total network delay is obtained by summing the communication delays at

each hierarchical level, which yields

D =
w0

B0

H−1∑
i=0

b
i
(

1
∆l

+ 1
∆w
−1

)
+
l20
r2

0

H−1∑
i=0

b
2i
(

1
∆l
− 1

∆r

)
. (7.47)

From Equation 7.47 above, considering both allometric and isometric scaling, we can

write the scaling of network delay as

D ∝

N
1

∆l
+ 1

∆w
−1

+N
2
(

1
∆l
− 1

∆r

)
, for 1

∆l
+ 1

∆w
> 1 and ∆r > ∆l

1, for 1
∆l

+ 1
∆w

< 1 and ∆r < ∆l.
(7.48)

Notice that, because computation delay is constant with the size of the system,

it does not affect the scaling of total delay and is ignored in this analysis. This is

in accordance with what is observed in today’s chips, in which wire delays are much

higher than gate delays [42].

7.4.7 Energy × Delay

We now propose a general equation for the scaling of the average energy-delay prod-

uct and analyze the conditions for which it is minimized. From Equations 7.44 and

7.48, we can write the scaling of total energy-delay product as

E ×D ∝


N

1
∆l

+ 1
∆w ×

(
N

1
∆l

+ 1
∆w
−1

+N
2
(

1
∆l
− 1

∆r

))
, allometric

N , isometric,

(7.49)

where the allometric conditions are 1
∆l

+ 1
∆w

> 1 and ∆r > ∆l. The average energy-

delay product, or average cost per output, is the total energy-delay divided by the

total output. The total output is proportional to the external communication of the

network, thus:

E ×D =
E ×D
O

=
E ×D
N

1
∆w

. (7.50)

96

Chapter 7. A General Power-Performance Scaling Law for Computing

As a result,

E ×D ∝


N

1
∆l ×

(
N

1
∆l

+ 1
∆w
−1

+N
2
(

1
∆l
− 1

∆r

))
, allometric

N1− 1
∆w , isometric.

(7.51)

Finally, we perform a convenient change in variables, which simplifies the above

expression. Instead of using the width dimension ∆w, we express the average energy-

delay product as a function of the fractal dimension of the network ∆g, where, from

Section 7.3.3, 1
∆g

= 1− 1
∆w

. Hence,

E ×D ∝


N

1
∆l ×

(
N

1
∆l
− 1

∆g +N
2
(

1
∆l
− 1

∆r

))
, for ∆g > ∆l and ∆r > ∆l

N
1

∆g , for ∆g < ∆l and ∆r < ∆l.

(7.52)

The above expression defines the scaling of the average energy-delay product as

a function of the geometric parameters of the network. From this equation, we now

determine the optimal values for those parameters so that cost is minimized.

For the allometric case, the minimum cost is obtained when ∆g and ∆r are

as low as possible. Since ∆g > ∆l and ∆r > ∆l, it follows that the minimum

cost occurs when ∆g and ∆r are infinitely close to ∆l, or, using standard calculus

notation, ∆g → ∆+
l and ∆r → ∆+

l . Intuitively, this corresponds to the case in which

bandwidth and communication scale at the same pace and latency is constant with

distance, so that there is no slow-down with scaling and performance is the maximum

possible. The formula also indicates that the higher the spatial dimension, the lower

the cost, which gives a compelling argument to why developing a 3D chip technology

is advantageous.

For the isometric case, cost is minimized as ∆g increases. Since ∆g < ∆l, the

minimum cost is obtained when ∆g is infinitely close to ∆l. The formula does not

contain ∆r and, therefore, ∆r could have any value smaller than ∆l with no change

in the energy-delay. However, the lower the ∆r the thicker the wires, and since there

97

Chapter 7. A General Power-Performance Scaling Law for Computing

are obvious spatial and material costs in making wires thicker, the best value for ∆r

is one infinitely close to ∆l. We conclude that, for isometric scaling, cost is minimized

when ∆g → ∆−l and ∆r → ∆−l .

Our analysis shows that the optimal system exists in the limit between allometric

and isometric scaling, although never exactly at pseudo-allometric scaling. Never-

theless, for all practical purposes, the optimal design is achieved when:

∆g = ∆r = ∆l. (7.53)

This result leads to an extremely simple geometrical model in which three inde-

pendent scaling dimensions collapse into a single parameter. If a system is optimized

for energy-delay product, only one of its geometric dimensions is needed in order to

guess the other two. For chips, ∆l = 2 and, therefore, it should be expected that

∆g ≈ 2 and ∆r ≈ 2. Interestingly, a value of ∆g ≈ 2 implies p ≈ 0.5 and, in fact,

the average Rent’s exponent of microprocessors has been found to be approximately

0.45 [4]. For the scaling of wire thickness, the result that ∆r = ∆l corresponds to

the case in which thickness and length scale at the same rate. This matches exactly

with the prediction by Dennard’s scaling theory for the ideal scaling of wires [27].

7.5 Power and performance

From fundamental electrical and geometrical principles, we have derived a general

expression for the scaling of average energy-delay product, and used this expression

to determine the geometry of an ideal computing system that has minimum cost. We

postulate that if real computing systems are designed to optimize the same metric,

then the scaling of real-world computers should approach to a certain degree the

scaling of the ideal system.

98

Chapter 7. A General Power-Performance Scaling Law for Computing

In this section, we assume optimal network scaling and use the fact that ∆g =

∆r = ∆l to derive general scaling relations for power and performance in computing

systems. We show that these scaling relations predict with high accuracy the scaling

of power and throughput of real-world systems across a range of several orders of

magnitude.

7.5.1 Power

With the assumption of optimal scaling the computation of power consumption is

simple. Power is the energy consumed per unit of time, or energy divided by delay:

P =
E

D
. (7.54)

From Equation 7.44, energy is given by E ∝ N
1

∆l
+ 1

∆w , and from Equation 7.32,

1
∆w

= 1− 1
∆g

. Thus,

E ∝ N
1

∆l
+ 1

∆w = N
1+ 1

∆l
− 1

∆g . (7.55)

Since in optimal scaling ∆g = ∆l, it results that E ∝ N . In the case of delay, under

optimal scaling Equation 7.48 leads to D ∝ 1. Therefore, the scaling of power is

given as

P ∝ N. (7.56)

There is only one component missing in the above formulation, which is feature

size reduction. We did not introduce this factor before because it has no influence in

the results obtained so far and, therefore, was not relevant to the previous discussion.

However, in order to compute power consumption, the shrinkage of device dimensions

must be accounted for. In real systems, the chip area is approximately constant while

the number of transistors increases, so that the length of wires decreases as N
1

∆l

[70]. This has no impact on delay, which is independent of distance in the optimal

99

Chapter 7. A General Power-Performance Scaling Law for Computing

scenario, but has a proportional effect on energy. Therefore, the final equation for

power consumption is given as:

P ∝ N

N
1

∆l

= N
1− 1

∆l . (7.57)

For two-dimensional chips, ∆l = 2, thus

P ∝ N
1
2 . (7.58)

We compare this prediction with data obtained for 523 different microprocessors

over a range of approximately 6 orders of magnitude. Figure 7.6 shows the scaling of

power consumption for the real data, where the slope obtained with a linear regres-

sion is 0.495, which agrees very closely with the prediction of 0.5. The correlation

coefficient between observed and predicted power is 0.81.

103 104 105 106 107 108 109

Transistor count

10-1

100

101

102

103

Po
w

er
 (W

)

slope = 0.495

Power scaling in microprocessors

Figure 7.6: The scaling of power consumption as a function of the number of tran-
sistors for 523 microprocessors of different vendors and technological generations.

This result provides supporting evidence to our hypothesis that computer sys-

tems, through careful design optimization, do indeed approach the optimal or ideal

design in terms of energy-delay product minimization. Our model provides a simple

explanation for the scaling of power consumption in computer architectures over 40

years of history of computer technology.

100

Chapter 7. A General Power-Performance Scaling Law for Computing

7.5.2 Performance

Performance is usually measured as throughput, i.e., the number of instructions

executed per unit of time. Under the assumption of optimal scaling it is also easy to

compute throughput, which is given as

T ∝ N

D
. (7.59)

Since D ∝ 1, we predict that throughput scales linearly with size:

T ∝ N. (7.60)

It is difficult to obtain consistent performance data for microprocessors because

there is no standard. The original metric was MIPS (million instructions per second),

but this metric was dropped many years ago and vendors have defined their own

metrics, which also have changed over time. We were able to obtain normalized

performance data for 16 Intel chips, ranging from the first microprocessor to be

produced, the Intel 4004 from 1971, to the modern Intel Quad Core Xeon from 2007.

Although this dataset is much smaller than the dataset for power consumption, it

uniformly covers a range of 6 orders of magnitude, which is a more desirable trait

than simply sample size when measuring power-laws.

Figure 7.7 shows the scaling of normalized throughput for the 16 Intel processors

which, despite some variance, displays a consistent linear trend. A linear regression

shows a slope of 1.0, which is exactly what is predicted by the theory. The correlation

coefficient between observed and predicted throughput is 0.97.

The results in this section verify the ability of the proposed theory to explain

trends in the evolution of computer technology which, until now, were empirical

observations with no theoretical support. Our geometrical framework derived from

first principles shows that, driven by the optimization of a single constraint, the

scaling of microprocessor systems is governed by extremely simple laws.

101

Chapter 7. A General Power-Performance Scaling Law for Computing

103 104 105 106 107 108 109

Transistor count

10-6

10-5

10-4

10-3

10-2

10-1

100

101

No
rm

al
iz

ed
 th

ro
ug

hp
ut

slope = 1.0

Performance scaling of microprocessors

Figure 7.7: The scaling of throughput as a function of the number of transistors for
16 Intel microprocessors of different technological generations.

7.6 Discussion

Consistency of the theory. From a simple model of network scaling, we de-

rived the ideal dimensions of a computing system that has minimum cost. However,

real computer architectures are far from being simple: modern microprocessors are

composed of billions of transistors arranged in a successive collection of incredibly

complex circuits and diverse functionalities. They are also not ideal either: their

behavior is affected by many thermal, material, and electrical issues that were not

considered here, and their design is largely based on heuristics with no guarantee of

optimality.

Nevertheless, the proposed theory is highly consistent with empirical observa-

tions. The simple model predicts the scaling exponent of power and throughput

with high accuracy. It also correctly predicts that the Rent’s exponent of general

purpose microprocessors is close to 0.5 (Section 7.4.7). Our framework is also con-

sistent with a number theoretical results obtained independently by other authors

and in different areas. From our general model of network scaling, we were able to

102

Chapter 7. A General Power-Performance Scaling Law for Computing

reproduce the 3/4 power scaling of vascular networks [92] (Section 7.3.1); the average

wire length predicted by Donath [30] (Section 7.3.2); the relationship between the

Rent’s exponent and the fractal dimension of a network, derived by Stroobandt [86]

(Section 7.3.3); and the ideal wire scaling from Dennard’s scaling theory [27] (Section

7.4.7). Our theory puts all these results together into a unified, coherent framework.

Clock frequency. An interesting characteristic of the proposed theory is that the

results are independent of clock frequency, which makes the analysis of power and

performance much simpler. This is paradoxical because clock frequency is known to

be a major contributor to computer performance and power consumption. The reason

for this is that frequency only affects computation: increasing switching speeds does

not make wires run any faster. Since in the limit of a large system communication

dominates delay, the pace at which the system runs is ultimately limited by the

interconnect.

A consequence of increased clock speeds is that the computation efficiency of the

architecture has decreased over time as each node computes proportionally less per

clock cycle, as shown in Figure 7.8. In the current scenario where communication

delay is much higher than computation delay, frequency can no longer increase and,

in order to keep the same computing capacity, the solution is to increase parallelism

[64] (as it is already happening with the multi-core architecture). In the future,

we expect clock speeds and transistor utilization to stay constant, while throughput

continues to increase linearly with size.

Parallel processing. In monolithic architectures the Rent’s exponent is defined

by the interconnect. However, in parallel architectures, such as the multi-core, the

Rent’s exponent defined by the communication pattern of parallel applications does

not need to be the same as that of the system. Therefore, when running high-

103

Chapter 7. A General Power-Performance Scaling Law for Computing

Figure 7.8: The scaling of frequency and of instruction per cycle per transistor. As
frequency has increased, each transistor computed proportionally less per cycle.

dimensional applications, such that ∆g > ∆l, the power-performance characteristics

will be different than expected, since ∆g is no longer optimal. In this case, the

application performance is expected to slow down and scale as

T ∝ N
1

∆l
− 1

∆g , (7.61)

in particular because the bandwidth of the system is smaller than the required band-

width to run the application properly. Since the system runs slower, the power

consumption will also decrease, scaling as

P ∝ N
1− 1

∆g . (7.62)

For applications that have very low dimensionality such that ∆g < ∆l no slow-

down is expected, since bandwidth is not a bottleneck. However, such applications

will be operating at a sub-optimal region in terms of energy-delay product, since the

average energy consumption does not change as ∆g decreases.

3D technology. What is the most efficient computer that can be built? Equation

7.52 shows that the higher the ∆l the lower the average energy-delay product. As

104

Chapter 7. A General Power-Performance Scaling Law for Computing

a result, the most efficient computer has the highest possible spatial dimension,

which is 3D. The development of a 3D integrated circuit technology would, therefore,

represent major breakthrough towards the production of the most complex and most

efficient computer architectures. Interestingly, the fractal geometry of the folded

cortical surface in the brain is estimated to be in the order of 2.8 [52]. We do not

know yet whether the energy-delay analysis presented here would also apply to the

brain, but the higher dimensionality of the brain suggests that mammalian brains

are much more complex and efficient computing devices than current 2D computer

chip architectures, and are close to the limit of maximum efficiency.

7.7 Conclusion

Complexity Theory in computer science analyzes the scaling behavior of algorithms

and is widely used in design and implementation of efficient computer software. In

contrast, the development of computer hardware is mostly an empirical practice,

in which trial-and-error and technical experience play a major role. In computer

science, there is no equivalent theory for the scaling of hardware that could guide

the design of efficient computing devices and systems.

Employing an interdisciplinary approach, this chapter proposed a theory for the

scaling of power and performance in computing. Using a similar geometric frame-

work as metabolic scaling theory in biology, we analyzed the efficiency of computer

implementations as a function of the geometry of interconnection networks. Our

theory, derived from first principles and based on the most fundamental electrical

properties of materials, accurately predicts the scaling of power and performance in

microprocessors.

105

Chapter 8

Conclusions

The computer architecture community has adopted the multi-core design as an at-

tempt to avoid the power wall and further scale the performance of computers. The

multi-core architecture is more scalable than the traditional monolithic design, be-

cause increasing performance through parallelism consumes less power than increas-

ing clock frequency. However, many challenges still need to be overcome in order to

take full advantage of this massive on-chip parallelism. In particular, understanding

the impact of different design choices on power and energy consumption is of ultimate

importance to the success of multi- and many-core chips in the future.

This dissertation analyzed multiple aspects affecting the scalability of the multi-

core design with focus on energy and power consumption on the network on chip.

In Chapter 3, we studied the effect of different NoC topologies to the power and

performance of multi-core chips as a function of the number of cores. In Chapter

4, we looked at the impact of communication locality of different traffic patterns on

energy of the interconnect. Chapter 5 proposed a new method for data placement

optimization which greatly reduces the energy consumption used for communication

in parallel applications. In Chapter 6, we used Rent’s rule, a technique from VLSI

106

Chapter 8. Conclusions

design, to determine a theoretical lower-bound on NoC energy consumption. And

in Chapter 7, we devised a theoretical framework that explains observed power-

performance trends in the evolution of computer architectures and allows us to look

into the future of computer designs.

107

Appendices

108

Appendix A

Derivation of CPD for Arbitrary

Traffic Patterns

In this appendix, we derive a summation series that enumerates all paths with a

certain length on a squared mesh. This is then used to compute the Communica-

tion Probability Distribution for any traffic pattern described as the probability of

communication between two nodes with distance.

The derivation assumes a 4×4 mesh and then generalizes the results to an N×N

mesh, where N is the number of nodes on one side of the squared mesh. We assume

the xy-routing algorithm, i.e., every packet is routed on the x-dimension first and

then on the y-dimension. Because paths defined this way have a four-way symmetry

(right-down, left-down, right-up, left-up), we only compute the number of paths

going in one direction (e.g., right-down) and multiply the result by four.

Figure A.1 all possible paths with length 1 to 6 for the 4×4 mesh using the right-

down direction. Associated to each path is the number of times that path occurs as

the product between how many times it is repeated in the x and y dimensions. For

example, there is only one possible path of length 1, which is repeated 4 times in the

109

Appendix A. Derivation of CPD for Arbitrary Traffic Patterns

x-dimension and three times in the y-dimension, thus occurring 12 times.

Below we show the generalized forms of the number of paths of a certain length

according to the figure:

[l = 1] N(N − 1) + 0 + 0

[l = 2] (N − 1)(N − 1) +N(N − 1) + 0

[l = 3] (N − 2)(N − 1) + (N − 1)(N − 2) +N(N − 3)

[l = 4] (N − 3)(N − 1) + (N − 2)(N − 2) + (N − 1)(N − 3)

[l = 5] 0 + (N − 3)(N − 2) + (N − 2)(N − 3)

[l = 6] 0 + 0 + (N − 3)(N − 3)

From the above formulas we deduce a generalized summation series for the num-

ber of paths with length l for an arbitrarily sized mesh as:

Paths(l) = 4 ·
N−1∑
i=1

(N − i)(N + i− l), (A.1)

110

Appendix A. Derivation of CPD for Arbitrary Traffic Patterns

for 0 < (N + i− l) ≤ N.

The Communication Probability Distribution is then given as:

CPD(l) =
P (l)× Paths(l)∑2N−2

j=1 Paths(j)
, (A.2)

where P (l) is the probability of communication between two nodes with distance l

apart.

111

Appendix A. Derivation of CPD for Arbitrary Traffic Patterns

Figure A.1: All possible paths with length l for a 4× 4 mesh.

112

Appendix B

Proof of Total Unimodularity

In this appendix, we prove that the constraint matrix of the integer programming

model described in Section 5.4.2 is totally unimodular. The definitions of unimodular

and totally unimodular matrices are given as:

Definition 1. A matrix A is unimodular if it is a square integer matrix with

determinant +1 or –1;

Definition 2. A matrix A is totally unimodular if every square non-singular

submatrix of A is unimodular.

The following theorem states four conditions that are sufficient for a matrix to

be totally unimodular [?].

Theorem 1. Let A be an m by n matrix whose rows can be partitioned into two

disjoint sets B and C. The matrix A is totally unimodular if it satisfies the following

conditions:

(a) Every column of A contains at most two non-zero entries;

(b) Every entry in A is 0, +1, or –1;

113

Appendix B. Proof of Total Unimodularity

(c) If two non-zero entries in a column of A have the same sign, then the row of

one is in B, and the other in C;

(d) If two non-zero entries in a column of A have opposite signs, then the rows of

both are in B, or both in C.

The next theorem lists the properties of totally unimodular matrices that will be

used in our proof [?]:

Theorem 2. If A is a totally unimodular matrix, the following properties are

true:

(a) A matrix obtained by duplicating a row or column of A is totally unimodular;

(b) A matrix obtained by multiplying a row or column of A by –1 is totally unimod-

ular;

(c) The concatenation of A with the identity matrix is totally unimodular.

Proof. The constraints of the ILP model of Section 5.4.2 are defined in the

standard form as

Ax ≤ b.

The constraint matrix A is given by

A =


A1

A2

−A1

A3

 ,

114

Appendix B. Proof of Total Unimodularity

where

A1 =


1 1 · · · 1 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1 · · · 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 0 1 1 · · · 1


.

A2 =


1 0 · · · 0 1 0 · · · 0 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0 · · · 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 1 0 0 · · · 1


A3 = −I,

and the vectors x and b are written as

x =
[
π00 π01 · · · π0N π10 π11 · · · π1N · · · πB0 · · · πBN

]T
b =

[
1 1 · · · 1 K K · · · K −1 −1 · · · −1 0 0 · · · 0

]T
.

From Theorem 1, it follows that the submatrix of A formed by A1 and A2 is

totally unimodular, since A1 and A2 form two disjoint sets of rows for which the four

conditions apply. To show that the entire matrix A is total unimodular, we will use

the properties of totally unimodular matrix listed in Theorem 2.

Using properties (a) and (b) of Theorem 2, we take the submatrix formed by

A1 and A2, duplicate all the rows of A1 and negate them, creating −A1. This new

matrix, formed by A1, A2, and −A1 is also totally unimodular. The identity matrix

can be appended to this new matrix by applying property (c) of Theorem 2. We

then use property (b) to create A3, thus obtaining the entire A matrix. Therefore,

the constraint matrix A is totally unimodular.

115

Appendix C

The Fourth Scaling Dimension

In this section, we describe how hierarchical model of network scaling accounts for

a power-law degree distribution in a way that is independent of geometry of the

network.

In complex networks, a power-law degree distribution is known to arise from

a “rich gets richer” principle. The canonical explanation for this phenomenon is

called Preferential Attachment (PA) [7], in which the network grows by adding new

nodes that are connected to existing ones with probability proportional to the ex-

isting node’s degree. We propose an analogous mechanism for the growth of trees,

called Preferential Growth (PG). This mechanism biases growth towards the bigger

branches, leading to a power-law distribution of node sizes and, consequently, degree

distribution. We explain this mechanism as follows.

A tree grows recursively as leaf nodes are replaced with b new nodes and branches.

If branching is unbiased, the next growing node is chosen randomly from all the

leaves. Another possibility is to have all leaf nodes branch at the same time. In

PG, the next growing node is chosen with probability proportional to the number of

leaves (or size) of each subtree. Starting at the root node, at each branching point

116

Appendix C. The Fourth Scaling Dimension

the probability of choosing a child node is proportional to the size of the subtree

rooted at that node. This process is applied recursively while the tree is traversed

until a leaf node is chosen.

As an example, we used this process to grow a binary tree with 100,000 nodes and

measured, for each hierarchical level, the distribution of node sizes (i.e., the number

of leaves in the subtree rooted at that node). The result is a power-law distribution

with an exponent of approximately −2. Figure C.1 shows the node size distribution

at depth 20 from the root of the tree.

Figure C.1: Power-law distribution of node sizes for a binary tree with 100,000 nodes
and depth 20.

We now analyze this result and show how a power-law size distribution leads to a

power-law degree distribution. Using the same hierarchical interpretation of fractal

dimension, the size of a node at hierarchical level i is

si = s0 · bi/∆s , (C.1)

where ∆s is the node size dimension. The frequency of nodes at hierarchical level i

is given as

fi = f0 · b−i. (C.2)

117

Appendix C. The Fourth Scaling Dimension

Therefore, the frequency of nodes of size si can be computed from Equations C.1

and C.2 in the following manner:

bi = (1/s∆s
0) · s∆s

i

f(si) = f0 ·
(
(1/s∆s

0) · s∆s
i

)−1

f(si) = (f0 · s∆s
0) · s−∆s

i . (C.3)

In a continuous form, the distribution of sizes is given as

f(s) ∝ s−∆s . (C.4)

Finally, the degree of a node of size s is given by Rent’s rule as k ∝ sp, or k ∝ s
1

∆w ,

so the degree distribution can be written as

f(k) ∝
(
k∆w

)−∆s

f(k) ∝ k−∆w∆s , (C.5)

which is a power-law.

We conclude that a power-law degree distribution can be accounted for in our

model as resulting from a growth process that is independent of the geometry of the

network. Notice that the exact value of ∆s depends on the specific process by which

growth occurs.

118

References

[1] S. Amarasinghe, D. Campbell, W. Carlson, A. Chien, W. Dally, E. Elnohazy,
M. Hall, R. Harrison, W. Harrod, K. Hill, et al. Exascale software study: Soft-
ware challenges in extreme scale systems. DARPA IPTO, Air Force Research
Labs, Tech. Rep, 2009.

[2] M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter. Dynamic hardware-
assisted software-controlled page placement to manage capacity allocation and
sharing within large caches. In High Performance Computer Architecture, 2009.
HPCA 2009. IEEE 15th International Symposium on, pages 250–261, 2009.

[3] F.A.C. Azevedo, L.R.B. Carvalho, L.T. Grinberg, J.M. Farfel, R.E.L. Ferretti,
R.E.P. Leite, R. Lent, S. Herculano-Houzel, et al. Equal numbers of neuronal
and nonneuronal cells make the human brain an isometrically scaled-up primate
brain. The Journal of comparative neurology, 513(5):532–541, 2009.

[4] H.B. Bakoglu. Circuits, Interconnections, and Packaging for VLSI. 1990.

[5] J.R. Banavar, A. Maritan, A. Rinaldo, et al. Size and form in efficient trans-
portation networks. Nature, 399(6732):130–131, 1999.

[6] J.R. Banavar, M.E. Moses, J.H. Brown, J. Damuth, A. Rinaldo, R.M. Sibly, and
A. Maritan. A general basis for quarter-power scaling in animals. Proceedings
of the National Academy of Sciences, 107(36):15816–15820, 2010.

[7] A.L. Barabási and R. Albert. Emergence of scaling in random networks. science,
286(5439):509–512, 1999.

[8] M. Berkelaar, K. Eikland, and P. Notebaert. lp solve version 5.5. Eindhoven
University of Technology, Design Automation Section, Eindhoven, The Nether-
lands, ftp://ftp. es. ele. tue. nl/pub/lp solve, 2006.

119

References

[9] B.D. Bingham and M.R. Greenstreet. Computation with energy-time trade-offs:
Models, algorithms and lower-bounds. In Parallel and Distributed Processing
with Applications, 2008. ISPA’08. International Symposium on, pages 143–152.
IEEE, 2008.

[10] L. Boroni, Concer, N., Miltos, G., M. Coppola, and R. Locatelli. Noc topolo-
gies exploration based on mapping and simulation models. In 10th Euromicro
Conference on Digital System Design Architectures, pages 543–546, 2007.

[11] L. Boroni and N. Concer. Simulation and analysis of network on chip architec-
tures: Ring, spidergon and 2d mesh. In DATE, pages 154–159, 2006.

[12] J.A. Brown, R. Kumar, and D. Tullsen. Proximity-aware directory-based co-
herence for multi-core processor architectures. In Proceedings of the nineteenth
annual ACM symposium on Parallel algorithms and architectures, pages 126–
134, 2007.

[13] B. Calder, C. Krintz, S. John, and T. Austin. Cache-conscious data placement.
ACM SIGPLAN Notices, 33(11):139–149, 1998.

[14] E.L. Charnov. Life history invariants: some explorations of symmetry in evolu-
tionary ecology. booksgooglecom, 1993.

[15] M. Chaudhuri. PageNUCA: Selected policies for page-grain locality management
in large shared chip-multiprocessor caches. In High Performance Computer
Architecture, 2009. HPCA 2009. IEEE 15th International Symposium on, pages
227–238. IEEE, 2009.

[16] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An energy-
efficient coordination algorithm for topology maintenance in ad hoc wireless
networks. Wireless Networks, 8(5):481–494, 2002.

[17] G. Chen, F. Li, and M. Kandemir. Compiler-directed application mapping
for noc based chip multiprocessors. In Proceedings of the 2007 ACM SIG-
PLAN/SIGBED conference on Languages, compilers, and tools for embedded
systems, page 157, 2007.

[18] S. Chen, P.B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki, G.E. Blelloch,
B. Falsafi, L. Fix, N. Hardavellas, T.C. Mowry, et al. Scheduling threads for
constructive cache sharing on CMPs. In Proceedings of the nineteenth annual
ACM symposium on Parallel algorithms and architectures, page 115, 2007.

[19] Z. Chishti, M.D. Powell, and TN Vijaykumar. Distance associativity for high-
performance energy-efficient non-uniform cache architectures. 2003.

120

References

[20] Z. Chishti, M.D. Powell, and TN Vijaykumar. Optimizing replication, com-
munication, and capacity allocation in CMPs. In Computer Architecture, 2005.
ISCA’05. Proceedings. 32nd International Symposium on, pages 357–368. IEEE,
2005.

[21] S. Cho and L. Jin. Managing distributed, shared l2 caches through os-level
page allocation. In Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 455–468, 2006.

[22] P. Christie and D. Stroobandt. The interpretation and application of rent’s rule.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 8(6):639–
648, 2000.

[23] William James Dally and Brian Towles. Principles and Practices of Intercon-
nection Netwoks. Morgam Kauffman Publishers, San Francisco, 2004.

[24] W.J. Dally and B Towles. Route packets, not wires: on-chip interconnection
networks. In Design Automation Conference, 2001. Proceedings, pages 684–689,
2001.

[25] J. A. Davis, V. K. De, and J. D. Meindl. A stochastic wire-length distribu-
tion for gigascale integration (GSI) - Part I: Derivation and validation. IEEE
Transactions on Electron Devices, VOL 45(3):580–589, 1998.

[26] Giovanni de Micheli and Luca Benini. Networks on Chips. Morgan Kaufmann,
500 Sansome Street, Suite 400, San Francisco CA 94111, 2006.

[27] R.H. Dennard, F.H. Gaensslen, VL Rideout, E. Bassous, and AR LeBlanc.
Design of ion-implanted mosfet’s with very small physical dimensions. Solid-
State Circuits, IEEE Journal of, 9(5):256–268, 1974.

[28] R.P. Dick, D.L. Rhodes, and W. Wolf. TGFF: task graphs for free. In Proceed-
ings of the 6th international workshop on Hardware/software codesign, pages
97–101, 1998.

[29] P.S. Dodds. Optimal form of branching supply and collection networks. Physical
review letters, 104(4):48702, 2010.

[30] W. Donath. Placement and average interconnection lengths of computer logic.
Circuits and Systems, IEEE Transactions on, 26(4):272–277, 1979.

[31] W. E. Donath. Wire length distribution for placements on computer logic. IBM
J. Res. and Development, 25:152–155, 1981.

121

References

[32] J. Duato, S. Yalamanchili, and L.M. Ni. Interconnection networks: An engi-
neering approach. Morgan Kaufmann, 2003.

[33] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose micropro-
cessors. Solid-State Circuits, IEEE Journal of, 31(9):1277–1284, 1996.

[34] S.J. Gould. Allometry and size in ontogeny and phylogeny. Biological Reviews,
41(4):587–638, 1966.

[35] D. Greenfield, A. Banerjee, J.-G. Lee, and S. Moore. Implications of Rent’s rule
for NoC design and its fault-tolerance. In Proceedings of the First International
Symposium on Networks-on-Chip (NOCS’07), 2007.

[36] B. Grot and S.W. Keckler. Scalable on-chip interconnect topologies. In 2nd
Workshop on chip Multiprocessor Memory Systems and Interconnects, 2008.

[37] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive nuca: near-
optimal block placement and replication in distributed caches. In Proceedings
of the 36th annual international symposium on Computer architecture, pages
184–195, 2009.

[38] W. Heirman, J. Dambre, D. Stroobandt, and J.V. Campenhout. Rent’s rule
and parallel programs: Characterizing network traffic behavior. In Proceedings
of the 2008 International Workshop on System Level Interconnect Prediction,
SLIP’08, 2008.

[39] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach, 4th edition. Morgan Kaufmann, 500 Sansome Street, Suite 400, San
Francisco, CA 94111, 2006.

[40] J.L. Henning. Spec cpu2000: Measuring cpu performance in the new millennium.
Computer, 33(7):28–35, 2000.

[41] R. Ho. On-chip wires: scaling and efficiency. PhD thesis, Citeseer, 2003.

[42] R. Ho, K.W. Mai, and M.A. Horowitz. The future of wires. Proceedings of the
IEEE, 89(4):490–504, 2001.

[43] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. A 5-GHz mesh
interconnect for a teraflops processor. IEEE MICRO, 27(5):51–61, 2007.

[44] J. Hu and R. Marculescu. Energy-aware mapping for tile-based NOC architec-
tures under performance constraints. In Proceedings of ASP-Design Automation
Conference, pages 233–239, 2003.

122

References

[45] J. Hu and R. Marculescu. Energy-aware communication and task scheduling
for network-on-chip architectures under real-time constraints. IEEE Computer
Society, 2004.

[46] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S.W. Keckler. A NUCA
substrate for flexible CMP cache sharing. IEEE transactions on parallel and
distributed systems, pages 1028–1040, 2007.

[47] D.N. Jayasimha, B. Zafar, and Y. Hoskote. On-chip interconnection networks:
Why they are different and how to compare them. In blogs.intel.com, 2006.

[48] A. Kahng, B. Li, L.S. Peh, and K. Samadi. Orion 2.0: A fast and accurate
NOC power and area model for early-stage design space exploration. In Design,
Automation, and Test in Europe, pages 423–428, 2009.

[49] M. Kandemir and G. Chen. Locality-aware process scheduling for embedded
mpsocs. In Design, Automation and Test in Europe, 2005. Proceedings, pages
870–875, 2005.

[50] J. Kim, J. Balfour, and W.J. Dally. Flattened butterfly topology for on-chip
networks. In 40th IEEE/ACM International Symposium on Microarchitecture
(MICRO’07), 2007.

[51] J. Kim, W.J. Dally, and D. Abts. Flattened butterfly: A cost-efficient topology
for high-radix networks. In Proceedings of the 34rd International Symposium on
Computer Architecture (ISCA’07), 2007.

[52] V.G. Kiselev, K.R. Hahn, and D.P. Auer. Is the brain cortex a fractal? Neu-
roimage, 20(3):1765–1774, 2003.

[53] G. Kissin. Measuring energy consumption in vlsi circuits: A foundation. In
Proceedings of the fourteenth annual ACM symposium on Theory of computing,
pages 99–104. ACM, 1982.

[54] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carson, W. Dally, M. Den-
neau, P. Franzon, W. Harrod, and K. Hill. Exascale computing study: Technol-
ogy challenges in achieving exascale systems. 2008.

[55] S. Koohi, Mirza-Aghatabar, and S. M., Hessabi. Evaluation of traffic pattern ef-
fect on power consumption in mesh and torus network-on chips. In International
Symposium on Integrated Circuits (ISIC’07), 2007.

[56] J.G. Koomey. Estimating total power consumption by servers in the US and
the world. 2007.

123

References

[57] J.G. Koomey. Worldwide electricity used in data centers. Environmental Re-
search Letters, 3:034008, 2008.

[58] J.G. Koomey, S. Berard, M. Sanchez, and H. Wong. Implications of histori-
cal trends in the electrical efficiency of computing. Annals of the History of
Computing, IEEE, 33(3):46–54, 2011.

[59] V.A. Korthikanti and G. Agha. Analysis of Parallel Algorithms for Energy Con-
servation in Scalable Multicore Architectures. In 2009 International Conference
on Parallel Processing, pages 212–219, 2009.

[60] M. Kreutz, C. Marcon, L. Calazans Carro, and A. N. Susin. Energy and latency
evaluation of noc topologies,. In ISCA 2005, pages 5866–5869, 2005.

[61] B.S. Landman and R.L. Russo. On a pin versus block relationship for partitions
of logic graphs. IEEE Transactions on Computers,, C-20(12):1469–1479, 1971.

[62] T. Lei and S. Kumar. A two-step genetic algorithm for mapping task graphs to
a network on chip architecture. In Proceedings of the Euromicro Symposium on
Digital System Design (DSD’03), 2003.

[63] C.E. Leiserson. Fat-trees- university networks for hardware-efficient supercom-
puting. IEEE Transactions on Computers, 34:892–901, 1985.

[64] D. Liu and C. Svensson. Trading speed for low power by choice of supply and
threshold voltages. Solid-State Circuits, IEEE Journal of, 28(1):10–17, 1993.

[65] B.B. Mandelbrot. The fractal geometry of nature. Wh Freeman, 1983.

[66] H. Matsutani, M. Koibuchi, and H. Amano. Performance, cost, and energy
evaluation of fat h-tree: A cost-efficient tree-based on-chip network. In IEEE
International Parallel and Distributed Processing Symposium, 2007.

[67] J. Merino, V. Puente, P. Prieto, and J.Á. Gregorio. Sp-nuca: a cost effective dy-
namic non-uniform cache architecture. ACM SIGARCH Computer Architecture
News, 36(2):64–71, 2008.

[68] J.E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,
J. Eastep, and A. Agarwal. Graphite: A distributed parallel simulator for mul-
ticores. In High Performance Computer Architecture (HPCA), 2010 IEEE 16th
International Symposium on, pages 1–12, 2010.

[69] M. Mirza-Aghatabar, S. Koohi, S. Hessabi, and M. Pedram. An empirical in-
vestigation of mesh and torus noc topologies under different routing algorithms
and traffic models. In 10th Euromicro Conference on Digital System Design
Architectures, 2007.

124

References

[70] M.E. Moses, S. Forrest, A.L. Davis, M.A. Lodder, and J.H. Brown. Scaling the-
ory for information networks. Journal of the Royal Society Interface, 5(29):1469,
2008.

[71] Tak H Ning. A perspective on the theory of MOSFET scaling and its impact.
IEEE Solid State Circuits Newsletter, 12(1):27–30, 2007.

[72] J.C.S. Palma, C.A.M. Marcon, F.G. Moraes, N.L.V. Calazans, R.A.L. Reis,
and A.A. Susin. Mapping embedded systems onto NoCs: the traffic effect on
dynamic energy estimation. In Proceedings of the 18th annual symposium on
Integrated circuits and system design, page 201, 2005.

[73] P.P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh. Effect of traffic
localization on energy dissipation in NoC-based interconnect. In ISCA 2005,
pages 1774–1777, 2005.

[74] P.P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh. Performance evalua-
tion and design trade-offs for network-on-chip interconnect architectures. IEEE
Transaction on Computers, 54(8), 2005.

[75] R. Pop and S. Kumar. A survey of techniques for mapping and scheduling
applications to network on chip systems. School of Engineering, Jonkoping
University, Research Report.

[76] R. Pop and S. Kumar. Mapping applications to noc platforms with multi-
threaded processor resources. In NORCHIP Conference, 2005. 23rd, pages 36–
39, 2005.

[77] C.A. Price and B.J. Enquist. Scaling mass and morphology in leaves: an exten-
sion of the wbe model. Ecology, 88(5):1132–1141, 2007.

[78] D. Rahmati, A. E. Kiasari, S. Hessabi, and H. Sarbazi-Azad. A performance
analysis of wk-recursive and mesh networks for network-on-chips. In Proceedings
of the 24th International Conference on Computer Design (ICCD), 2006.

[79] B. Rountree, D.K. Lowenthal, S. Funk, V.W. Freeh, B.R. de Supinski, and
M. Schulz. Bounding energy consumption in large-scale mpi programs. In Pro-
ceedings of the 2007 ACM/IEEE conference on Supercomputing, page 49. ACM,
2007.

[80] S. Saeidi, A. Khademzadeh, and A. Mehran. SMAP: An Intelligent Mapping
Tool for Network on Chip. In International Symposium on Signals, Circuits and
Systems, 2007. ISSCS 2007, 2007.

125

References

[81] Jonathan Schaeffer. High Performance Computing Systems and Applications.
Kluwer Academic Publishers, Norwell, Massachusetts 02061 USA, 1998.

[82] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons
Inc, 1998.

[83] S. Scott, D. Abts, J. Kim, and Dally W.J. The black widow high-radix clos
network. In Proceedings of the 33rd International Symposium on Computer
Architecture (ISCA’06), 2006.

[84] J. Shalf. The new landscape of parallel computer architecture. Journal of
Physics: Conferece Series 78, 2007.

[85] V. Soteriou, H. Wang, and L.S. Peh. A statistical traffic model for on-chip inter-
connection networks. In Proceedings of the 14th IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS’06), pages 104–116, 2006.

[86] Dirk Stroobandt. A Priory Wire Length Estimates for Digital Design. Kluwer
Academic Pulishers, Boston, 2001.

[87] S. Suboh, M. Bakhouya, and T. El-Ghazawi. Simulation and evaluation of
on-chip interconnect architectures: 2d mesh, spidergon, and wk-recursive net-
work. In Proceedings of the First International Symposium on Networks-on-Chip
(NOCS’08), 2008.

[88] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoff-
man, P. Johnson, J.-W. Lee, and W. Lee. The Raw microprocessor: A computa-
tional fabric for software circuits and general purpose programs. IEEE MICRO,
22(PART 2):25–35, 2002.

[89] A. Tyagi. Energy-time trade-offs in vlsi computation. In Proceedings of the Ninth
Conference on Foundations of Software Technology and Theoretical Computer
Science, pages 301–311. Springer-Verlag, 1989.

[90] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: A power performance
simulator for interconnection networks. In Proceedings of the 35th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-35), 2002.

[91] G.B. West and J.H. Brown. The origin of allometric scaling laws in biology from
genomes to ecosystems: towards a quantitative unifying theory of biological
structure and organization. Journal of Experimental Biology, 208(9):1575–1592,
2005.

126

References

[92] G.B. West, J.H. Brown, and B.J. Enquist. A general model for the origin of
allometric scaling laws in biology. Science, 276(5309):122, 1997.

[93] N.C. Wilhelm. Why Wire Delays Will No Longer Scale for VLSI Chips. Sun
Microsystems Laboratories, 1995.

[94] W. Wolf. Modern VLSI design: IP-based design. Prentice-Hall PTR, 2008.

[95] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-2
programs: Characterization and methodological considerations. In Proceedings
of the 22nd annual international symposium on Computer architecture, pages
24–36, 1995.

[96] Z. Xu and K. Hwang. Modeling communication overhead: Mpi and mpl perfor-
mance on the ibm sp2. Parallel & Distributed Technology: Systems & Applica-
tions, IEEE, 4(1):9–24, 1996.

[97] M. Zhang and K. Asanovic. Victim replication: Maximizing capacity while
hiding wire delay in tiled chip multiprocessors. In Computer Architecture, 2005.
ISCA’05. Proceedings. 32nd International Symposium on, pages 336–345. IEEE,
2005.

127

