
Anomaly Detection for HTTP Intrusion
Detection: Algorithm Comparisons and the

Effect of Generalization on Accuracy

by

Kenneth LeRoy Ingham III

B.S. cum laude, University of New Mexico, 1985
M.S., University of New Mexico, 1994

DISSERTATION

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy
Computer Science

The University of New Mexico

Albuquerque, New Mexico

May 2007

iii

c�2007, Kenneth LeRoy Ingham III

iv

v

Acknowledgments
A Ph.D. is never accomplished alone. Many people have supported, advised, or otherwise
helped me with the long, difficult process of learning I have been on.

My advisor, Stephanie Forrest, has an ability to immediately see the overall importance
of ideas, putting them into global perspective. Someday, I hope to have a fraction of this
skill. Her high standards for research forced me to do better work than I would have
thought I was capable of.

My dissertation committee also provided guidance and support: Barney Maccabe and
Terran Lane. Anil Somayaji deserves special mention because his advice and assistance
went far beyond that of an external committee member. Anil, I really appreciate your
ability to see the difference between what I had done and what was needed, and then
clearly articulating this difference so I could understand what was needed and why it was
important.

Several people who read part or all of my dissertation, and my thanks go out to them for
their sharp eyes and informative comments: James Hardy and Gabriela Barrantes. Michael
Wester deserves special mention here also for his guidance and advice on the analysis of
generalization set growth rates. He also understands the travails of getting a Ph.D. and his
advice and support were valuable beyond words.

Partial funding for this research was provided by the National Science Foundation
grant ANIR-9986555, for which I am grateful; it allowed me to focus more on my research.

Rambo, Squeaker, Hoover, and Wooly Bear also get credit for helping me smile and to
see that there was more to life than Ph.D. work. Maybe we can go outside and play more
now.

I could not have done all of this work without the support of my wife, Diana Northup.
She understood the Ph.D. process, having received her doctorate in Biology a few years
ago. She was responsible for an enormous amount of encouragement and kind words,
especially when I was frustrated over my perceived lack of progress. She also provided
the gentle pushes I often needed to continue to make progress.

vi

Anomaly Detection for HTTP Intrusion
Detection: Algorithm Comparisons and the

Effect of Generalization on Accuracy

by

Kenneth LeRoy Ingham III

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy
Computer Science

The University of New Mexico

Albuquerque, New Mexico

May 2007

ix

Anomaly Detection for HTTP Intrusion
Detection: Algorithm Comparisons and the

Effect of Generalization on Accuracy

by

Kenneth LeRoy Ingham III

B.S. cum laude, University of New Mexico, 1985
M.S., University of New Mexico, 1994

Ph.D., Computer Science, University of New Mexico, 2007

Abstract

Network servers are vulnerable to attack, and this state of affairs shows no sign of
abating. Therefore security measures to protect vulnerable software is an important part
of keeping systems secure. Anomaly detection systems have the potential to improve the
state of affairs, because they can independently learn a model of normal behavior from a
set of training data, and then use the model to detect novel attacks. In most cases, this
model represents more instances than were in the training data set—such generalization is
necessary for accurate anomaly detection.

This dissertation describes a framework for testing anomaly detection algorithms under
identical conditions. Because quality test data representative of today’s web servers is not
available, this dissertation also describes the Hypertext Transfer Protocol (HTTP) request
data collected from four web sites to use as training and test data representing normal
HTTP requests. A collection of attacks against web servers and their applications did not
exist either, so prior to testing it was necessary to also build a database of HTTP attacks,
the largest publicly-available one.

x

These data were used to test nine algorithms. This testing was more rigorous than any
performed previously, and it shows that the previously-proposed algorithms (character
distribution, a linear combination of six measures, and a Markov Model) are not accurate
enough for production use on many of the web servers in use today, and might explain the
lack of their widespread adoption. Two newer algorithms (deterministic finite automaton
induction and n-grams) show more promise.

This dissertation shows that accurate anomaly detection requires carefully controlled
generalization. Too much or too little will result inaccurate results. Calculating the growth
rate of the set that describes the anomaly detector’s model of normal provides a means
of comparing anomaly detection algorithms and predicting their accuracy. Identification
of undergeneralization locations can be automated, leading to more rapid discovery of the
heuristics needed to allow an anomaly detection system to achieve the required accuracy
for production use.

xi

Contents

List of Figures xvii

List of Tables xxi

1 Introduction 1

1.1 Anomaly detection systems and generalization 2

1.2 Web servers are a good testbed for anomaly detection research 5

1.3 IDS testing . 7

1.4 Summary and dissertation overview . 8

2 Background 11

2.1 Intrusion detection . 12

2.1.1 Review papers . 13

2.1.2 Architectures . 14

2.1.3 Theory . 17

2.2 Anomaly detection . 19

2.2.1 Algorithms . 20

2.2.2 Generalization . 24

xii Contents

2.3 Testing intrusion detection systems . 26

2.3.1 Frameworks for testing . 28

2.3.2 Data sets for testing HTTP IDSs 29

2.4 HTTP . 31

2.4.1 The HTTP protocol . 31

2.4.2 Structure in the HTTP request 33

2.4.3 Potential sources of diversity between web sites 34

2.4.4 HTTP attacks . 36

2.4.5 Difficulties for anomaly detection posed by HTTP 38

2.4.6 Generalization and HTTP . 42

2.5 Summary . 43

3 Algorithms for HTTP anomaly detection 47

3.1 Request length . 48

3.2 Character distributions . 49

3.3 Ordering of parameters . 52

3.4 Presence or absence of parameters . 53

3.5 Enumerated or random parameter values 53

3.6 Markov Model . 54

3.7 Linear combination . 56

3.8 n-grams . 57

3.9 DFA . 58

3.9.1 Determining similarity between a request and the DFA 61

Contents xiii

3.10 Targeted generalization heuristics . 63

3.10.1 File name heuristics . 64

3.10.2 Floating-point numbers . 65

3.10.3 Upper and lower case . 65

3.10.4 Email addresses . 65

3.10.5 Deleting unusual lines . 66

3.10.6 Grouping putative attacks . 66

3.10.7 Add alternates . 67

3.10.8 Default values of heuristics . 67

3.11 Summary . 68

4 Experimental setup 69

4.1 The algorithm test framework . 70

4.2 Parsing HTTP . 71

4.3 Normal data . 73

4.4 Attack data . 78

4.5 Summary . 79

5 Experiments and results 81

5.1 Support for claims about HTTP . 82

5.1.1 Web sites are diverse . 83

5.1.2 HTTP is a nonstationary data source 84

5.1.3 Attack diversity . 86

5.2 DFA and n-gram learning . 86

xiv Contents

5.2.1 Sufficient data for learning . 87

5.2.2 DFA and order of training data 88

5.3 Space requirements of the algorithms . 89

5.4 Algorithm accuracy . 92

5.4.1 Length . 92

5.4.2 Mahalanobis distance . 92

5.4.3 χ2 distance . 92

5.4.4 Markov model . 96

5.4.5 Linear combination . 96

5.4.6 n-grams . 96

5.4.7 DFA . 100

5.4.8 Algorithm comparison . 102

5.4.9 False positives . 106

5.5 Effect of heuristics . 106

5.5.1 Heuristics and accuracy . 107

5.5.2 Heuristics and structure size . 107

5.6 New data tests . 109

6 Discussion 111

6.1 Normal set size, generalization, and accuracy 112

6.1.1 Length . 113

6.1.2 χ2 distance between character distributions 114

6.1.3 Directed graphs . 117

Contents xv

6.1.4 Comparing algorithms via normal set growth rate 119

6.2 Heuristics . 122

6.2.1 Identifying undergeneralization in the model 123

6.2.2 Heuristics and the normal set . 125

6.3 Characters versus lexical structure . 126

6.4 Algorithm accuracy . 127

6.4.1 Length . 127

6.4.2 Character distributions . 128

6.4.3 Markov Model . 129

6.4.4 CGI parameter algorithms . 129

6.4.5 Linear combination . 130

6.4.6 Directed graphs . 131

6.5 HTTP . 132

6.5.1 Diversity and variability allowed by the protocol 132

6.5.2 HTTP is a nonstationary data source 133

6.6 Attacks in the training data . 134

6.6.1 The algorithms and harmless attacks in the training data 137

7 Conclusion 139

7.1 Contributions . 141

7.2 Moving beyond HTTP . 142

7.3 Future work . 143

References 145

xvi Contents

A Snort configuration 173

xvii

List of Figures

1.1 Diagrams illustrating desired, over-, and undergeneralization. 3

2.1 An example HTTP request from a user agent, Internet Explorer version
5.5 from Microsoft. 32

2.2 An example HTTP request from a web robot agent, Stanford University’s
WebVac. 32

2.3 An example HTTP request calling a CGI script and passing parameters. . 33

2.4 An example HTTP request that passed through a proxy on its way from
the client to the server. 34

2.5 Example Nimda attack. 37

2.6 The beck attack. 37

2.7 The Apache M=D information disclosure attack. 38

2.8 The Apache Sioux attack. 39

2.9 One of the Apache chunked transfer error attack variants. 39

2.10 One example of an NT Index Server Directory Traversal attack. 40

2.11 An example of an attack exploiting the Apache Win32 .var file web path
disclosure bug. 42

3.1 Example directed graph induced by abcd and dbac. 52

xviii List of Figures

3.2 The DFA induced by the Burge algorithm 59

3.3 Compressed version of the DFA in Figure 3.2c. 60

3.4 Compressed DFA from Figure 3.3 after additional learning. 61

3.5 The DFA in Figure 3.4 without compression. 61

4.1 An example HTTP request. 71

4.2 The tokens resulting from parsing the HTTP request in Figure 4.1. . . . 72

5.1 DFA learning for the first 100 training instances. 87

5.2 6-gram learning for the first 100 training instances. 88

5.3 ROC curves for DFAs trained on different orderings of the filtered CS
2004-11-12 data. 89

5.4 The growth in bytes and number of distinct n-grams versus n for the
cs.unm.edu 2004-11-12 data set. 91

5.5 Receiver Operating Characteristic curves showing the accuracy of the
length algorithm. 93

5.6 Receiver Operating Characteristic curves showing the accuracy of the
Mahalanobis distance algorithm. 94

5.7 Receiver Operating Characteristic curves showing the accuracy of the χ2

distance algorithm. 95

5.8 Receiver Operating Characteristic curves showing the accuracy of the
Markov model algorithm. 97

5.9 Receiver Operating Characteristic curves showing the accuracy of the
linear combination algorithm. 98

5.10 Receiver Operating Characteristic curves showing the accuracy of the 6-
gram algorithm. 99

List of Figures xix

5.11 Receiver Operating Characteristic curves showing the accuracy of the
DFA algorithm. 101

5.12 Receiver Operating Characteristic curves showing the relative accuracy
of the DFA, 6-grams, χ2 distance between the idealized character dis-
tribution and test distribution, and the length algorithms when tested on
cs.unm.edu filtered data. 102

5.13 Receiver Operating Characteristic curves showing the relative accuracy
of the DFA, 6-grams, χ2 distance between the idealized character dis-
tribution and test distribution, Mahalanobis distance between character
distributions and the length algorithms when tested on aya.org data. . . . 103

5.14 Receiver Operating Characteristic curves showing the relative accuracy
of the DFA, 6-grams, χ2 distance between the idealized character dis-
tribution and test distribution, Mahalanobis distance between character
distributions and the length algorithms when tested on i-pi.com data. . . 104

5.15 Receiver Operating Characteristic curves showing the relative accuracy
of the DFA, 6-grams, χ2 distance between the idealized character dis-
tribution and test distribution, Mahalanobis distance between character
distributions and the length algorithms when tested on explorenm.com
data. 105

5.16 Receiver Operating Characteristic curves showing the difference between
the default heuristic settings and results with the heuristics turned off. . . 108

5.17 ROC curve for DFA on the new pugillis data. 110

5.18 ROC curve for 6-grams on the new pugillis data. 110

6.1 ROC curves showing the accuracy of 6-grams, DFA, χ2 distance, and
Length. 121

6.2 A representation of an anomaly detection system that both under- and
overgeneralizes. 121

xx List of Figures

6.3 An example node in a directed graph where the out degree is high and
the usage counts are low. 123

6.4 Example portion of the DFA encoding paths. 132

6.5 Overgeneralization and desired generalization strategies. 137

xxi

List of Tables

3.1 The default state of the parsing heuristics for the test runs. 67

3.2 Predictions about under- and overgeneralization of the algorithms for
HTTP requests. 68

4.1 The web server data set sizes (in number of requests). 76

4.2 Statistics about request lengths measured as number of characters and
number of tokens. 77

4.3 Statistics about request lengths measured as number of characters and
number of tokens. 79

5.1 DFA accuracy across web sites. 83

5.2 6-gram accuracy across web sites. 84

5.3 Mahalanobis distance between character distributions accuracy across
web sites. 84

5.4 Effect of continuous learning on false positives. 85

5.5 Inter-request diversity for attacks and within a data set. 86

5.6 The size in bytes of the saved state for the algorithms when trained on
the 2004-11-12 cs.unm.edu data. 90

5.7 The size of the induced DFA in terms of nodes and edges for each of the
training data sets. 90

xxii List of Tables

5.8 False positive rate per day for the various algorithms. 107

5.9 Structure sizes for 6-grams and DFA with individual heuristics turned off. 109

6.1 Mathematical definitions and notation used in this chapter. 114

6.2 Growth of the normal set sizes compared with the input length. 120

6.3 Orders of normal set sizes using the results from the cs.unm.edu 2004-
11-12 filtered data. 120

6.4 The effect of generalization heuristics on the normal set size. 126

1

Chapter 1

Introduction

Securing computer systems is important and difficult. The importance comes from both the
potential losses of privacy or money from a compromised system as well as the civil and
criminal liability for failing to secure computer systems specified in laws such as Sarbanes-
Oxley [226] and the Health Insurance Portability and Accountability Act of 1996 [69]. The
difficulty of securing existing systems is evident from the ever-expanding list of security
vulnerabilities such as the Common Vulnerabilities and Exposures (CVE) [45] or the bugs
discussed on forums such as Bugtraq [227]. As one measure of the rate of discovery
of serious security problems, for the last several months Mitre has added 500–700 new
candidate vulnerabilities each month to CVE [45].

Ideally, systems would be designed [184, 256], built [99, 184], and managed [36, 37,
105] in a way that prevents security vulnerabilities from existing. Unfortunately, the his-
tory of the last several years shows that production systems do not meet this standard.
Clients, servers, and embedded systems have all had security vulnerabilities (a few exam-
ples are [29, 44, 55, 89, 229, 228]).

Since security is a requirement and we have yet to develop and deploy systems without
serious security vulnerabilities, we need to take additional measures to protect the system
against the next attack. One approach to protecting computer systems is to craft specific
defenses for each observed problem, either in the form of code patches or attack signatures
(e.g., [93, 199, 220, 241, 246]). Both strategies, however, require a human to analyze each
problem and develop a solution. This limits the feasible response time to a timescale of

2 Chapter 1. Introduction

hours or days, but attacks by self-replicating programs can spread in a matter of seconds
[196]. Therefore, automated mechanisms that can detect and respond to threats in real
time are needed. Anomaly detection systems have been proposed to fill this requirement
because they can potentially detect novel attacks without human intervention [7, 91, 108,
177].

To better describe the proposed solution, Section 1.1 provides an overview of anomaly
detection systems, with a focus on the concept of generalization and its importance for
anomaly detection algorithm accuracy. Section 1.2, explains the motivation for my choice
of web servers as the focused example for investigating anomaly detection and generaliza-
tion. Because we have no general theory of intrusion detection, rigorous testing to compare
anomaly detector models is a requirement. Section 1.3 further discusses the need for this
testing and comparison. Section 1.4 summarizes the chapter and provides an outline of the
rest of the dissertation.

1.1 Anomaly detection systems and generalization

An anomaly detection system develops a model of normal behavior from empirical obser-
vations (the training set); normal behavior implies that attackers are not using the system
to perform tasks outside the set of those the administrators intend for it to perform. Sub-
sequent observations that deviate from the model are labeled anomalies. An anomaly
detection system developing a model of normal behavior is a form of machine learning.

If a learning system is to do more than simply memorize the training data, it must
generalize, that is, generate a set that represents an example. When an anomaly detection
system generalizes, it accepts input similar to, but not necessarily identical to, instances
from the training data set, i.e., the set of instances considered normal (the normal set) is
larger than the set of instances in the training data. For most anomaly detection systems
(for example, those used with web servers), the set of possible legal input is infinite and
the complete set of normal behaviors is not known and might be changing over time. In
this case, the anomaly detection system must use an incomplete set of training data. For
these systems, where the system accepts more instances than were provided in the training
data, generalization is a requirement.

1.1. Anomaly detection systems and generalization 3

(a) (b) (c)

Figure 1.1: Diagrams illustrating (a) desired, (b) over-, and (c) undergeneralization. The
points BU1, BU2, XSS1, and XSS2 represent attacks, N represents the set of normal
requests, and the line surrounds the set accepted by the anomaly detection system. U is
the set of all possible inputs to the system.

The goal for an anomaly detection system is a model that accurately describes nor-
mal behavior, as illustrated in Figure 1.1 (a). If the algorithm generalizes too much
(overgeneralizes), then the normal set is too large. In this case, attacks “close” to the
training data might be identified as normal (a false negative), limiting the usefulness of the
system. Figure 1.1 (b) illustrates an overgeneralizing anomaly detection system.

On the other hand, a system that simply memorizes the training data will need suf-
ficient storage for the complete set of normal. Obviously, this is impossible when the
normal set is unknown or infinite. A system such as this would undergeneralize, and er-
roneously flag normal events as anomalous (false positives). An undergeneralizing system
misses normal instances that are slight variants of training data. Figure 1.1 (c) illustrates
undergeneralizing.

How easy it is to identify the correct level of generalization depends on the data stream
and the representation used for it. Most data streams are not a collection of random bits;
instead they consist of locations where values important to the meaning of the data are
placed, i.e., they contain structure. An accurate anomaly detection algorithm will have a
representation matching the data stream in a manner facilitating detecting anomalies. For
example, consider a time and date stamp. In the data stream, it might be given as a number
of seconds (or minutes, hours, days, etc) from a given starting time; for example, most
Unix systems keep track of time as the number of seconds since midnight January 1, 1970.
The time stamp might instead be presented in a more human-understandable format, such

4 Chapter 1. Introduction

as HH:MM:SS MM/DD/YY. However, the order of these fields is different in different
cultures, months and days might be by name or number, time might be indicated as B.C. or
A.D. (with no year 0, so simple arithmetic on years fails without special processing). For
example, in the data sent to web servers, three different time stamp formats are specified
as acceptable by the standard, and even more are regularly used. Inside the intrusion
detection system (IDS), the data might be represented as a string of characters, or a stream
of tokens (e.g., hour, minute, second, day, month, year). The tokens might or might not
also contain the associated value. Using tokens allows the algorithm to learn the structure,
which brings the model closer to understanding the meaning of that which it models.

When considering generalization for a date, if it can only take on values from a finite
set small enough to be held in memory, simply memorizing the string is sufficient, and
no generalization is necessary. When any date is legal, the number of legal values is
potentially infinite (although in practice it is bounded). In this case, tokens would be
a better choice, and it might be the case that values associated with the tokens are not
important for identifying normal behavior. The representation also relates to the expected
anomalies. If a European date format is considered an anomaly (e.g., for a US system),
then the representation must be capable of expressing this difference.

This example of a date illustrates the extremes between low (a small, finite set) and
high (any legal date) variability of (a part of) a data stream. The problem is worse for
data that is effectively random (such as cryptographic hashes or encrypted data). When an
undergeneralizing anomaly detection system encounters high-variability data, it must at-
tempt to memorize the data. In the worst case of random data (e.g., cryptographic hashes),
this approach is doomed to use excessive memory and still fails to provide an accurate
system. The more regions with high variability, the more combinations must be repre-
sented in the anomaly detector’s model of normal behavior. The result will be a model that
is too large to be practical, and/or one that produces too many false positives. If, on the
other hand the anomaly detection algorithm generalizes enough to avoid the false positive
problem, the less-variable portions of the data will likely suffer from overgeneralization
and the system will be prone to missing attacks. High variability regions require more
generalization than low variability ones. The problem, then, is how to identify the correct
amount of generalization, and where to apply it.

In order to find the sweet spot, extra generalizations will be needed for an undergen-

1.2. Web servers are a good testbed for anomaly detection research 5

eralizing system while one that overgeneralizes will need reductions in generalization. If
the data have regions with different variability, these modifications must be localized to
where the system over- or undergeneralizes. Additionally, to target these locations, the
data representation must be fine-grained enough to distinguish between the portions of the
data needing more and those needing less generalization.

To summarize, correct generalization is a necessary condition for accurate anomaly
detection; for an anomaly detection system to have sufficient accuracy to be deployed, it
must neither under- nor overgeneralize. If generalization is not properly controlled, then
the anomaly detection will not be accurate. The model the anomaly detection system uses
must represent the data in a manner allowing the discrimination of normal from anomalous
data instances.

1.2 Web servers are a good testbed for anomaly detection
research

My research uses web servers for investigating anomaly detection. They are a good test
environment for several reasons. First, web servers are critical for many organizations.
They are are vital conduits for communication, commerce, and services. Reflecting their
high-value, attacks against web servers have become commonplace and expensive. For
example, the Code Red worm cost 2.6 billion dollars in July and August 2001 [24], and
Nimda1 prevented hospital workers in Västra Götaland, Sweden from accessing reser-
vations and computer-based medical records on September 23, 2001 [134]. While no
lives were lost in this attack, it showed that costs could be more than simply monetary.
Robertson et al. state that the CVE entries from 1999 through 2005 show that web-based
vulnerabilities represent more than 25% of the total number of security flaws, and they
note that this number is a minimum since it does not count vulnerabilities in custom web
applications [218]. To attempt to defend against constant attacks2, system administrators
deploy defenses such as the snort network IDS [220]. snort uses patterns of attacks, called

1One method of Nimda’s propagation was via attacks against Microsoft’s web server, present
on most machines running their operating system at the time.

2Yegneswaran et al. claimed in 2003 that there were on the order of 25 billion intrusion attempts
per day on the Internet [274].

6 Chapter 1. Introduction

signatures, to identify attacks previously seen and analyzed. Each signature represents one
attack; the signatures in recent sets show the fraction of attacks targeting web servers and
their applications: 27% of the October 25, 2005 Sourcefire Vulnerability Research Team
signature set [242] and 50% of the November 2, 2005 community signature set [43].

One reason for the large number of web application attack signatures is the variety
of web applications, ranging from simple perl common-gateway interface (CGI) scripts
to complex database-driven e-commerce sites. Because the tools for creating web appli-
cations are easy to use, many of the people writing and deploying them have little back-
ground in security (e.g., publishing, graphic design, or computer scientists with no se-
cure programming background). Consequently, these web applications are often insecure
[218]. The prevalence of custom web applications and their frequent security problems
leads to the requirement for solutions such as IDSs to be applied as an additional layer of
protection.

Adding to the problem is that HTTP has become the universal transport protocol. Pre-
viously, for each new service, a software developer developed a communications protocol
and used an assigned port for communications. Because of security issues associated with
many new protocols, network administrators blocked access with firewalls [121, 122].
HTTP travels through most firewalls, often with little interference. This led to developers
using HTTP as a transport protocol for their new software. Examples include SOAP3 (re-
mote procedure calls using the extensible markup language (XML) for parameters) [10],
tunneling secure shell (SSH) connections [265], Apple’s QuickTime multimedia [11], Mi-
crosoft RPC for accessing Exchange (email) servers [192], a protocol for negotiating pay-
ments [78], and remote filesystem access [141]. These new services over HTTP present
additional opportunities for attackers.

Current IDS approaches for web servers are insufficient. An web server IDS should:

1. be accurate—identify most, ideally all, attacks, and rarely misidentify non-attack
traffic. It must maintain this accuracy as the web site changes over time.

2. detect novel attacks.
3In 2003, this acronym was declared to have no meaning by the Worldwide Web Consortium

(W3C).

1.3. IDS testing 7

3. not place an undue burden on the administrator or the machine it is protecting.

As Chapter 2 and experimental results in this dissertation show, current IDS approaches
for web servers do not meet these criteria. One possible reason is that, as Section 2.4
shows, HTTP is a difficult protocol for anomaly detection.

1.3 IDS testing

Other researchers have proposed anomaly detection for HTTP IDSs (see Chapter 2 for
details). Unfortunately, comparisons of of IDSs using the same experimental data are rare.
In some cases, the researcher(s) used a data set not available to other researchers (a closed
data set) and showed that the IDS can detect attacks. In other cases, the researcher(s)
used data sets available to all researchers (open data sets) such as the MIT Lincoln Labs
data (Section 2.3.2 describes this data set and its shortcomings). Papers describing these
IDSs only report results on the data set, and comparisons are usually left to the reader to
perform. Therefore, how can we really know how accurate the IDSs are?

A theoretical basis for intrusion detection would make testing less important, but, as
I will explain in Chapter 2, we have no such theory. Therefore, I used an experimental
approach. As a part of the research presented in this dissertation, I used a framework to
test nine algorithms to evaluate how they performed under realistic circumstances. This
framework, the IDS algorithms, and the HTTP parser are open-source to encourage other
researchers to expand upon my testing.

One of the “best practices” for system administrators is that they must regularly apply
patches to protect their servers (e.g., [193]). Chapter 4 shows that Internet-connected web
servers are regularly attacked with old attacks and attacks for other web servers—attacks
to which a properly patched server is immune. When an anomaly detection system is used
with an Internet-connected server, it should not produce alarms on harmless attacks. This
requirement further challenges the developer of an anomaly detection system. Previous
IDS approaches have used training data where these old attacks have been filtered out.
Requiring attacks to be filtered from the training data means that first, a source of attack-
free data must be found—accurately removing attacks while retaining the complete HTTP

8 Chapter 1. Introduction

request is difficult and is likely to require hand-tuning of a signature database. Secondly,
an IDS trained on this data will produce alarms for the harmless attacks present in normal
web requests. Also, most administrators do not want to be alerted to every harmless attack4

(see Section 4.3 for examples of the rate of harmless attacks). For an IDS to be deployable,
these attacks should be allowed in the training data and the IDS algorithm should be able
to still recognize novel attacks—in other words, the learning algorithm must be able to
tolerate old attacks as normal yet still be able to detect new attacks.

1.4 Summary and dissertation overview

Web servers are important to protect because they are ubiquitous and critical for many
organizations, yet they are currently poorly defended. Web servers are a good testbed for
anomaly detection research because of the impact a good solution can have on production
systems. Most deployed defenses are signature-based, and these systems require humans
to analyze attacks and they cannot detect novel attacks.

Anomaly detection techniques can detect novel attacks, and hence are a promising
solution, and one a few researchers have tried. Anomaly detection systems make use
of generalization whenever the normal behavior is infinite, unknown, or nonstationary.
Generalization must be carefully controlled for acceptable accuracy.

To date, IDS testing has been weak, yet rigorous testing is required to know how
accurate the system is and under what circumstances it works well. Testing should include
harmless attacks, since they are a normal part of Internet traffic.

The rest of the dissertation is organized as follows. Chapter 2 sets the stage for my
research by reviewing prior research; it also introduces HTTP and shows why HTTP is
a difficult protocol for anomaly detection systems. Chapter 3 described the algorithms I
tested, while Chapter 4 describes the test framework and data sets. Chapter 5 describes the
tests I performed and presents the results of these tests. Chapter 6 discusses the meaning
of the test results, and shows how to compare anomaly detection algorithms by comparing

4Administrators wising to see old attacks can make use of a signature-based IDS, which is
well-suited for this task.

1.4. Summary and dissertation overview 9

how they generalize. Chapter 7 concludes the dissertation by summarizing my contribu-
tions and looks at additional avenues of research highlighted by my work.

10 Chapter 1. Introduction

11

Chapter 2

Background

As one part of protecting web servers, a system administrator needs to know when her
system is under attack and has been (or is in danger of being) compromised—this is in-
trusion detection. Chapter 1 introduced this problem; here we consider the current state
of the art. This chapter surveys the literature describing previous research results, starting
with intrusion detection systems in Section 2.1.

Chapter 1 argued that an IDS protecting web servers must detect novel attacks without
human intervention, and that anomaly detection systems are a solution that addresses this
requirement. All anomaly detection systems share a common trait of learning a model
of normal behavior. Over the years, researchers have tried many different algorithms for
learning this model. Some of these algorithms have promise for HTTP; others have limita-
tions that prevent them from ever working in this domain. A summary of these approaches
appears in Section 2.2.

Whenever the set of training data representing normal behavior for the anomaly detec-
tion system is incomplete or the actual set is infinite, the anomaly detection system must
perform generalization. Although researchers have realized the usefulness of generaliza-
tion, the extent to which they have investigated it is limited. Section 2.2.2 reviews the
previous work in this area.

The large variety of anomaly detection algorithms is a symptom of the fact that we lack
a comprehensive theory of intrusion detection and anomaly detection to provide guidance

12 Chapter 2. Background

on approaches with more promise. Section 2.1.3 shows that most theory has been devel-
oped in Ph.D. dissertations, and none comes close to being comprehensive.

Lacking theory, rigorous testing and comparison of algorithms is necessary to deter-
mine which systems work well, when, and why. Section 2.3 reviews the prior work and
concludes that the quality of testing and test data vary, and repeatable, comparable results
for HTTP are rare.

Section 2.4 provides background information on the HTTP protocol, structure in the
HTTP requests that might be useful for an anomaly detection system, sources of diversity
between web sites that an IDS might use to force an attacker to customize an attack for
a given web site, and examples of attacks against web servers. The section ends with
information about the difficulties HTTP poses for IDSs.

2.1 Intrusion detection

Computer intrusion detection started in 1972 with a paper by Anderson [7] identifying the
need for what would evolve into today’s intrusion detection systems. Early IDS researchers
focused on statistics of system and user behavior on a given machine (a host-based IDS)
to address insider threats [68, 126, 177, 200]. In practice, these early systems had high
false-positive rates [16, 27, 30, 39, 47].

As networks connected machines together, network servers became common and at-
tackers could be physically removed from their victims. This led to the need for network-
based intrusion detection, and researchers tried attack detection and prevention at many
of the layers in the ISO model of networking [123]. Physical access restrictions (tradi-
tional locks and other physical security) function well for preventing attacks at the phys-
ical layer1. Approaches included identifying unusual traffic based upon its source and
destination IP addresses, protocol (TCP or UDP), and ports [19, 108, 115]. Unfortunately,
nothing is unusual or particularly dangerous about a new machine connecting to a web
server, so another approach is needed for protecting web servers.

1Physical protections work well, assuming the physical layer is copper or fiber optic; wireless
networks are attacked at the physical layer, but these attacks are beyond the scope of this disserta-
tion.

2.1. Intrusion detection 13

The inability to protect web servers led to explorations of other approaches. Some
researchers restricted HTTP to a presumably safe subset of the protocol [80]. Other ap-
proaches monitored the HTTP data stream at the ISO network application layer [123], in
spite of the perceived difficulty of using this data stream [276]. Some of these approaches
treated web servers as a generic network service. Incoming and outgoing traffic were mod-
eled as a stream of bytes or as discrete packets. Some approaches looked for patterns in the
first few packets of connections [178]. Others compared character distributions between
the payloads of similar-sized packets [263].

In contrast with these protocol-independent approaches, some researchers focused
on the HTTP requests in the network application layer, for example combining statisti-
cal characteristics of common gateway interface (CGI) program request parameters [146,
147]. However, these anomaly detectors must be trained on data without attacks. This re-
quirement is problematic because the normal background of today’s Internet contains large
numbers of old attacks, most of which are ineffective against properly patched servers.
Signature-scanning intrusion-detection systems (IDS) such as snort [220] can be used to
filter out known harmless attacks; however, the high accuracy required for training requires
frequent updates to the attack signature database and careful site-specific tuning to remove
rules that generate false alarms. This manual intervention reduces the main advantage of
using anomaly detection.

2.1.1 Review papers

IDSs have existed since the 1970s, and therefore many papers have been written about
them. Several people have reviewed the state of the art, including: Allen [2], Bai and
Kobayashi [18], Bilar [26], Jones [130], Kemmerer [135], Kvarnström [133], Lunt [176],
Mukherjee et al. [197], Singh and Lakhotia [235], Turkia [250], and Verwoerd and Hunt
[255]. The best reviews are those that present an unbiased, thorough review of the litera-
ture, and/or provide a good taxonomy for describing different intrusion detection methods.
Examples of such reviews include those by Axelsson [13, 17], Debar [63, 64, 65], Alessan-
dri [1] (who works or worked with Debar), and McHugh [187]. Although not a review of
research IDSs, Jackson [124] wrote an excellent in-depth survey of commercial products.
Brumley et al. reviewed defenses against worms, many of which are variants of intrusion

14 Chapter 2. Background

detection systems [33].

2.1.2 Architectures

As researchers have worked on the problem of intrusion detection, they have developed
three IDS architectures [13, 17, 18, 63, 64, 65]: signature detection, specification, and
anomaly detection. A few researchers have tried hybrid approaches, where the strengths
of one architecture is exploited to cover the weaknesses of another.

Signature detection (also called misuse detection, or detection by appearance) A human
studies an attack and identifies the characteristics (e.g., behavior and/or content) that
distinguish it from normal data or traffic. The combination of these characteristics
is known as the signature, and it becomes part of a database of attack signatures.
When the IDS encounters data matching the signature, it raises an alarm. Signature
systems represent the vast majority of installed IDSs; they are important, though
limited, as the next paragraphs show. All commercial anti-virus products make use
of signature detection, as does the network IDS snort [93, 220].

Signature-based systems are usually fast, and they can often detect accurately the at-
tacks for which they have signatures. However, because a human must analyze each
attack to develop the signature, the feasible response time to new attacks is limited
to a timescale of hours or days. Attacks by self-replicating programs (viruses or
worms) can appear and spread in seconds [196]. When new attacks appear, systems
protected by signature IDSs are vulnerable until an updated signature set is available
and installed; i.e., they fail to meet criteria 2 in Section 1.2.

All signature-based IDSs use some form of pattern matching to identify the strings
that might be associated with an intrusion, be it a virus in a file or an attack such
as Code Red against a web server. In many pattern-matching systems, a pattern
is simply a string (ideally) not found in any normal data. Some pattern-matching
systems include other information, such as where to look for the string (either by
absolute location, or by location relative to the network protocol or file format).
Pattern matching approaches include colored petri nets [46, 148, 149, 150, 151] and
attack specification languages [73, 79, 232, 257, 258, 259].

2.1. Intrusion detection 15

Signature-based systems suffer from false positives, especially if the system config-
uration or environment changes. Patton et al. described this phenomenon that they
call squealing, and showed how intruders can negate the benefit of a signature-based
IDS with carefully crafted false positives [207]. IDSs with this problem fail to meet
criteria 3 in Section 1.2.

Signature-based systems can also suffer from false negatives. When testing to see
the effectiveness of the two “best” signature-based systems (snort and ISS RealSe-
cure), Vigna et al. found that mutants of known attacks would not be detected by the
IDS [260]. IDSs with this problem fail to meet criteria 1 in Section 1.2.

Most signature systems do little, if any, generalization. One that does is reported
by Ning et al. [204]; they abstracted signatures to help detect related attacks. An
interesting test, one apparently never performed, would be to apply the work of
Vigna et al. [260] generating mutants of attacks to the Ning et al. work where the
signatures are generalized.

Specification An expert studies the program to be protected and produces a specification
that identifies the allowed (i.e., those intended by the program author) actions that
a program can take. When the system is running, the behavior is compared to the
specification, and deviations are noted and/or prevented [142, 231, 233, 234]. The
complement of this approach is describing behavior indicative of attacks; sometimes
describing what is not allowed is easier than describing what is not allowed [209,
210].

A problem with this approach is that the expertise level necessary to develop a proper
specification is considerably higher than that needed to implement a program. Ad-
ditionally, each program needs a separate specification, and any time the program
changes, the specification must be reviewed by an expert. These requirements raise
the cost, and hence have lowered its use in production systems.

Specification-based systems also face problems with their proper use. For example,
Hogland and McGraw note that access control lists, one of the simpler specification-
based security measures, are so complicated that they normally fail in practice [117].

Assuming a proper specification, such an IDS meets the criteria from Section 1.2.

Anomaly detection (also called detection by behavior) Anomaly-based IDSs assume that

16 Chapter 2. Background

intrusion attempts are rare and that they have different characteristics from normal
behavior. The IDS induces a model of normal from a corpus of training data. When
an instance that does not match the model learned from the training data appears,
the system raises an alarm. Finding the proper representation for the data and identi-
fying a learning algorithm to use with the data can be difficult for anomaly detection
systems. A well-designed anomaly detection system can meet all of the criteria
specified in Section 1.2. They are one of the major foci of this dissertation, and
hence are covered in more detail in Section 2.2.

Hybrid systems An IDS using this architecture uses parts from two or more of these ar-
chitectures to take advantage of the strengths of one architecture to cover the weak-
ness of another. As one example, Sekar et al. combined statistics for anomaly detec-
tion with a human-designed state machine specifying the allowed network commu-
nication [233].

Only one hybrid system has been reported for HTTP. Tombini et al. [248] combined
misuse and anomaly detection to find attacks in logged HTTP requests, and they
analyzed how to resolve conflicts between the two architectures to provide the best
accuracy. This system suffered from several drawbacks that would hinder its de-
ployment in a production environment. First, they reported that out of 56 attacks,
the misuse detector could detect 30—just over half. They did not publish results
that tested how the combined system performed on attacks. In addition, they deleted
dynamic user account data from their test suite (data I retained in my test set), us-
ing only the dynamic content on the official web site. They also manually adjusted
the model induced by they anomaly detector. They also used manual methods to
identify safe or dangerous web requests, reporting that a person can perform this
task within a few days. This heavy reliance on humans limits the usefulness of their
system.

Although this dissertation does not study hybrid IDSs, if an anomaly detection or
specification system is one of the architectures in the hybrid, the resulting IDS can
meet all of the criteria specified in Section 1.2.

2.1. Intrusion detection 17

2.1.3 Theory

Theory for intrusion detection is important because it could predict when various algo-
rithms will work well, when (or if) an IDS problem is solvable, and when we must be
content with a “good enough” but less than perfect solution. Few researchers have worked
on a theory of intrusion detection, and none has generated a broad theory that would an-
swer these questions.

Lee and Xiang [166] studied the entropy of IDSs. This information-theoretic approach
predicts whether an algorithm will be suited for use with a specific set of data. It also
predicts a window size to use when looking at the data.

Brumley et al. [33] developed a theory to determine the approaches to defenses against
worms most likely to work. Since some defenses against worms are IDSs, their work
applies to a portion of existing IDS approaches.

Forrest et al. [92] proposed an immunological approach to computer security using
negative detection—in the example presented in the paper, they generated a set of strings
not matching strings in files on a system. If these strings showed up in a later scan, an
anomaly was noted. Their analysis included a formal look at the relationships between:

• the probability of detection

• the number of detectors needed

• the detector length.

This work was followed by D’haeseleer et al. [71, 70]. They studied the information
theoretic implications of this work and explored the existence of holes—non-detectable
strings in the non-self set. Esponda et al. [85] continued this work by:

• giving a formal framework for analyzing the tradeoffs between positive and negative
detection schemes in terms of the number of detectors required to provide a given
accuracy of detection,

• introducing a new matching rule, r-chunks,

18 Chapter 2. Background

• showing that permuting the representation of the pattern strings reduces the number
of holes, and

• showed how many permutations are required to minimize the holes.

Many people working on graduate degrees in computer science have incorporated the-
ory in their theses or dissertations. Some examples include:

• Hofmeyr [113] analyzed of the negative detection system and its the data represen-
tation that he developed. The analysis showed the number of detectors required for
coverage of the space to be as complete as possible. His analysis also looked at
the holes and the tradeoffs associated with closing these holes. He also analyzed
the convergence properties of his data using a stochastic model; this analysis is also
useful for understanding the nonstationary nature of his data.

• Lane [157] analyzed the nonstationary nature of the data existing in many intrusion
detection data sets, and in particular, user command-line usage. The data changes
over time as users learn new ways of solving problems, software on computers is
updated, etc. The result is that normal behavior changes and the data source is
therefore nonstationary.

• Lee [161] provided a formal analysis of data-mining techniques for intrusion detec-
tion. Without such a discussion, one would wonder how well such an approach can
do. His theory supports the potential for data mining to detect abnormal behavior.

• Somayaji [239] formally compared two methods of IDS data modeling of system
calls, one using sequences calls and one using lookahead pairs (the call at the current
position and the call at position k steps ahead of the current call), showing that the
two models were equivalent.

Nobody has developed a general theory of intrusion detection. Nobody has formally
proven whether intrusion detection or anomaly detection is a solvable problem. The theo-
retical side of intrusion detection still needs the most basic work.

2.2. Anomaly detection 19

2.2 Anomaly detection

Because anomaly detection holds the potential for detecting novel attacks, many models
and algorithms have been tried. An anomaly detection system uses a body of training data
to induce a model of normal, and then it flags as abnormal any data instances not included
in this model. Details about how anomaly detection works were presented in Section 1.1.

The first anomaly detection systems were based on statistical measures of normal (e.g.,
[4, 5, 6, 68, 126, 177, 267]) with host audit records and lower-level network data as the
data source. Forrest et al. [91] introduced the idea of modeling program behavior by
recording short sequences of system calls. This work generated significant interest and
many proposals for alternative models of system call behavior, including variable length
sequences [181] and rule-based data mining [164]. Unfortunately, system call monitor-
ing does not appear to be a promising approach to detecting attacks against web servers.
Earlier work with pH [239], a Linux-based IDS that monitors sequences of system calls,
suggests that large server programs such as web servers are difficult to monitor in prac-
tice, sometimes taking months to achieve a stable model of normal behavior (although see
[230] for one idea about how to address this problem).

Another problem is that many attacks against web servers are caused by configuration
mistakes or errors in the web application code. Exploits based on these vulnerabilities
might not generate unusual system call patterns because they do not cause unusual execu-
tion of web server code. The web server is simply interpreting the vulnerable script, and
the system call trace generated by the interpretation process is similar whether or not the
script contains a vulnerability.

Because all I/O behavior typically passes through the system call interface, virtually
all attacks on web servers should, in principle, be detectable by observing arguments to
system calls. Earlier attempts to model system call arguments, however, generated high
false positives [145], despite the use of a much more sophisticated modeling strategy than
Forrest et al. originally proposed. This discrepancy appears to be a natural consequence of
the high variability of system call arguments relative to sequences of system calls.

20 Chapter 2. Background

2.2.1 Algorithms

Over the years, researchers have proposed many algorithms for anomaly detection; some
of these algorithms have limitations (e.g., requiring fixed-length input when HTTP is
variable-length) that prevent their working with HTTP. Because results showing an algo-
rithm that fails in a given situation are difficult to publish, we see only when an algorithm
can be shown to perform adequately on a given data source and representation; i.e., it is
accurate at least for the tests performed. In the algorithm descriptions that follow, I focus
on those that have been tried with HTTP, and I comment on the algorithm’s suitability for
use with HTTP

Rule-based systems

Rule-based systems consist of a set of rules describing normal behavior. Given a set of ob-
servations of normal behavior, the rules describe the data. For example, if the data include
session start and end times, the IDS might generate a rule specifying that sessions do not
start before 6:00am or that they do not last more than eight hours. The rules might be relate
multiple, distinct events, for example, operations x, y, and z only occur within sessions of
type w. Once the rules have been generated, the IDS generates an alarm whenever a rule
is broken.

One type of rule-based system is an expert system. In this case, the rules are generated
by humans [4, 5, 6, 61, 67, 68, 111, 118, 120, 125, 169, 170, 177, 200, 212, 213, 237,
238, 249, 253]. The alternate approach is to have the IDS automatically induce the rules
[110, 161, 162, 163, 165, 247, 251, 272].

A thorough search of the literature revealed only one HTTP IDS using this approach.
Vargiya and Chan [254] compared four statistical techniques to determine token bound-
aries automatically: boundary entropy, frequency, augmented expected mutual informa-
tion, and minimum description length (MDL), as well as two combinations of these meth-
ods. They determined that frequency and MDL performed best at automatically identify-
ing tokens. The tokens were used with a rule-generation system, LERAD [180].

2.2. Anomaly detection 21

Descriptive statistics

In a statistical system, the IDS observes a set of normal behavior and calculates one or
more statistics identified by a person or some other portion of the IDS to be significant. The
statistical methods used might be simple frequency analysis, Bayesian belief networks,
Hidden Markov models, or other measures. The IDS then notes deviations from these
statistics. Many earlier approaches were statistical [4, 5, 31, 32, 34, 59, 61, 72, 75, 76, 82,
83, 84, 86, 90, 106, 107, 109, 118, 119, 126, 127, 143, 157, 175, 177, 188, 189, 190, 191,
200, 224, 225, 236, 252, 267, 268, 269, 270, 271, 272, 273, 275, 277].

When applied to HTTP, most researchers have analyzed the data stream as a sequence
of characters, and applied statistics to the characters. For example, Wang and Stolfo [263]
modeled the character distribution of different sized packets. Mahoney and Chan [179]
performed statistics on packet headers, with some statistics on the application-layer data
(e.g., HTTP keywords). Mahoney [178] then modeled the first 48 bytes of the applica-
tion layer data of interesting services (including HTTP) using a collection of statistical
measures.

Kruegel et al. [146, 147] analyzed common gateway interface (CGI) program param-
eters using a linear combination of six measures: attribute length, character distribution,
using a Markov model, labeling whether tokens were random or from an enumerated set,
attribute presence or absence, and the attribute order.

Estévez-Tapiador et al. also used a Markov model [86]. They tried the model with
the characters from the request, and found it performed poorly. However, after breaking
the request into pseudo-tokens, performance improved. Unfortunately, their best reported
false positive rate was 5.76%; for the cs.unm.edu web server (Section 4.3), this would
correspond to a false positive rate of over 5,000 alarms per day.

Directed graphs

Some representations explicitly encode the successor relationship as a directed graph. For
example, three approaches used in HTTP intrusion detection use this representation: the
Markov model discussed previously, Deterministic Finite Automata (DFA), and n-grams.
Both the Markov model and the DFA consist of a set of nodes, with transitions between

22 Chapter 2. Background

the nodes. An n-gram is a sequence of n items, characters or tokens; a set of n-grams is
the model for normal. In n-grams, item a following item b is encoded by ab as a part of
one or more of the sequences in the set.

Wagner and Dean used a directed graph to represent the system calls made by a pro-
tected program [261]. Kruegel and Vigna and Kruegel et al. [146, 147] used a digraph to
represent the order of CGI parameters in the HTTP requested resource path (implementa-
tion details are in Section 3.3).

Deterministic Finite Automata (DFA) For this approach, the IDS induces a DFA from
its training data, effectively learning a (formal) language. Strings that are not a part of
the language are labeled as anomalies. When the data being modeled are described by a
language (e.g., network protocols), this approach learns the subset of the actual protocol
used by the computer(s) that the IDS is protecting [25, 181, 190, 191, 230, 234]. Other
researchers (e.g., [144, 230, 181]) have studied anomaly detection using methods for con-
structing finite automata-based models of program behavior.

In the worst case, learning a DFA from only positive evidence (one-class learning) is
known to be NP-complete [98], but Lang showed that the average case is tractable [158].
In practice, DFA induction is practical in many contexts, and there is an extensive literature
on DFA induction algorithms (good overviews include [38, 159, 206]).

n-grams and lookahead pairs n-grams have been used in information retrieval [183,
194], measuring document similarity [57, 87] or categorizing text [42] and similarly for a
measure of normal in intrusion detection [91, 92, 114, 116, 128, 129, 181, 182, 190, 191,
230, 239]. Lookahead pairs are similar in effect to n-grams, but Somayaji [239] found that
they were more efficient.

Neural networks

One or more data sources is used to train the neural net to recognize normal behavior. The
neural net then identifies behavior not matching its training experience [35, 62, 74, 82,
94, 95, 160, 198, 222]. In other fields, neural networks have shown their ability to detect

2.2. Anomaly detection 23

patterns. Most neural nets require fixed-length input [195], a requirement that could cause
problems with variable-length data such as HTTP requests.

Support Vector Machines

Noting that some anomaly detection algorithms undergeneralize, Mukkamala et al. [198]
used a Support Vector Machine (SVM) to learn the training data from the 1998
DARPA/MIT Lincoln Labs IDS test [171]. These data included two HTTP attacks. They
compared the SVM with a neural network and found that the SVM was more accurate and
faster. The SVM training time was 17.77 seconds compared with the neural net training
time of 18 minutes.

Information retrieval

In addition to n-grams, other techniques from information retrieval (IR) for categorizing
text and measuring the distance between different texts might be useful for categorizing
data. In spite of this parallel, only a few researchers have tried it, none with HTTP [8, 152,
153, 155, 154, 156, 157].

Multiple sensor fusion

Axelsson [14, 15, 16] shows that to avoid the base rate fallacy2 and hence generate too
many false positives, an IDS must have high accuracy (or low error rate). To address this
problem, one approach is to combine results from different intrusion sensors [21, 22, 23,
47, 96, 146, 147, 169, 170, 200, 202, 212, 213, 238, 253].

2 The base rate fallacy is when a detector has what appears to be good accuracy, but the rate
of what it detects occurs infrequently resulting in poorer performance than might be expected. For
example, on 1,000,000 samples, a detector that is 99% accurate for something that occurs once in
10,000, the detector produces a true positive only 1% of the time. See Axelsson’s papers for more
details.

24 Chapter 2. Background

Immune system

The immune system might be viewed as having achieved the goal that IDS researchers are
trying to attain. The ability to recognize and destroy hostile entities (non-self) while not
attacking the organism (self) is the holy grail of intrusion detection [60, 92, 104, 112, 113,
114, 136, 137, 138, 139, 140, 208, 217, 239, 240, 266]

An intriguing mechanism of the immune system is negative detection. In the vertebrate
immune system, lymphocytes have detectors for molecules or peptide fragments3 that are
not associated with the individual (i.e., foreign). Taking a cue from this portion of biology,
some systems use negative detection to generate detectors for data that do not occur in
the normal data stream. When one of the detectors matches, an anomaly is presumed to
exist. Negative detection has the advantage that it can be easily distributed across all the
machines on a network. Forrest et al. [92] used negative detection for virus detection, and
Hofmeyr [113] used it for network traffic pattern anomaly detection. Unfortunately, this
approach does not work for web servers, where novel connections are normal.

Another immunologically inspired idea is that of tolerization. When the IDS generates
a detector, it is considered naive. If a naive detector matches a string early in its lifetime,
the detector is considered to be matching self, and it is deleted. If a detector survives
the tolerization period, it becomes mature. When a mature detector matches a string, the
request is considered anomalous.

In the immune system, co-stimulation of T- and B-cells is required from other cells
before an immune response is generated. In LISYS [112, 113, 114], a mature detector that
matches a request is deleted unless it receives co-stimulation. This idea is related to that
of sensor fusion, although in this case, the second sensor is a human.

2.2.2 Generalization

Overall, many researchers have mentioned generalization, but few attempted to control it,
understand it, or detail its relationship with accuracy.

3Peptide fragments are pieces of proteins generated by a cell in its normal operations. Proteins
are broken into pieces and displayed on the outside of the cell by class I major histocompatibility
complex (MHC) molecules.

2.2. Anomaly detection 25

Most earlier anomaly detections systems assume that the data they use is stationary.
Researchers working with nonstationary data use generalization in order to tolerate the
novel instances that are a hallmark of nonstationary data. Some researchers working with
nonstationary data include Mahoney and Chan [179], who used an exponential decay of
learned probabilities of features in network data. Lane (sometimes with Brodley) showed
that user event data is nonstationary, and they identified methods for measuring the mag-
nitude and direction of the drift [152, 153, 155, 154, 156, 157]. Much of the work on
nonstationary data focuses on eliminating the old portions of the model (forgetting), e.g.,
work by Salganicoff [223]. Littman and Ackley [174] looked at cases in which the prob-
lem can be divided into two parts, variable and invariant, although this approach would not
apply to environments (such as HTTP) where little is invariant. Denning [68] described a
system that modeled the data recorded by an audit system. The data were generalized by
several statistical measures of patterns in the audit records. She recognized the problem
presented by nonstationary data (e.g., adding new users to a protected system), and she
proposed approaches that might improve the situation. However, she did not report results
showing the effectiveness of these approaches. She, like most of the following researchers,
did not characterize how the generalization chosen affected accuracy of result.

False positives are an indication of undergeneralization or insufficient training. Axels-
son [14, 15, 16] noted that an intrusion detection system must be very accurate to avoid
producing many more false alarms than true positives. In addition to controlling false pos-
itives through targeted generalization, some anomaly detection systems use techniques to
control false positives. Two approaches have been proposed to address this problem. The
first is sensor fusion, as described in Section 2.2.1.

The second approach is correlating alarms. The idea is to group alarms into classes
representing behavior, and assume that all of the alarms in one class represent the same
behavior. The idea is that a system administrator can view a single exemplar from the class
and determine if it represents normal or abnormal behavior [47, 48, 56, 113, 131, 132,
167, 202, 203, 243, 253]. Robertson et al. [218] went one step further, using heuristics
to identify the attack type associated with a class of HTTP requests. Julisch [131] looked
at the problem of false alarms overwhelming human operators. He clustered alarms to
identify the root cause and was successful, reducing the future alarm load by 82%. The
theoretical aspect of his paper showed that general alarm clustering is NP-complete.

26 Chapter 2. Background

Li et al. [168] are some of the only researchers to investigate the relationship between
generalization and anomaly detector accuracy. Noting that generalization can (at times)
improve accuracy, and they showed that generalization on normal data is good, while
generalizing on attack data is not (this result assumes a suitable set of attacks exists).
This result contradicts the work reported by Anchor et al. [3], who discussed generalizing
detectors for attacks, with the goal of improving an anomaly detector at detecting new,
similar attacks in network packet data. Robertson et al. [218] also generalized anomalies
with the goal of generating “anomaly signatures” to find further attacks of a similar nature.
None of these researchers characterized the amount of generalization (e.g., through the
size of the set described by the model), nor did they consider controlling generalization to
improve accuracy.

2.3 Testing intrusion detection systems

There are at least two reasons to testing IDSs:

• to verify that an algorithm is able to detect attacks.

• to compare two or more algorithms to determine the best one under various metrics.

Most researchers test algorithms to support a claim about a particular algorithm. This
testing is frequently little more than asking, “Does the IDS detect an attack?” Slightly
better are researchers who ask the question, “Which of the following attacks can the IDS
detect?” Even this testing is often acknowledged as weak, as shown in the following
quotes:4

Initial testing shows the algorithm performs satisfactorily.

Preliminary experiments prove...

The preliminary experiment results show the effectiveness of our system.

A realistic UNIX system is much more complex than the one that we have
modeled in this paper.

4References withheld to protect the guilty.

2.3. Testing intrusion detection systems 27

When studies compare two or more IDSs, they are sometimes only to justify why the
author(s) approach is the “best” one, and not a real comparison at all. In other cases, the
authors present a “straw man” argument, in which the algorithm chosen for comparison is
unlikely to work well in any production environment. These types of tests show only that
their IDS is better than an incompetent algorithm.

One place where comparisons of multiple IDSs under identical circumstances can be
found is in the trade literature, where commercial IDSs are compared with the intent of
finding the “best” product. These types of comparisons are not limited to the trade liter-
ature, as sometimes they appear in peer-reviewed journals or conferences. Examples of
commercial IDS comparisons include Newman et al. [201] and Rae and Ludlow [216].

As we can see, careful IDS testing is rare. In their review of IDS testing, Athanasiades
et al. state that they do not believe this problem will ever be properly solved [12]. There
are several possible explanations for the scarcity of good IDS testing:

• According to Debar, a set of criteria for evaluating an IDS does not exist [66].

• Identifying appropriate data is difficult—the data must be representative of realistic
operating conditions. Data collected live from a network might be subject to privacy
concerns. Synthetic data must be shown to represent real data on a target network
accurately.

• In order to test an IDS, researchers need a collection of intrusions and vulnerable
machines on which to test the intrusions. Because a library of intrusions represents a
threat to vulnerable systems, researchers often use disconnected networks for testing
to ensure that the attack does not escape into unprotected networks. Setting up a
good, protected network is resource-intensive, both in the costs of the hardware, as
well as human time to set up and maintain a diversity of machines needed to ensure
a good test environment.

Maintaining a collection of vulnerable machines is also difficult. Bugs are discov-
ered as systems evolve. The result is that exploits are often specific to a given op-
erating system (OS) distribution and version, as well as the versions of compilers,
libraries and other software installed. Since a given machine (or virtual machine)
can only run one version of the operating system at a time, researchers need sub-
stantial resources to maintain a collection of vulnerable machines.

28 Chapter 2. Background

• Many intrusions are fragile; if any part of the environment for which the intrusion
was written is not as expected, the intrusion is likely to fail. Either there is no
damage (e.g., only a log entry indicating something odd occurred), or the intrusion
attempt turns into a denial-of-service attack. This fragility means that maintaining
a good collection of attacks requires work to ensure that they function in the test
environment.

These difficulties should not be considered excuses, as some researchers have done a good
job at comparing IDSs (e.g., [264]). Good testing is repeatable; the data are available to
other researchers so they can directly compare the results of new ideas, the training data
are representative of real systems, and the attack data accurately represent the diversity
of attacks. A good test also compares two or more valid approaches (i.e., no straw man
arguments). The results of a good test should provide guidance about which system or
algorithm performs best under different circumstances. To this point, most IDSs for web
servers have been weakly tested, and/or the tests are limited in their scope.

2.3.1 Frameworks for testing

In order to test multiple IDSs, one of the requirements is that the data and environment
be reproducible. A framework for testing is one way of achieving this reproducibility by
providing a setup in which different IDSs can be tested under identical conditions. Four
researchers or research groups have established such frameworks:

• The first published papers about an IDS testing framework and methodology were
from Puketza et al. [214, 215] at UC Davis. Unless they failed to publish further
work, they built the framework and then tested only one IDS: NSM [106, 107].

• Wan and Yang [262] developed a framework for testing sensors that used the Internet
Engineering Task Force (IETF) Intrusion Detection Working Group (IDWG) Intru-
sion Detection Message Exchange Format (IDMEF) [49]. Their framework might
be useful, but the paper describes only a preliminary version.

• IBM Zurich [66] set up a laboratory for testing IDSs. Their normal data came not
only from recordings of user sessions, but also from the IBM test suites for the AIX

2.3. Testing intrusion detection systems 29

operating system. While this test suite is not representative of actual user interac-
tions, it is a source of what could be normal.

2.3.2 Data sets for testing HTTP IDSs

Using a good data set is critical for the test. The training and test data must be representa-
tive of the web server(s) to be protected, and the attacks used for testing need to illustrate
the diversity of attacks that are in common use today. Given the diversity between web
sites, the best state of affairs is to use data collected from the server to be protected. These
data often have privacy issues associated with it, preventing other researchers from using
it and thereby hindering repeatability. This tension has resulted in some researchers using
open, less-representative data, while others use closed but accurate data sets.

The most famous open IDS data sets are the DARPA/MIT Lincoln Laboratories IDS
tests of 1998 and 1999 [77, 101, 102, 172, 173]. The researchers who generated these
sets collected data from computer networks, where some of the machines are attackers,
some victims, and some exist simply for traffic generation to make the detection task more
difficult. These data have since been used by many other researchers as a test dataset for
IDS ideas, because it is easy to see how the IDS would have fared, had it been in the
original Lincoln Laboratories test. The ability to reuse data allows comparison between
methods, but in order to make the comparison, a researcher must collect all of the relevant
papers and then combine the results to generate the comparison.

This data set is not without its critics. McHugh [185, 186] pointed out that the
DARPA/MIT Lincoln Laboratories IDS test used generated data, but the MIT researchers
never did any tests to show that the generated data was representative of real data. Addi-
tionally, they did no tests to verify that their attacks were representative of real attacks.

This data set is also quite dated, as web behavior has evolved significantly over the
years. In contrast with web servers in 1999, custom web applications are commonplace
today, and attacks target these applications as well as the server itself. Finally, the union
of both the 1998 and 1999 data sets contains only four attacks against web servers. At the
time the data was collected, web servers represented a smaller portion of an organization’s
network servers. When systems developed using these data are tested on a broader data

30 Chapter 2. Background

set, their performance suffers; confirmation of this assertion appears later this dissertation.
In spite of these limitations, Wang and Stolfo [263], Mahoney [178], and Mahoney and
Chan [179] Vargiya and Chan [254] used one or both of these data sets for testing their
IDSs, at least a portion of which were for protecting web servers. Estévez-Tapiador et al.
[86] used these data as normal behavior, but they developed their own attack database to
supplement the attacks in the Lincoln Labs data.

Recognizing the shortcomings of the Lincoln Labs data, other researchers have used
test data that is more representative for the servers the IDS is protecting. However, for
privacy reasons, these data are unavailable for others to use, leading to the inability to
compare IDS approaches directly. Other researchers gathered their own data. Kruegel
et al. [146, 147] tested their system using extensive normal data sets from multiple sites
(including Google). Unfortunately, these data are not available for other researchers5.
Another good part of their test data is that for a portion of their 12 attacks, they used
attacks against software that ran on one of their data source web servers. Tombini et al.
[248] collected data from two production web servers, one academic, and one industrial,
with a combined total of over five million HTTP requests from web server log files. Again,
for privacy reasons, these data are not available to other researchers. Estévez-Tapiador et
al. [86] used 1500 attack requests representing variants of 85 distinct attacks, giving them
the largest attack database reported to date.

Another important HTTP data issue is how much of the HTTP request the IDS used.
While most attacks to date have been in the requested resource path, some attacks target
other regions of the request. For example, Apache Sioux [54] exhausts Apache’s memory
by a repeated header line. Wang and Stolfo [263], in different experiments, modeled the
packet payload, the first and last 100 bytes, and also the first 1000 bytes of the connection.
Kruegel and Vigna and Kruegel et al. [146, 147] obtained their test data from web server
log files, and only looked at CGI programs. Web server log files are a popular data source,
and Tombini et al. [248] and Robertson et al. [218] used them. Unfortunately, log files
contain only a small portion of most HTTP requests, and attacks not in the resource path
are unlikely to appear in the log files. Another drawback with this data source is that by
the time an attack appears in the log file, it is too late to stop it. However, an approach

5The Google data was not even available to the researchers; they sent their programs to Google,
who returned the results.

2.4. HTTP 31

validated on log files could be reimplemented in front of the web server to protect it.

Testing with harmless attacks in the training data

One key problem not addressed by earlier anomaly detection systems for HTTP is the
presence of benign attacks in normal training data (introduced in Section 1.3). All of
the earlier IDSs pre-filtered attacks from the training data before building models. The
researchers using the MIT Lincoln Labs data used attack-free training data [263, 178, 179,
254]. Other researchers used web server log files, that allowed them to filter out invalid
requests (some fraction of which are the harmless attacks) [146, 147, 218, 248].

2.4 HTTP

My research uses HTTP to investigate anomaly detection algorithms. The information
in Section 2.4.1 describes and provides examples of the protocol. The protocol contains
structure; examples of the structure and illustrations of the different levels of variability in
the structure illustrate this feature of the data in Section 2.4.2. Section 2.4.3 introduces the
sources of diversity between web sites; an IDS using this diversity might be able to force
an attacker to customize an attack for each web site. Many attacks against HTTP exist;
Section 2.4.4 shows several and illustrates the diversity between attacks. Several features
of HTTP make it a difficult protocol for an IDS to use successfully; some of these features
eliminate algorithms from consideration. Section 2.4.5 explores this further.

2.4.1 The HTTP protocol

HTTP is a stateless protocol described by the Internet standard RFC 2616 [88] with exten-
sions described by other standard documents or software vendors. The protocol operates
on a client-server mode; the clients are either user agents (browsers) or web robots (e.g.,
Google’s indexing robot). When a client sends a request to the server, the stateless nature
of HTTP implies that the request will not necessarily be related to prior or future requests.
The server waits for a complete request, then sends a complete response. For example,

32 Chapter 2. Background

GET /aya2003/daily/20030715/thumbnails/009.jpg HTTP/1.1
Accept: */*
Referer: http://www.aya.org/aya2003/daily/20030715/
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5;

Windows NT 5.0; (R1 1.3))
Host: www.aya.org
Connection: Keep-Alive
Cookie: PHPSESSID=8ce5ac388fc6c1f07d213df818f5a2e9
Extension: Security/Remote-Passphrase

Figure 2.1: An example HTTP request from a user agent, Internet Explorer version 5.5
from Microsoft. One line was broken to allow it to fit on the page.

GET /˜bill/album/bill/petroglyphs_02/page1.html HTTP/1.0
Host: www.cs.unm.edu
User-Agent: WebVac (webmaster@pita.stanford.edu WebVac.org)
From: webmaster@pita.stanford.edu

Figure 2.2: An example HTTP request from a web robot agent, Stanford University’s
WebVac.

Figure 2.1 shows a sample request from a user agent, and Figure 2.2 shows one from a
web robot.

The requested resource path can be a file name, but the interpretation is up to the
web server. Some paths are intended to be interpreted by programs, and RFC 3875 [219]
describes the common use of common gateway interface (CGI) scripts. One of the primary
purposes of scripts is to provide a more dynamic experience for the user; therefore, a
method for passing parameters to the script is provided. Normally, the path to the script is
part of the requested resource path, the parameters follow a ? in the path, and are of the
form key=value. Figure 2.3 shows an example.

In order to allow a user to customize their view of a web site, several HTTP header
lines exist; examples of these lines appear in Figures 2.1, 2.2, and 2.3. For example, the
Accept-Language header line allows the user to specify their preferred language(s).
Some web servers will use this information to present a language-specific version of the

2.4. HTTP 33

GET /˜midhun/gallery/view.php?gid=2&phid=64 HTTP/1.1
Host: cs.unm.edu
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1;

rv:1.7.3) Gecko/20040913 Firefox/0.10
Accept: text/xml,application/xml,application/xhtml+xml,

text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://cs.unm.edu/˜midhun/gallery/view.php?

gid=2&phid=63
Cookie: PHPSESSID=383ca0237f3fbeecc253a988d99d8f70

Figure 2.3: An example HTTP request calling a CGI script and passing parameters. Three
lines have been broken to allow them to fit on the page.

site. These headers are usually optional, and a server is free to ignore them.

2.4.2 Structure in the HTTP request

While a HTTP request is a string, it is also structured. Some portions of the structure
vary more than others. For example, the method for the request is the first word in a
request. The vast majority of requests use GET, but other methods, such as HEAD and
POST exist, and extensions to the HTTP standard define more. For example, WEBDAV
[97]) defines PROPFIND. Only a web server supporting this extension would ever see this
method in non-attack traffic; other web servers will generate an invalid method error. As
a second example, the resource path usually represents a file in the filesystem. Since all
widespread operating systems use a tree-structured filesystem, a tree is likely to be a good
representation for this part of the request.

On the other hand, some areas of the request vary more. For example, the Referer
header provides the URI for the web page with a link to the requested page. When a
user searches for a page, the search parameters are included in the search engine’s URI in
the Referer field. The diversity of search engine referrers is thus limited only by the

34 Chapter 2. Background

GET /˜aaron/.../newmexico/BuddhistSprings_3.jpg HTTP/1.1
Accept: */*
-------: ----:---

Accept-Language: en-us
---------------: ----- -------
If-Modified-Since: Sun, 23 Mar 2003 07:37:28 GMT
If-None-Match: "3faffe-a52f-3e7d6438"
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT

5.1; SV1; .NET CLR 1.1.4322)
Host: www.cs.unm.edu
Connection: Keep-Alive

Figure 2.4: An example HTTP request that passed through a proxy on its way from the
client to the server. The proxy replaced some of the data by -s. Two lines have been
broken to allow it to fit on the page, and the ... in the path replaced two directory names
for the same reason.

different orderings of the different search terms that can be used to find the page on the
different search engines. In general, the Referer values are limited only by the pages
on the web with a link to the requested page; remember that remote web administrators
control their content, so in effect the diversity is limited to the imagination of all of the web
content developers who might want to link to the requested page. As another example, a
portion of the HTTP protocol was designed to allow a web proxy to query the status of
a resource before requesting it. To illustrate this, Figure 2.4 contains a sample request
that passed through a proxy. Note the date on the If-Modified-Since line and the
If-None-Match header containing a hash value. These hashes are designed to avoid
collisions, and therefore should be unique.

2.4.3 Potential sources of diversity between web sites

Different web sites use different servers and provide different content. This diversity be-
tween web sites means that if an IDS can avoid overgeneralizing, it might distinguish
between requests for different web sites. As will be shown in Section 5.1.1, the HTTP re-
quests to different web sites are sufficiently distinct under some measures that an anomaly

2.4. HTTP 35

detector trained for one site does not work well for others. If the IDS can distinguish be-
tween web sites, an attacker might be forced to craft a distinct attack for each web site,
slowing the attack rate to one more manageable by humans.

The first examples of diversity are the resource paths are chosen by the web site devel-
oper(s). They reflect the diversity of the developers’ organization strategies for a web site.
A request for the file /foo/bar/blah.jpg makes no sense at a web site that does not
even have a /foo directory.

Because HTTP is stateless, various methods of providing a (pseudo-) state exist. One
of these methods is the Cookie header. A cookie is a value that the server gives to the
client. When the client requests a new resource, it includes the values of relevant cookies.
Among other uses, cookies can customize a web site6. If the cookie makes proper use of
cryptography, it can be used to validate a claimed state and to ensure that the user follows
a prescribed path through a web site (e.g., the checkout process at an e-commerce web
site). Cookie values vary with:

• the software running the applications on the web site. For example, Java and PHP
both have library functions for session management, but they use different cookies
for this task.

• different library functions may set different cookies (for tracking different parts of
the user’s state).

• the developer of the web site can choose cookie names for custom parts of the web
site.

Some cookies contain hashes (e.g., the PHPSESSID in Figure 2.3).

While a couple of web browsers dominate the market, the list of web clients is large.
Wikipedia [9] lists 138 different browsers, not counting the microbrowsers used on phones
and other mobile computing devices. Add to this the diversity of web robots (at least one
per search engine as well as those supporting research or scanning for vulnerabilities),
then multiply by the number of versions of each of these and the list of potential values

6For example, FedEx.com stores the user’s country in a cookie; Google.com uses cookies to
store user search preferences.

36 Chapter 2. Background

for the User-Agent header becomes substantial. However, many web sites cater to a
focused set of people, and these people and the web robots visiting the site might therefore
represent a small subset of this potential diversity.

Beyond the user agent diversity, users in different portions of the world have different
preferred languages. For example, a web site in Chinese is more likely to receive requests
from people whose preferred language is Chinese than a web server hosting a web site
solely in Swahili.

Another source of potential diversity between web sites is the user’s preferred file
types. For example, users visiting a web site providing information for blind people will
likely have their browser configured to request audio versions when the server has them
available.

Few researchers have noticed or tried to exploit this diversity. Estévez-Tapiador et al.
[86] noted that even the two web servers in the MIT Lincoln Labs data received requests
with a different probability density function for the request length. Kruegel and Vigna
[146] noticed the diversity between their test data sets, but did not exploit it.

2.4.4 HTTP attacks

Attacks have a high diversity in location of attack and appearance, and differ from nor-
mal requests. To this point, most attacks have focused on the resource path. A few have
targeted other portions of the request, and it would be foolish to suggest that the code
that processes other portions of the HTTP request is invulnerable. The diversity of attacks
against HTTP is high, representing the diversity of bugs that programmers introduce into
code. This diversity implies that knowing one attack provides no guidance about the struc-
ture of the next one. This section illustrates some of this diversity by presenting example
attacks.

One famous attack in the resource path is Nimda [58]. This attack targeted a collection
of bugs in Microsoft systems, and used the fact that the default configuration enabled the
attacker to exploit the vulnerability. Figure 2.5 shows one example (of 16 in my attack
database). Another attack in resource path is the beck attack [50], shown in Figure 2.6.
This attack is contained in the MIT Lincoln Labs data.

2.4. HTTP 37

GET /scripts/root.exe?/c+dir HTTP/1.0
Host: www
Connnection: close

Figure 2.5: Example Nimda attack.

GET //
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Figure 2.6: The beck attack. The original had 790 /s; the extra /s have been deleted to
save space.

Another interesting example is illustrated by a vulnerability in Apache that allowed
inadvertent disclosure of information [52]; an example is given in Figure 2.7. When in-
cluding the ?M=D in the request, the attacker would bypass the index page provided by
the web developer, listing all files, including those intended to be more private. Search en-
gines such as Google used this bug to index pages that had no externally accessible links
to them.

Of the attacks that target a portion of the request not in the resource path, Figure 2.8
shows Apache Sioux [54]. This attack repeats a non-standard header line to cause a de-
nial of service. Another example is the Apache chunked transfer error [53] (Figure 2.9).
This attack exploited the fact that Apache had an error when the client requested chunked
encoding transfers. Whether or not a web server used this type of transfer depends on the

38 Chapter 2. Background

GET /˜immsec/data/SM/CERT/?M=D HTTP/1.0
Host: www.cs.unm.edu
User-Agent: msnbot/0.3 (+http://search.msn.com/msnbot.htm)
Accept: text/html, text/plain, application/*
Accept-Encoding: identity;q=1.0
From: msnbot(at)microsoft.com

Figure 2.7: The Apache M=D information disclosure attack.

data it served and the clients it serviced.

An attack type that is growing as the number of custom web applications grows is
against CGI scripts. An example of one of these attacks is shown in Figure 2.10—the NT
Index Server Directory Traversal attack [51]. This example was generated by typing the
URL into a browser, and therefore appears similar to normal requests from this same type
of browser.

2.4.5 Difficulties for anomaly detection posed by HTTP

Existing IDS solutions for web servers are weak (at best). One reason is that HTTP is
a difficult protocol for an IDS to handle. The challenges include the stateless nature of
HTTP, the nonstationary nature of web servers, the fact that HTTP requests are variable
length, the training data for anomaly detection is unbalanced, and training data with attacks
removed is difficult to obtain. Additionally, because harmless attacks are part of normal
Internet web traffic, an IDS should be able to tolerate them without producing alarms,
yet still detect novel attacks. These problems eliminate many algorithms that have been
successful elsewhere.

Since HTTP is stateless, the IDS cannot rely on relationships between requests,
sequence-based or otherwise; indeed, most existing attacks are only one request long. In
attacks against other services or at other layers of the International Standards Organiza-
tion (ISO) standard model for networking [123], an attacker might check if a vulnerability
is likely to exist before attempting to exploit it. My data sets show that probes for web
server vulnerabilities rarely precede actual attacks. With the use of botnets7 for attacks,

7A botnet is a collection of computers that an attacker has compromised and is using to conduct

2.4. HTTP 39

GET / HTTP/1.1
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux
User-Agent: sioux

Figure 2.8: The Apache Sioux attack. The original had 1000 User-Agent: lines; the
extra have been deleted in the version presented here. This attack was extracted from the
MIT Lincoln Labs data.

GET /x.html HTTP/1.1
Host: 192.168.x.x
Transfer-Encoding: chunked

80000000
Rapid 7
0

Figure 2.9: One of the Apache chunked transfer error attack variants. This attack is de-
scribed in [40].

40 Chapter 2. Background

GET /iissamples/issamples/oop/qfullhit.htw?CiWebHitsFile=
/../../winnt/system32/logfiles/w3svc1/ex000121.log&
CiRestriction=none&CiHiliteType=Full HTTP/1.1

Host: www.i-pi.com
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US;

rv:1.4.1) Gecko/20031114
Accept: text/xml,application/xml,application/xhtml+xml,

text/html;q=0.9,text/plain;q=0.8,video/x-mng,image/png,
image/jpeg,image/gif;q=0.2,*/*;q=0.1

Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

Figure 2.10: One example of an NT Index Server Directory Traversal attack. Three lines
were broken to allow it to fit on the page.

the attacker and legitimate user might be using the same computer. Thus, a web-server
anomaly detection method must be able to analyze isolated transaction requests and deter-
mine whether or not they represent an attack on the server.

Beyond the stateless nature of HTTP, web site content changes rapidly [205]. An e-
commerce site adds new products and removes obsolete ones. A university department
web site changes as the semesters pass, classes come and go, new schedules are released,
etc. Blogs are updated as often as the blogger provides new essays, often on a daily basis.
Results in Section 5.1.2 show that the cs.unm.edu web site changed over the data collec-
tion period. Changes in content imply changes in the HTTP requests from the client to
the server, resulting in changes in web server behavior. In addition, new versions of ex-
isting web browsers and new web browsers and robots are frequently introduced. In order
to be successful, any IDS must be able to cope with this ever-changing (nonstationary)
environment.

The challenges described above restrict the algorithms that can be used. The IDS must
be able to adapt as the web server content or software changes, and this adaptation must
not require time-consuming retraining. A web server must be closely watched during the

the attack. These computers are often home machines where the Internet connection is a broadband
connection such as cable or digital subscriber line (DSL).

2.4. HTTP 41

training period to ensure that no successful attacks occur, otherwise the anomaly detec-
tion system learns harmful behavior as normal. This higher human cost affects systems
that need periodic retraining more than systems that can adapt as the web site changes.
Chapter 4 discusses which of the algorithms applied to HTTP are well-suited to nonsta-
tionary data, and the test results in Section 5.1.2 show the algorithms’ accuracy under these
circumstances.

Additionally, as shown in Chapter 5.1.1, web server content, applications, and clients
differ from each other. An IDS protecting a web server should be able to exploit this
diversity to eliminate the risk of widespread attacks. Forcing attackers to craft a custom
attack for each web site would change the timescale of the attack from one that occurs
in computer time to one that occurs in human time, allowing human administrators to
intervene and reduce the damage.

Another property of HTTP requests that limits the choice of algorithms is that a HTTP
request is not fixed length. The path of the requested resource varies, and most header lines
in the request are optional and of variable length. Any learning algorithm that requires
fixed-length input, such as a neural net [195], will not work.

Many algorithms (including some that have been used for anomaly detection else-
where) require similar amounts of normal (non-attack with harmless attacks, or at least
non-attack) and abnormal (attack) data. A collection of normal HTTP requests can be ob-
tained by intercepting the requests the server receives. A similar sized data set for attacks
does not exist8.

As illustrated earlier in Section 2.4.4 and shown to be true for my test data sets in
Section 5.1.3, the diversity in attacks exceeds the diversity in non-attack requests. Be-
cause of this diversity, a small database of attacks is unlikely to be useful in predicting
the next attack against the server. Therefore, an anomaly detection system for web servers
must recognize patterns based on a set of normal requests—this is the definition of a one-
class learning problem. As was shown in Section 2.2, limiting the learning to one-class
algorithms limits the possible algorithms.

8For example, my attack database contains 63 entries and is the largest open database of those
reported in academic literature (Chapter 2). One of my training data sets contains 390,911 requests.

42 Chapter 2. Background

GET /error/HTTP_NOT_FOUND.html.var HTTP/1.1
Host: www.i-pi.com
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.6)

Gecko/20040114
Accept: text/xml,application/xml,application/xhtml+xml,

text/html;q=0.9,text/plain;q=0.8,image/png,image/jpeg,
image/gif;q=0.2,*/*;q=0.1

Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

Figure 2.11: An example of an attack exploiting the Apache Win32 .var file web path dis-
closure bug. Two lines have been broken to allow them to fit on the page. This attack was
generated using the Firefox web browser, hence it is similar to other, browser-generated
requests.

2.4.6 Generalization and HTTP

The correct amount of generalization is necessary for an anomaly detection system to be
accurate (Section 1.1). As an example of overgeneralizing with HTTP, consider a measure
using the length of a HTTP request. Attacks such as the one shown in Figure 2.11 can
easily be within normal; this one is 432 characters, placing it within the mean ±σ for the
filtered cs.unm.edu 2004-11-12 training data9. For this data set, the mean length is 343
characters and sigma is 126, leading to a one standard deviation range of 217 to 469.

As an example of undergeneralizing, consider a simple anomaly detector that mem-
orizes what it sees and flags anything not in this set as abnormal. This algorithm would
undergeneralize whenever the training data is a proper subset of the normal data, for exam-
ple when the set of normal is unknown or infinite. As a concrete example, this algorithm
would undergeneralize on HTTP requests, because some proxies query to see if a page
has been modified before requesting it (for one example, see Figure 2.4). These queries
contain dates, and as time passes, the dates will change. Therefore, this simple anomaly
detector would incorrectly flag normal requests as abnormal due to undergeneralizing.

9This data set is described in Section 4.3.

2.5. Summary 43

A particular problem for anomaly detection systems is mixed high- and low-variability
data. If the algorithm treats each field uniformly, then it might undergeneralize high-
variability data, overgeneralize low variability data, or both. The issue with many real
systems, such as HTTP, is that different parts of the data have different levels of variability.
For example, the header line keys such as Host and its values change little—the key
introduces the host names that are used to describe the web server, presumably a small,
finite set. Similarly, Connection: has two normal values, keep-alive and close.
For these portions of the HTTP request, memorizing the values regularly seen is likely to
be accurate without consuming a large amount of memory.

On the other hand, some of the HTTP request is more variable. Fields such as
If-None-Match: include hashes, If-Modified-Since: contains dates, and
cookies containing session identification strings used by languages such as PHP, Java, and
ASP.NET are cryptographic hashes.

For an anomaly detection system working with HTTP, the model needs to have the
resolution to be able to distinguish the different parts of the data. The algorithm must be
able to apply different levels of generalization to different portions of the data.

2.5 Summary

Intrusion detection has existed since the early 1970s. The first attempts focused on insiders
and host-based intrusion detection. When networks became more common, network-based
IDSs at the various levels of the ISO protocol layer were developed. Unfortunately, for
Internet servers such as web servers, these approaches are insufficient. To try to remedy
the deficiency, researchers investigated intrusion detection at the HTTP layer.

Researchers have developed three architectures for intrusion detection: signature de-
tection, specification, and anomaly detection. No general theory of anomaly detection
exists, resulting in a need for rigorous testing to determine which systems perform best,
and under what circumstances. Unfortunately, good testing is rare because it is difficult.

Good testing requires data representative of the protected web servers and data repre-
sentative of attacks. The most commonly-used data sets from MIT Lincoln Laboratories

44 Chapter 2. Background

are not representative of today’s web servers, and they contain only four HTTP attacks.
Some researchers, noticing this problem, obtained their own data. Unfortunately, these
data are not publicly available, hindering direct comparisons between IDS systems or al-
gorithms.

Of the three IDS architectures, this dissertation focuses on anomaly detection. Anom-
aly detection systems have the potential to detect novel attacks, but they sometimes suffer
from high false positive rates. Approaches to solve this problem include: trying other
algorithms, merging data from multiple, presumably independent sensors, and grouping
putative attacks into classes. Research presented in this dissertation provides better guid-
ance about how false positives can be reduced by increasing generalization, but only in
portions of the data so that the system will be less likely to also miss attacks.

Chapters 5 and 6 show that controlling generalization is necessary for an accurate IDS.
However, only one research group [168] has investigated the relationship between gener-
alization and detector accuracy, and interestingly, their work contradicts results reported
by other researchers.

This dissertation uses anomaly detection on HTTP requests sent to web servers to
investigate anomaly detection system accuracy. HTTP is a stateless protocol that contains
structure that can be useful in separating high- and low-variability portions of the request.
The HTTP requests exhibit a diversity between web sites. Few researchers have noticed
and none have attempted to exploit this diversity to slow attackers.

HTTP attacks have an even higher level of diversity than normal requests, indicating
that knowledge of one attack will be of limited use in predicting other attacks. HTTP
also presents other challenges for developers of IDSs. The challenges include the stateless
nature of HTTP, the nonstationary nature of web servers, the fact that the HTTP request is
variable length, the training data for an anomaly detection is unbalanced, and training data
with attacks removed is difficult to obtain. Additionally, since Internet-connected web
servers are routinely attacked with harmless attacks that are not (and might never have
been) a threat to the server, the anomaly detection system should not produce alarms for
these attacks. This requirement places additional stress on anomaly detection systems.

Only one of the previous anomaly detection systems for web servers used the complete
HTTP request. The rest focused on the requested resource path, the first n bytes, or, in one

2.5. Summary 45

case, part of the requested path. If the IDS does not make use of the whole HTTP request,
it will miss some attacks. The work presented in this dissertation is one of the first to use
the complete HTTP request.

46 Chapter 2. Background

47

Chapter 3

Algorithms for HTTP anomaly detection

As mentioned in Chapter 2, several algorithms have been proposed for anomaly detection
with HTTP. I implemented those that had been tested on HTTP when I began the research.
I also implemented two algorithms that seemed promising for the HTTP domain: n-grams
and DFA induction. I re-implemented previously-proposed algorithms for three reasons:

• I wanted a testbed where I could see if the results described in the papers were
reproducible.

• I wanted to explore the algorithms in ways not originally intended by the authors.

• I wanted a consistent and comparable environment for all algorithms.

This chapter describes the algorithms, including any implementation issues I faced, de-
cisions I made in the event of unclear descriptions in the papers and differences between
the description in the paper, and my implementation. Because HTTP is a nonstationary
environment (Section 2.4.5), if the author(s) did not address this issue explicitly, I discuss
potential modifications that would to enable it to work with nonstationary data. For each
algorithm, I also discuss the mechanism by which the algorithms generalize and if they
distinguish between various parts of the HTTP request. I use this analysis to predict if
the will algorithm over- or undergeneralize, and how it will perform when tested on data
containing attacks.

48 Chapter 3. Algorithms for HTTP anomaly detection

3.1 Request length

Observing that buffer overflows and cross-site scripting attacks tend to be longer than
normal CGI attribute values, one measure used by Kruegel and Vigna [146] was the mean
µ and variance σ2 of attribute lengths. These values were calculated from training data.

For testing, the system calculated the probability p that an attribute would have the
observed length l by:

p =
σ2

(l − µ)2

Kruegel and Vigna did not state how they handled the case l = µ; in my testing, this
situation never arose. A likely explanation for l �= µ is that, for real data, l is an integer
and µ is probably not.

In my implementation of this method, the algorithm can be used either as part of the
linear combination (Section 3.7) or as a standalone algorithm.

The length measure generalizes by classifying any string with length is near the mean
as normal. When trained on filtered data, this measure is likely to detect attacks such as
cross-site scripting and buffer overflows, because they are typically longer than normal
requests. This measure will likely miss attacks similar in length to normal requests. The
length measure does not distinguish between parts of a request. This means it is unlikely
to perform well when trained on data containing attacks.

For nonstationary data, µ and σ2 could be updated via Knuth’s observation that given
a new data point xN+1, a new µ� can be generated from µ via:

µ
� = µ +

xN+1 − µ

N + 1

For nonstationary data, it might be possible to weight the new observations in such a way
to diminish the importance of older values. Kruegel and Vigna did not mention using the
algorithm with nonstationary data; I did not investigate using this algorithm in a manner
adapted for nonstationary data.

3.2. Character distributions 49

3.2 Character distributions

Buffer-overflow attacks often have a distinctive character distribution. Two research groups
have compared the character distribution of test instances to the distribution in the training
data. Wang and Stolfo [263] used a character distribution metric on similarly-sized pack-
ets. Kruegel and Vigna [146] used a character distribution as one of six tests in the linear
combination (Section 3.7).

Character distributions generalize by accepting any string having a distribution of char-
acters matching the learned distribution. When trained on filtered data, these measures are
likely to detect buffer overflow, cross-site scripting, and attacks such as beck (Figure 2.6).
These measures are unable to distinguish between parts of a request, so they are unlikely
to perform well when trained on data containing attacks.

Mahalanobis distance

Wang and Stolfo [263] measured the Mahalanobis distance, d, between two distributions.
Given the new feature vector x and an averaged feature vector y, then

d
2(x, y) = (x− y)T

C
−1(x− y)

where C−1 is the inverse of the covariance matrix, with Cij = Cov(yi, yj). Wang and
Stolfo assumed that the bytes in a request are statistically independent. This assumption
means that the covariance matrix is diagonal, and the diagonal elements give variance of
each byte. Next, to speed up the calculation, they derived a measure they called simplified
Mahalanobis distance:

d(x, y) =
n−1�

i=0

| xi − yi |

σi

n is 256 for the ASCII character set. It is possible that the standard deviation σi could be
0, implying an infinite distance. To avoid this situation, they used α as a smoothing factor:

d(x, y) =
n−1�

i=0

| xi − yi |

σi + α
< ∞

For α, Wang and Stolfo did not specify a value although they discussed determining it
automatically (without specifying how). I used 0.001, but this value is a parameter and

50 Chapter 3. Algorithms for HTTP anomaly detection

can be changed at run time. By setting the distance threshold to 256, they allowed a
fluctuation of one standard deviation. In effect, their system considers rare distributions
anomalous; this explains why when they tested the system on the training data, it did not
have perfect performance.

For the actual implementation, I used Knuth’s method (described in Section 3.1). Not-
ing that the standard deviation is the square root of the variance and the definition of
variance using expected values E() can be written as:

Var(X) = E[X − E(X2)] = E(X2)− [E(X)]2

By keeping track of the average of the frequencies and the square of the frequencies,
calculating the standard deviation is fast. This approach means that new observations can
be incorporated into the measure, a method for handling nonstationary data. However,
they provided no way of “forgetting” old information, although it might be possible to
weight the new observations more than the x. Neither Wang and Stolfo nor I pursued this
idea.

For my implementation of this distance metric, given an instance, I calculate relative
character frequencies (f(c) for character c) of a request. Using Knuth’s method, I record
the mean and mean squared for each character seen from the training requests (two 256-
element arrays: xc and σc). Then the distance is calculated:

d =
255�

c=0

| f(c)− xc |

σc + α

Since d is finite, I map it into [0, 1] via:

s =

1 d ∈ [0, 1]

1
ln (d+e−1) d > 1

Note that e is the base of the natural logarithms. The mapping for values of d ≤ 1 is
justified because the larger the distance, the more abnormal the data item. Experience
shows that requests from the training data set have a distance d > 1, so the few requests
with a small distance are clearly close to the learned distribution.

Wang and Stolfo correlated packet length with character frequencies. My data consists
only of the data at the application layer; the packets containing the data were not stored.
Therefore, I apply this method to the complete request.

3.2. Character distributions 51

χ2 of idealized character distribution

As one of six tests, Kruegel and Vigna [146] use a measure of relative character frequency.
They produced a sorted list of character frequencies fc containing the relative frequency
of the character c. Their example is the string passwd, where the absolute frequency
distribution is 2 for s, 1 for a, d, p, and w, and 0 for all other characters. The relative
frequencies are then f = (1

3 ,
1
6 ,

1
6 ,

1
6 ,

1
6 , 0, ..., 0); note that f6 through f256 are 0. Kruegel

and Vigna noted that relative frequencies decrease slowly for non-attack requests, but have
a much steeper decline for buffer overflows, and no decline for random data.

They called the character distribution induced from the training data the idealized char-
acter distribution (ICD) and noted that

�256
i=1 ICD(i) = 1.0. As mentioned in the prior

paragraph, the ICD is sorted so most common frequency is ICD(1) and the least com-
mon is ICD(256). ICD is calculated during training as the average over the character
distributions of the requests in the training data.

For testing, they binned the ICD (the expected distribution) and the distribution of the
test request (observed distribution) into six bins as follows:

Bin 1 2 3 4 5 6
i 1 2–4 5–7 8–12 13–16 17-256

where i ∈ [1, 256]. For example, bin 4 contains
�12

i=8 ICD(i). Once binned, they then
use a χ2 test to determine if the character distribution of CGI parameter values is similar
to that of the training data:

χ
2 =

6�

i=1

(Oi − Ei)2

Ei

where Ei is bin i for the ICD, and Oi is bin i for the observed distribution. χ2 is compared
to values from a table and the corresponding probability is the return value.

Kruegel and Vigna did not address nonstationarity explicitly, but, by using Knuth’s
method, new observations could be added to the ICD. For forgetting older data, it might
be possible to weight the new observations more than the older ones.

52 Chapter 3. Algorithms for HTTP anomaly detection

��������a ��

����������
b ��

�� ��������c ��
��������
d

��

Figure 3.1: Example directed graph induced by abcd and dbac.

3.3 Ordering of parameters

For other measures in their system, Kruegel and Vigna [146] observed that since CGI
parameters are set by one or more programs, the normal order of the parameters is often
fixed. If a human generates the path, the order could be different, and they presumed this
change indicated a potential attack.

For learning the order of CGI parameters, they built a directed graph representing the
order of the attribute values. Testing was then a simple matter of attempting to traverse the
graph, with 0 or 1 indicating success.

My implementation of this algorithm can be used either as part of the linear combina-
tion (Section 3.7) or for more generic data items. However, I did not perform tests with
this algorithm as a stand-alone algorithm because it was not clear how to map an entire
HTTP request into an order relationship that differed from the DFA and n-gram methods.
Additionally, this algorithm considers only the order of the parameters, and ignores the
values (other measures in the linear combination use values). Testing of other algorithms
such as the DFA showed that token values were necessary for reasonable accuracy.

Kruegel and Vigna did not discuss nonstationary data. It should be possible to add
additional edges into the graph, and by keeping track of usage for the edges, lesser-used
(and therefore presumably older) edges could be dropped.

This algorithm generalizes by allowing orderings not originally seen in the training
data. For example, if the training data consisted of abcd and dbac, the directed graph
would be as in Figure 3.1, and acdb, bacd, and cdba are also in the directed graph, and
hence be considered normal. Depending on the data tokenization method, this algorithm
has the potential to distinguish regions of the request.

3.4. Presence or absence of parameters 53

3.4 Presence or absence of parameters

Kruegel and Vigna [146] noted that CGI parameters are provided by a program and there-
fore the same parameters are provided, even if one or more have no value. The result is a
regularity in the number, name, and order of the parameters. Kruegel and Vigna’s system
learned the parameters present for a given CGI program path. When testing an instance,
the return value is 1 if the same parameters appeared in the training data as in the test
instance, and 0 otherwise.

The presence or absence algorithm requires the CGI program path in addition to the
parameters. This requirement for additional information means it does not meet the algo-
rithm interface standard for the test object. I used it only as part the linear combination
(Section 3.7).

The generalization of this algorithm is limited. If the program /foo/bar was ob-
served at various times with individual parameters a, b, and c, then this measure would
also consider normal any combination of these parameters. It would be up to the ordering
of parameters algorithm to identify that the combination had not been seen previously.

To handle nonstationary data, this algorithm could be modified to record the frequency
of remembered parameters and paths. Non-used paths or parameter lists could be dropped
and newer ones added.

3.5 Enumerated or random parameter values

Similar to the presence and absence test, Kruegel and Vigna also noted that some CGI
parameter values are selected from a finite set (enumerated), and others are effectively
random. In the training phase, given instance number i, the anomaly detection algorithm
calculates two functions:

f(i) = i

g(i) =

g(i− 1) + 1 if the value is new
g(i− 1)− 1 if the value is not new
0 if i = 0

54 Chapter 3. Algorithms for HTTP anomaly detection

Note that f is strictly increasing, and g increases only when new values appear in the
training data. The correlation parameter ρ is

ρ =
Cov(f, g)�

Var(f)Var(g)

If ρ < 0 then f and g are negatively correlated, and the values are presumed to be enumer-
ated, and if ρ > 0 then the values are assumed to be random. Kruegel and Vigna did not
mention the case ρ = 0; in my implementation, random is presumed from ρ ≥ 0. If the
values are enumerated, they are remembered for testing.

When testing, if the training data indicated the values were random, then the similarity
is 1. If the training indicated that the data comes from a set (i.e., it is enumerated) and the
value is in the learned set, the similarity is also 1. If the value is not in the learned set, the
return value is 0.

This test is not easily modified for nonstationary data.

If the algorithm determines a parameter value is enumerated, then it performs no gen-
eralization. On the other hand, if the parameter value is random, everything is accepted.
The algorithm therefore might be subject to both under- and overgeneralization problems,
depending on the specific CGI program. For example, if one of the parameters was a user
name, then the list of valid users would be enumerated (assuming a sufficiently large train-
ing set). Any time a new user was added, the system would flag references to this user
as abnormal. On the other hand, if a parameter was deemed to be random, then buffer
overflow and cross site scripting attacks are two of the attacks that would be missed.

It was unclear how to apply this measure to the complete HTTP request. Using the
HTTP header keys as parameters and the HTTP header values as values resulted in the test
system running out of memory during training. Therefore, I used it only as a part of the
linear combination (Section 3.7).

3.6 Markov Model

A Markov model is a nondeterministic finite automaton (NFA) with probabilities associ-
ated with the transitions. A Markov model differs from a DFA in that multiple transitions

3.6. Markov Model 55

might exist for a given token, and a probability is associated with each transition. The
probability of a given string of tokens can be calculated as the sum of the probabilities
of each independent path through the NFA that can generate the string of tokens. The
probability of a given path is the product of the probabilities of each of the transitions, and
this probability is interpreted as the similarity measure for the testing. Similar to a DFA, a
Markov Model represents the structure of the HTTP request through a directed graph.

For an anomaly detection system, the traditional approach is to build an NFA that
exactly matches the training data. Through a series of state merging operations, it is com-
pressed and hence it becomes more general (and, as a side effect, it becomes a DFA with
probabilities). For more details about Markov model induction, see the work by Stolcke
[245] and Stolcke and Omohundro [244]. Warrender et al. noted that building a general-
ized Markov model is O(n2) [264].

Markov models have been shown to be an effective but time-consuming algorithm for
intrusion detection [264]. Kruegel and Vigna [146] used a Markov model as a portion of
the IDS for protecting web servers, but after noting that the probability of any given string
is small, they used their Markov model as a DFA, noting only whether or not the model
was capable of generating the string in question.

My Markov model implementation is a modification of the DFA algorithm described
in Section 3.9. When learning the DFA, the number of times that a transition is taken is
recorded, and the probability of taking a given transition is the fraction of the sum of all of
the transitions that the taken transition represents. This approach is not exactly the same
as a more traditional Markov model, but the result is similar in size and effect to a Markov
model after generalization.

It is not clear how to modify the Markov model for nonstationary data using the tradi-
tional method for inducing the model. In my implementation, the same update procedure
for the DFA can be applied to the Markov model.

Generalization in the Markov model occurs via the state merging operations, that might
allow combinations not seen in the training data. This generalization is limited, and novel
values will result in a probability of 0. Therefore, in a nonstationary environment, the
Markov model is likely to perform poorly.

56 Chapter 3. Algorithms for HTTP anomaly detection

When trained on tokens, the Markov model can distinguish between regions of the
input data, and hence it should be able to distinguish between attacks in different portions
of the test data instances.

3.7 Linear combination

The system developed by Kruegel and Vigna [146] was limited to HTTP CGI requests,
and consisted of a linear combination of the following algorithms:

Length for CGI parameter values.

Character distribution for CGI parameter values.

Markov model for learning the structure of parameter value strings. They mapped all
lowercase letters to a lowercase letter class, and used the Markov model as a DFA to
indicate only the ability to generate the string and not the probability of generating
it.

Enumerated or random parameter values for CGI parameter values.

Presence or absence of parameters.

Order of parameters.

The threshold for normal for each algorithm was determined dynamically, chosen to be
10% above the highest value obtained. Calculating the threshold requires a second pass
over the training data. This two-pass approach makes handling nonstationary data difficult.

For testing, each algorithm was equally weighted and the system produced a binary
normal/abnormal signal. My implementation of this algorithm returns the average of the
six measures.

The generalization performed by this measure is the generalization performed by the
various algorithms. My implementation accepts only those data instances that are accepted
by most of the individual algorithms. The method for combination controls how important

3.8. n-grams 57

the individual algorithms are. If the combination was an AND operation, then any one al-
gorithm could cause the rejection of a data instance. On the other hand, if the combination
was an OR operation, then acceptance by any algorithm would result in acceptance by the
combination.

Because some algorithms undergeneralize and others overgeneralize, the algorithm for
combination affects how the combination generalizes. In the AND combination, undergen-
eralization of a single algorithm results in the combination undergeneralizing. However, in
the OR combination, overgeneralization by a single algorithm results in the combination
overgeneralizing. Using the average helps reduce the problems caused by a single algo-
rithm under- or overgeneralizing, assuming the remaining algorithms generalize properly.

The ability to distinguish regions is controlled by the various algorithms and their
ability to distinguish the regions.

3.8 n-grams

An n-gram [57] is generated by sliding a window of length n across a string of tokens. The
result is a set of strings of length n. For example, given the string abcdef and n = 3, the
resulting 3-grams are: abc, bcd, cde, and def.

When used in intrusion detection, the n-grams in the test instance are compared to
those in the training data. The similarity measure might take into account the frequency of
occurrence of the n-grams in the training data, or it might simply consider the presence or
absence of the test n-grams in the set of n-grams learned from the training data:

s =
of n-grams from the request also in the training data

of n-grams in the HTTP request
∈ [0, 1]

The results in this dissertation are based on the second version. Because the n-gram
includes context for a given token, it also encodes the structure of the HTTP request,
although in a different manner from the DFA and Markov Model. Therefore, the n-grams
can distinguish between regions in a HTTP request.

The n-gram algorithm can use either tokens or strings from the data source. Early
testing showed poor accuracy on strings, so the results reported in this dissertation uses

58 Chapter 3. Algorithms for HTTP anomaly detection

tokens.

The n-grams induce a directed graph. The generalization therefore is similar to that
described for the order of parameters algorithm (Section 3.3).

For nonstationary data, the algorithm can add n-grams to the set. By keeping track of
usage frequency of each n-gram, lesser-used ones can be deleted.

3.9 DFA

Although the formal grammar that describes HTTP in standards documents [88] is context-
free, I discovered that in practice a given web server uses only a subset of the full HTTP
language. As a result, most HTTP requests can be described using the simpler DFA rep-
resentation. Because the DFA encodes the relationship of various potions of the data to
each other, it can distinguish between areas in the HTTP request. I implemented a DFA
induction algorithm known as the Burge DFA induction algorithm, and added heuristics
that help keep the learned DFA tractable and able to process nonstationary data. These are
described below.

The Burge DFA induction algorithm is a one-pass, O(nm) algorithm, where n is the
number of samples in the training data set and m is the average number of tokens per
sample. The algorithm does not require negative examples, and as I will describe, the
resulting DFA can be modified easily to deal with a nonstationary environment.

To model a web request, I construct an initial DFA as follows. First, let Σ = {T1, . . . , Tn}

be the set of n unique tokens in the HTTP request, and let L = (l1, . . . , lt) with li ∈ Σ

be the series of t chronologically ordered tokens from the HTTP request, with FINISH

added in as a special token to indicate the end of the request. Let G = (S, A) be a DFA
with states S and transitions A. S = {SSTART, S1, . . . , Sn, SFINISH} where states S1, . . . , Sn

have a one-to-one correspondence with tokens T1, . . . , Tn, and SSTART and SFINISH are addi-
tional states. E(T) is a function that returns the state to which the token T will cause a
transition. A = {Ai,j} where Ai,j indicates a transition labeled Tj between states Si and
Sj .

Given these definitions, the algorithm proceeds as follows:

3.9. DFA 59

��������S4
��������S4

T2

���
��

�
��������S4

T2

���
��

���������ST ��������S3
��������S2

��������F ��������ST
T3�� ��������S3

T4 ������ ��������S2
��������F ��������ST

T3�� ��������S3

T4 ������

T1
���

��
�

��������S2
T3�� ����������F��������S1

��������S1
��������S1

T2

������

(a) (b) (c)

Figure 3.2: The DFA induced by the Burge algorithm for the series of tokens
T3, T4, T2, T3, T1, T2. a) The initial empty DFA with one state for each token. The ST
and F nodes correspond to the SSTART and SFINISH states. b) The state of the DFA after the
tokens T3, T4, T2 have been read. c) The final state of the DFA after the entire series of
tokens has been read in. Note that all states corresponding to consecutive tokens in the
HTTP request are connected with a transition.

1. Set the current state C = SSTART, A = ∅.

2. For j = 1 to t :

(a) If AC,E(lj) �∈ A then A ← A ∪ AC,E(lj)

(b) C ← E(lj)

3. A ← A ∪ AC,SFINISH

A DFA G is constructed with one state for each unique token in the HTTP request,
as well as the two additional states SSTART and SFINISH. At the start of the algorithm, no
transitions are present in the DFA and a current state C is set to the SSTART state. Then, in
step 2, tokens are sequentially processed from L. In step 2a, if no existing transition exists
between the current state and the state corresponding to the current token, the transition
is created and the new transition is labeled with the current token. C is then updated to
be the state corresponding to the current token. After all the tokens have been processed,
a transition from C to SFINISH is created. Figure 3.2 shows an example. At this point, the
DFA model has one state corresponding to each unique token present in the HTTP request,
and the DFA has a transition between any two states that were seen consecutively in the
request. Each transition is labeled with the token corresponding to the destination state.

Additional requests are processed by running the algorithm with the tokens from the
new request, adding nodes as needed for new tokens and adding edges to the DFA as

60 Chapter 3. Algorithms for HTTP anomaly detection

��������ST
T3 �� ��������S3

T1,T4 �� ��������S1, S4
T2 �� ��������S2

��

T3

��
��������F

Figure 3.3: Compressed version of the DFA in Figure 3.2c. States that have identical
sources and destinations (S1 and S4) are compressed into the same state (“S1, S4”). Tokens
that originally caused a transition into one of the uncompressed states cause transitions into
the compressed state.

described above. As the learning proceeds, the compacting processes described below are
regularly performed.

Compacting and Generalizing the DFA model

In practice, the DFA induction algorithm described above leads to large, complex DFAs
that potentially could grow without bound in dynamic environments with perpetually novel
HTTP requests. I use two techniques to manage this complexity, one that compacts an ex-
isting model and one that adds states and transitions incrementally and “forgets” structures
that have not been used.

To reduce DFA size, the algorithm searches at regular intervals for nodes that have the
same source and destination (sorting the nodes by source and destination can allow this
comparison to run in O(n log n) time). These nodes are combined into a single node, as
illustrated in Figure 3.3.

This compression is a form of generalization. For example, suppose that during learn-
ing the DFA was compressed, producing Figure 3.3. Then, as learning continued, the T1

token was observed leading to the compressed state (S1, S4). Given the DFA’s current
topology, the next expected token would be T2. However, if a new token, T5, was observed
before the expected T2 token, the DFA learning algorithm would insert a new state, S5,
into the DFA (Figure 3.4). This new topology is a generalization of the observed token
sequence because either a T1 or T4 token followed by a T5 token will lead to the new S5

state (Figure 3.5). Thus, modifying the topology of a compressed DFA allows the resulting
DFA to generalize from any of the constituents of a compressed node to other similar but
unobserved behavior involving the node’s other constituents.

3.9. DFA 61

��������S5

T2

���
��

��
�

��������ST
T3 ����������S3

T1,T4 �� ��������S1, S4
T2 ��

T5

��������� ��������S2
��

T3

��
��������F

Figure 3.4: Compressed DFA from Figure 3.3 after additional learning.

��������S4

T5
��

T2

���
��

��
��

�

��������ST
T3 ����������S3

T4

����������

T1
���

��
��

��
�

��������S5
T2 ����������S2

��

T3

��

��������F

��������S1

T2

����������

T5

��

Figure 3.5: The DFA in Figure 3.4 without compression. The dotted link between states
S1 and S5 indicates what is generalized when learning on the compressed DFA.

Without compression before the T5 token was observed, this generalization would not
occur because once the T5 token is observed, the S1 and S4 states can no longer be merged.
However, the method might miss some generalizations by not compressing the DFA be-
fore generalizable behavior is observed. This limitation could be addressed by counting
the number of times certain links have been observed and compressing all states that differ
by a small number of incoming and outgoing link counts. It is not clear that this gener-
alization is valid. However, without regular compression of the nodes, the DFA grew too
large for memory on some test data. Future work includes further investigation of this
generalization.

3.9.1 Determining similarity between a request and the DFA

A DFA by itself is simply a language acceptor; however, I expect some variation in normal
behavior (Section 2.4.5) not covered by the generalization algorithms. In this section I

62 Chapter 3. Algorithms for HTTP anomaly detection

define a distance measure for comparing a DFA model with a web request to determine
how anomalous it is. With this measure, I can tune the relative rate of true positives to
false positives.

During testing, the DFA model is used differently from a traditional DFA. When a
token is processed that is illegal according to the DFA, a “missed token” event is recorded
and an attempt is made to resynchronize. For example, in Figure 3.3, suppose the current
state was S1, S4 and the next token was T3. If the edge corresponding to the next token
exists elsewhere in the DFA, then the tester could transition to the edge’s destination.
Continuing the example, the new current state would be S3, and a missed-token event
would be recorded. If no such edge exists, a second missed-token event is recorded, and
the tester moves to the next token, again attempting to resynchronize. The number of
missed tokens provides an estimate of how anomalous the request is with respect to the
DFA. The similarity s between a HTTP request and the DFA is calculated by:

of tokens reached by valid transitions
of tokens in the HTTP request

∈ [0, 1]

The similarity measure reflects the changes that would have to be made to the DFA for it
to accept the request (i.e., for each missed token a new transition would have to be added).
Note that the significance of a single missed token by this measure depends upon the
total number of tokens in the request. One benefit of this sensitivity is that more complex
requests (i.e., those specifying many of the HTTP header options) have more room for
slight changes and can still be accepted as normal. A measure that is less sensitive to
the token count is likely to have a higher false positive rate due to the common, benign
variations in complex requests.

Unlike Markov models, the DFA does not encode probabilities for each link in the state
transition table. Rarely accessed parts of a web site (e.g., pages “about this web site”) or
rarely used configurations of web clients can thus be tolerated. Of course, the DFA itself
is induced from an observed sample of requests, and the more common examples are more
likely to be present in the sample.

The distance measure is a form of generalization. If an attacker generates an attack
containing a large enough number of normal tokens, she can hide her attack from the DFA
because in this circumstance it would be overgeneralizing.

3.10. Targeted generalization heuristics 63

Nonstationarity

To track web sites that change over time, the learned model needs to update itself auto-
matically. When a HTTP request arrives that is not captured by the current DFA but has
a high similarity value, the DFA is modified to accommodate the request. The threshold
for this operation is controlled by a parameter specified by the system administrator; the
threshold would normally be set near 1.0, so that only requests that are very similar to the
DFA are learned. For the results presented in this dissertation, the value is set to 0.9 unless
otherwise stated.

To detect unused edges, a counter is updated every time an edge is traversed. The coun-
ters are used during periodic pruning sweeps when infrequently used edges are deleted.
After each sweep, all counters are reset to 0. A parameter controls how aggressive the
pruning pass is, and if it is set to 0, only edges that have not been used since the last
pruning pass are deleted. This allows recently added edges to survive for one full interval
between prunings.

3.10 Targeted generalization heuristics

I implemented several heuristics that increase the generalization for specific locations in
the request. The parser checks to see if the high-variability area values are well formed,
and replaces them with an indication of if the value met the standard. The list of heuristics
relating to generalization is:

recognize hostnames Rather than have the IDS algorithm attempt to learn every host
name in the Internet, the parser will validate the form of the hostname and ensure
that it meets the Internet standard. The return value is whether or not the name is
valid.

recognize IP addresses Similar to the host name validation, this option validates the form
of IP addresses.

lookup hosts For the hostname validation, this option will cause a lookup in the domain
name system (DNS) to confirm that the host name is a valid one.

64 Chapter 3. Algorithms for HTTP anomaly detection

recognize dates Since dates change every day, they present a problem for an IDS algo-
rithm learning the structure of a request. This option causes the date to be validated
as meeting the standard. Interestingly, even though the standard describes three
accepted date formats, many clients use other variants. The parser recognizes all
formats that appear in the test data.

recognize PHPSESSID and Entity Tags These are hashes, and one purpose of a hash is
to be unique. Rather than have the IDS algorithm attempt to learn every hash, these
options simply have the parser validate the form (character set and length) of the
hash and return if the hash is valid or not. Additional hashes (e.g., JSESSIONID)
exist, and future work includes capturing and validating these hashes as well.

Each of these heuristics can be individually turned on or off for a given test run.

Experience working with the algorithms led to the development of additional heuristics
that affected generalization in one direction or another.

3.10.1 File name heuristics

In running a test with 6-grams, they ran out of memory. Looking at the 6-grams discovered
showed that the algorithm was memorizing file types. Most requests to a web server are
for files of a few types (e.g., HTML files, JPEG files, etc). Instead of learning every file on
the system—data that change as web site contents change—the parser attempts to identify
the file type for the last component of the path based on the file name, and it will return
this identification and not the file name. This is the file types only heuristic. Using this
option reduced the size of the DFA, and the size of the collection of 6-grams.

However, both the 6-grams and DFA true positive rate fell. Inspecting the missed
attacks showed that the IDS algorithms were missing buffer overflow attacks in the file
name. Therefore, a slight reduction in generalization was called for, the file name lengths
heuristic that applies when the file is an unknown type; in this event, the parser returns the
length instead of the file name.

3.10. Targeted generalization heuristics 65

3.10.2 Floating-point numbers

Manually inspecting the DFA showed that the part of the DFA associated with q-values
showed signs of memorizing floating point values. A q-value is a floating point value (in
[0,1]) used in negotiations between a client and server for features such as preferred lan-
guages and file types. The heuristic recognize q-values results in the parser validating the
value as meeting the standard; instead of returning the value, the results of the validation
(OK or not OK) is returned. The result is slightly increased generalization.

3.10.3 Upper and lower case

The HTTP standard states that the HTTP header names (e.g., User-Agent) are case-
insensitive. Because of the standard, different user agents use different capitalization
schemes for the same header. The parser treats all keys as case-insensitive per the standard.

The lowercase only heuristic maps the request (both names and values) to lowercase,
reducing the variants that an IDS algorithm must learn as normal. This heuristic has the
effect of increasing generalization. This type of generalization would not easily be dis-
covered by the automatic discovery process, and the difference in accuracy is likely to be
small.

3.10.4 Email addresses

Email addresses are part of some HTTP header values. The host name part of the address
can be verified (see the heuristics recognize hostnames, recognize IP addresses, and lookup
hosts above). However, short of attempting to send email, no user name validation can be
performed. The email user length only heuristic causes the parser to return the length
of the user name and not the name itself. The length was important; otherwise buffer-
overflow attacks in the user name are a possibility that the algorithms would miss.

66 Chapter 3. Algorithms for HTTP anomaly detection

3.10.5 Deleting unusual lines

Many false positives are caused by HTTP requests with unusual lines. Because these
lines are not critical for the web server to identify the requested resource, the system
tries deleting the following HTTP header lines, one at a time: Referer, Cookie,
Accept-Language, Accept-Charset, and Accept. If, after deleting a line, the
request passes the similarity test, then it is accepted and processed without the anomalous
header lines. This is the try alternates heuristic.

With the idea that the IDS protecting the web server would be implemented as a proxy,
this deleting of a line might protect the web server from an attack delivered through that
portion of the HTTP request. Aside from cookies, the worst potential impact on a user is
that a web client might receive the default version of a web page instead of one customized
to its preferred language, character set, or file format.

Deleting cookies is potentially more serious, because they might encode state (e.g.,
the PHP session identifier cookie) that is required for proper operation of the web site.
Therefore, deleting a cookie could interfere with the user’s ability to visit the web site.
Some web clients send cookies to web sites that do not match the cookie’s list of sites that
may read and modify it. These unexpected cookies then cause the request to be identified
as abnormal.

3.10.6 Grouping putative attacks

I added another heuristic after noticing a web robot that came online during testing, and
was not observed in the training data1. The one robot was responsible for nearly 10,000
false positives because its request format was different from the requests in the training
data. To account for such situations, this second heuristic groups putative attacks into
classes. When a request is classified as being abnormal, it is compared to the DFAs in
a set of DFAs representing putative attacks. If the anomalous request is similar enough
(controlled by a parameter I call the “grouping threshold”), it is incorporated into the DFA
representing a class of attacks. If it is not similar to any of the existing attack classes, it is
used to start a DFA for a new class of putative attacks. The comparisons and additions to

1See Figure 2.2 for an example request from this robot.

3.10. Targeted generalization heuristics 67

Heuristic State Heuristic State
email user length only on file name lengths on
file types only on recognize Entity Tags on
recognize PHPSESSID on lowercase only on
lookup hosts off recognize dates on
recognize hostnames on recognize IP addresses on
recognize q-values on return values on
try alternates on group possible attacks off

Table 3.1: The default state of the parsing heuristics for the test runs.

DFAs are as previously described in Section 3.9. By grouping related unusual requests, an
administrator could look at a single exemplar of the class and determine if it is acceptable.
If so, the request could be added to the main DFA in the normal way, and future similar
requests would be accepted as normal. This heuristic is group possible attacks. This
heuristic is off by default except for the tests relating to it because it requires a different,
much more time-consuming test methodology to generate ROC curves.

3.10.7 Add alternates

Some algorithms can add new instances as they run to adapt to nonstationary data. This
option enables adding new instances to the model, but only if the instance has a similarity
value above the abnormal threshold. The default value for this threshold is 0.9 to avoid
adding unusual instances as normal.

3.10.8 Default values of heuristics

As Section 5.5 will show, the heuristics have a dramatic effect on the performance of
the algorithms. Table 3.1 presents the default parser heuristic settings. Unless otherwise
specified, these settings are used for the test results in this dissertation.

68 Chapter 3. Algorithms for HTTP anomaly detection

Algorithm Generalization
Length overgeneralizes
Mahalanobis distance overgeneralizes
χ2 between character distributions overgeneralizes
Markov model undergeneralizes
Linear combination both over- and undergeneralizes
n-grams undergeneralizes
DFA undergeneralizes

Table 3.2: Predictions about under- and overgeneralization of the algorithms for HTTP
requests. The measures order of parameters, presence or absence of parameters, and enu-
merated or random parameters were not applied to complete requests, and therefore are
not a part of this table.

3.11 Summary

My testing of algorithms included those proposed for use with HTTP requests at the time
I began my research: Mahalanobis distance between character distributions; and a linear
combination of length, χ2 between idealized character distribution and the test distribution,
a Markov model, order of parameters, presence or absence of parameters, and whether
parameters are enumerated or random. I further investigated some of these algorithms in-
dividually. Additionally, I implemented two algorithms new to HTTP anomaly detection:
n-grams and DFA induction. I also developed several heuristics that alter the generaliza-
tion of the token-using algorithms. I implemented some of the algorithms in a manner
more general than the original—several were originally applied only to CGI parameters;
my implementation can work with the whole request as well.

Some, but not all, of the algorithms can be used with nonstationary data. The signif-
icance of this limitation will become clear with some of the results presented in Chap-
ter 5.1.2.

Each of these algorithms has differences in how it generalizes, whether or not it can
work with nonstationary data, and if it can distinguish between parts of a HTTP request.
These differences allow me to make the predictions in Table 3.2 for when the algorithm
is applied to a complete HTTP request. Later chapters in this dissertation will present test
results to confirm or refute these predictions.

69

Chapter 4

Experimental setup

To perform rigorous tests of HTTP IDS algorithms, they must be tested under identical
circumstances. This chapter describes the framework and the data used for testing. Sec-
tion 4.1 gives an overview of the test framework. Some of the IDS algorithms require a
list of tokens; other IDS algorithms work with a string representation of the HTTP request.
The parser object provides either representation. Section 4.2 describes the parsing process
and the difficulties that arise when working with real data (compared to data that is fully
standards-compliant).

A requirement for comparing algorithms is to test them on identical data; this requires
a collection of test data representative of data delivered to production web servers. Quality
test data is difficult to obtain; organizations with the most interesting data typically con-
sider it to be confidential. As a result, I collected my own data for algorithm testing from
four web sites (two web servers). For one of the web sites, the attacks that occurred in
the test data are available for the tests on data containing harmless attacks (Section 2.3.2
motivated this need). Section 4.3 describes these data in more detail.

The attack data needs to be representative of the broad range of attacks that exist to-
day. As Section 2.3.2 showed, no such pool of attacks existed when I began my research.
Therefore, I collected my own set of attacks. Collecting these data has its own challenges,
and Section 4.4 discusses these challenges and describes my attack data.

70 Chapter 4. Experimental setup

4.1 The algorithm test framework

A framework allows testing a collection of algorithms in the same environment, ensuring
that each algorithm is working under identical conditions. By providing a common inter-
face, testing any IDS algorithm that uses this interface is straightforward, and I did not
have to re-implement any of the surrounding support code. The framework for running
the tests was designed to work with anomaly detection algorithms, but it is general enough
to work with signature and specification systems—these systems simply need no training
before testing. As an example, I wrote an IDS algorithm object that uses snort signatures
for checking HTTP requests.

To introduce the algorithm object, first note that an anomaly detection algorithm nor-
mally has two phases:

1. A training phase, in which the algorithm observes instances of behavior and gener-
alizes from them. Some algorithms (but none of those I implemented) also have a
supervised learning phase in which examples of known attacks are provided. Some
algorithms (e.g., the linear combination) require two passes over the training data.

2. A testing phase, in which the algorithm is presented with an instance and determines
the likelihood of this instance being an attack.

The algorithm object provides a method for each of these phases. In the training phase, the
parser object returns individual instances that the algorithm uses to build a representation
of normal. In the testing phase, the algorithm receives an instance and returns s ∈ [0, 1],
representing the similarity of the test instance to what the learned system expects. s = 0

for a completely novel instance, and s = 1 for an instance with no differences from the
learned examples. Intermediate values represent intermediate similarity. In the original
research descriptions, some of the algorithms used a threshold. To aid in determining
the best threshold value, I report data showing how different thresholds perform. For the
algorithms that originally returned a similarity value outside of [0, 1], I mapped the result
into this range.

4.2. Parsing HTTP 71

GET /aya2003/daily/20030715/thumbnails/009.jpg HTTP/1.1
Referer: http://www.aya.org/aya2003/daily/20030715/
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5;

Windows NT 5.0; (R1 1.3))
Host: www.aya.org
Cookie: PHPSESSID=8ce5ac388fc6c1f07d213df818f5a2e9

Figure 4.1: An example HTTP request. The User-Agent line has been broken to allow
it to fit the page. In the original request, it was one line. The way the line was broken
preserves it as a valid request.

4.2 Parsing HTTP

Some algorithms require that the data be tokenized. For these algorithms, I implemented
a parser that breaks the HTTP request into tokens based on the those specified in the
HTTP standard, RFC 2616 [88]. The tokens are a combination of the token type (e.g.,
method) and optionally the value (e.g., GET). In practice, most of the values are necessary
to properly distinguish attacks from normal requests. The result is a stream of tokens
combined with the associated values. Given the sample HTTP request in Figure 4.1, the
parser produces the list of tokens (one per line) with values in Figure 4.2.

Instead of using tokens, some algorithms use a string representation for the request.
This representation is available from the parser; for this case, the parser runs only the
code that identifies a single request from a file potentially containing several (this code is
a prerequisite for identifying the tokens).

The parsing process is complicated because some web browsers and many web robots
do not comply with the HTTP standard [88]. This implies that any solution requiring
software to parse the HTTP request must be more general than the standard1. For example,
although the standard specifies three different formats for dates, my parser recognizes six.
Another example is the following Referer: line:2

1This requirement for flexibility is an Internet standard. The Robustness Principle from RFC
1112 states “Be liberal in what you accept, and conservative in what you send.” The realities of
HTTP on the Internet make this advice mandatory.

2The line has been broken to allow it to fit the page; the original was one long line.

72 Chapter 4. Experimental setup

Method: GET
URL directory part: /
URL directory part: aya2003
URL directory part: /
URL directory part: daily
URL directory part: /
URL directory part: 20030715
URL directory part: /
URL directory part: thumbnails
URL directory part: /
image file
HTTP Version: HTTP/1.1
Key: Referer
Scheme: http
Valid hostname
URL directory part: aya2003
URL directory part: /
URL directory part: daily
URL directory part: /
URL directory part: 20030715
URL directory part: /
directory file
Key: Accept-Language
Accept language: en-us
Key: Accept-Encoding
Encoding: gzip
Encoding: deflate
Key: User-Agent
User agent: Mozilla
User agent version: 4.0
UA additional info: compatible
UA additional info: MSIE 5.5
UA additional info: Windows NT 5.0
UA additional info: (R1 1.3)
Key: Host
Valid hostname
Key: Cookie
Value: PHPSESSID=8ce5ac388fc6c1f07d213df818f5a2e9

Figure 4.2: The tokens resulting from parsing the HTTP request in Figure 4.1.

4.3. Normal data 73

Referer: //search.msn.com/pass/results.asp?RS=CHECKED&FORM=

MSNH&v=1&q=&q=Geometry+Non+Euclidean&cp=1252

Note the missing http: in the URL for the referring web site. Another, example is:

Referer: www.av.com

The standard states that the Referer should be either an absolute or relative URI. This
robot provides neither. These are but a small sampling of the nonstandard protocol imple-
mentations I encountered.

In addition to compliance with the standard, some web proxies modify header lines,
presumably for privacy reasons. For example, the following header lines are some from
the live data:3

Referer: XXXX:+++

XXXXXXXXXXXXXXX:++++++++++++++

---------------: ----- -------

Proxy-˜˜˜˜˜˜˜˜˜˜: ˜˜˜˜˜˜˜˜˜˜

˜˜˜˜˜˜˜: ˜˜˜˜:˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

For the second line above, note the missing standard-mandated space after the :. Some
other proxies simply delete values, leaving a header line with a key only, such as Referer:
or Cookie:. When dealing with these problems, the parser notes the incorrect or miss-
ing data (optionally by placing a token indicating the problem in the token stream) and
continues.

4.3 Normal data

The normal data set is a collection of HTTP requests that were delivered to the University
of New Mexico Computer Science departmental web server, as well as the web server

3The first example was truncated to allow it to fit the page.

74 Chapter 4. Experimental setup

hosting the domains aya.org, explorenm.com, and i-pi.com; these later data are referred to
as the “pugillis” data after the name of the machine hosting the web sites.

All the data sets contain the entire HTTP request sent by the client to the server. Having
the HTTP header lines allows testing for attacks not contained in the requested resource
path (Section 2.3.2 presented the importance of this decision).

To collect the complete HTTP request delivered to the server, only a few options exist.
A proxy could be placed between the web server and the network, and this proxy could
collect the data. Because of concerns about performance by the UNM CS department,
I did not use this approach. Instead, my data came from the second option of tapping
the network by using an Ethernet hub to allow another computer to observe the packets
destined for the web server. snort has the ability to extract the application-layer data from
the individual network packets, saving one or more requests to a file4. Each data record
includes the entire HTTP request sent by the client to the server, allowing the system
to make use of the HTTP header lines and test for attacks that are not contained in the
requested resource path.

snort collects the data with approximately a 99% accuracy rate. Problems arise from
the requirement that the computer running snort must be fast enough to keep up with the
network traffic; otherwise packets are lost, and the resulting stream is incomplete, and/or
snort confuses the two directions of communication5. With the aid of custom scripts, I was
able to repair or eliminate all of the snort-mangled requests. Cleaning the data required
looking at thousands of unparsable HTTP requests to identify the problem, determine if it
could be repaired, and if so, develop a method to automate the identification and repair or
elimination of similarly damaged requests.

As shown in Chapter 2, previous researchers used data sets in which the attacks that
occur in Internet-connected web server traffic have been filtered out. To show the effect of
filtered and unfiltered data, I filtered attacks from the test data by running a combination
of custom HTTP testing tools as well as using a set of rules for the signature-based IDS
snort. Additionally, many questionable requests were manually inspected. This process

4Appendix A contains the configuration file, command line arguments, and scripts used for data
collection.

5Performance problems with the computer collecting data at a local ISP prevented me from
using data from their web server.

4.3. Normal data 75

produced the data set that I refer to as the “filtered” data set. Although Code Red was
removed6, I saved the rest of the attacks from this data set as a separate data set that, when
needed, can be added back into to the non-attack data. For the cs.unm.edu data, these
attacks from the live data stream have been cleaned sufficiently to be used for training. I
refer to the filtered data with these attack data added in as the “unfiltered” data set. I also
created a data set consisting of the unfiltered data plus one of the Code Red attack variants
inserted at a rate of 300 per hour; this rate corresponds to one reported rate [211], and is
intermediate in the range of reported rates (from nine [81] to 12,000 [221] per hour) that
occurred at the peak of the infection. I refer to this data as the “unfiltered + Code Red”
data set. Some attacks from the pugillis data were discarded before their importance was
realized, and others are not in a sufficiently clean state to be used. The training and testing
phases could therefore be run on cs.unm.edu data sets with or without harmless attacks
(i.e., attacks detected by snort but that were targeting programs or exploits for which the
cs.unm.edu web server was not vulnerable).

The four web sites that were the source of the training and test data are:

aya.org This web site is for a non-profit organization of approximately 1,900 pilots. It
was designed by a professional web site designer, and he used PHP and a MySQL
database to provide dynamic content. In addition to the files on the web site, a large
portion of the web site is generated from programs extracting data from the database.

cs.unm.edu This web site consists of departmental information as well as diverse, auto-
matically-generated content provided by students, faculty, and staff. During the data
collection time, the web server had 181,132 files on it.

explorenm.com This web site contains information about hiking and camping in New
Mexico, and it is on the first page of Google for many web searches relating to its
content. The web site uses Perl extensively and at the time the data was collected, it
also made use of some PHP. Data for the site comes from a PostgreSQL database,
and many web pages are generated from the data in the database in response to user
actions such as where they click on the map of New Mexico.

i-pi.com This web site is a simple one composed of files and little dynamic content. The
content drawing the most attention is the cave biology research of Diana Northup, a

6I deleted the Code Red attacks before I realized they would be useful.

76 Chapter 4. Experimental setup

Web site Data set ID Filtered Unfiltered

aya.org

2005-01-25 84,241 85,666
2005-01-29 19,962 20,266
2005-02-05 39,468 39,506
2005-02-12 45,785 46,353

cs.unm.edu

2004-11-12 390,911 450,002
2004-11-17 458,375 570,165
2004-12-06 468,009 475,393
2004-12-18 440,444 441,476
2005-01-01 404,901 409,490
2005-01-22 238,953 243,813

explorenm.com

2005-01-25 74,755 76,046
2005-01-29 17,262 17,438
2005-02-05 37,994 38,043
2005-02-12 37,691 38,537

i-pi.com

2005-01-25 14,123 14,616
2005-01-29 3,308 3,312
2005-02-05 9,700 9,702
2005-02-12 10,441 10,597

Table 4.1: The web server data set sizes (in number of requests). The difference between
the filtered and unfiltered data reflects the number of harmless attacks in requests to the
web server.

professor emerita of the UNM general libraries and a visiting associate professor in
the Biology department at UNM.

The test data sets are approximately one week of data each. The actual size of the collec-
tion was limited on FreeBSD by a limit of 32,766 files in a single directory. Therefore,
the sets are not all exactly seven days long, but they are comparably-sized. Within a data
set, the requests are not temporally ordered, but between data sets, temporal order is pre-
served; Section 5.1 shows this has little effect on the DFA learning. Some weeks were
lost due to technical difficulties, explaining gaps longer than a week in the data set dates.
Table 4.1 summarizes the data sets and their sizes. For the cs.unm.edu 2004-11-12 data
set, Table 4.2 provides some statistics on the request lengths in the training data.

4.3. Normal data 77

Measure Filtered Unfiltered Unfiltered + Code Red
Character Token Character Token Character Token

Maximum 3,894 841 106,064 841 106,064 841
Minimum 14 4 3 4 3 4

Mean 343 41 464 40 569 32
Mode 319 33 319 32 1,411 14

Stddev 126 16 2,446 17 575 18

Table 4.2: Statistics about request lengths measured as number of characters and number
of tokens. These data are calculated from the requests in the cs.unm.edu 2004-11-12 data.

78 Chapter 4. Experimental setup

4.4 Attack data

My attack database contains 63 attacks, some of which are different examples of the same
vulnerability—either a different exploit for the same vulnerability or an exploit for the
vulnerability on a different operating system. The reason for including the variants of
attacks is that they are all different, some notably so. Some will be easier to detect than
others for some of the algorithms. As one example, some of the Nimda attacks are short
enough to be detected by the length algorithm, while others are closer to an average length.

I collected the attacks from the following sources: Attacks against web servers I was
testing (attacks in the wild); BugTraq and the SecurityFocus archives http://www.
SecurityFocus.com/; the Open Source Vulnerability Database http://www.osvdb.
org/; the Packetstorm archives http://Packetstorm.widexs.nl/; and Source-
bank http://archive.devx.com/sourcebank/. In many cases, the attack pro-
grams from these sources contained bugs, and I had to modify the program before it would
produce malicious web requests. Note that I did not test to verify whether the attacks pro-
duced could actually compromise the targeted web application.

The attack database contains the following categories of attacks: buffer overflow; in-
put validation error (other than buffer overflow); signed interpretation of unsigned value;
and URL decoding error. The attacks targeted different web servers: Active Perl ISAPI;
AltaVista Search Engine; AnalogX SimpleServer; Apache with and without mod php;
CERN 3.0A; FrontPage Personal Web Server; Hughes Technologies Mini SQL; InetServ
3.0; Microsoft IIS; NCSA; Netscape FastTrack 2.01a; Nortel Contivity Extranet Switches;
OmniHTTPd; and PlusMail. The target operating systems for the attacks include the fol-
lowing: AIX; Linux (many varieties); Mac OS X; Microsoft Windows; OpenBSD; SCO
UnixWare; Solaris x86; Unix; VxWorks; and any x86 BSD variant.

As a comparison to the normal data sets collected from live web servers, the same
statistics for the attack data are presented in Table 4.3.

My test data set is more extensive than those used in most previous studies. Re-
searchers using the 1999 Lincoln Labs data set (Section 2.3.2) have only four web attacks.
Researchers realizing this limitation obtained their own data. Kruegel and Vigna [146]
used 11 attacks, a portion of which were chosen specifically because they targeted soft-

http://www.SecurityFocus.com/
http://www.SecurityFocus.com/
http://www.osvdb.org/
http://www.osvdb.org/
http://Packetstorm.widexs.nl/
http://archive.devx.com/sourcebank/

4.5. Summary 79

Measure Character Token
Maximum 54,494 8180
Minimum 9 4

Mean 2922 158
Mode 91 19

Stddev 10,353 954

Table 4.3: Statistics about request lengths measured as number of characters and number
of tokens. These data are calculated from the requests in the attack database.

ware from some of the web servers from which they obtained their training data. Tombini
et al. [248] mentioned using 56 attacks in part of their testing, but the number of attacks
they used varied with the test performed. For the results in this dissertation, every algo-
rithm was tested against every attack not in its training set—e.g., if Code Red was in the
training set, it was not in the attack data set.

The attack database for these tests is at
http://www.i-pi.com/HTTP-attacks-JoCN-2006.

4.5 Summary

The test framework I developed makes it possible to test algorithms in a consistent manner.
My testing is more rigorous than most IDS testing reported in the literature because I tested
the algorithms under identical circumstances on identical data.

Parsing HTTP is straightforward, although the collection of clients that incorrectly
implement the standard is substantial. A parser must be able to handle common deviations
from the standard.

The data I collected is representative of requests delivered to live web servers, and is
sufficient for the testing described in the following chapters. The attack data are more
representative of the diversity of attacks than most data sets used previously.

http://www.i-pi.com/HTTP-attacks-JoCN-2006

80 Chapter 4. Experimental setup

81

Chapter 5

Experiments and results

Chapters 1 and 2 both discussed the weak testing common for IDSs. One of the contribu-
tions of my research addresses this deficiency, and this chapter presents results of several
types of testing. Section 5.1 provides support for my previous claims that different web
sites receive different requests, HTTP is a nonstationary data source, and attack diversity
is higher than normal request diversity. The second type of testing investigates the rate of
learning of the DFA and n-grams, the two algorithms new to HTTP. These results are in
Section 5.2. The space required by an algorithm as it runs affects its suitability for pro-
duction use; Section 5.3 provides this information for the algorithms. Information about
the algorithm accuracy is presented in Section 5.4. These results provide guidance about
which algorithms are suitable for HTTP and how to proceed to improve HTTP anomaly
detection beyond this dissertation. An important part of the accuracy for the DFA and
n-gram algorithms is the heuristics described in Section 3.10. Support for the heuristic
effectiveness is in Section 5.5. Finally, to show that the results are not an artifact of my
tuning the heuristics to a specific data set, Section 5.6 shows similar accuracy results on a
pugillis data set I had not inspected until after the Ph.D. defense.

The traditional method for reporting IDS results is a receiver operating characteristic
(ROC) curve that shows the tradeoff between identifying real attacks (true positives) and
incorrectly flagging non-attack requests as an attack (false positives) [103]. In the ROC
curve plots in this chapter, true or false positives are represented as the fraction of the attack
database or test data set properly or improperly identified. Each set of connected points

82 Chapter 5. Experiments and results

represents a different data set used with the algorithm, and each point represents a different
similarity threshold for distinguishing normal from abnormal. A perfect algorithm would
have a point at (0, 1) (the upper-left corner of the graph) indicating no false positives and
100% correct identification of attacks. The axes in these plots indicate the actual fraction
of true and false positives in the test. To ease comparisons between algorithms, most of
the ROC plots have the same scale; a few required a different scale to present the data, and
this fact is noted where applicable.

McHugh noted several potential problems presenting IDS test results with ROC curves
[186]. His first objection was that some researchers presented results using the ROC curve,
and this curve consisted one point. The researchers made a complete curve by assuming
that the curve passes through (0,0) and (1,1). I ran tests in a manner that allowed me to
produce ROC curves containing 127 points showing the effects of different thresholds. I do
not assume that the curve goes through any points, and 127 points are sufficient to produce
a good curve. McHugh also pointed out that for the ROC curves to be comparable, the
unit of analysis must be the same. For every test in this dissertation, this unit of analysis
is always one HTTP request.

Gu et al. [100] recently proposed a single measure as an alternative to ROC curves
for measuring IDS effectiveness. Future work includes comparing their measure to the
traditional ROC curve.

5.1 Support for claims about HTTP

Chapter 2 contained several several claims about HTTP request data. Section 2.4.3 claimed
that different web sites receive different requests. This diversity between web sites might
be exploited by an IDS to force an attacker to customize her attack to the web site, elimi-
nating the “write once, run everywhere” attack. Section 5.1.1 shows that some algorithms
can detect this diversity, while others cannot.

Section 2.4.5 claimed that HTTP is a nonstationary data source, and that this property
is difficult for many anomaly detection algorithms. Because web servers change over time,
the accuracy of an algorithm trained on one data set might degrade over time unless the
algorithm’s model changes with the protected web site. Section 5.1.2 shows this effect on

5.1. Support for claims about HTTP 83

Train on: cs.unm.edu aya.org i-pi.com explorenm.com
FP frac /day frac /day frac /day frac /day
Test on:
cs.unm.edu 0.005 484 0.101 9,267 0.066 6,053 0.073 6,666
aya.org 0.031 154 0.005 27 0.006 29 0.020 101
i-pi.com 0.109 90 0.067 56 0.003 2 0.084 69
explorenm.com 0.118 507 0.074 321 0.014 61 0.014 61

Table 5.1: DFA accuracy across web sites: The DFA induced from each web site is tested
against the other web sites. The units are first false positive fraction, then false positives
per day. The results are for a continually learning DFA with a true positive rate of 0.852.

several of the HTTP IDS algorithms.

Section 2.4.4 claimed that attack diversity is higher than normal request diversity. Sec-
tion 5.1.3 supports this claim by showing that attacks against web servers and web appli-
cations are more diverse than non-attack traffic.

5.1.1 Web sites are diverse

Section 2.4.3 claimed that different web sites receive different profiles of requests. Testing
an algorithm trained on one web site on data from other web sites shows if the algorithm
is able to distinguish between requests delivered to different web sites. For all of these
tests, I assumed that the required accuracy was a relatively generous true positive fraction
of 0.852. This choice allowed more algorithms into the comparison.

Table 5.1 shows the results of testing the DFA induced from filtered data for each web
server on the other web sites, while Table 5.2 and 5.3 present the same results for 6-grams
and the Mahalanobis distance character distribution respectively. The linear combination,
length, and χ2 of idealized character distribution were never able to reach a true positive
rate of 0.852, hence they have no corresponding tables. The data also show that the pugillis
sites are similar between themselves, but further separated from the cs.unm.edu data. For
example, the DFA trained on i-pi.com data is not a bad fit for the aya.org data when viewed
as false positive fraction. However, the false positives per day are higher; aya.org receives
more traffic than i-pi.com.

84 Chapter 5. Experiments and results

Train on: cs.unm.edu aya.org i-pi.com explorenm.com
FP frac /day frac /day frac /day frac /day
Test on:
cs.unm.edu 0.035 3,228 0.162 14,865 0.061 5,578 0.494 45,244
aya.org 0.513 2,562 0.001 6 0.001 6 0.374 1,869
i-pi.com 0.686 568 0.454 375 0.000 0 0.562 465
explorenm.com 0.423 1,825 0.132 569 0.002 8 0.002 8

Table 5.2: 6-gram accuracy across web sites: The 6-gram induced from each web site
is tested against the other web sites. The units are first false positive fraction, then false
positives per day. The results are for a a true positive rate of 0.852.

Train on: cs.unm.edu aya.org i-pi.com explorenm.com
FP frac /day frac /day frac /day frac /day
Test on:
cs.unm.edu 0.874 80,121 1.000 91,675 0.999 91,620 1.000 91,673
aya.org 0.982 4,899 0.060 299 1.000 4,306 1.000 4,990
i-pi.com 0.734 607 1.000 827 0.151 125 1.000 827
explorenm.com 0.895 3,862 1.000 4,315 0.998 4,306 0.096 413

Table 5.3: Mahalanobis distance between character distributions accuracy across web
sites: The reference distribution induced from each web site is tested against the other
web sites. The units are first false positive fraction, then false positives per day. The
results are for a a true positive rate of 0.852.

The data in Table 5.1 show that the DFA can distinguish between web sites; in all cases,
the smallest fraction of false positives for a fixed true positive rate is for the site where it
was trained. The 6-gram results, Table 5.2, show a similar pattern. The Mahalanobis
distance results in Table 5.3 show that this measure does not always distinguish between
web sites. For example, when trained on the cs.unm.edu data, the best results are with
the i-pi.com data. However, for the aya.org, i-pi.com, and explorenm.com, this measure is
substantially more accurate on the site for which it was trained.

5.1.2 HTTP is a nonstationary data source

Three of the algorithms (DFA, n-grams, and Mahalanobis distance) have well-defined and
implemented methods for nonstationary data. The χ2 distance and enumerated or random

5.1. Support for claims about HTTP 85

Algorithm Data set FP fraction FP fraction
Static Adaptive

DFA 2004-11-17 0.076 0.032
DFA 2005-01-22 0.246 0.017
6-grams 2004-11-17 0.168 0.165
6-grams 2005-01-22 0.318 0.268
Mahalanobis distance 2004-11-17 0.997 0.997
Mahalanobis distance 2005-01-22 0.991 0.991

Table 5.4: Effect of continuous learning on false positives: False positives are shown for
the algorithms trained on the cs.unm.edu 2004-11-12 data and applied to the CS data from
2004-11-17 and 2005-01-22. False positive (FP) fractions are reported for a true positive
fraction of 0.852. The algorithm labeled static learns only once and does not update its
model as it runs, whereas the algorithm labeled adaptive does.

parameters algorithms have no provision for updating as they run, so when the web site
changes enough, re-training will be required. This limitation therefore applies to the linear
combination as well. Table 5.4 shows the difference in accuracy resulting from enabling
the portion of the algorithm that handles nonstationary data. For the adaptive version of
the algorithms, they were tested on all of the intermediate data sets1, allowing them to
adapt as the web site changed.

A DFA that continues to learn is notably more accurate than one that does not. Even
over approximately one week’s data, the static algorithm had a false-positive rate of 7.6%,
while the adaptive version rate was 3.2%. After approximately two months, the static ver-
sion was miscategorizing nearly 25% of the requests, compared with 1.7% for the adaptive
version. The fact that the false positive rate for the adaptive version dropped over the test
interval shows that the adaptive DFA continues to develop a better model of the web site.
Tracking the web site as it changes is therefore a requirement for this algorithm. For 6-
grams, the adaptive algorithm improves accuracy, but the accuracy slowly degrades over
time.

For the Mahalanobis distance, enabling the ability to learn from normal produced no
change. The test object only adds new instances when they are similar enough to be able
to believe that the request is not an attack. The default value for this similarity is 0.9
(Section 3.10). However, none of the test data reached this similarity threshold, so no new

1These intermediate results are not reported to save space

86 Chapter 5. Experiments and results

Measure Attacks cs.unm.edu aya.org i-pi.com explorenm.com
Minimum 0.00 0.01 0.02 0.02 0.03
Maximum 1.00 0.98 1.00 1.00 0.99
Mean 0.15 0.27 0.33 0.30 0.32
Median 0.08 0.19 0.27 0.27 0.29
Standard deviation 0.20 0.19 0.21 0.18 0.17

Table 5.5: Inter-request diversity for attacks and within a data set.

instances were added to the model.

5.1.3 Attack diversity

Section 2.4.4 claimed that attack diversity is higher than normal request diversity. As
a quantitative test, I used the DFA induction algorithm to generate a DFA correspond-
ing to each attack, and then compared all of the other attacks to this DFA. For a non-
attack comparison, using the OpenSSL pseudo-random number generator seeded from
/dev/urandom, I selected 100 samples of 100 random requests from the four web sites,
using the 2004-11-12 cs.unm.edu data and the 2005-01-25 pugillis data. These results
were combined by averaging the values. A summary of these results are in Table 5.5.

Note that the attack diversity is higher, as indicated by the lower similarity mean and
median values. The two attacks that were considered the same were two related attacks
that, when the default heuristics were applied, resulted in the same list of tokens.

5.2 DFA and n-gram learning

The DFA and n-gram algorithms are new to HTTP. This section shows results relating to
the learning these algorithms perform. Section 5.2.1 shows the training data are sufficient
for the algorithms. Section 5.2.2 shows that the order of the training instances makes little
difference for the accuracy of the resulting DFA.

5.2. DFA and n-gram learning 87

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

DFA Learning

 0 0.2 0.4 0.6 0.8 1

False positive fraction 0 10 20 30 40 50 60 70 80 90 100

Training instances

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

True positive fraction

Figure 5.1: DFA learning for the first 100 training instances.

5.2.1 Sufficient data for learning

In order to show that my training data is sufficient for inducing a DFA or a set of n-grams,
I saved the state after each training instance from the cs.unm.edu 2004-11-12 filtered data.
I then used this saved state to test against the cs.unm.edu 2004-11-17 filtered data. The
results for the first 100 training instances are in Figure 5.1 for the DFA. Note that the ROC
curve at the back of the plot (after 100 training instances have been processed) is close to
the final shape (shown in Figure 5.11) by around 50 training instances—the full training
data set contains 390,911 requests (Table 4.1).

Figure 5.2 for 6-grams. In this plot, a ROC curve is shown for every 1000 training
instances. More training data is required for this algorithm to become accurate, but the
ROC curve approximates the final curve after processing 40,000 training instances.

88 Chapter 5. Experiments and results

 0.75

 0.8

 0.85

 0.9

 0.95

 1

6-gram Learning

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive fraction 0 5 10 15 20 25 30 35 40

1000s of Training instances

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

True positive fraction

Figure 5.2: 6-gram learning for the first 100 training instances.

5.2.2 DFA and order of training data

Within a data set, the instances are not temporally ordered (Section 4.3). During DFA
learning, the state merging implies that the order of the training instances might affect the
results. To show this is not the case, I tried different orderings of the filtered cs.unm.edu
2004-11-12 data to train the DFA: sorted by client IP address (forward, the default order),
the reverse of this order, and three random orderings, where the random numbers were ob-
tained using the code described in Section 5.1.3. Figure 5.3 shows that all of the resulting
DFAs perform similarly.

5.3. Space requirements of the algorithms 89

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves for DFA on cs.unm.edu data

Forward
Reverse

Random 1
Random 2

Random 3

Figure 5.3: ROC curves for DFAs trained on different orderings of the filtered CS 2004-
11-12 data.

5.3 Space requirements of the algorithms

Criterion 3 in Section 1.2 stated that an IDS should not place an undue burden on the
machine it protects. One measure of the burden is the amount of memory required for
the algorithm’s model of normal. The size of the saved state is representative of the space
requirement of the algorithm (as I implemented it). Table 5.6 presents the storage needs
for each of the algorithms. Compare keeping all the 6-grams in memory, using 77–82MB
to the DFA using 4.4MB. The Markov model’s extra space requirements are clearly not
a worthwhile trade-off, because as Section 5.4 presents, its false positive rate is so much
worse than other algorithms. The other statistical measures require little space.

In writing the algorithms, I stressed speed and accuracy of coding, and I did not at-
tempt to optimize the storage. However, the order of magnitude of storage requirements

90 Chapter 5. Experiments and results

Algorithm Filtered Unfiltered Unfiltered
+ Code Red

Mahalanobis distance 7,944 8,971 8,930
χ2 of idealized character distribution 3,366 3,901 3,849

Length 139 145 146
3-grams 17,090,308 17,747,108 17,740,446
4-grams 31,801,835 33,236,926 33,227,178
5-grams 52,086,245 55,107,800 55,095,067
6-grams 76,950,157 81,956,324 81,940,620
7-grams 106,566,643 114,275,087 114,256,549

DFA 4,435,615 4,668,452 4,666,383
Markov model 7,849,033 8,224,376 8,220,620

Linear combination 919,654 986,661 986,663

Table 5.6: The size in bytes of the saved state for the algorithms when trained on the
2004-11-12 cs.unm.edu data.

Data set Nodes Edges
Filtered 7,843 61,585

Unfiltered 7,856 62,941
Unfiltered + Code Red 7,855 62,911

Table 5.7: The size of the induced DFA in terms of nodes and edges for each of the training
data sets.

is unlikely to change with more efficient implementations; the information required by the
algorithm to function must be stored. Compression algorithms could reduce the storage
space with a corresponding increase in CPU time and memory. For the n-grams, stide
used a forest of trees, and this approach would be an example of a more efficient storage
system [116].

The n-grams and DFA data structures have size metrics other than number of bytes.
Figure 5.4 shows the growth rate in number of distinct n-grams and bytes for each of the
test data sets. As n gets larger, the number of distinct n-grams grows at a rate slightly
worse than linear, notably better than the worst case of exponential growth. Table 5.7
presents the DFA size in terms of nodes and edges for each of the training data sets. A
good sign for potential production deployment is the small size of the DFA relative to the
size of the training data (data statistics including size were presented in Section 4.3).

5.3. Space requirements of the algorithms 91

 200000

 300000

 400000

 500000

 600000

 700000

 3 4 5 6 7

 20

 40

 60

 80

 100

 120

D
is

ti
n
ct

 n
-g

ra
m

s

S
p
ac

e
in

 M
B

n

n versus the number of distinct n-grams

Grams, Filtered
Grams, Unfiltered

Grams, Unfiltered + Code Red
Size, Filtered

Size, Unfiltered
Size, Unfiltered + Code Red

Figure 5.4: The growth in bytes and number of distinct n-grams versus n for the
cs.unm.edu 2004-11-12 data set.

92 Chapter 5. Experiments and results

5.4 Algorithm accuracy

The primary reason for using an anomaly detection system is to detect anomalies. The
tests I performed used the data described in Sections 4.3 and 4.4, and each algorithm was
tested under identical circumstances on the same data. In all cases, the test unit is a single
HTTP request, regardless of whether it was presented as a character string or as a list of
tokens. When training on unfiltered data, the attacks in the training data were omitted from
the attack test data set.

5.4.1 Length

Figure 5.5 shows the results of testing the length algorithm. Accuracy, which was below
80% true positive at best, drops substantially when the algorithm is trained on data con-
taining attacks. The results of the test on pugillis data show this algorithm is even less
accurate on this data.

5.4.2 Mahalanobis distance

The results for Mahalanobis distance are in Figure 5.6. For this algorithm on this data,
using the unfiltered data results in more accuracy than the filtered, but when Code Red
is added into the training data, the accuracy drops to below that of the filtered data. In
none of these versions is the accuracy even close to sufficient for production use. For this
algorithm, the pugillis data represents a notably easier test data set than the cs.unm.edu
data.

5.4.3 χ2 distance

Figure 5.7 contains the χ2 distance results. This algorithm performs poorly on all data
sets, with a true positive rate at or below 50%.

5.4. Algorithm accuracy 93

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves for Length on cs.unm.edu data

Filtered
Unfiltered

Unfiltered + Code Red

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves for Length on pugillis data

aya.org explorenm.com i-pi.com

Figure 5.5: Receiver Operating Characteristic curves showing the accuracy of the length
algorithm.

94 Chapter 5. Experiments and results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves for Mahalanobis Distance on cs.unm.edu data

Filtered
Unfiltered

Unfiltered + Code Red

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves for Mahalanobis Distance on pugillis data

aya.org explorenm.com i-pi.com

Figure 5.6: Receiver Operating Characteristic curves showing the accuracy of the Maha-
lanobis distance algorithm.

5.4. Algorithm accuracy 95

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves for Chi-squared distance on cs.unm.edu data

Filtered
Unfiltered

Unfiltered + Code Red

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves for Chi-squared distance on pugillis data

aya.org explorenm.com i-pi.com

Figure 5.7: Receiver Operating Characteristic curves showing the accuracy of the χ2 dis-
tance algorithm.

96 Chapter 5. Experiments and results

5.4.4 Markov model

The Markov model result values are in [0, 10−13] with many values as small as 10−300.
These small values make it appear that the algorithm identifies everything (both normal
traffic and attacks) as abnormal. To better understand these results, Figure 5.8 shows
the data plot where the similarity value from the Markov model m has been transformed
into a new similarity value s by s = 1

|loge(m)| , and the plot scale has been changed so
the data appears (making these plots not directly comparable to the rest of the ROC plots
in this chapter). The log transformed Markov model provides 94% accuracy on filtered
cs.unm.edu data, but with an unacceptable false positive rate. The results on the pugillis
data show an even better true positive rate. Again, the false positive rate, while better than
on the cs.unm.edu data, is unacceptable.

5.4.5 Linear combination

The linear combination results are in Figure 5.9. When tested on the cs.unm.edu data, it
is notably more accurate on filtered data, but the true positive rate is only around 60%.
The pugillis data shows even less accuracy. Neither is accurate enough to consider for
production use.

5.4.6 n-grams

Earlier testing, not included in this dissertation, showed that n = 6 was an optimal value
when considering the mix of accuracy and data set size; n = 7 was slightly more accurate,
but was large enough to exhaust the system memory on some tests, even with the heuris-
tics. The results for 6-grams are in Figure 5.10. In spite of 6-grams ability to distinguish
between regions of a request, it was more accurate on cs.unm.edu filtered data than either
unfiltered data set. The algorithm is more accurate on the pugillis data than it was on the
cs.unm.edu data.

5.4. Algorithm accuracy 97

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves for the log-transformed Markov Model on cs.unm.edu data

Filtered
Unfiltered

Unfiltered + Code Red

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves for the log-transformed Markov Model on pugillis data

aya.org explorenm.com i-pi.com

Figure 5.8: Receiver Operating Characteristic curves showing the accuracy of the Markov
model algorithm.

98 Chapter 5. Experiments and results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves for the Linear Combination on cs.unm.edu data

Filtered
Unfiltered

Unfiltered + Code Red

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves for the Linear Combination on pugillis data

aya.org explorenm.com i-pi.com

Figure 5.9: Receiver Operating Characteristic curves showing the accuracy of the linear
combination algorithm.

5.4. Algorithm accuracy 99

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves for 6-grams on cs.unm.edu data

Filtered
Unfiltered

Unfiltered + Code Red

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves for 6-grams on pugillis data

aya.org explorenm.com i-pi.com

Figure 5.10: Receiver Operating Characteristic curves showing the accuracy of the 6-gram
algorithm.

100 Chapter 5. Experiments and results

5.4.7 DFA

Figure 5.11 shows the DFA accuracy. At lower false positive rates, the true positive rate is
best on the cs.unm.edu filtered data. The pugillis data all show nearly the same accuracy.
The DFA can achieve better than 80% true positive rate at a false positive rate of less than
0.1%, which is better than all but the 6-grams. At slightly higher false positive rates, it
achieves true positive rates of over 90%.

5.4. Algorithm accuracy 101

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves for DFA on cs.unm.edu data

Filtered
Unfiltered

Unfiltered + Code Red

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves for DFA on pugillis data

aya.org explorenm.com i-pi.com

Figure 5.11: Receiver Operating Characteristic curves showing the accuracy of the DFA
algorithm.

102 Chapter 5. Experiments and results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves on cs.unm.edu Filtered Data

6grams
DFA

Chi-squared distance

Mahalanobis distance
Length

Linear combination

Figure 5.12: Receiver Operating Characteristic curves showing the relative accuracy of
the DFA, 6-grams, χ2 distance between the idealized character distribution and test distri-
bution, and the length algorithms when tested on cs.unm.edu filtered data.

5.4.8 Algorithm comparison

To better compare the algorithms, Figures 5.12 shows on one plot the DFA, 6-grams,
χ2 distance, Mahalanobis distance, length, and the linear combination algorithms using
the filtered cs.unm.edu data. The DFA and 6-grams have notably better true and false
positive rates than the other algorithms. Figures 5.13, 5.14, and 5.15 show similar results
for aya.org, i-pi.com, and explorenm.com respectively, although the Mahalanobis distance
showed comparable accuracy on the i-pi.com data. On the explorenm.com data, it achieved
a similar true positive rate, but only at a much larger false positive rate.

5.4. Algorithm accuracy 103

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves on aya.org Filtered Data

6grams
DFA

Chi-squared distance

Mahalanobis distance
Length

Linear combination

Figure 5.13: Receiver Operating Characteristic curves showing the relative accuracy of
the DFA, 6-grams, χ2 distance between the idealized character distribution and test dis-
tribution, Mahalanobis distance between character distributions and the length algorithms
when tested on aya.org data.

104 Chapter 5. Experiments and results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves on i-pi.com Filtered Data

6grams
DFA

Chi-squared distance

Mahalanobis distance
Length

Linear Combination

Figure 5.14: Receiver Operating Characteristic curves showing the relative accuracy of
the DFA, 6-grams, χ2 distance between the idealized character distribution and test dis-
tribution, Mahalanobis distance between character distributions and the length algorithms
when tested on i-pi.com data.

5.4. Algorithm accuracy 105

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves on explorenm.com Filtered Data

6grams
DFA

Chi-squared distance

Mahalanobis distance
Length

Linear Combination

Figure 5.15: Receiver Operating Characteristic curves showing the relative accuracy of
the DFA, 6-grams, χ2 distance between the idealized character distribution and test dis-
tribution, Mahalanobis distance between character distributions and the length algorithms
when tested on explorenm.com data.

106 Chapter 5. Experiments and results

5.4.9 False positives

A human system administrator would have to inspect false positives to determine if they
represent normal traffic or attacks. When comparing the algorithms, a useful metric is the
load that the algorithm would place on this person. Table 5.8 shows the false positive rate
per day, assuming a true positive rate of only 80% is required. This table presents data for
training on all three cs.unm.edu data sets. This table shows that only the 6-grams and the
DFA trained on filtered data has an acceptable false positive rate for a web site like the
UNM CS department. These data do not include the grouping potential attacks heuristic;
see Section 5.5 to see that heuristic applied.

Most previous research has reported false positives as the fraction of the non-attack
test data misidentified, which is the value shown in the ROC plots presented in the earlier
sections. This result can be misleading for web sites if a human must evaluate the abnormal
requests to determine if if they represent attacks. A 1% false positive rate on a lightly-
visited web site may be tolerable; the same percentage on Amazon.com or Google.com
would require a large full-time staff. This affect appears in Tables 5.1, 5.2, and 5.3. A
false positive rate of 0.01 corresponds to 917, 50, 8, and 43 false positives per day for
cs.unm.edu, aya.org, i-pi.com, and explorenm.com respectively. In the 1999 DARPA/MIT
Lincoln Laboratories IDS tests, they stated that above 10 false positives per day is a high
rate [102].

5.5 Effect of heuristics

The heuristics I developed (Section 3.10) improve accuracy and save model space. Heuris-
tics are required for the DFA and n-grams to be accurate, and in some cases are required
to allow the algorithm to run without exhausting the machine’s available memory. Sec-
tion 5.5.1 shows accuracy of these algorithms with and without heuristics, while Sec-
tion 5.5.2 shows the effect of the heuristics on the size of the model.

5.5. Effect of heuristics 107

Algorithm FP/day FP/day FP/day
(filtered) (unfiltered) (unfiltered

+ Code Red)
Mahalanobis distance character distribution 91,524 56,194 91,631

χ2 of idealized character distribution ∞ ∞ ∞

Length ∞ ∞ ∞

∞ ∞ ∞

3-grams 348 4,942 2,170
4-grams 989 3,465 2,580
5-grams 732 6,738 4,958
6-grams 13 6,571 4,693
7-grams 32 15,349 8,806

DFA 37 4,241 1,178
Markov Model 91,675 91,675 91,675

Markov Model (log transform) 39,824 39,807 39,812
Linear combination ∞ ∞ ∞

Table 5.8: False positive rate per day for the various algorithms, trained on the cs.unm.edu
2004-11-12 and tested on cs.unm.edu 2004-11-17 data, and assuming that a true positive
rate of 80% is required. Algorithms marked with ∞ did not achieve this rate. The log
transform version of the Markov Model is after the data was transformed as described in
Section 5.4.4.

5.5.1 Heuristics and accuracy

Figure 5.16 shows that the combination of heuristics makes the difference between an
unusable algorithm and an accurate algorithm. Both the 6-grams and DFA significantly
undergeneralize, and hence produce so many false positives that they would be off the
scale using the scale on the ROC plots elsewhere in this chapter. With the addition of the
generalizations provided by the heuristics, the algorithms are the most accurate of those I
tested.

5.5.2 Heuristics and structure size

Some of the heuristics reduce the resulting structure size; this reduction in structure repre-
sents generalization. To show the effects of the heuristics (Section 3.10), each algorithm
was trained on the cs.unm.edu 2004-11-12 data and tested on the cs.unm.edu 2004-11-17

108 Chapter 5. Experiments and results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves for DFA and 6-grams with and without all heuristics on cs.unm.edu data

6grams, heuristics on
6grams, heuristics off

DFA, heuristics on
DFA, heuristics off

Figure 5.16: Receiver Operating Characteristic curves showing the difference between the
default heuristic settings and results with the heuristics turned off.

data with the heuristics all held constant at the default values (Table 3.1 showed the default
values) except for the heuristic(s) being tested. These tests were performed only on DFA
induction and 6-grams; these algorithms are the only two using tokens.

Table 5.9 shows the number of 6-grams and size of the DFA with the default heuristics
on, as well as with individual heuristics turned off; this approach for presenting the data
is required because the 6-grams exhausted the system memory on the test machine under
some of the tests required to present the data by showing the result of adding individual
heuristics. Each heuristic makes at least some difference in the 6-grams and DFA memory
requirements, with the file name and type heuristic making nearly a factor of two difference
in number of 6-grams and DFA edges. For 6-grams, this heuristic makes the difference
between having a model that fits into memory and one that does not.

5.6. New data tests 109

Heuristic disabled 6-grams Nodes Edges
Default 498,211 9,164 67,436
file type and name 845,957 9,427 102,767
IP and host name 542,838 11,095 82,902
dates 665,328 9,208 68,229
hashes 525,609 9,237 70,920
q-values 500,339 9,320 69,452

Table 5.9: Structure sizes for 6-grams and DFA with individual heuristics turned off. The
default line shows the state when the heuristics are at the default settings (all of the listed
heuristics on).

5.6 New data tests

The results presented earlier in this chapter do not come from my having so finely tuned
the heuristics and algorithms to the data. To show this, I took a new data set from pugillis,
cleaned it, and ran the DFA and 6-grams on this data. The results in Figure 5.17 for the
DFA and in Figure 5.18 for the 6-grams. In both cases, the accuracy for all three sites was
similar to the accuracy results presented earlier in this chapter.

110 Chapter 5. Experiments and results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves for DFA on new pugillis data

aya.org explorenm.com i-pi.com

Figure 5.17: ROC curve for DFA on the new pugillis data.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves for 6-grams on new pugillis data

aya.org explorenm.com i-pi.com

Figure 5.18: ROC curve for 6-grams on the new pugillis data.

111

Chapter 6

Discussion

Many of the results in Chapter 5 can be explained by the generalization performed by the
algorithm: too much, too little, in the wrong place, etc. To delve further into this idea,
this chapter looks at the size of the set represented by the model of normal induced by the
algorithm, and also at the portion of this set that is legal HTTP. Ideally, we want the actual
set size, but the sets discussed in this chapter are all infinite. To deal with this problem,
I compare the rate of normal set growth with the request length. These results lead to an
explanation for the relative accuracy reported in Section 5.4. Beyond an explanation for
the results, algorithm accuracy can be predicted, and this prediction allows comparison of
algorithms. Section 6.1 provides details.

Generalization also explains why the heuristics described in Section 3.10 aid accuracy.
Beyond explanations, some models allow automatic identification of undergeneralizing
regions where additional heuristics are needed. Section 6.2 covers these topics.

Another explanation for part of the results in Chapter 5 can be explained by the differ-
ences in the models used by the algorithms—statistics on characters versus learning the
lexical structure. Section 6.3 discusses this difference.

Applying the observations about generalization and the data model(s) used by the al-
gorithms, Section 6.4 looks at all of the algorithms and explains where they are accurate,
and where the accuracy suffers.

The properties of HTTP described in Section 2.4 affect anomaly detection. Section 6.5

112 Chapter 6. Discussion

contains this discussion, while Section 6.6 discusses the consequences of allowing attacks
in the training data.

6.1 Normal set size, generalization, and accuracy

In the past, when a researcher went to apply anomaly detection to a problem, she would use
her knowledge of models and anomaly detection algorithms to hypothesize a combination
that would provide acceptable accuracy and performance. If the resulting combination
was close enough, she might tweak the model or algorithm using various heuristics, again
guided by her experience and intuition. This section describes an approach for comparing
relative algorithm generalization.

To choose the anomaly detection algorithms still requires experience with models and
algorithms; the model must accurately represent the data. Controlling generalization is
necessary, but not sufficient, for accurate anomaly detection—a representation of an HTTP
request as the number of 0s in the bitstring encoding of the request is unlikely to provide
accurate anomaly detection, regardless of the generalization. For protocols such as HTTP
where the fields exhibit different variability, the model must be able to distinguish between
the different portions of the data.

The goal of an anomaly detection system is an accurate model of the data instances
considered normal—the normal set. If the algorithm over- or undergeneralizes, accuracy
problems may result (Section 2.4.6). One measure of the algorithm’s generalization is the
size of the normal set. If two algorithms (A and B) are trained on the same data, yet A
accepts more instances as normal than B, then A generalizes more than B.

When calculating the size of the normal set for each model, if the input is bounded,
the set size is bounded. Systems without a bound on the input length (e.g., HTTP), will
have an infinite normal set. In this case, the calculation is of the growth of the normal
set size with increasing input size. Comparing the set sizes (or growth rates) allows a
comparison of generalization; the algorithm with the larger normal set size (faster growth
rate) generalizes more. For some of the HTTP anomaly detection algorithms, these results
are provided later in this section.

6.1. Normal set size, generalization, and accuracy 113

A better guide for the amount of overgeneralization comes from the portion of the
normal set that represents legal input for the protected system. For HTTP, this is the portion
of the normal set representing legal (or, in actuality, commonly-used) HTTP. The non-
legal portion of the set represents overgeneralization—it should never occur in expected
instances—a set with many irrelevant entries allows an attacker more latitude for mimicry
attacks. As a simple example, an anomaly detector using the length of the request in
characters considers all strings of the appropriate length normal, regardless of whether the
string represents a legal HTTP request. The information on the portion of normal which
is legal provides information about the extent of the algorithm’s overgeneralization. For
HTTP, this analysis is more involved than the size or growth rate of the normal set.

For the following discussions, I make use of the definitions and notation in Table 6.1.
The data set I use for sizes and lengths is the cs.unm.edu 2004-11-12 data. When calcu-
lating the fraction of the set representing normal requests, an important fact is number of
HTTP methods expected. In this data set, most requests use the GET method, with a few
using PROPFIND.

6.1.1 Length

The generalization done by the length measure is to accept any string having the proper
length. For the simple case where only one length is accepted, the generalization set is all
strings of length l. Since | Σ |= 256 for web servers, there are 256l different requests of
length l. If an exact match is not required (e.g., if one standard deviation is acceptable, the
range is l ± σ), then additional generalization occurs. In this case, the anomaly detection
system accepts requests of lengths l to m, and the resulting set size is:

m�

i=l

256i = 256l
m−l�

j=0

256j = 256l 256m−l+1 − 1

255
= O(256m).

Of the set of accepted strings, note that only a small fraction are legal HTTP requests.
Of the strings of length l, 256l−4

256l = 1
2564 ≈ 2.3× 10−10 is the fraction that begin with GET

followed by a space, how a request using this method starts. In other words, almost every
string in the accepted set is an illegal HTTP request.

114 Chapter 6. Discussion

A The adjacency matrix for a directed graph.
aij The element (i, j) in A.

aij
(k) The element (i, j) in Ak.
bi When a frequency is binned, bi is the value in the ith bin.
D A directed graph.
E The set of edges from the directed graph.
fc The relative frequency of character c.
F A relative frequency distribution, ordered from largest to smallest.

F (i) The ith element in the frequency distribution F . Note that fi is not necessarily
F (i).

g A single n-gram—a sequence of n characters or tokens; g ∈ N .
ICD An Idealized Character Distribution—a list of 256 relative frequencies,�256

1 fi = 1. See Section 3.2 for details.
i, j, k Integer indices.

l The length of an input string. In the context of web servers, this value represents
the length of a request. In some of the analyses, l is the maximum length of a
request.

m A length of an input string; m > l.
n The number of sequential characters from the training data in an n-gram.
N The set of n-grams generated from the training data.
p The number of vertices in a graph.
S The subset of n-grams or nodes in the DFA where the (first) token is a valid

HTTP method.
v A vertex in a graph.
V The set of vertices in a graph.
z The number of non-zero relative frequencies in an ICD.
Σ The character set for the algorithm. In web server data, Σ consists of 8-bit

ASCII for algorithms working with characters, and the set of possible tokens
for the algorithms that use tokens.

σ A standard deviation.

Table 6.1: Mathematical definitions and notation used in this chapter.

6.1.2 χ2 distance between character distributions

As one of their measures, Kruegel and Vigna [146] defined an idealized character dis-
tribution (ICD), where the relative character frequencies were sorted from most to least
frequent. Section 3.2 contains a full description of this measure.

To calculate the number of strings that an ICD represents, we need to look at the

6.1. Normal set size, generalization, and accuracy 115

changes that occur to a request before the decision is made concerning whether or not the
request is normal:

1. The relative character distribution of the request is calculated.

2. The distribution is placed into six bins

3. The χ2 test indicates whether the binned distribution matches the ICD.

Note that each step produces an infinite sets if no restrictions are placed on the length of
the input. In practice, the input is a finite length, l.

To go from a request to a distribution, note that this model does not make use of which
character has a given frequency, only what the frequencies are. The tail of the distribution
might (and, in real data, will) consist of several zeros. Let z be the number of non-zero
entries in a frequency distribution. Note that z ≤ 256 due to the size of the 8-bit character
set. For the passwd example from Section 3.2, z = 5.

Because the frequency distribution does not specify the characters associated with each
value, one distribution represents all of the permutations of 256 characters that can be
used to generate a matching distribution using z different characters. The number of such
permutations is:

256!

(256− z)!
. (6.1)

Once we have chosen the characters that give us a distribution, next we consider how
these characters might be arranged. Because this model does not consider the order of
characters in the request, we need the number of arrangements of z distinct characters in a
string of length l:

l!�z
i=1(fil)!

(6.2)

where
�z

i=1 fi = 1 and fil is an integer for each i.

In the measure as described in Section 3.2,
bin number 1 2 3 4 5 6

holds 1 3 3 5 4 240 values.
When placing a distribution into bins, note that multiple distributions produce the same

116 Chapter 6. Discussion

binned result. For example, F1 = (3
4 ,

1
4 , 0, . . . , 0) and F2 = (3

4 ,
1
8 ,

1
8 , 0, . . . , 0) both pro-

duced the binned representation: (3
4 ,

1
4 , 0, 0, 0, 0). We want the number of different distri-

butions that produce the same bin values.

Consider if we had 256 bins instead of six. Then, the factors (6.1) and (6.2) from
above determine the number of binned representations. Now, suppose that we have 255
bins, where the last two frequencies are summed to provide the value in the last bin, b255.
Note that bi = t

l for t an integer such that t ∈ [0, l]. Hence t = lbi. The number of
distributions that result in the same binned representation is the partitions of the integer t

into two or fewer terms. If the last three frequencies were summed to produce b254, then
we need the partitions of lb254 into three or fewer terms.

Define p(i, j) as the number of partitions of i into j parts where order matters. In our
case, the order is from largest to smallest matching the frequency distribution ordering.
From [41],

p(i, j) =

�
i + j − 1

i

�
=

(i + j − 1)!

i!(j − 1)!
=

�j−1
k=1(i + k)

(j − 1)!
.

Therefore, assuming z = 256, the factor of expansion provided by Kruegel and Vigna’s
binning the frequency distribution is:

B = 1 · p(lb2, 3)p(lb3, 3)p(lb4, 5)p(lb5, 4)p(lb6, 240)

=
Q3−1

k=1(lb2+k)

(3−1)!

Q3−1
k=1(lb3+k)

(3−1)!

Q5−1
k=1(lb4+k)

(5−1)!

Q4−1
k=1(lb5+k)

(4−1)!

Q240−1
k=1 (lb6+k)

(240−1)!

=
Q2

k=1(lb2+k)
Q2

k=1(lb3+k)
Q4

k=1(lb4+k)
Q3

k=1(lb5+k)
Q239

k=1(lb6+k)
2!2!4!3!239!

= (lb2+1)(lb2+2)(lb3+1)(lb3+2)(lb4+1)(lb4+2)(lb4+3)(lb4+4)(lb5+1)(lb5+2)(lb5+3)
Q239

k=1(lb6+k)
2·2·24·6·239!

B ≥ 1, and B is an upper bound because order matters, i.e., because of the binning,
3 + 1 + 1 and 1 + 3 + 1 are distinct. In most real-world cases z < 256.

Next, this measure uses χ2 to compare the ICD of the training data with the binned
distribution frequencies from the request under consideration, calculating a probability
that the two distributions are the same. Since an exact match is not required, additional
distributions are accepted as normal. This factor will only make a bad growth rate worse,
so let Y be the factor that this generalization introduces, and note that due to the construc-
tion of the ICD, there exists at least one request with a distribution matching the ICD.
Therefore, Y ≥ 1.

6.1. Normal set size, generalization, and accuracy 117

The size of the set represented by the model of normal is at least:
�

256!

(256− z)!

� �
l!�z

i=1(fil)!

�
BY =

256!l!

(256− z)!
�z

i=1(fil)!
BY

As with the length measure, all but a miniscule fraction of this set is composed of
strings that are not legal HTTP.

6.1.3 Directed graphs

Both n-grams (Section 3.8) and DFAs (Section 3.9) represent directed graphs, and both
will need the following analysis.

A directed graph, D, can be represented as an adjacency matrix A with elements aij ,
where aij = 1 when an edge goes from i to j, and 0 otherwise. Let V be the set of vertices
for D, and let p =| V |.

The number of walks of length k from vi to vj in D is aij
(k) ([28], page 13). In the

worst case, a complete graph, aij = 1 for 1 ≤ i, j ≤ p. Then A consists of all 1s, and
A2 = pA. By induction, Ak = pk−1A, so aij

(k) = pk−1.

The total number of walks of length k in D is the sum of all the elements in Ak; in the
worst case, this is

p�

i=1

p�

j=1

a
(k)
ij =

p�

i=1

p�

j=1

p
k−1 = p

k+1
.

For the worst case directed graph, the effects of restricting the start and/or end nodes
of the walks are:

Number of Walks Walk restriction(s)
pk−1 Specified start and end nodes
pk Specified start node, unspecified end node
pk+1 Unspecified start node, unspecified end node

n-grams n-grams generalize by not listing the entire sequence of letters in the input
string, but instead by requiring only that every sequence of length n be in the set N of
n-grams induced from the training data (Figure 3.1 in Section 3.3). In contrast with the

118 Chapter 6. Discussion

DFA, no distinguished starting or ending point exists, so the size of the accepted set is
the total number of walks in the directed graph. From the earlier analysis, for requests of
length l, the worst-case value is pl+1.

The portion of this set that is legal HTTP will be approximately the walks of length l

from the g ∈ S ⊂ N representing the n-grams where the first token is the HTTP method.
The fraction of the set that is legal HTTP will be approximately

�
|S| p

l << pl+1, as the
sum will be over paths with specified start nodes from the set S, but the end nodes are
unspecified.

Note that as I used it, this algorithm works with tokens, not characters; most tokens
consist of multiple characters. Therefore, this set would be smaller than the sets for the
algorithms making use of characters.

DFAs A DFA is a directed graph where a node, vSTART, is identified as the starting state.
Valid strings will result in the DFA ending in an accept state. For the analysis, we need
a single accepting state. A DFA with more than one accepting state can be easily trans-
formed into one with exactly one accepting state by the following procedure:

1. Add a new symbol, ω to Σ.

2. At the end of the input string, add ω.

3. Add a new node, vACCEPT, to the DFA. vACCEPT will be the only accepting node in the
transformed DFA.

4. From all of the accepting nodes in the original DFA, add a transition on ω to vACCEPT.

This transformation will accept the same strings as the original DFA.

For input of length l, the size of the accepted set is the number of walks of length l + 1

(+1 because of the process to transform a DFA with multiple accept states into one with
one accept state) starting at vSTART and ending at vACCEPT. This value is a

(l+1)
START,ACCEPT. The

number of vertices in a DFA as I implemented it is ≤ the number of distinct tokens seen
in training. In a DFA with p nodes, the maximum number of walks for an input of length
l from vSTART to vACCEPT is p(l+1)−1 = pl.

6.1. Normal set size, generalization, and accuracy 119

This analysis assumes the worst case of a complete graph. In practice, the DFA has
substantially fewer edges than a complete graph. In a complete directed graph, every node
has an edge going to vSTART. In the DFA, no node has an transition to vSTART. Additionally,
transitions from vSTART exist only for the HTTP methods seen in the training data. For the
cs.unm.edu 2004-11-12 data, the DFA has two edges exiting vSTART. Therefore, analogous
with the case for n-grams, a more realistic worst case is

�
|S| p

l−1 << pl where the paths
start from a small set of nodes S pointed to by vSTART.

Similarly, only a subset of the nodes in the graph have edges going to vACCEPT that has
no outbound edges. Other restrictions provided by the structure of HTTP also limit the
connectivity. Due to the construction of the DFA from requests that are (presumably) legal
HTTP, all of the accepted set is legal HTTP.

Note that as I used it, this algorithm works with tokens, not characters; most tokens
consist of multiple characters. Therefore, this set would be smaller than the sets for the
algorithms making use of characters.

6.1.4 Comparing algorithms via normal set growth rate

In the presence of unbounded input, all of the sets accepted are infinite. However, Table 6.2
shows the growth of the set sizes with the growth of the size of the input requests, l. To
make these values more concrete, the order of the resulting set sizes in Table 6.3 are
calculated given the values from the cs.unm.edu 2004-11-12 filtered data set. Let T be
the number of distinct tokens in the training data; T = 45, 654 in the example data set.
Then for the DFA, p ≤ T ; if no compacting of the DFA was performed, then p = T . For
n-grams,

p = O(

�
T

n

�
).

For 6-grams, �
T

6

�
≈ 1026

>> 392, 048

These results explain the different values of p in Table 6.3.

Of the sets accepted by the algorithms, the DFA consists of only legal HTTP requests,

120 Chapter 6. Discussion

Algorithm Unit Growth rate
Length character O(256l)
χ2 distance character ≥ BY

256!l!
(256−z)!

Qz
i=1(fil)!

n-grams token O(pl+1)
DFA token O(pl)

Table 6.2: Growth of the normal set sizes compared with the input length.

Algorithm Parameter values Order of normal set size
Length l = 343 10839

χ2 distance l = 343; z = 94 ≥ 10843

6-grams l = 41; p = 392, 048 10239

DFA l = 41; p = 7, 843 10160

Table 6.3: Orders of normal set sizes using the results from the cs.unm.edu 2004-11-12
filtered data. Parameters come from Tables 4.2, and 5.7 and Figure 5.4. The length is the
mean length, and z and the frequencies for the product for the χ2 distance comes from the
ICD induced from the training data.

whereas the length and χ2 distance between character distributions only have a miniscule
portion of the accepted set that is legal.

These results predict that order of algorithms from fewest to most false positives is: χ2

distance, length, n-grams, DFA. The difference in growth rates implies that gap between
n-grams and length should be easily distinguished. Figure 6.1 shows the result of testing
the algorithms without heuristics on the cs.unm.edu 2004-11-17 filtered data. The false
positive rates show that the DFA and n-grams substantially undergeneralize. The low
true positive rates for the χ2 distance and length show they overgeneralize. The large
difference in growth rates between the χ2 distance and the DFA is visible in the difference
in generalization as shown by the true and false positive fractions of the algorithms.

Calculating the growth rate of the normal set works to coarsely predict the relative ac-
curacy of an anomaly detection system for HTTP. However, this approach will not always
work. Consider a system with generalization as shown in Figure 6.2. This anomaly detec-
tion system both under- and overgeneralizes, and its normal set size does not predict this
behavior.

When a system over- or undergeneralizes too much, the potential of an algorithm might

6.1. Normal set size, generalization, and accuracy 121

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
p

o
si

ti
v

e
fr

ac
ti

o
n

False positive fraction

ROC Curves on cs.unm.edu Filtered Data

6grams w/o heuristics
DFA w/o heuristics

Chi-squared distance
Length

Figure 6.1: ROC curves showing the accuracy of 6-grams, DFA, Chi-squared distance,
and Length. Note that these results are for no generalization heuristics enabled.

Figure 6.2: A representation of an anomaly detection system that both under- and over-
generalizes.

122 Chapter 6. Discussion

be easy to miss, as is shown by the difference between the DFA or 6-gram algorithms
without and with the heuristics applied. Clearly, hitting the “sweet spot” of generalization
is critical.

Values from real data show that the actual normal set size can be substantially below
that of the upper bound. Calculating the average case growth rate is left as future work.
Additional future work includes calculating a more accurate fraction that is legal HTTP
and comparing its predictive power with that of the normal set growth rate.

6.2 Heuristics

The difference between an undergeneralizing algorithm and one with controlled gener-
alization added is substantial, and can make the difference between an algorithm with a
too-high false positive rate and one that might be usable in a production system. There-
fore, controlling generalization is necessary for algorithm accuracy. Heuristics adding
targeted generalization are one solution to this problem, and in some cases, they make the
difference between whether an algorithm can be used or not. Several of these heuristics
can be automatically identified by locating nodes in the directed graph where the out de-
gree is high and the usage count for each link is low—i.e., the algorithm is attempting to
memorize highly-variable data values. Section 6.2.1 describes this process.

One effect of the heuristics is to reduce the amount data, n, that must be stored by the
DFA or n-grams. The memorization of values can be represented as an expression:

n = p1p2 · · · pm

where each of the pi refers to a specific portion of the HTTP protocol (e.g., an IP address).
Generalization, such as replacing an IP address by a token indicating if it is well-formed
changes the corresponding pi to a small constant; in the IP address example, this value is
2 (well-formed, not well-formed). These effects are visible in Table 5.9.

The heuristic of grouping potential attacks (described in Sections 2.2.2 and 3.10) can
be successfully applied to HTTP requests. However, it may not work for a production
web server. The administrator may have only two choices: allow possible attacks to pro-
ceed (only one request is needed to exploit a vulnerability) or block the unusual requests,

6.2. Heuristics 123

����������
1
������������������

2
��������������

1
����

��
��

��

2��
2���

��
��

��
�

1��������������

1������������������

Figure 6.3: An example node in a directed graph where the out degree is high and the
usage counts are low.

behavior that will reduce e-commerce site sales. Neither of these options is likely to be
acceptable. However, other approaches, such as checkpointing the server (e.g., with a vir-
tualization system such as Xen [20]) may allow a secure method of rolling back to a secure
state after delivery of an abnormal HTTP request. Following up on this idea is future work.

6.2.1 Identifying undergeneralization in the model

This section discusses starting with an undergeneralizing algorithm and adding targeted
generalizations. This approach stems from experience with improving undergeneralizing
algorithms; reducing overgeneralization is a topic for future research. Presumably, you
could start with an overgeneralizing algorithm and add restrictions to the generalization.
Further work in that direction is left as additional future work.

The model produced by an undergeneralizing algorithm will memorize values when it
encounters high variability data. Therefore, to identify these locations, inspect the model,
looking for signs of memorization. The exact form these signs take depend on the model.
For example, in a directed graph, the pattern indicating simple memorization is a node
with a high out degree and low usage counts on all of the outbound edges. For an example
of this structure, see Figure 6.3. In particular, a good metric is o

m where o is the out degree
of the node and m is the highest usage count of any outbound edge. Sorting the nodes by
this value highlights areas of the protocol where additional generalization would provide
the biggest benefit.

Once the locations with high-variability are identified, the next step is to develop
heuristics. Automatically generating heuristics is left as future work; this dissertation
shows applying this process with manually generated heuristics.

124 Chapter 6. Discussion

Application to HTTP

The goal the automatic identification of undergeneralization locations is to find the loca-
tions where the DFA (or other algorithm) is memorizing a set of values. Using the metric
described above on the cs.unm.edu 2004-11-12 data with no heuristics, the following were
identified as areas where generalization would be useful, in the order of most to least use-
ful:

1. IP address

2. The Referer header field; this is a URL that led the user to the web site, and fre-
quently is the result of a search. The search URLs are complex and highly variable.

3. Integer ranges (used for saving bandwidth by only sending the portions of the re-
source changed from a cached version).

4. User agent additional information (e.g. user agent version, capabilities, etc).

5. hashes (Entity tags, session IDs, etc)

6. dates

7. host names

Note that this approach identified several locations where generalization was needed that
were the same as those I found while working with the data (Section 3.10). It also found
the Referer header field, which, in hindsight, is an obvious candidate for generalization.

The file name length heuristic was not discovered by the automatic process because a
given directory has a small, finite number of files. Therefore, the out degree was not high
enough in any of the directories on the cs.unm.edu web site to show up in the automatic
identification process.

The floating point numbers in q-values were not identified by the automatic process
simply because in the training data, only a small number of distinct floating point values
appeared, and memorization of these values was not causing accuracy problems.

6.2. Heuristics 125

One effect of the generalization heuristics is to reduce the problems caused by the
nonstationary nature of the HTTP requests. Since the current date and time are constantly
changing, replacing a portion of the request that changes with one that does not lowers
(but does not eliminate) the nonstationarity of the data. Assuming a valid date cannot be
used as an attack, this heuristic helps move the novelty of an attack to a more noticeable
value.

This idea could be taken too far; overgeneralization due to applying too many gener-
alization heuristics can cause the system to miss attacks. As it is, modifications by the
heuristics explains why two attacks are considered identical by the DFA (Table 5.5).

This approach is not specific to the DFA. The n-grams also result in a directed graph,
and the same structure appears in the resulting graph when the n-grams are trying to mem-
orize a high-variability region.

6.2.2 Heuristics and the normal set

The generalization heuristics described in Section 3.10 increase the size of the normal set
for the DFA and n-grams. Table 6.4 contains the details of the size increase. The heuristics
file types only, PHP Session IDs, and recognize host names enlarge the set a great deal.
The values in Table 6.4 are normal set size growth; because of loops in the DFA, it accepts
an infinite number of HTTP requests. Therefore, these values are not directly comparable
to those in Table 6.3, which are based on the growth rates and not absolute set size.

The effect on normal set size of these generalizations show that for an undergeneral-
izing anomaly detection system, which additional generalizations are applied is critically
important. For example, the PHP session ID generalization makes the normal set sub-
stantially larger. Assuming the properties of a cryptographic hash are met, these session
IDs represent a 128 or 160 bit random string. This portion of the HTTP request is better
matched by a length and character distribution.

126 Chapter 6. Discussion

Generalization Replacement set size
recognize dates all dates with a two- or four-digit year: 366 ∗ 10, 000+366 ∗

100 = 3, 696, 600; all possible times: 24∗60∗60 = 86, 400;
seven days; 54 time zones (non-standard, but common). The
resulting set size is 120, 727, 998, 720, 000 ≈ 1015

file types only all legal file names; up to 251 characters (at least four are
specified in the type) with 254 possible values 251254 ≈

10610

PHP Session IDs 2128 if MD5, 2160 if SHA1
recognize IP addresses 232; a smarter check would only allow class A, B, and C

addresses which is 231 + 230 + 229 = 3, 758, 096, 384
recognize hostnames Any legal hostname. Host names are not length limited,

therefore this generalization allows an infinite number of
strings.

recognize q-values A floating point value in [0, 1) with zero to three digits to the
right of the decimal place or 1 with zero to three zeros after
the decimal place; 1 + 10 + 100 + 1000 + 4 = 1, 115

Table 6.4: The effect of generalization heuristics on the normal set size.

6.3 Characters versus lexical structure

The results in Section 5.4 show that character-based algorithms are notably less accurate
than the token-based algorithms. When I began this research, I tried using n-grams on
the requests treated as character streams but discarded this approach because it was not
accurate.

Tokens represent a higher lexical unit, and are used by the system to represent mean-
ing. Attacks often represent nonsense. With the need to “ship the product yesterday” and
other deadlines, programmers often focus on making the system work under normal cir-
cumstances and spend fewer resources on nonsense cases. Additionally, to consider all
of the ways in which nonsense may be represented requires thinking in ways many pro-
grammers were not trained. In my attack database, most, if not all, of the attacks represent
nonsense.

The ability to represent more of the meaning of a HTTP request improves the ability
of an algorithm to discriminate between normal and abnormal. Presumably the normal
requests do not represent nonsense. Obviously, this is affected when the training data

6.4. Algorithm accuracy 127

contains harmless attacks; Section 6.6 discusses this topic further. Applying these concepts
to the algorithms I tested, the DFA and n-grams learn the higher-level structure of valid
HTTP requests, and so therefore they can use this structure to better tell if a request is
normal or not.

The idea of representing the meaning of the request allows me to make a prediction:
Statistics such as character distribution applied to tokens rather than characters may be
more accurate than when the same statistic is applied to the characters making up the
request. However, the relationships between tokens is important to the semantics. Statis-
tics on tokens are likely to be less accurate unless the measure can represent these rela-
tionships. In effect, by ignoring the relationships between tokens, measures such as the
character distribution algorithms applied to tokens will continue to overgeneralize, and
therefore be more prone to mimicry attacks. Consider as an example all English-language
sentences with a specific distribution of words versus the sentences that are well-formed
and not nonsense.

6.4 Algorithm accuracy

The exact ordering of algorithms by accuracy depends on the acceptable false positive
fraction, but the ROC curves of the algorithms are often well-separated throughout the
graph. Note that the token algorithms are always better than the character algorithms. The
6-grams and DFA are normally close, and sometimes the Mahalanobis distance is nearby,
other times it is substantially worse. The gap between these three and the length and χ2

distance is usually notable. The rest of this section looks at the algorithms in more detail.

6.4.1 Length

Trained on filtered data, this measure can detect some buffer overflows and cross-site
scripting attacks. However, when harmless variants of these attacks are included in the
training data, the measure becomes nearly useless. Additionally, some attacks such as
the Apache chunked transfer error (Figure 2.9) and some variants of Nimda (Figure 2.5)
are short enough that they could easily pass as normal; if they are too short, padding to

128 Chapter 6. Discussion

increase the length is easy. Therefore, a minimum length will never stop an attack other
than by a simplistic attacker. Because this algorithm accepts many strings that are not legal
HTTP, an attacker has great freedom in the construction of her attack.

If this algorithm were to be applied to tokens, it would overgeneralize. Consider how
many sentences with n words are valid English-language sentences. Therefore, this al-
gorithm is unlikely to ever be useful in isolation. It might be applied as one of several
algorithms, assuming non-attack requests have a tight enough upper bound on their length.

6.4.2 Character distributions

The Mahalanobis distance and χ2 distance algorithms generalize by allowing similar, in-
stead of identical, character distributions. Unfortunately, this approach fails. The HTTP
protocol is flexible enough that an attack can be padded to give a character distribution con-
sidered close enough to normal, especially with the myriad ways of encoding data allowed
by the standards. To make the problem worse for these metrics, some attacks such as the
Apache chunked transfer error (Figure 2.9) and some variants of Nimda (Figure 2.5) use
a character distribution that might pass as normal without padding, and had the attacker
needed to, she could have easily made minor changes to the attack (such as putting the
proper host name or IP address in the Host: field) as needed to ensure a valid character
distribution. The problem is that the set considered normal is so large that it includes many
of the attacks in the attack database, regardless of if the attack is legal HTTP or not.

Wang and Stolfo [263] tested the Mahalanobis distance using the MIT Lincoln Labs
data (Section 2.3.2). This data set contains only four HTTP attacks. In the years since the
MIT data were collected, attack characteristics have changed; my more comprehensive at-
tack data set illustrates the effect of this difference on this algorithm (Figure 5.6). Kruegel
and Vigna [146] were not as hampered by the character distribution overgeneralization
because they limited their work to a small portion of all attacks (CGI parameters) and this
measure was but one of six. An interesting topic for future work is to investigate why the
Mahalanobis distance sometimes does nearly as well as the DFA and 6-grams, and other
times is worse than the length algorithm.

6.4. Algorithm accuracy 129

6.4.3 Markov Model

In a Markov model, normal requests might have a probability of 0 due to minor differ-
ences from the instances in the training data. If the model was induced from filtered data,
attacks would also result in a probability of 0, and the model has a hard time distinguish-
ing between these two cases. The Markov model’s generalization is traditionally achieved
by allowing probabilities within a given range. The diversity of normal requests means
any given normal request is unlikely, and perpetual novelty of HTTP data leads to nor-
mal requests with a probability of 0. The combination of these two factors means that the
Markov model is a poor model for HTTP requests. My results applying a Markov model to
the tokens of the complete HTTP request using tokens mirror those of Kruegel and Vigna
applying it to CGI parameters [146]. They reported that the Markov model suffered be-
cause HTTP requests are so diverse that the probability of any given request is low. When
working with complete requests, the problem is even worse, because more tokens to work
with mean more places where normal diversity results in lower probabilities for any given
HTTP request.

Kruegel et al. [146, 147] tried a Markov model for representing the characters in CGI
parameters. However, they found that most transitions in their Markov model were rare
(i.e., their data had high variability); thus, they instead used their Markov model as a
zero/non-zero test to see if the structure of the CGI parameters had been seen in training.
By ignoring the magnitude of transition probabilities, they in effect used their Markov
model as a DFA. Generalization occurred when the NFA they originally built was com-
pressed through state merging.

6.4.4 CGI parameter algorithms

The CGI parameter algorithms (order described in Section 3.3, presence or absence of pa-
rameters from Section 3.4, and enumerated or random parameter values from Section 3.5)
are not well-suited for application to the complete request. The order of the HTTP header
fields is likely to be fixed for a given browser version, but might change with versions,
browsers, and robots. A different order than that seen in the past might indicate an ab-
normal request, or it could simply mean, for example, that Microsoft has released a new

130 Chapter 6. Discussion

version of Internet Explorer. It would be trivial for an attacker to mimic the order of header
lines of a popular browser, so this algorithm is unlikely to provide useful information for
identifying attacks. The one attack that might be detected is Apache Sioux (Figure 2.8
and [54]). This attack repeated a header line many times causing the vulnerable version of
Apache to run out of memory. In general, by ignoring the values of the headers, this ap-
proach will miss almost all attacks when applied to the complete HTTP request. A similar
argument can be applied to the presence or absence of header lines.

Applying the enumerated or random parameters test to the header lines of a complete
request would be a coarse measure. If a value is determined to be random, then the value
provides no information. The nonstationarity of web sites means that new values are
common. The difference between a new value and an attack cannot be distinguished by
this algorithm alone. Kruegel and Vigna [146] applied this measure where the parameters
are more likely to be from a fixed set. This algorithm is more likely to be useful in these
cases.

6.4.5 Linear combination

As Kruegel and Vigna [146] implemented the linear combination, most of the algorithms
had to agree that the request was normal in order for the combination to consider the
request normal. When algorithms such as the character distribution and length overgener-
alize as they do, this effect filters out to the combination as well. When Kruegel and Vigna
developed this test, they limited its use to CGI program parameters. Used in this manner,
The CGI parameter tests (order, presence or absence, and enumerated or random), with
their limited to no generalization probably explains much of the accuracy they achieved
with their system.

When combining measures such as the character distribution, length, CGI parameter
tests, and the Markov model, the resulting generalization depends on how the individual
tests are combined. If all models must agree that the request is normal, then the least
general will usually be the model indicating an abnormal request, and hence control the
result. Combining overgeneralizing detectors such as length and character distribution will
usually indicate a normal request (including for many attacks), and therefore contribute lit-
tle to the discrimination power of the combination; combining overgeneralizing detectors

6.4. Algorithm accuracy 131

results in a system that overgeneralizes.

6.4.6 Directed graphs

n-grams using tokens model the structure of the request by encoding sequences of tokens,
in effect, representing the input as a directed graph. Generalization occurs in two ways.
First, for all but the shortest requests, the number of tokens exceeds n, so paths not corre-
sponding to any request in the training data might exist in the graph. Second, by allowing
a small number of complete mismatches, additional requests can be accepted. This gen-
eralization is limited compared to that performed by the length and character distribution
algorithms. The improved true positive rate shows that this algorithm is closer to optimal
generalization, and the model can better tell the difference between normal and nonsense.

The DFA induced using tokens is also a directed graph representing the structure of
the HTTP request. Generalization occurs in the DFA compaction (see Section 3.9). Addi-
tional generalization occurs because paths not corresponding to any request in the training
data might exist. Instead, these paths represent mergers of two or more requests. Finally,
generalization also occurs when one or more “missed tokens” (Section 3.9.1) are allowed.
The generalization is limited compared to that performed by the length and character dis-
tribution algorithms. The better true positive rate relative to all of the other algorithms
shows that the model is even more accurate than that of the n-grams.

Comparing the DFA to n-grams, the sequence nature of the n-grams means it does
better at constraining resource paths; these appear as sequences of directories separated
by the / token. Contrast this representation with the DFA, that uses a loop structure
to represent the path, and hence will accept permutations and substitutions in the path,
whether or not they are valid. This effect shows up in Tables 5.1 and 5.2. For example, if
/a/b/c and /d/e/f are the only valid paths, then with n ≥ 3, the n-gram algorithm will
accept no other paths. However, because the DFA represents paths as a loop of choices
(see Figure 6.4 for an example of this loop), the following paths are some of the paths
acceptable to it: /a/b/c, /a/a/a, /a/e/c, and /f/e/d.

A weakness in both the DFA and n-grams algorithm is that if the attack can be pre-
sented in a small number of tokens, the algorithm cannot tell the difference between a

132 Chapter 6. Discussion

��������Sn
/

�� ��������Sn+1

a,b,c,d,e,f
�� ��������Sn+2/

��

��

Figure 6.4: Example portion of the DFA encoding paths. Note the loop between nodes
Sn+1 and Sn+2.

novel request with a few new tokens and an attack. This issue was responsible for some of
the missed attacks. Another attack missed by the DFA can be traced to a user typo. The
pair of tokens // appeared in the training data, causing an edge from the node correspond-
ing to the path separator / back to itself. Unfortunately, the beck attack (Figure 2.6) used
a multitude of /s to cause an out-of-memory condition in an older version of Apache.

6.5 HTTP

6.5.1 Diversity and variability allowed by the protocol

Section 5.1.1 showed that some algorithms can distinguish between web sites. The DFA
and 6-grams algorithms never perform worse on the site on which they trained. A contrast
is the Mahalanobis distance algorithm that for the cs.unm.edu data is more accurate on a
different web site. Had the length and χ2 distance algorithms been sufficiently accurate to
have been included in these results, they also likely would have experienced difficulties.
Considering where the differences exist in the requests, this result is unsurprising—most
people choose their path names from a set of characters consisting primarily of alphanu-
merics; the language and file types all are specified in the standard and consist of lower
case letters and the -; the browser identity (in all existing browsers and robots in my data
set) is composed from only a slightly larger set of characters. The average request length
varies only slightly between web sites in my data. An IDS using Mahalanobis distance,
length or χ2 distance might be vulnerable to a “write once, run everywhere” attack.

Section 5.1.3 shows attacks are more diverse than normal requests. Knowledge of
one attack does not necessarily convey knowledge of others. This result suggests that
the approaches where researchers have generalized attacks (e.g., [3, 218]) might still miss
novel attacks. The generalization of a buffer overflow attack might allow detection of other

6.5. HTTP 133

buffer overflow attacks, but it is unlikely to aid in detecting cross-site scripting attacks.

In general, different resource paths are sufficient for the DFA and n-grams to dis-
tinguish between requests. This explains why the non-attack data in Table 5.5 exhibit
similarity ≈ 0.3 and not higher.

Section 2.2.1 noted that only one rule-based system had been proposed for HTTP.
These systems often attempt to generate a complete set of rules describing the expected
behavior—i.e., they do little generalization. Because HTTP is a highly-variable protocol;
this might hinder good rule generation by either humans (expert systems) or automatic
systems.

6.5.2 HTTP is a nonstationary data source

The results in Section 5.1.2 show that HTTP is a nonstationary data source. Whether or
not nonstationarity is a problem depends on the amount of generalization the algorithm
performs. An algorithm with minimal generalization or one that is prone to undergeneral-
izing (e.g., DFA) will be more likely to detect these changes and respond with an increased
rate of false positives. Such an algorithm requires a mechanism for adapting as the pro-
tected web site changes. Additionally, this adaptation might allow the algorithm to show
an improvement over time as it continues to learn from the test data.

The DFA undergeneralizes without heuristics, and as such it is sensitive to even small
changes in the web site. However, as Table 5.4 shows, the adaptive techniques described
in Section 3.9.1 solve this problem.

The slow degradation of accuracy the 6-grams exhibit implies simply adding new n-
grams to the database is insufficient to track the web site. This result is puzzling; adding
new n-grams adds new nodes and/or edges to the directed graph, an operation equivalent
to adding nodes and/or edges to a DFA. Following up on this result is future work.

The Mahalanobis distance measure generalizes more than the DFA and 6-grams. This
extra generalization allows it to accept more diversity in input, regardless of the diversity’s
origin.

The linear combination needs a second pass across the training data to determine

134 Chapter 6. Discussion

the individual algorithm values for normal. Re-calculating thresholds every time normal
changes implies that the linear combination cannot handle nonstationary data, and would
therefore need to be changed to remove this limitation in order to achieve good accuracy
over the long-term use expected in a production environment.

Beyond the implications for the algorithms, these data also show that the cs.unm.edu
web site changed over the short time the data was collected. Any production anomaly
detection system will need to track the changing web site or it will need regular retraining.
Since no exploits can occur during training (else the system learns harmful attacks as
normal), regular retraining reduces the usefulness of the anomaly detection system by
providing an attacker with regular intervals when an attack would potentially go unnoticed.

6.6 Attacks in the training data

If the anomaly detection system is protecting an Internet-connected server, then the train-
ing data should include attacks to which the server is not vulnerable (Section 2.3.2). At-
tackers test for old vulnerabilities for years after the exploit was discovered, hoping to find
unpatched systems. Worms continue to attack from poorly managed systems1 long after
they were released. An anomaly detection system that reports these harmless attacks will
likely be considered a nuisance and disabled by the system administrator.

Two solutions to this problem exist. The first is to use a signature-based detection sys-
tem to remove harmless attacks from both the training and real data. This approach might
require customization of the signature set for the protected machine, because some net-
work traffic that appears to be an attack at one site might be normal at another. For exam-
ple, a web site not running WEBDAV [97] would expect all requests using the PROPFIND
method to be (harmless) attacks against vulnerabilities in Microsoft’s WEBDAV imple-
mentation or applications utilizing it. However, sites running WEBDAV would need more
careful tuning of the signatures. As an additional example, when filtering attacks from
my test data (Section 4.3), the snort signatures required customization due to differences
between the sites and the web applications they used.

1Nimda and Code Red were both released in 2001. In late 2004, the cs.unm.edu and pugillis
web servers were still receiving these attacks. Neither server was ever vulnerable to these attacks.

6.6. Attacks in the training data 135

The second approach is to include harmless attacks in the training data, allowing the
IDS to learn them as part of normal behavior. This approach can be difficult for anomaly
detection systems, if the harmless attacks resemble new attacks. Training on data contain-
ing attacks is effectively training on data that makes sense as well as nonsense, and trying
to build a model that represents both.

To understand why attacks in training data are problematic, consider the example of
a HTTP cross-site scripting (XSS) attack. One version of this attack targets a web site
that allows comments to be added to a page—for example, most blogs have a way for
readers to comment on the blog. The attacker injects code as part of the comment; this
code is executed on the browser of the machine that displays the comments. In some
circumstances, scripts gain access to cookies, form data, and other browser information
that might be sensitive. The scripts can also initiate communication to web servers with
additional hostile content.

As an example of this type of attack, suppose the protected system accepts requests of
the form:

GET /scripts/access.pl?user=johndoe&cred=admin

If the cred= portion had been vulnerable to a cross-site scripting (XSS) attack in the past,
then the training data might include instances such as (the two examples are equivalent,
but encoded differently)2:

GET /scripts/access.pl?user=johndoe&cred=<script>doc

ument.location=’http://www.cgisecurity.com/cgi-bin/c

ookie.cgi?’ +document.cookie</script>

GET /scripts/access.pl?user=johndoe&cred=%22%3e%3c%73

%63%72%69%70%74%3e%64%6f%63%75%6d%65%6e%74%2e%6c%6f

%63%61%74%69%6f%6e%3d%27%68%74%74%70%3a%2f%2f%77%77

%77%2e%63%67%69%73%65%63%75%72%69%74%79%2e%63%6f%6d

%2f%63%67%69%2d%62%69%6e%2f%63%6f%6f%6b%69%65%2e%63
2These attack strings make use of examples from http://www.cgisecurity.com/

articles/xss-faq.shtml.

http://www.cgisecurity.com/articles/xss-faq.shtml
http://www.cgisecurity.com/articles/xss-faq.shtml

136 Chapter 6. Discussion

%67%69%3f%27%20%2b%64%6f%63%75%6d%65%6e%74%2e%63%6f

%6f%6b%69%65%3c%2f%73%63%72%69%70%74%3e

If attacks such as these occur in the training data, the possible effects for an IDS using
statistics describing behavior include:

• The attribute and overall request length would be shifted toward larger values (XSS
attacks are longer by the length of the attacking script plus required HTML or related
code).

• The attribute character distribution would be biased toward cross-site scripting-type
values.

• The requested program (/scripts/access.pl) would be unchanged.

• The structure of attributes would be unchanged (user= and cred=would still both
appear together and in the same order).

If a new XSS vulnerability were discovered, this time associated with the user= portion,
it would likely be accepted as normal by an IDS using character distribution or length for
its measure of normal. Similarly, if a new XSS vulnerability were discovered, this time
associated with a different program, exploits for it would likely have similar character
distributions, attribute lengths, and request lengths to those of the earlier attacks. If these
measures were part of a model of normal web requests, the system would be trained to
tolerate not only the original attacks but the newer ones as well.

A similar argument applies to other attacks, for example, buffer-overflow attacks. If
buffer overflows occur in the training data, the generalization should not accept other
buffer overflows as normal (e.g., due to long character sequences, possibly containing
machine code, possibly encoded as printable ASCII). If both types of harmless attacks
are in the training data, then the IDS should not learn variants and combinations of both
attacks as normal.

Chapter 5 shows a single statistical measure of character frequency is insufficient; re-
alizing this, a few researchers have combined multiple statistical measures (e.g., [146]).
Combining multiple statistical detectors does not necessarily solve this problem, because

6.6. Attacks in the training data 137

(a) (b)

Figure 6.5: Generalization strategies: U is the universe of all possible HTTP requests;
N illustrates a hypothetical set of normal requests; XSS1 and XSS2 indicate cross-site
scripting attacks; and BU1 and BU2 indicate buffer overflow attacks. If XSS1 and BU1
were in the training data, the lines surround the set of HTTP requests that an anomaly
detection system might accept. (a) An overgeneralizing system, for example, a simple
statistical system such as character distribution. (b) A more desirable generalization.

each detector must generalize enough to accept the harmless attacks. Only if the combina-
tion has the effect of controlling the overgeneralization will it produce acceptable accuracy.

To summarize, if harmless attacks are in the training data, then variants and combina-
tions of these classes of attacks are likely to be accepted as normal by anomaly detection
systems that overgeneralize. This situation is illustrated in Figure 6.5(a). Properly con-
trolled generalization is shown in Figure 6.5(b).

6.6.1 The algorithms and harmless attacks in the training data

Length

The length measure overgeneralizes, and when attacks are included in the training data, the
generalization is such that the model is unable to distinguish normal requests from attacks.
None of the anomaly detections systems described in the literature used this measure in
isolation.

138 Chapter 6. Discussion

Character distributions

If harmless attacks are included in the training data, the model of normal becomes so
general that this measure is nearly useless in distinguishing attacks from normal traffic.

The two character distribution algorithms show better accuracy for unfiltered data. One
explanation for this unexpected result is that the improvement comes because the attacks
in the training data are not in the set of attacks used for testing. If an algorithm has a
particular problem with a class of attack, then removing some or all of that class from the
test improves the apparent accuracy of the algorithm.

Directed graphs

When trained on data containing harmless attacks, the n-gram learns the position of the
attack as well as the attack, reducing the chance that a similar attack in a different location
will be accepted as normal. Unfortunately, this is not sufficient, since the 6-grams missed
some attacks when trained on unfiltered data. A weakness in this algorithm is that if
the attack can be presented in a small number of tokens, the algorithm cannot tell the
difference between a novel request with a few new tokens and an attack. This issue was
responsible for some of the missed attacks.

When trained on data containing harmless attacks, the DFA also learns the location of
the attack relative to nearby tokens, reducing the chance that a similar attack in a different
location will be accepted as normal. This effect can be seen by comparing the distance
between the curves in Figure 5.11 or 5.10 versus the distance between the curves in Fig-
ures 5.5, 5.7, and 5.9.

139

Chapter 7

Conclusion

Experience with current network servers shows that they are not secure, and therefore
additional security measures are necessary for secure operation and, in many cases, com-
pliance with laws relating to privacy and security. One useful security measure is intrusion
detection. Three intrusion detection systems architectures exist, each with strengths and
weaknesses. Signature systems work well at detecting previously-seen attacks, but they
cannot detect novel attacks and they might be subject to crafted false positives. Specifica-
tion systems can detect novel attacks, but generating a correct specification requires higher
skills than writing the program in the first place, and every time the program changes, the
specification must be checked for possible updates as well. Anomaly detection systems
learn a model from a set of training data; if this model matches the data well, they can
detect novel attacks and not require higher skills on the part of the system developer or
administrator.

HTTP is an excellent protocol for anomaly detection research. Custom web applica-
tions are growing rapidly, but the security knowledge of the programmers of these appli-
cations is often weak or missing altogether. An IDS for protecting web servers must deal
with the problems associated this area: HTTP is a stateless protocol, web sites change
rapidly with time, the HTTP request length is variable length, and the nature of the data
means that a one-class learning algorithm is required. Network protocols such as HTTP
are especially difficult for anomaly detection, because different portions of the request
have different variability.

140 Chapter 7. Conclusion

Harmless attacks are normal for an Internet-connected web server, and an anomaly
detection system should not produce alarms on these attacks. If they are contained in the
training data, the anomaly detection system has additional generalization issues; it must
accept the harmless attacks, while still detecting novel attacks that might be of the same
class as other, harmless ones.

We have no good theory of intrusion detection; therefore rigorous testing is essential
for knowing which IDS algorithms perform best at HTTP intrusion detection. I tested
several previously-proposed algorithms as well as two new to HTTP: n-grams and DFA
induction. My test results show that some algorithms are notably more accurate on some
web sites. More importantly, my results show that every algorithm missed attacks. This
result means additional work is needed to improve the anomaly detection systems.

My test results can be explained by two factors. First is the generalization the al-
gorithms perform. Correct generalization is necessary for accurate anomaly detection.
Undergeneralizing systems have problems with false positives, while overgeneralizing
systems suffer from false negatives. Length and character distribution are examples of
overgeneralizing algorithms, while the n-gram and DFA algorithms undergeneralize if the
heuristics adding generalization are not applied. The second factor is the observable cho-
sen for the input data. Building a representation that encodes more of the meaning of an
instance allows the algorithm to better distinguish between sense and nonsense. The DFA
and n-grams, by using tokens, are examples of this latter approach.

In the past, when a researcher went to apply anomaly detection to a problem, she
would use her knowledge of models and anomaly detection algorithms to hypothesize a
combination that would provide acceptable accuracy and performance. If the resulting
combination was close enough, she might tweak the model or algorithm using various
heuristics, again guided by her experience and intuition. My dissertation results improve
this situation. Researchers can compare the sizes of the normal set described by the model,
and look at the portion of the normal set representing valid data instances. The results
of this analysis provides guidance about the amount of generalization and a measure to
compare algorithms. This information is an aid in choosing one to fit the problem, and
it might also assist in explaining the resulting system accuracy. For an undergeneralizing
system, once the algorithm has constructed the model, it can be inspected for locations
where additional generalization is required. These locations are where it is memorizing

7.1. Contributions 141

highly-variable results, and targeted additional generalization is needed. The result is
that we can now build more accurate anomaly detection systems. Also, the results of
my research remove some of the guesswork or intuition previously applied to anomaly
detection.

7.1 Contributions

This dissertation advances the state of the art for protecting web servers in several ar-
eas. First, it investigates the relationship between generalization and accuracy in anomaly
detection, with a focus on identifying techniques for comparing models and predicting
relative accuracy. Second, it provides guidance for constructing models where the gener-
alization is appropriate for the data, and automatically identifying locations where addi-
tional generalization is needed. Once the undergeneralizing has been localized, heuristics
that perform the targeted generalizations based on the structure of the data stream can be
applied. With this targeted, controlled generalization, an anomaly IDS can achieve both
smaller models (saving memory) and a reduced false positive rate.

These results about generalization grew from manually developing parser and algo-
rithm heuristics to improve anomaly detector accuracy on HTTP requests. The DFA and
n-grams with the heuristics applied are more accurate than any previously proposed algo-
rithms. The automatic process identified several of the heuristics I developed, as well as
one I missed, the values for the Referer: header.

I implemented an open-source framework to test IDS algorithms, and then I used this
framework to test nine algorithms to show their performance under realistic conditions.
This testing is more rigorous than any HTTP IDS testing reported to date. I am one of
the first researchers to test on data containing attacks (unfiltered data). This data is more
difficult for an anomaly detection system to use, and my results show the accuracy of the
various algorithms under these conditions.

In order to perform the testing of the algorithms, a database of attacks was needed.
A good database of HTTP attacks did not exist; therefore I developed the largest open
database of HTTP attacks designed for IDS testing. My attack database is the most com-
prehensive open database of HTTP attacks used for testing HTTP IDSs.

142 Chapter 7. Conclusion

Most previous IDS approaches for HTTP have represented the request as a character
string. My work is one of the first to use tokens from parsing the request, and the first
to use these tokens with DFA induction and n-grams. These algorithms detection detect
more attacks than earlier approaches. One reason for this improved performance is that I
use complete HTTP request instead of just a portion—most previous IDSs ignore portions
of the request and obviously cannot detect attacks in the ignored portions.

7.2 Moving beyond HTTP

Given the results from working with HTTP, an obvious question is, “where else can this
analysis be applied?” My results about generalization and the size of the normal set might
apply whenever the anomaly detection system generalizes from training data. Examples
of other network protocols that might be amenable to similar analysis include:

SMTP The negotiations between mail servers and the email headers themselves might
lend themselves to anomaly detection. The message body itself might have too
much variability. Or, it could be that enough structure exists (e.g., language sen-
tence structure, word choices, attached file structure) and anomaly detection can be
applied even to the message body.

With an accurate enough model of the email body (or sequences of email messages
and their bodies), anomaly detection might prove itself useful in anti-SPAM systems.

SSH, SSL, TLS, IPsec perform complicated negotiations relating to cryptography algo-
rithms. Exploitable bugs in code implementing this negotiation have been found, so
anomaly detection might be applied successfully here.

DNS Without the domain name system, the Internet would stop. Several attacks against
DNS servers exist. The DNS protocol contains a more structure than HTTP and
different variability in different portions of the protocol. The additional structure
make make DNS an easier protocol to which anomaly detection might be applied,
and the targeted generalizations, similar to those I developed for HTTP, are likely to
be useful for this protocol as well.

7.3. Future work 143

Beyond computing and networks, the concept of controlling generalization can be applied
to other anomaly detection systems. For example, in financial data, “Which transactions
are abnormal and possibly represent fraud?”

7.3 Future work

The work presented in this dissertation asks more questions than it answers. An abundance
of future research opportunities exist that follow up on my work.

My work showed how to identify locations where additional generalization is needed.
It identified several important locations where the DFA was undergeneralizing. It did not
identify the file types only heuristic, the heuristic with the largest single effect. Addition-
ally, identifying the required generalization is still up to a human expert. Automating this
process would be immensely useful.

Many of the results in this dissertation are for adding generalization to an undergen-
eralizing algorithm. The ability to move the other direction, restricting generalization in
an overgeneralizing algorithm, would be useful as well. This problem showed up in my
work, since the DFA, an undergeneralizing algorithm overall, overgeneralizes on the re-
source path. Identifying and automatically finding methods to reduce the generalization
would greatly aid system developers.

Using the idea that controlling generalization is necessary for accuracy, interesting
future work would include investigating various methods of generalization and ways of
combining measures to better model the set of normal requests. The result would be more
accurate anomaly detection systems.

Because no algorithm yet provides a good enough attack detection rate for HTTP with-
out an unacceptable false positive rate, we need additional heuristics to improve the algo-
rithm performance. My work can provide guidance for this followup work. Or, it might
be that other algorithms would perform better in this environment. With my test frame-
work, testing them requires only an algorithm implementation; the rest of the supporting
structure now exists.

My attack database, while the largest open one, does not have representatives of all

144 Chapter 7. Conclusion

attack classes. Researchers in intrusion detection need good, standard test data sets (both
attack and non-attack) that are current and representative of today’s web servers (e.g., e-
commerce, simple files, blog sites, etc). For attacks, my attack database is a start, but
such a database needs hundreds, if not thousands, of entries. The attacks should be against
a server normally running the attacked software to better represent the situation an IDS
would face. A larger database would also aid further research into identifying attacks
difficult for existing algorithms to detect, and then lead to better heuristics and/or better
algorithms.

145

References

[1] ALESSANDRI, D. Towards a taxonomy of intrusion detection systems and attacks.
Tech. Rep. RZ 3366, IBM Research, Zurich Research Laboratory, Säumerstrasse 4,
CH-8803 Rüschlikon, Switzerland, Sept. 2001.

[2] ALLEN, J., CHRISTIE, A., FITHEN, W., MCHUGH, J., PICKEL, J., AND STONER,
E. State of the practice of intrusion detection technologies. Tech. Rep. CMU/SEI-
99TR-028, Carnegie Mellon University, Software Engineering Institute, 2000.

[3] ANCHOR, K. P., ZYDALLIS, J. B., GUNSCH, G. H., AND LAMONT, G. B. Ex-
tending the computer defense immune system: Network intrusion detection with
a multiobjective evolutionary programming approach. In Proceedings of ICARIS
2002: 1st International Conference on Artificial Immune Systems Conference
(2002).

[4] ANDERSON, D., FRIVOLD, T., TAMARU, A., AND VALDES, A. Next-generation
intrusion detection expert system (NIDES), software users manual, beta-update re-
lease. Tech. Rep. SRI–CSL–95–07, Computer Science Laboratory, SRI Interna-
tional, 333 Ravenswood Avenue, Menlo Park, CA 94025-3493, May 1994.

[5] ANDERSON, D., FRIVOLD, T., AND VALDES, A. Next-generation intrusion de-
tection expert system (NIDES): A summary. Tech. Rep. SRI-CSL-95-07, SRI In-
ternational, Computer Science Laboratory, May 1995.

[6] ANDERSON, D., LUNT, T. F., JAVITZ, H., TAMARU, A., AND VALDES, A.
Detecting unusual program behavior using the statistical components of NIDES.
Tech. Rep. SRI-CSL-95-06, SRI Computer Science Laboratory, May 1995. http:
//www.sdl.sri.com/papers/5sri/. Accessed 22 August 2002.

[7] ANDERSON, J. P. Computer security technology planning study. Tech. Rep. ESD-
TR-73-51, United States Air Force, Electronic Systems Division, Oct. 1972.

[8] ANDERSON, R., AND KHATTAK, A. The use of information retrieval techniques
for intrusion detection. In First International Workshop on Recent Advances in
Intrusion Detection (RAID’98) (1998).

http://www.sdl.sri.com/papers/5sri/
http://www.sdl.sri.com/papers/5sri/

146 References

[9] ANON. List of web browsers, 2006. http://en.wikipedia.org/w/
index.php?title=List_of_web_browsers&oldid=75212914, Ac-
cessed 2006 Sept 12.

[10] ANON. SOAP, 2006. http://en.wikipedia.org/w/index.php?
title=SOAP&oldid=75067885, Accessed 2006 Sept 13.

[11] APPLE COMPUTER. Tunneling RTSP and RTP over HTTP, 2006.
http://developer.apple.com/documentation/QuickTime/
QTSS/Concepts/chapter_2_section_14.html, Accessed 2006 Sept
13.

[12] ATHANASIADES, N., ABLER, R., LEVINE, J., OWEN, H., AND RILEY, G. In-
trusion detection testing and benchmarking methodologies. In IEEE-IWIA ’03:
Proceedings of the First IEEE International Workshop on Information Assurance
(IWIA’03) (Washington, DC, USA, 2003), IEEE Computer Society, p. 63.

[13] AXELSSON, S. Research in intrusion-detection systems: A survey. Tech. Rep.
98-17, Department of Computer Engineering, Chalmers University of Technology,
SE-412 96 Göteborg, Sweden, Dec. 1998.

[14] AXELSSON, S. The base-rate fallacy and its implications for the difficulty
of intrusion detection. In ACM Conference on Computer and Communications
Security (1999), pp. 1–7. http://www.ce.chalmers.se/staff/sax/
difficulty.ps Accessed 19 August 2002.

[15] AXELSSON, S. On a difficulty of intrusion detection. In Recent Advances in Intru-
sion Detection (1999).

[16] AXELSSON, S. The base-rate fallacy and the difficulty of intrusion detection. ACM
Transactions on Information and Systems Security 3, 3 (August 2000), 186–205.

[17] AXELSSON, S. Intrusion detection systems: A survey and taxonomy. Tech. Rep.
99-15, Dept. of Computer Engineering, Chalmers University of Technology, SE-
412 96 Gteborg, Sweden, March 2000. http://www.ce.chalmers.se/
staff/sax/taxonomy.ps Accessed 27 Feb 2002.

[18] BAI, Y., AND KOBAYASHI, H. Intrusion detection system: Technology and de-
velopment. In AINA ’03: Proceedings of the 17th International Conference on Ad-
vanced Information Networking and Applications (Washington, DC, USA, 2003),
IEEE Computer Society, p. 710.

[19] BALTHROP, J., FORREST, S., AND GLICKMAN, M. Revisiting LISYS: Parameters
and normal behavior. In Proceedings of the 2002 Congress on Evolutionary Com-
putation (2002). http://www.cs.unm.edu/˜forrest/publications/
rev_lysis.ps Accessed 19 August 2002.

http://en.wikipedia.org/w/index.php?title=List_of_web_browsers&oldid=75212914
http://en.wikipedia.org/w/index.php?title=List_of_web_browsers&oldid=75212914
http://en.wikipedia.org/w/index.php?title=SOAP&oldid=75067885
http://en.wikipedia.org/w/index.php?title=SOAP&oldid=75067885
http://developer.apple.com/documentation/QuickTime/QTSS/Concepts/chapter_2_section_14.html
http://developer.apple.com/documentation/QuickTime/QTSS/Concepts/chapter_2_section_14.html
http://www.ce.chalmers.se/staff/sax/difficulty.ps
http://www.ce.chalmers.se/staff/sax/difficulty.ps
http://www.ce.chalmers.se/staff/sax/taxonomy.ps
http://www.ce.chalmers.se/staff/sax/taxonomy.ps
http://www.cs.unm.edu/~forrest/publications/rev_lysis.ps
http://www.cs.unm.edu/~forrest/publications/rev_lysis.ps

References 147

[20] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A.,
NEUGEBAUER, R., PRATT, I., AND WARFIELD, A. Xen and the art of virtualiza-
tion. In SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating
systems principles (New York, NY, USA, 2003), ACM Press, pp. 164–177.

[21] BASS, T. Multisensor data fusion for next generation distributed intrusion detec-
tion systems. In Proceedings, 1999 IRIS National Symposium on Sensor and Data
Fusion, May 1999. (1999).

[22] BASS, T. Intrusion detection systems and multisensor data fusion. Communications
of the ACM 43, 4 (April 2000), 99–105.

[23] BASS, T., AND GRUBER, D. A glimpse into the future of ID. ;login: (Septem-
ber 1999). http://www.usenix.org/publications/login/1999-9/
features/future.html. Accessed 29 July 2002.

[24] BERGHEL, H. The Code Red Worm. Communications of the ACM 44, 12 (Dec.
2001), 15–19.

[25] BHARGAVAN, K., CHANDRA, S., MCCANN, P. J., AND GUNTER, C. A. What
packets may come: automata for network monitoring. ACM SIGPLAN Notices 36,
3 (2001), 206–219.

[26] BILAR, D., AND BURROUGHS, D. Introduction to state-of-the-art intrusion detec-
tion technologies. Proceedings of the SPIE—The International Society for Optical
Engineering 4232 (2001), 123–33.

[27] BLOEDORN, E., HILL, B., CHRISTIANSEN, A., SKORUPKA, C., TAL-
BOT, L., AND TIVEL, J. Data mining for improving intrusion detection,
2000. http://www.mitre.org/work/tech_papers/tech_papers_
00/bloedorn_datamining/index.html Accessed 26 June 2006.

[28] BONDY, J. A., AND MURTY, U. S. R. Graph Theory with Applications. North-
Holland, 1976.

[29] BORISOV, N., GOLDBERG, I., AND WAGNER, D. Intercepting mobile commu-
nications: The insecurity of 802.11. In Proceedings of the Seventh International
Conference on Mobile Computing and Networking July 16-21, 2001, Rome, Italy
(2001).

[30] Ibm outsourced solution, 1998. http://www.infoworld.com/cgi-bin/
displayTC.pl?/980504sb3-ibm.htm Accessed 26 June 2006.

[31] BRONSTEIN, A., DAS, J., DURO, M., FRIEDRICH, R., KLEYNER, G.,
MUELLER, M., SINGHAL, S., AND COHEN, I. Self-aware services: using

http://www.usenix.org/publications/login/1999-9/features/future.html
http://www.usenix.org/publications/login/1999-9/features/future.html
http://www.mitre.org/work/tech_papers/tech_papers_00/bloedorn_datamining/index.html
http://www.mitre.org/work/tech_papers/tech_papers_00/bloedorn_datamining/index.html
http://www.infoworld.com/cgi-bin/displayTC.pl?/980504sb3-ibm.htm
http://www.infoworld.com/cgi-bin/displayTC.pl?/980504sb3-ibm.htm

148 References

Bayesian networks for detecting anomalies in internet-based services. In 2001 Inter-
national Symposium on Integrated Network Management, 14–18 May 2001, Seat-
tle, WA, USA (Piscataway, NJ, USA, 2001), G. Pavlou, N. Anerousis, and A. Liotta,
Eds., IEEE, pp. 623–38.

[32] BRONSTEIN, A., DAS, J., DURO, M., FRIEDRICH, R., KLEYNER, G.,
MUELLER, M., SINGHAL, S., AND COHEN, I. Self-aware services: Using
Bayesian networks for detecting anomalies in internet-based services. Tech. Rep.
HPL-2001-23, Internet Storage and Systems Laboratory, HP Laboratories, Palo
Alto, CA, US, Oct. 2001.

[33] BRUMLEY, D., LIU, L.-H., POOSANKAM, P., AND SONG, D. Design space and
analysis of worm defense strategies. In ASIACCS ’06: Proceedings of the 2006
ACM Symposium on Information, computer and communications security (New
York, NY, USA, 2006), ACM Press, pp. 125–137.

[34] BURGESS, M., HAUGERUD, H., STRAUMSNES, S., AND REITAN, T. Measuring
system normality. ACM Trans. Comput. Syst. 20, 2 (2002), 125–160.

[35] CANNADY, J. Artificial neural networks for misuse detection. In Proceedings of
the 1998 National Information Systems Security Conference (NISSC’98) October
5–8 1998. Arlington, VA. (1998), pp. 443–456.

[36] CERT COORDINATION CENTER. Unix configuration guidelines, June
2003. http://www.cert.org/tech_tips/unix_configuration_
guidelines.html Accessed 8 February 2006.

[37] CERT COORDINATION CENTER. Windows NT configuration guidelines, April
2003. http://www.cert.org/tech_tips/win_configuration_
guidelines.html Accessed 8 February 2006.

[38] CICCHELLO, O., AND KREMER, S. C. Inducing grammars from sparse data sets:
a survey of algorithms and results. J. Mach. Learn. Res. 4 (2003), 603–632.

[39] CLIFTON, C., AND GENGO, G. Developing custom intrusion detection filters using
data mining. In MILCOM 2000. 21st Century Military Communications Conference
Proceedings (2000).

[40] COHEN, C. F. CERT advisory CA-2002-17 Apache web server chunk han-
dling vulnerability, July 2002. http://www.cert.org/advisories/
CA-2002-17.html. Accessed 24 July 2002.

[41] COHEN, D. I. A. Basic Techniques of Combinatorial Theory. John Wiley & Sons,
1978.

http://www.cert.org/tech_tips/unix_configuration_guidelines.html
http://www.cert.org/tech_tips/unix_configuration_guidelines.html
http://www.cert.org/tech_tips/win_configuration_guidelines.html
http://www.cert.org/tech_tips/win_configuration_guidelines.html
http://www.cert.org/advisories/CA-2002-17.html
http://www.cert.org/advisories/CA-2002-17.html

References 149

[42] COHEN, W. W., AND SINGER, Y. Context-sensitive learning methods for text
categorization. In Proceedings of SIGIR-96, 19th ACM International Conference
on Research and Development in Information Retrieval (Zürich, CH, 1996), H.-P.
Frei, D. Harman, P. Schäuble, and R. Wilkinson, Eds., ACM Press, New York, US,
pp. 307–315.

[43] COMMUNITY, O. S. Community rules, November 2005. http://www.snort.
org/pub-bin/downloads.cgi, accessed November 10, 2005.

[44] COMPUTER EMERGENCY RESPONSE TEAM (CERT). CERT advisory CA-2000-
04 love letter worm, May 2000. http://www.cert.org/advisories/
CA-2000-04.html.

[45] CORPORATION, M. Common vulnerabilities and exposures. http://cve.
mitre.org/ Accessed 16 June 2006.

[46] CROSBIE, M., DOLE, B., ELLIS, T., KRSUL, I., AND SPAFFORD, E. IDIOT—
user guide. Tech. Rep. TR-96-050, Purdue University, West Lafayette, IN, US,
Sept. 1996.

[47] CUPPENS, F. Managing alerts in a multi-intrusion detection environment. In Seven-
teenth Annual Computer Security Applications Conference, 10-14 Dec. 2001, New
Orleans, LA, USA (Los Alamitos, CA, USA, 2001), IEEE Comput. Soc, pp. 22–31.

[48] CUPPENS, F., AND MIÉGE, A. Alert correlation in a cooperative intrusion detec-
tion framework. In SP ’02: Proceedings of the 2002 IEEE Symposium on Security
and Privacy (Washington, DC, USA, 2002), IEEE Computer Society, p. 202.

[49] CURRY, D., AND DEBAR, H. Intrusion detection message exchange for-
mat data model and extensible markup language (XML) document type
definition, Dec. 2002. http://www.ietf.org/internet-drafts/
draft-ietf-idwg-idmef-xml-09.txt Accessed 1 January 2003.

[50] CVE.MITRE.ORG. CVE-1999-0107, July 1999. http://www.cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0107 Accessed
3 September 2006.

[51] CVE.MITRE.ORG. CVE-2000-0097, September 2000. http://www.cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0097 Accessed
13 September 2006.

[52] CVE.MITRE.ORG. CVE-2001-0731, June 2002. http://www.cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2001-0731 Accessed 1 Octo-
ber 2006.

http://www.snort.org/pub-bin/downloads.cgi
http://www.snort.org/pub-bin/downloads.cgi
http://www.cert.org/advisories/CA-2000-04.html
http://www.cert.org/advisories/CA-2000-04.html
http://cve.mitre.org/
http://cve.mitre.org/
http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-09.txt
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0107
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0107
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0097
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0097
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0731
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0731

150 References

[53] CVE.MITRE.ORG. CVE-2002-0392, April 2003. http://www.cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2002-0392 Accessed 7 Febru-
ary 2006.

[54] CVE.MITRE.ORG. CVE-1999-1199, September 2004. http://www.cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1199 Accessed
30 October 2005.

[55] CVE.MITRE.ORG. Cve-2006-0797, February 2006. http://www.cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2006-0797 Accessed 21 June
2006.

[56] DAIN, O. M., AND CUNNINGHAM, R. K. Building scenarios from a heteroge-
neous alert stream. IEEE Transactions on Systems, Man and Cybernetics (2002).
http://www.ll.mit.edu/IST/pubs/2002_Building.pdf Accessed
2006 June 26.

[57] DAMASHEK, M. Gauging similarity with n-grams: language-independent catego-
rization of text. Science 267, 5199 (1995), 843–848.

[58] DANYLIW, R., DOUGHERTY, C., HOUSEHOLDER, A., AND RUEFLE, R. CERT
advisory CA-2001-26 Nimda worm, September 2001. http://www.cert.
org/advisories/CA-2001-26.html.

[59] DARLING, T., AND SHAYMAN, M. A Markov decision model for intruder location
in IP networks. In 39th IEEE Conference on Decision and Control, 12–15 Dec.
2000, Sydney, NSW, Australia (Piscataway, NJ, USA, 2000), vol. 2, IEEE, pp. 1858–
63.

[60] DASGUPTA, D. Immunity-based intrusion detection system: a general framework.
In 22nd National Information System Security Conference, 18–21 Oct. 1999, Ar-
lington, VA, USA (Gaithersburg, MD, USA, 1999), vol. 1, NIST, pp. 147–60.

[61] DAVIS, R. Using an expert system to peel the computer virus onion. EDPACS 20,
2 (August 1992), 1–12.

[62] DEBAR, H., BECKER, M., AND SIBONI, D. A neural network component for
an intrusion detection system. In 1992 IEEE Computer Society Symposium on Re-
search in Security and Privacy, 4-6 May 1992, Oakland, CA, USA (1992), Los
Alamitos, CA, USA : IEEE Computer Society Press, 1992, pp. 240–50.

[63] DEBAR, H., DACIER, M., AND WESPI, A. A revised taxonomy for intrusion-
detection systems. Tech. Rep. RZ 3176 (# 93222), IBM Research, Zurich Research
Laboratory, 8803 Rüschlikon, Switzerland, Oct. 1999.

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0392
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0392
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1199
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1199
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0797
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0797
http://www.ll.mit.edu/IST/pubs/2002_Building.pdf
http://www.cert.org/advisories/CA-2001-26.html
http://www.cert.org/advisories/CA-2001-26.html

References 151

[64] DEBAR, H., DACIER, M., AND WESPI, A. Towards a taxonomy of intrusion-
detection systems. Computer Networks 31, 8 (Apr. 1999), 805–822.

[65] DEBAR, H., DACIER, M., AND WESPI, A. A revised taxonomy for intrusion-
detection systems. Annales des Telecommunications 55, 7-8 (July-August 2000),
361–78.

[66] DEBAR, H., DACIER, M., WESPI, A., AND LAMPART, S. An experimentation
workbench for intrusion detection systems. Tech. Rep. RZ 6519, IBM Research
Division, Zurich Research Laboratory, 8803 Rüuschlikon, Switzerland, Sept. 1998.

[67] DENNING, D. An intrusion-detection model. In 1986 IEEE Symposium on Security
and Privacy, 7-9 April 1986, Oakland, CA, USA (1986), Washington, DC, USA :
IEEE Comput. Soc. Press, 1986, pp. 118–31.

[68] DENNING, D. An intrusion-detection model. IEEE Transactions on Software En-
gineering SE-13, 2 (February 1987), 222–32.

[69] DEPARTMENT OF HEALTH AND HUMAN SERVICES. Health insurance portability
and accountability act of 1996. 45 CFR parts 160 and 164, subparts A and E. Avail-
able online at http://www.hhs.gov/ocr/hipaa. Accessed 16 June 2006.

[70] D’HAESELEER, P. An immunological approach to change detection: theoretical
results. In 9th IEEE Computer Security Foundations Workshop, 10-12 June 1996,
Kenmare, Ireland (Los Alamitos, CA, USA, 1996), IEEE Computer Society Press,
pp. 18–26.

[71] D’HAESELEER, P., FORREST, S., AND HELMAN, P. An immunological
approach to change detection: Algorithms, analysis and implications. In
1996 IEEE Symposium on Security and Privacy, 6-8 May 1996, Oakland,
CA, USA (1996), Los Alamitos, CA, USA : IEEE Computer Society Press,
1996, pp. 110–119. http://cs.unm.edu/˜forrest/publications/
ieee-sp-96-neg-selec.pdf Accessed 6 June 2002.

[72] DOWELL, C., AND RAMSTEDT, P. The ComputerWatch data reduction tool. In
13th National Computer Security Conference. Proceedings. Information Systems
Security. Standards - the Key to the Future, 1-4 Oct. 1990, Washington, DC, USA
(Gaithersburg, MD, USA, 1990), NIST, pp. 99–108 vol.1.

[73] DOYLE, J., SHROBE, H., AND SZOLOVITS, P. On widening the scope
of attack recognition languages. http://medg.lcs.mit.edu/doyle/
publications/ Accessed 29 July 2002, 2000.

http://www.hhs.gov/ocr/hipaa
http://cs.unm.edu/~forrest/publications/ieee-sp-96-neg-selec.pdf
http://cs.unm.edu/~forrest/publications/ieee-sp-96-neg-selec.pdf
http://medg.lcs.mit.edu/doyle/publications/
http://medg.lcs.mit.edu/doyle/publications/

152 References

[74] DRAELOS, T., COLLINS, M., DUGGAN, D., THOMAS, E., AND WUN-
SCH, D. Experiments on adaptive techniques for host-based intrusion detec-
tion. Tech. Rep. SAND2001-3065, Sandia National Laboratories, Albuquerque,
NM, 2001. http://infoserve.sandia.gov/cgi-bin/techlib/
access-control.pl/2001/013065.pdf. Accessed 12 December 2002.

[75] DUMOUCHEL, W. Computer intrusion detection based on Bayes factors
for comparing command transition probabilities. Tech. Rep. TR91, National
Institute of Statistical Sciences (NISS), 1999. http://www.niss.org/
technicalreports/tr91.pdf. Accessed 29 July 2002.

[76] DUMOUCHEL, W., AND SCHONLAU, M. A comparison of test statistics for com-
puter intrusion detection based on principal components regression of transition
probabilities. In Proceedings of the 30th Symposium on the Interface: Computing
Science and Statistics (1999), pp. 404–413.

[77] DURST, R., CHAMPION, T., WITTEN, B., MILLER, E., AND SPAGNUOLO, L.
Testing and evaluating computer intrusion detection systems. Communications of
the ACM 42, 7 (July 1999), 53–61.

[78] EASTLAKE, D., KHARE, R., AND MILLER, J. Selecting pay-
ment mechanisms over HTTP, 2006. http://www.w3.org/TR/
WD-jepi-uppflow-970106, Accessed 2006 Sept 13.

[79] ECKMANN, S., VIGNA, G., AND KEMMERER, R. STATL: an attack language
for state-based intrusion detection. Journal of Computer Security 10, 1–2 (2002),
71–103.

[80] EEYE DIGITAL SECURITY. SecureIISTMweb server protection, 2004. At
http://www.eeye.com/html/Products/SecureIIS/index.html.
Accessed 17 March 2005.

[81] EICHMAN, K. Re: Possible codered connection attempts, July 20 2001. http:
//lists.jammed.com/incidents/2001/07/0159.html Accessed 12
January 2005.

[82] ENDLER, D. Intrusion detection. applying machine learning to Solaris audit
data. In 14th Annual Computer Security Applications Conference, 7–11 Dec.
1998, Phoenix, AZ, USA (Los Alamitos, CA, USA, 1998), IEEE Computer Society,
pp. 268–79.

[83] ESKIN, E. Anomaly detection over noisy data using learned probability distri-
butions. In Proc. 17th International Conf. on Machine Learning (2000), Morgan
Kaufmann, San Francisco, CA, pp. 255–262.

http://infoserve.sandia.gov/cgi-bin/techlib/access-control.pl/2001/013065.pdf
http://infoserve.sandia.gov/cgi-bin/techlib/access-control.pl/2001/013065.pdf
http://www.niss.org/technicalreports/tr91.pdf
http://www.niss.org/technicalreports/tr91.pdf
http://www.w3.org/TR/WD-jepi-uppflow-970106
http://www.w3.org/TR/WD-jepi-uppflow-970106
http://www.eeye.com/html/Products/SecureIIS/index.html
http://lists.jammed.com/incidents/2001/07/0159.html
http://lists.jammed.com/incidents/2001/07/0159.html

References 153

[84] ESKIN, E., MILLER, M., ZHONG, Z., YI, G., LEE, W., AND STOLFO, S. Adap-
tive model generation for intrusion detection. In Proceedings of the ACMCCS Work-
shop on Intrusion Detection and Prevention, Athens, Greece, 2000. (2000).

[85] ESPONDA, F., FORREST, S., AND HELMAN, P. A formal framework for positive
and negative detection schemes. IEEE transactions on systems, man and cybernet-
ics. Part B. Cybernetics (2003). in press.

[86] ESTÉVEZ-TAPIADOR, J. M., GARCÍA-TEODORO, P., AND DÍAZ-VERDEJO, J. E.
Measuring normality in http traffic for anomaly-based intrusion detection. Journal
of Computer Networks 45, 2 (2004), 175–193.

[87] FALOUTSOS, C., AND OARD, D. W. A survey of information retrieval and filtering
methods. Tech. Rep. CS-TR-3514, Electrical Engineering Department, University
of Maryland, College Park, MD 20742, 1995.

[88] FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MASINTER, L.,
LEACH, P., AND BERNERS-LEE, T. Hypertext transfer protocol—HTTP/1.1,
June 1999. RFC 2616. ftp://ftp.isi.edu/in-notes/rfc2616.txt
Accessed 2002 Oct 2.

[89] FIXER. Default password list, June 2006. http://www.phenoelit.de/
dpl/dpl.html Accessed 21 June 2006.

[90] FLAJOLET, P., GUIVARC’H, Y., SZPANKOWSKI, W., AND VALLE, B. Hidden
pattern statistics. In Automata, Languages and Programming. 28th International
Colloquium, ICALP 2001. Proceedings, 8–12 July 2001, Crete, Greece (Berlin,
Germany, 2001), Springer-Verlag, pp. 152–65.

[91] FORREST, S., HOFMEYR, S., SOMAYAJI, A., AND LONGSTAFF, T. A sense of
self for Unix processes. In 1996 IEEE Symposium on Security and Privacy, 6-8
May 1996, Oakland, CA, USA (Los Alamitos, CA, USA, 1996), IEEE Computer
Society Press, pp. 120–128.

[92] FORREST, S., PERELSON, A. S., ALLEN, L., AND CHERUKURI, R. Self-nonself
discrimination in a computer. In 1994 IEEE Computer Society Symposium on Re-
search in Security and Privacy, 16-18 May 1994, Oakland, CA, USA (1994), Los
Almitos, CA, USA : IEEE Computer Society Press, 1994, pp. 202–212.

[93] FYODOR, Y. ’SnortNet’—a distributed intrusion detection system, June 2000.
http://snortnet.scorpions.net/snortnet.ps Accessed 5 August
2002.

[94] GHOSH, A., WANKEN, J., AND CHARRON, F. Detecting anomalous and unknown
intrusions against programs. In Proceedings of the 1998 Annual Computer Security

ftp://ftp.isi.edu/in-notes/rfc2616.txt
http://www.phenoelit.de/dpl/dpl.html
http://www.phenoelit.de/dpl/dpl.html
http://snortnet.scorpions.net/snortnet.ps

154 References

Applications Conference (ACSAC’98), December 1998. (Los Alamitos, CA, USA,
1998), IEEE Computer Society, pp. 259–267.

[95] GHOSH, A. K., SCHWARTZBARD, A., AND SCHATZ, M. Learning program be-
havior profiles for intrusion detection. In Proceedings 1st USENIX Workshop on
Intrusion Detection and Network Monitoring (Apr. 1999), pp. 51–62.

[96] GOAN, T. A cop on the beat: collecting and appraising intrusion. Communications
of the ACM 42, 7 (July 1999), 46–52.

[97] GOLAND, Y., WHITEHEAD, E., FAIZI, A., CARTER, S., AND JENSEN, D. Http
extensions for distributed authoring—webdav, February 1999. RFC 2518. ftp://
ftp.rfc-editor.org/in-notes/rfc2518.txt. Accessed 23 February
2005.

[98] GOLD, E. M. Language identification in the limit. Information and Control 10
(1967), 447–474.

[99] GRAFF, M. G., AND VAN WYK, K. R. Secure Coding: Principles and Practices.
O’Reilly and Associates, Sebastopol, CA, 2003.

[100] GU, G., FOGLA, P., DAGON, D., LEE, W., AND SKORIĆ, B. Measuring intrusion
detection capability: an information-theoretic approach. In ASIACCS ’06: Proceed-
ings of the 2006 ACM Symposium on Information, computer and communications
security (New York, NY, USA, 2006), ACM Press, pp. 90–101.

[101] HAINES, J., ROSSEY, L., LIPPMANN, R., AND CUNNINGHAM, R. Extending
the DARPA off-line intrusion detection evaluations. In DARPA Information Surviv-
ability Conference and Exposition II. DISCEX’01, 12–14 June 2001, Anaheim, CA,
USA (Los Alamitos, CA, USA, 2001), vol. 1, IEEE Computer Society, pp. 35–45.

[102] HAINES, J. W., LIPPMANN, R. P., FRIED, D. J., TRAN, E., BOSWELL, S., AND
ZISSMAN, M. A. 1999 DARPA intrusion detection system evaluation: Design and
procedures. Tech. Rep. TR-1062, Lincoln Laboratory, Massachusetts Institute of
Technology, Lexington, MA, USA, Feb. 2001.

[103] HANCOCK, J., AND WINTZ, P. Signal Detection Theory. McGraw-Hill, 1966.

[104] HARMER, P., WILLIAMS, P., GUNSCH, G., AND LAMONT, G. An artificial im-
mune system architecture for computer security applications. IEEE Transactions
on Evolutionary Computation 6, 3 (June 2002), 252–80.

[105] HATCH, B., LEE, J., AND KURTZ, G. Hacking Linux Exposed: Lunix Security
Secrets & Solutions. Osborne/McGraww-Hill, 2001.

ftp://ftp.rfc-editor.org/in-notes/rfc2518.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2518.txt

References 155

[106] HEBERLEIN, L. Network security monitor (NSM)—final report. Tech. rep.,
University of California at Davis Computer Security Lab, 1995. Lawrence
Livermore National Laboratory project deliverable. http://seclab.cs.
ucdavis.edu/papers/NSM-final.pdf.

[107] HEBERLEIN, L., DIAS, G., LEVITT, K., MUKHERJEE, B., WOOD, J., AND WOL-
BER, D. A network security monitor. In 1990 IEEE Computer Society Sympo-
sium on Research in Security and Privacy, 7–9 May 1990, Oakland, CA, USA (Los
Alamitos, CA, USA, 1990), IEEE Computer Society Press, pp. 296–304.

[108] HEBERLEIN, L. T., DIAS, G. V., LEVITT, K. N., MUKHERJEE, B., WOOD, J.,
AND WOLBER, D. A network security monitor. In Proceedings of the IEEE Sym-
posium on Security and Privacy (1990), IEEE Press, pp. 296–304.

[109] HELMAN, P., AND LIEPINS, G. Statistical foundations of audit trail analysis for
the detection of computer misuse. IEEE Transactions on Software Engineering 19,
9 (September 1993), 886–901.

[110] HELMER, G., WONG, J., HONAVAR, V., AND MILLER, L. Automated discovery
of concise predictive rules for intrusion detection. Journal of Systems and Software
60, 3 (February 2002), 165–75.

[111] HOCHBERG, J., JACKSON, K., STALLINGS, C., MCCLARY, J., DUBOIS, D.,
AND FORD, J. Nadir: an automated system for detecting network intrusion and
misuse. Computers & Security 12, 3 (May 1993), 235–48.

[112] HOFMEYR, S., AND FORREST, S. Immunity by design: an artificial immune sys-
tem. In Proceedigns GECCO-99. Genetic and Evolutionary Computation Confer-
ence. Eighth International Conference on Genetic Algorithms (ICGA-99) and the
Fourth Annual Gentic Programming Conference (GP-99), 13-17 July 1999, Or-
lando, FL, USA (San Francisco, CA, USA, 1999), W. Banzhaf, J. Daida, A. Eiben,
M. Garzon, V. Honavar, M. Jakiela, and R. Smith, Eds., Morgan Kaufmann Pub-
lishers, pp. 1289–96 vol.2.

[113] HOFMEYR, S. A. An Immunological Model of Distributed Detection and Its Ap-
plication to Computer Security. PhD thesis, University of New Mexico, Computer
Science Department, May 1999.

[114] HOFMEYR, S. A., AND FORREST., S. Immunizing computer networks: Getting all
the machines in your network to fight the hacker disease. In 1999 IEEE Symposium
on Security and Privacy (1999), pp. 9–12.

[115] HOFMEYR, S. A., AND FORREST, S. Architecture for an artificial immune system.
Evolutionary Computation 7, 1 (2000), 1289–1296.

http://seclab.cs.ucdavis.edu/papers/NSM-final.pdf
http://seclab.cs.ucdavis.edu/papers/NSM-final.pdf

156 References

[116] HOFMEYR, S. A., FORREST, S., AND SOMAYAJI, A. Intrusion detection us-
ing sequences of system calls. Journal of Computer Security 6, 3 (1998), 151–
80. http://cs.unm.edu/˜forrest/publications/int_decssc.
pdf Accessed 13 March 2002.

[117] HOGLUND, G., AND MCGRAW, G. Exploiting Software: How to Break Code.
Addison Wesley, Reading, MA, 2004.

[118] ILGUN, K. USTAT: A real-time intrusion detection system for UNIX. Master’s
thesis, University of California Santa Barbara, Nov. 1992.

[119] ILGUN, K. USTAT: a real-time intrusion detection system for UNIX. In IEEE
Symposium on Research in Security and Privacy, 24-26 May 1993, Oakland, CA,
USA (1993), Los Alamitos, CA, USA : IEEE Comput. Soc. Press, 1993, pp. 16–28.

[120] ILGUN, K., KEMMERER, R., AND PORRAS, P. State transition analysis: a rule-
based intrusion detection approach. IEEE Transactions on Software Engineering
21, 3 (March 1995), 181–99.

[121] INGHAM, K., AND FORREST, S. A history and survey of network firewalls. Tech.
Rep. TR-CS-2002-37, University of New Mexico Computer Science Department,
2002. http://www.cs.unm.edu/colloq-bin/tech_reports.cgi?
ID=TR-CS-2002-37. Accessed 29 December 2002.

[122] INGHAM, K., AND FORREST, S. Network firewalls. In Enhancing Computer
Security with Smart Technology (2006), V. R. Vemuri, Ed., Auerbach Publications,
pp. 9–40. Chapter 2.

[123] ISO/TC97/SC16. Reference model of open systems interconnection. Tech. Rep.
N. 227, International Organization for Standardization, June 1979.

[124] JACKSON, K. A. Intrusion detection system (IDS) product survey. Tech. Rep.
LA-UR-99-3883, Distributed Knowledge Systems Team, Computer Research and
Applications Group, Computing, Information, and Communications Division, Los
Alamos National Laboratory, Los Alamos, New Mexico, USA, 1999.

[125] JACKSON, K. A., DUBOIS, D. H., AND STALLINGS, C. A. NADIR–A proto-
type network intrusion detection system. Tech. Rep. LA-UR–90-3726, Los Alamos
National Laboratory, Los Alamos, NM USA 87545, 1990.

[126] JAVITZ, H., AND VALDES, A. The SRI IDES statistical anomaly detector. In 1991
IEEE Computer Society Symposium on Research in Security and Privacy, 20–22
May 1991, Oakland, CA, USA (Los Alamitos, CA, USA, 1991), IEEE Computer
Society Press, pp. 316–326.

http://cs.unm.edu/~forrest/publications/int_decssc.pdf
http://cs.unm.edu/~forrest/publications/int_decssc.pdf
http://www.cs.unm.edu/colloq-bin/tech_reports.cgi?ID=TR-CS-2002-37
http://www.cs.unm.edu/colloq-bin/tech_reports.cgi?ID=TR-CS-2002-37

References 157

[127] JHA, S., TAN, K., AND MAXION, R. Markov chains classifiers and intrusion
detection. In 14th IEEE Computer Security Foundations Workshop, 11–13 June
2001, Cape Breton, NS, Canada (Los Alamitos, CA, USA, 2001), IEEE Computer
Society, pp. 206–19.

[128] JONES, A., AND LI, S. Temporal signatures for intrusion detection. In Seventeenth
Annual Computer Security Applications Conference, 10–14 Dec. 2001, New Or-
leans, LA, USA (Los Alamitos, CA, USA, 2001), IEEE Computer Society, pp. 252–
61.

[129] JONES, A. K., AND LIN, Y. Application intrusion detection using language li-
brary calls. In Seventeenth Annual Computer Security Applications Conference,
10-14 Dec. 2001, New Orleans, LA, USA (Los Alamitos, CA, USA, 2001), IEEE
Computer Society, pp. 22–31.

[130] JONES, A. K., AND SIELKEN, R. S. Computer system intrusion detec-
tion: A survey. Tech. rep., University of Virginia Computer Science Depart-
ment, 1999. http://www.cs.virginia.edu/˜jones/IDS-research/
Documents/jones-sielken-survey-v11.pdf Accessed 6 June 2002.

[131] JULISCH, K. Mining alarm clusters to improve alarm handling efficiency. In Seven-
teenth Annual Computer Security Applications Conference, 10-14 Dec. 2001, New
Orleans, LA, USA (Los Alamitos, CA, USA, 2001), IEEE Comput. Soc, pp. 12–21.

[132] JULISCH, K. Clustering intrusion detection alarms to support root cause analysis.
ACM Trans. Inf. Syst. Secur. 6, 4 (2003), 443–471.

[133] KAN KVARNSTRÖM, H. A survey of commercial tools for intrusion detection.
Tech. Rep. 99-8, Department of Computer Engineering, Chalmers University of
Technology, Götenborg, Sweden, Oct. 1999.

[134] KANSON, P. H. All public hospitals in Gothenburg Sweden crippled by Nimda.
Forum on Risks to the Public in Computers and Related Systems 21, 67 (Oct. 2001).
http://catless.ncl.ac.uk/Risks/21.67.html#subj13. Accessed
27 Dec 2002.

[135] KEMMERER, R., AND VIGNA, G. Intrusion detection: a brief history and overview.
Computer 35, 4 (Apr. 2002), 27–30.

[136] KIM, J. An artificial immune system for network intrusion detection. In Graduate
Student Workshop, Genetic and Evolutionary Computation Conference, Orlando,
Florida. July 13–17 (GECCO-99) (July 1999), U.-M. O’Reilly, Ed., pp. 369–370.

[137] KIM, J., AND BENTLEY, P. The artificial immune model for network intrusion de-
tection. In 7th European Conference on Intelligent Techniques and Soft Computing
(EUFIT’99), Aachen, Germany (1999).

http://www.cs.virginia.edu/~jones/IDS-research/Documents/jones-sielken-survey-v11.pdf
http://www.cs.virginia.edu/~jones/IDS-research/Documents/jones-sielken-survey-v11.pdf
http://catless.ncl.ac.uk/Risks/21.67.html#subj13

158 References

[138] KIM, J., AND BENTLEY, P. The human immune system and network intrusion
detection. In 7th European Congress on Intelligent Techniques and Soft Computing
(EUFIT ’99), Aachen, Germany, September 13–19 (1999).

[139] KIM, J., AND BENTLEY, P. Negative selection and niching by an artificial immune
system for network intrusion detection. In Late Breaking Papers at the 1999 Genetic
and Evolutionary Computation Conference (1999), pp. 149–158.

[140] KIM, J., AND BENTLEY, P. J. Towards an artificial immune system for network
intrusion detection: An investigation of dynamic clonal selection. In Proceedings
of the Congress on Evolutionary Computation (CEC-2002), Honolulu, HI (May
2002), pp. 1015–1020.

[141] KISELYOV, O. A network file system over HTTP: remote access and
modification of files and files. In 1999 USENIX Annual Technical Con-
ference, FREENIX Track (Berkeley, CA, 1999), Usenix Association.
http://www.usenix.org/publications/library/proceedings/
usenix99/kiselyov.html, Accessed 2006 Sept 13.

[142] KO, C., FINK, G., AND LEVITT, K. Automated detection of vulnerabilities in
privileged programs by execution monitoring. In Tenth Annual Computer Security
Applications Conference, 5-9 Dec. 1994, Orlando, FL, USA (Los Alamitos, CA,
USA, 1994), IEEE Computer Society Press, pp. 134–144.

[143] KOHOUT, L., YASINSAC, A., AND MCDUFFIE, E. Activity profiles for intrusion
detection. In 2002 Annual Meeting of the North American Fuzzy Information Pro-
cessing Society Proceedings, 27-29 June 2002, New Orleans, LA, USA (Piscataway,
NJ, USA, 2002), J. Keller and O. Nasraoui, Eds., IEEE, pp. 463–8.

[144] KOSORESOW, A. P., AND HOFMEYR, S. A. Intrusion detection via system call
traces. IEEE Software 14, 5 (Sep–Oct 1997), 35–42.

[145] KRUEGEL, C., MUTZ, D., VALEUR, F., AND VIGNA, G. On the detection of
anomalous system call arguments. In ESORICS 2003: 8th European Symposium on
Research in Computer Security, vol. 2808 of Lecture Notes in Computer Science.
Springer, 2003, pp. 326–343.

[146] KRUEGEL, C., AND VIGNA, G. Anomaly detection of web-based attacks. In Pro-
ceedings of the 10th ACM conference on Computer and communications security
(2003), ACM Press, pp. 251–261.

[147] KRUEGEL, C., VIGNA, G., AND ROBERTSON, W. A multi-model approach to the
detection of web-based attacks. Comput. Networks 48, 5 (2005), 717–738.

http://www.usenix.org/publications/library/proceedings/usenix99/kiselyov.html
http://www.usenix.org/publications/library/proceedings/usenix99/kiselyov.html

References 159

[148] KUMAR, S. Classification and detection of computer intrusions. PhD thesis, Pur-
due University, 1995.

[149] KUMAR, S., AND SPAFFORD, E. H. A Pattern Matching Model for Misuse Intru-
sion Detection. In Proceedings of the 17th National Computer Security Conference
(1994), pp. 11–21.

[150] KUMAR, S., AND SPAFFORD, E. H. An Application of Pattern Matching in In-
trusion Detection. Tech. Rep. 94–013, Department of Computer Sciences, Purdue
University, 1994.

[151] KUMAR, S., AND SPAFFORD, E. H. A software architecture to support misuse
intrusion detection. In Proceedings of the 18th National Information Security Con-
ference (1995), pp. 194–204.

[152] LANE, T., AND BRODLEY, C. Approaches to online learning and concept drift
for user identification in computer security. In Fourth International Conference
on Knowledge Discovery and Data Mining, 27–31 Aug. 1998, New York, NY, USA
(Menlo Park, CA, USA, 1998), P. Agrawal, R.; Stolorz, Ed., AAAI Press, pp. 259–
63.

[153] LANE, T., AND BRODLEY, C. Temporal sequence learning and data reduction for
anomaly detection. In 5th ACM Conference on Computer and Communications
Security, 2–5 Nov. 1998, San Francisco, CA, USA (New York, NY, USA, 1998),
ACM, pp. 150–8.

[154] LANE, T., AND BRODLEY, C. E. An application of machine learning to anom-
aly detection. In 20th Annual National Information Systems Security Conference
(1997), vol. 1, pp. 366–380.

[155] LANE, T., AND BRODLEY, C. E. Detecting the abnormal: Machine learning in
computer security. Tech. Rep. ECE-97-1, Department of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN 47907, Jan. 1997.

[156] LANE, T., AND BRODLEY, C. E. Sequence matching and learning in anomaly
detection for computer security. In Proceedings of the AAAI-97 Workshop on AI
Approaches to Fraud Detection and Risk Management (1997), pp. 43–49.

[157] LANE, T. D. Machine learning techniques for the domain of anomaly detection for
computer security. PhD thesis, Department of Electrical and Computer Engineer-
ing, Purdue University, July 1998.

[158] LANG, K. J. Random DFA’s can be approximately learned from sparse uniform
examples. In Proceedings of the Fifth ACM Workshop on Computational Learning
Theory (New York, N.Y., 1992), ACM, pp. 45–52.

160 References

[159] LANG, K. J., PEARLMUTTER, B. A., AND PRICE, R. A. Results of the Abbadingo
One DFA learning competition and a new evidence-driven state merging algorithm.
Lecture Notes in Computer Science 1433 (1998). Proceedings of ICGI-98.

[160] LEE, S., AND HEINBUCH, D. Training a neural-network based intrusion detector
to recognize novel attacks. IEEE Transactions on Systems, Man & Cybernetics,
Part A (Systems & Humans) 31, 4 (July 2001), 294–9.

[161] LEE, W. A Data Mining Framework for Constructing Features and Models for
Intrusion Detection Systems. PhD thesis, Columbia University, 1999.

[162] LEE, W., AND STOLFO, S. A framework for constructing features and models
for intrusion detection systems. ACM Transactions on Information and Systems
Security 3, 4 (November 2000), 227–61.

[163] LEE, W., STOLFO, S., AND MOK, K. A data mining framework for building
intrusion detection models. In 1999 IEEE Symposium on Security and Privacy, 9–
12 May 1999, Oakland, CA, USA (Los Alamitos, CA, USA, 1999), IEEE Computer
Society, pp. 120–32.

[164] LEE, W., AND STOLFO, S. J. Data mining approaches for intrusion detection. In
Proceedings of the 7th Usenix Security Symposium (1998), Usenix Association.

[165] LEE, W., STOLFO, S. J., AND MOK, K. W. Mining in a data-flow environment:
experience in network intrusion detection. In Proceedings of the fifth ACM SIGKDD
international conference on Knowledge discovery and data mining (1999), ACM
Press, pp. 114–124.

[166] LEE, W., AND XIANG, D. Information-theoretic measures for anomaly detection.
In 2001 IEEE Symposium on Security and Privacy. S&P 2001, 14–16 May 2001,
Oakland, CA, USA (2001), pp. 130–143.

[167] LEUNG, K., AND LECKIE, C. Unsupervised anomaly detection in network in-
trusion detection using clusters. In CRPIT ’38: Proceedings of the Twenty-eighth
Australasian conference on Computer Science (Darlinghurst, Australia, Australia,
2005), Australian Computer Society, Inc., pp. 333–342.

[168] LI, Z., DAS, A., AND ZHOU, J. Model generalization and its implications on intru-
sion detection. In Applied Cryptography and Network Security, Third International
Conference, ACNS 2005, New York, NY, USA, June 7-10, 2005, Proceedings (2005),
pp. 222–237.

[169] LINDQVIST, U., AND PORRAS, P. Detecting computer and network misuse through
the production-based expert system toolset (P-BEST). In 1999 IEEE Symposium on
Security and Privacy, 9–12 May 1999, Oakland, CA, USA (Los Alamitos, CA, USA,
1999), IEEE Computer Society, pp. 146–161.

References 161

[170] LINDQVIST, U., AND PORRAS, P. A. eXpert-BSM: A host-based intrusion detec-
tion solution for Sun Solaris. In Proceedings of the 17th Annual Computer Secu-
rity Applications Conference (ACSAC 2001) (New Orleans, Louisiana, Dec. 2001),
IEEE Computer Society, pp. 240–251.

[171] LIPPMANN, R., FRIED, D., GRAF, I., HAINES, J., KENDALL, K., MCCLUNG,
D., WEBER, D., WEBSTER, S., WYSCHOGROD, D., CUNNINGHAM, R., AND
ZISSMAN, M. Evaluating intrusion detection systems: the 1998 DARPA off-line
intrusion detection evaluation. In DARPA Information Survivability Conference and
Exposition, 2000. DISCEX ’00. Proceedings, Volume: 2 (1999), pp. 12–26.

[172] LIPPMANN, R., HAINES, J., FRIED, D., KORBA, J., AND DAS, K. The 1999
DARPA off-line intrusion detection evaluation. Computer Networks 34, 4 (October
2000), 579–95.

[173] LIPPMANN, R., HAINES, J., FRIED, D., KORBA, J., AND DAS, K. Analysis
and results of the 1999 DARPA off-line intrusion detection evaluation. In Recent
Advances in Intrusion Detection. Third International Workshop, RAID 2000, 2–4
Oct. 2000, Toulouse, France (Berlin, Germany, 2000), H. Debar, L. Me, and S. Wu,
Eds., Springer-Verlag, pp. 162–82.

[174] LITTMAN, M. L., AND ACKLEY, D. H. Adaptation in constant utility non-
stationary environments. In Proceedings of the Fourth International Conference
on Genetic Algorithms (San Mateo, CA, 1991), R. K. Belew and L. B. Booker,
Eds., Morgan Kaufmann, pp. 136–142.

[175] LUNDIN, E., AND JONSSON, E. Some practical and fundamental problems with
anomaly detection. In Proceedings of the Fourth Nordic Workshop on Secure IT
systems (NORDSEC’99) (1999).

[176] LUNT, T. F. Automated audit trail analysis and intrusion detection: A survey. In
11th National Computer Security Conference (Oct. 1988).

[177] LUNT, T. F. Detecting Intruders in Computer Systems. In 1993 Conference
on Auditing and Computer Technology (1993). http://www.sdl.sri.com/
papers/c/a/canada93/canada93.ps.gz Accessed 22 August 2002.

[178] MAHONEY, M. V. Network traffic anomaly detection based on packet bytes. In Pro-
ceedings of the 2003 ACM Symposium on Applied computing (2003), ACM Press,
pp. 346–350.

[179] MAHONEY, M. V., AND CHAN, P. K. Learning nonstationary models of nor-
mal network traffic for detecting novel attacks. In Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery and data mining
(2002), ACM Press, pp. 376–385.

http://www.sdl.sri.com/papers/c/a/canada93/canada93.ps.gz
http://www.sdl.sri.com/papers/c/a/canada93/canada93.ps.gz

162 References

[180] MAHONEY, M. V., AND CHAN, P. K. Learning rules for anomaly detection of
hostile network traffic. In ICDM ’03: Proceedings of the Third IEEE International
Conference on Data Mining (Washington, DC, USA, 2003), IEEE Computer Soci-
ety, p. 601.

[181] MARCEAU, C. Characterizing the behavior of a program using multiple-length
n-grams. In New Security Paradigms Workshop 2000, 18–22 Sept. 2000, Ballycot-
ton, Ireland (New York, NY, USA, 2001), ACM, pp. 101–10. http://www.
atc-nycorp.com/papers/Marceau_multiLengthStrings.pdf Ac-
cessed 13 August 2002.

[182] MAY, J., PETERSON, J., AND BAUMAN, J. Attack detection in large networks. In
DARPA Information Survivability Conference and Exposition II. DISCEX’01, 12–
14 June 2001, Anaheim, CA, USA (Los Alamitos, CA, USA, 2001), vol. 1, IEEE
Computer Society, pp. 15–21.

[183] MAYFIELD, J., MCNAMEE, P., AND PIATKO, C. The JHU/APL HAIRCUT sys-
tem at TREC-8. In Information Technology: Eighth Text REtrieval Conference
(TREC-8), 16-19 Nov. 1999, Gaithersburg, MD, USA (2001), pp. 445–452.

[184] MCGRAW, G. Software Security : Building Security In. Addison-Wesley, 2006.

[185] MCHUGH, J. The 1998 Lincoln Laboratory IDS evaluation—a critique. In Recent
Advances in Intrusion Detection. Third International Workshop, RAID 2000, 2–4
Oct. 2000, Toulouse, France (Berlin, Germany, 2000), H. Debar, L. Me, and S. Wu,
Eds., Springer-Verlag, pp. 145–61.

[186] MCHUGH, J. Testing intrusion detection systems: a critique of the 1998 and 1999
DARPA intrusion detection system evaluations as performed by Lincoln Labora-
tory. ACM Transactions on Information and Systems Security 3, 4 (November
2000), 262–94.

[187] MCHUGH, J. Intrusion and intrusion detection. International Journal of Informa-
tion Security 1, 1 (August 2001), 14–35.

[188] MICHAEL, C., AND GHOSH, A. Using finite automata to mine execution data for
intrusion detection: a preliminary report. In Recent Advances in Intrusion Detec-
tion. Third International Workshop, RAID 2000, 2-4 Oct. 2000, Toulouse, France
(Berlin, Germany, 2000), H. Debar, L. Me, and S. Wu, Eds., Springer-Verlag,
pp. 66–79.

[189] MICHAEL, C., AND GHOSH, A. Simple state-based approaches to program-based
anomaly detection. ACM Transactions on Information and Systems Security 5, 3
(August 2002), 203 – 37.

http://www.atc-nycorp.com/papers/Marceau_multiLengthStrings.pdf
http://www.atc-nycorp.com/papers/Marceau_multiLengthStrings.pdf

References 163

[190] MICHAEL, C. C., AND GHOSH, A. Two state-based approaches to program-based
anomaly detection. In Annual Computer Security Applications Conference: Practi-
cal Solutions to Real Security Problems December 11–15, 2000 New Orleans, LA,
USA (Dec. 2000), Applied Computer Security Associates, IEEE Computer Soci-
ety, Los Alamitos, CA, USA, pp. 21–30. http://www.acsac.org/2000/
papers/96.pdf Accessed 13 August 2002.

[191] MICHAEL, C. C., AND GHOSH, A. Simple, state-based approaches to program-
based anomaly detection. ACM Trans. Inf. Syst. Secur. 5, 3 (2002), 203–237.

[192] MICROSOFT CORPORATION. Exchange server 2003 RPC over HTTP de-
ployment scenarios, 2006. http://www.microsoft.com/technet/
prodtechnol/exchange/2003/library/ex2k3rpc.mspx, Accessed
2006 Sept 13.

[193] MICROSOFT CORPORATION. Windows server update services fre-
quently asked questions, 2006. http://www.microsoft.com/
windowsserversystem/updateservices/evaluation/faqs.mspx
Accessed 12 February 2006.

[194] MILLER, E. L., SHEN, D., LIU, J., AND NICHOLAS, C. Performance and scala-
bility of a large-scale N-gram based information retrieval system. Journal of Digital
Information (online refereed journal) (2000).

[195] MITCHELL, T. M. Artificial Neural Networks. WCB/McGraw-Hill, 1997, ch. 4,
pp. 81–127.

[196] MOORE, D., PAXSON, V., SAVAGE, S., SHANNON, C., STANIFORD, S., AND
WEAVER, N. Inside the slammer worm. IEEE Security and Privacy 01, 4 (2003),
33–39.

[197] MUKHERJEE, B., HEBERLEIN, L., AND LEVITT, K. Network intrusion detection.
IEEE Network 8, 3 (May 1994), 26–41.

[198] MUKKAMALA, S., JANOSKI, G., AND SUNG, A. Intrusion detection using neural
networks and support vector machines. In 2002 International Joint Conference on
Neural Networks (IJCNN), 12–17 May 2002, Honolulu, HI, USA (Piscataway, NJ,
USA, 2002), vol. 2, IEEE, pp. 1702–1707. http://www.cs.nmt.edu/˜IT/
papers/hawaii7.pdf Accessed 13 August 2002.

[199] NETWORK ASSOCIATES, INC. Mcafee.com - virusscan home edition 7.0. http:
//www.mcafee.com/myapps/vs7/ Accessed 1 January 2003.

[200] NEUMANN, P. G., AND PORRAS, P. A. Experience with EMERALD to date. In
First USENIX Workshop on Intrusion Detection and Network Monitoring (ID’99),

http://www.acsac.org/2000/papers/96.pdf
http://www.acsac.org/2000/papers/96.pdf
http://www.microsoft.com/technet/prodtechnol/exchange/2003/library/ex2k3rpc.mspx
http://www.microsoft.com/technet/prodtechnol/exchange/2003/library/ex2k3rpc.mspx
http://www.microsoft.com/windowsserversystem/updateservices/evaluation/faqs.mspx
http://www.microsoft.com/windowsserversystem/updateservices/evaluation/faqs.mspx
http://www.cs.nmt.edu/~IT/papers/hawaii7.pdf
http://www.cs.nmt.edu/~IT/papers/hawaii7.pdf
http://www.mcafee.com/myapps/vs7/
http://www.mcafee.com/myapps/vs7/

164 References

9–12 April 1999, Santa Clara, CA, USA (apr 1999), USENIX Association, Berke-
ley, CA, USA, pp. 73–80. http://www.sdl.sri.com/papers/det99/
Accessed 20 August 2002.

[201] NEWMAN, D., GIORGIS, T., AND YAVARI-ISSALOU, F. Intrusion detection sys-
tems: suspicious finds. Data Communications International 27, 11 (August 1998),
72–8, 80, 82. Online at http://www.networkmagazine.com/article/
printableArticle?doc_id=DCM20000510S0034 and http://www.
data.com/article/DCM20000510S0034. Accessed 29 December 2002.

[202] NING, P., CUI, Y., AND REEVES, D. S. Constructing attack scenarios through cor-
relation of intrusion alerts. In Proceedings of the 9th ACM conference on Computer
and communications security (2002), ACM Press, pp. 245–254.

[203] NING, P., CUI, Y., REEVES, D. S., AND XU, D. Techniques and tools for analyz-
ing intrusion alerts. ACM Trans. Inf. Syst. Secur. 7, 2 (2004), 274–318.

[204] NING, P., JAJODIA, S., AND WANG, X. S. Abstraction-based intrusion detection
in distributed environments. ACM Trans. Inf. Syst. Secur. 4, 4 (2001), 407–452.

[205] NTOULAS, A., CHO, J., AND OLSTON, C. What’s new on the web? the evolution
of the web from a search engine perspective. In 13th International World Wide Web
Conference (New York, NY, USA, 2004), ACM Press.

[206] OLIVERIA, A. L., AND SILVA, J. Efficient search techniques for the inference of
minimum sized finite automata. In Proceedings of the Fifth String Processing and
Information Retrieval Symposium (1998), IEEE Computer Press, pp. 81–89.

[207] PATTON, S., YURCIK, W., AND DOSS, D. An Achilles’ heel in
signature-based IDS: Squealing false positives in SNORT. In RAID
2001 Fourth International Symposium on Recent Advances in Intrusion
Detection October 10–12, 2001, Davis, CA, USA (2001). Available
online only. http://www.raid-symposium.org/raid2001/papers/
patton_yurcik_doss_raid2001.pdf Accessed 3 January 2003.

[208] PAULA, F. S., REIS, M. A., FERNANDES, D. M., AND GEUS, P. L.
ADenoIdS: A hybrid IDS based on the immune system. In Proceedings of
the ICONIP2002: 9th International Conference on Neural Information Pro-
cessing, Special Session on Artificial Immune Systems and Their Applica-
tions (Nov. 2002). http://www.dcc.unicamp.br/˜ra000504/papers/
AdenoidsMod_ICONIP2002.pdf Accessed 25 April 2003.

[209] PAXSON, V. Bro: a system for detecting network intruders in real-time. In Seventh
USENIX Security Symposium, 26–29 Jan. 1998, San Antonio, TX, USA (Berkeley,
CA, USA, 1998), USENIX Association, pp. 31–51.

http://www.sdl.sri.com/papers/det99/
http://www.networkmagazine.com/article/printableArticle?doc_id=DCM20000510S0034
http://www.networkmagazine.com/article/printableArticle?doc_id=DCM20000510S0034
http://www.data.com/article/DCM20000510S0034
http://www.data.com/article/DCM20000510S0034
http://www.raid-symposium.org/raid2001/papers/patton_yurcik_doss_raid2001.pdf
http://www.raid-symposium.org/raid2001/papers/patton_yurcik_doss_raid2001.pdf
http://www.dcc.unicamp.br/~ra000504/papers/AdenoidsMod_ICONIP2002.pdf
http://www.dcc.unicamp.br/~ra000504/papers/AdenoidsMod_ICONIP2002.pdf

References 165

[210] PAXSON, V. Bro: a system for detecting network intruders in real-time. Computer
Networks 31, 23–24 (December 1999), 2435–63.

[211] PHPMONKEY. Code Red - Neverside.com, August 7 2001. http://forums.
neverside.com/view/thread115/ Accessed 12 January 2005.

[212] PORRAS, P. A., AND NEUMANN, P. G. EMERALD: conceptual overview state-
ment. http://www.sdl.sri.com/papers/emerald-position1/ Ac-
cessed 20 August 2002., dec 1996.

[213] PORRAS, P. A., AND VALDES, A. Live traffic analysis of TCP/IP gateways. In
Internet Society’s Networks and Distributed Systems Security Symposium (March
1998). http://www.sdl.sri.com/papers/gateway98/ Accessed 20
August 2002.

[214] PUKETZA, N., CHUNG, M., OLSSON, R., AND MUKHERJEE, B. A software
platform for testing intrusion detection systems. IEEE Software 14, 5 (September
1997), 43–51.

[215] PUKETZA, N. J., ZHANG, K., CHUNG, M., MUKHERJEE, B., AND OLSSON,
R. A. A methodology for testing intrusion detection systems. IEEE Transactions
on Software Engineering 22, 10 (1996), 719–729.

[216] RAE, D., AND LUDLOW, D. Halt! who goes there? [internet intrusion detection
benchtest]. Network News (UK Edition) (February 2000), 31–7.

[217] REIS, M. A., PAULA, F. S., FERNANDES, D. M., AND GEUS, P. L. A hybrid ids
architecture based on the immune system. In Anais do Wseg2002: Workshop em Se-
guranc, a de Sistemas Computacionais, Búzios, RJ, Maio de 2002. Workshop real-
izado durante o SBRC2002: Simpósio Brasileiro de Redes de Computadores (May
2002). http://www.dcc.unicamp.br/˜ra000504/papers/IDShyb_
WSEG2002.pdf Accessed 25 April 2003.

[218] ROBERTSON, W., VIGNA, G., KRUEGEL, C., AND KEMMERER, R. A.
Using generalization and characterization techniques in the anomaly-
based detection of web attacks. In Network and Distributed System Se-
curity Symposium Conference Proceedings: 2006 (2006), Internet So-
ciety. http://www.isoc.org/isoc/conferences/ndss/06/
proceedings/html/2006/papers/anomaly_signatures.pdf
Accessed 12 February 2006.

[219] ROBINSON, D., AND COAR, K. The common gateway interface (cgi) version
1.1, October 2004. RFC 3875. ftp://ftp.rfc-editor.org/in-notes/
rfc3875.txt Accessed 2006 Sept 12.

http://forums.neverside.com/view/thread115/
http://forums.neverside.com/view/thread115/
http://www.sdl.sri.com/papers/emerald-position1/
http://www.sdl.sri.com/papers/gateway98/
http://www.dcc.unicamp.br/~ra000504/papers/IDShyb_WSEG2002.pdf
http://www.dcc.unicamp.br/~ra000504/papers/IDShyb_WSEG2002.pdf
http://www.isoc.org/isoc/conferences/ndss/06/proceedings/html/2006/papers/anomaly_signatures.pdf
http://www.isoc.org/isoc/conferences/ndss/06/proceedings/html/2006/papers/anomaly_signatures.pdf
ftp://ftp.rfc-editor.org/in-notes/rfc3875.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3875.txt

166 References

[220] ROESCH, M. Snort—lightweight intrusion detection for networks. In 13th Sys-
tems Administration Conference—LISA ’99 (1999), pp. 229–238. http://www.
usenix.org/events/lisa99/roesch.html Accessed 30 June 2002.

[221] ROOT-NINJA TAK. Re: Under attack...?, August 11 2003. http://www.
shroomery.org/forums/showflat.php/Number/1802533 Accessed
12 January 2005.

[222] RYAN, J., LIN, M.-J., AND MIIKKULAINEN, R. Intrusion detection with neural
networks. In Advances in Neural Information Processing Systems (1998), M. I.
Jordan, M. J. Kearns, and S. A. Solla, Eds., vol. 10, The MIT Press.

[223] SALGANICOFF, M. Density-adaptive learning and forgetting. In International
Conference on Machine Learning (1993), pp. 276–283.

[224] SCOTT, S. L. Detecting network intrusion using a markov modulated nonhomo-
geneous poisson process. Journal of the American Statistical Association (2002).
Submitted, under revision. Available at http://www-rcf.usc.edu/˜sls/
mmnhpp.ps Accessed 31 March 2003.

[225] SCOTT, S. L., AND SMYTH, P. The markov modulated poisson process and markov
poisson cascade with applications to web traffic modeling. Bayesian Statistics 7
(2003).

[226] SECURITIES AND EXCHANGE COMMISSION. Sarbanes-oxley act of 2002. 17 CFR
Parts 240, 249, 270 and 274.

[227] SECURITYFOCUS. What is bugtraq? http://online.securityfocus.
com/popups/forums/bugtraq/intro.shtmlAccessed 10 January 2003.

[228] SECURITYFOCUS.COM. Multiple vendor “out of band” data (winnuke.c) DoS vul-
nerability, May 1997. Vulnerability database. http://www.securityfocus.
com/bid/2010 Accessed 2002 Feb 20.

[229] SECURITYFOCUS.COM. Microsoft internet explorer mhtml uri buffer overflow vul-
nerability, June 2006. SecurityFocus Vulnerability Database entry 18198. http:
//www.securityfocus.com/bid/18198 Accessed 2006 June 21.

[230] SEKAR, R., BENDRE, M., DHURJATI, D., AND BOLLINENI, P. A fast automaton-
based method for detecting anomalous program behaviors. In IEEE Symposium on
Security and Privacy (2001), IEEE, pp. 144–155.

[231] SEKAR, R., BOWEN, T., AND SEGAL, M. On preventing intrusions by process
behavior monitoring. In Workshop on Intrusion Detection and Network Monitoring,
ID 99 (1999), Usenix Association, pp. 29–40.

http://www.usenix.org/events/lisa99/roesch.html
http://www.usenix.org/events/lisa99/roesch.html
http://www.shroomery.org/forums/showflat.php/Number/1802533
http://www.shroomery.org/forums/showflat.php/Number/1802533
http://www-rcf.usc.edu/~sls/mmnhpp.ps
http://www-rcf.usc.edu/~sls/mmnhpp.ps
http://online.securityfocus.com/popups/forums/bugtraq/intro.shtml
http://online.securityfocus.com/popups/forums/bugtraq/intro.shtml
http://www.securityfocus.com/bid/2010
http://www.securityfocus.com/bid/2010
http://www.securityfocus.com/bid/18198
http://www.securityfocus.com/bid/18198

References 167

[232] SEKAR, R., GUANG, Y., VERMA, S., AND SHANBHAG, T. A high-performance
network intrusion detection system. In ACM Conference on Computer and Com-
munications Security (1999), pp. 8–17.

[233] SEKAR, R., GUPTA, A., FRULLO, J., SHANBHAG, T., TIWARI, A., YANG, H.,
AND ZHOU, S. Specification-based anomaly detection: a new approach for detect-
ing network intrusions. In Proceedings of the 9th ACM conference on Computer
and communications security (2002), ACM Press, pp. 265–274.

[234] SEKAR, R., AND UPPULURI, P. Synthesizing fast intrusion prevention/detection
systems from high-level specifications. In Proceedings of the 8th Usenix Security
Symposium (1999), pp. 63–78.

[235] SINGH, P. K., AND LAKHOTIA, A. Analysis and detection of computer viruses
and worms: an annotated bibliography. SIGPLAN Not. 37, 2 (2002), 29–35.

[236] SMAHA, S. Haystack: an intrusion detection system. In Fourth Aerospace Com-
puter Security Applications Conference, 12–16 Dec. 1988, Orlando, FL, USA
(Washington, DC, USA, 1988), IEEE Computer Society Press, pp. 37–44.

[237] SNAPP, S., SMAHA, S., TEAL, D., AND GRANCE, T. The DIDS (distributed
intrusion detection system) prototype. In USENIX Association. Proceedings of the
Summer 1992 USENIX Conference, 8-12 June 1992, San Antonio, TX, USA (1992),
Berkeley, CA, USA : USENIX Association, 1992, pp. 227–33.

[238] SNAPP, S. R., BRENTANO, J., DIAS, G. V., GOAN, T. L., HEBERLEIN, L. T., LIN
HO, C., LEVITT, K. N., MUKHERJEE, B., SMAHA, S. E., GRANCE, T., TEAL,
D. M., AND MANSUR, D. DIDS (Distributed Intrusion Detection System) – mo-
tivation, architecture, and an early prototype. In Proceedings of the 14th National
Computer Security Conference (Washington, DC, 1991), pp. 167–176.

[239] SOMAYAJI, A. Operating System Stability and Security through Process Home-
ostasis. PhD thesis, University of New Mexico, 2002. http://www.cs.unm.
edu/˜soma/pH/uss-2000.pdf Accessed 31 May 2002.

[240] SOMAYAJI, A., HOFMEYR, S., AND FORREST, S. Principles of a computer im-
mune system. In Meeting on New Security Paradigms, 23-26 Sept. 1997, Langdale,
UK (New York, NY, USA, 1997), ACM, pp. 75–82.

[241] SOPHOS PLC. Sophos - anti-virus for business. http://www.sophos.com/
Accessed 1 Janyary 2003.

[242] SOURCEFIRE NETWORK SECURITY. VRT certified rules for snort CURRENT,
October 2005. http://www.snort.org/pub-bin/downloads.cgi, ac-
cessed November 10, 2005.

http://www.cs.unm.edu/~soma/pH/uss-2000.pdf
http://www.cs.unm.edu/~soma/pH/uss-2000.pdf
http://www.sophos.com/
http://www.snort.org/pub-bin/downloads.cgi

168 References

[243] STANIFORD, S., HOAGLAND, J. A., AND MCALERNEY, J. M. Practical auto-
mated detection of stealthy portscans. Journal of Computer Security 10, 1-2 (2002),
105–136. Available at http://www.silicondefense.com/pptntext/
Spice-JCS.pdf Accessed 16 August 2002.

[244] STOLCKE, A., AND OMOHUNDRO, S. Hidden Markov Model induction by
bayesian model merging. In Advances in Neural Information Processing Systems
(1993), S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds., vol. 5, Morgan Kaufmann,
San Mateo, CA, pp. 11–18.

[245] STOLCKE, A., AND OMOHUNDRO, S. M. Best-first model merging for hidden
Markov model induction. Tech. Rep. TR-94-003, International Computer Science
Institute, 1947 Center Street, Suite 600, Berkeley, CA, 94704-1198, 1994.

[246] SYMANTEC CORPORATION. Symantec AntiVirusTMcorporate edition.
http://enterprisesecurity.symantec.com/products/
products.cfm?ProductID=155 Accessed 1 Janyary 2003.

[247] TENG, H. S., CHEN, K., AND LU, S. C. Y. Adaptive real-time anomaly detection
using inductively generated sequential patterns. In IEEE Symposium on Security
and Privacy (1990), pp. 278–284.

[248] TOMBINI, E., DEBAR, H., MÉ, L., AND DUCASSÉ, M. A serial combination
of anomaly and misuse IDSes applied to HTTP traffic. In 20th Annual Computer
Security Applications Conference (2004).

[249] TSUDIK, G., AND SUMMERS, R. Audes-an expert system for security auditing.
Computer Security Journal 6, 1 (1990), 89–93.

[250] TURKIA, M. Intrusion detection systems. Available at http://www.cs.
helsinki.fi/u/asokan/distsec/documents/turkia.ps.gz
Accessed 30 July 2002., 2000.

[251] VACCARO, H. S., AND LIEPINS, G. E. Detection of anomalous computer session
activity. In 1989 IEEE Symposium on Security and Privacy, 1-3 May 1989, Oak-
land, CA, USA (1989), Washington, DC, USA : IEEE Comput. Soc. Press, 1989,
pp. 280–289.

[252] VALDES, A., AND SKINNER, K. Adaptive, model-based monitoring for cyber
attack detection. In Recent Advances in Intrusion Detection (RAID 2000) (Toulouse,
France, October 2000), H. Debar, L. Me, and F. Wu, Eds., no. 1907 in Lecture Notes
in Computer Science, Springer-Verlag, pp. 80–92.

[253] VALDES, A., AND SKINNER, K. Probabilistic alert correlation. In Recent Ad-
vances in Intrusion Detection (RAID 2001) (2001), no. 2212 in Lecture Notes in

http://www.silicondefense.com/pptntext/Spice-JCS.pdf
http://www.silicondefense.com/pptntext/Spice-JCS.pdf
http://enterprisesecurity.symantec.com/products/products.cfm?ProductID=155
http://enterprisesecurity.symantec.com/products/products.cfm?ProductID=155
http://www.cs.helsinki.fi/u/asokan/distsec/documents/turkia.ps.gz
http://www.cs.helsinki.fi/u/asokan/distsec/documents/turkia.ps.gz

References 169

Computer Science, Springer-Verlag. http://www.sdl.sri.com/papers/
r/a/raid2001-pac/prob_corr.pdf Accessed 20 August 2002.

[254] VARGIYA, R., AND CHAN, P. Boundary detection in tokenizing network ap-
plication payload for anomaly detection. In Proceedings of the ICDM Work-
shop on Data Mining for Computer Security (DMSEC) (Nov. 2003), pp. 50–
59. Workshop held in conjunction with The Third IEEE International Conference
on Data Mining. Available at http://www.cs.fit.edu/˜pkc/dmsec03/
dmsec03notes.pdf. Accessed 5 April 2006.

[255] VERWOERD, T., AND HUNT, R. Intrusion detection techniques and approaches.
Computer Communications 25, 15 (September 2002), 1356–65.

[256] VIEGA, J., AND MCGRAW, G. Building Secure Software: How to Avoid Security
Problems the Right Way. Addison Wesley, Reading, MA, 2002.

[257] VIGNA, G., ECKMANN, S., AND KEMMERER, R. Attack languages. In ISW 2000.
34th Information Survivability Workshop, 24–26 Oct. 2000, Cambridge, MA, USA
(Piscataway, NJ, USA, 2000), IEEE, pp. 163–6.

[258] VIGNA, G., AND KEMMERER, R. NetSTAT: a network-based intrusion detection
approach. In 14th Annual Computer Security Applications Conference, 7–11 Dec.
1998, Phoenix, AZ, USA (Los Alamitos, CA, USA, 1998), IEEE Computer Society,
pp. 25–34.

[259] VIGNA, G., AND KEMMERER, R. A. NetSTAT: a network-based intrusion detec-
tion system. Journal of Computer Security 7, 1 (1999), 37–71.

[260] VIGNA, G., ROBERTSON, W., AND BALZAROTTI, D. Testing network-based in-
trusion detection signatures using mutant exploits. In Proceedings of the 11th ACM
conference on Computer and communications security (2004), ACM Press, pp. 21–
30.

[261] WAGNER, D., AND DEAN, D. Intrusion detection via static analysis. In
Proceedings of the 2001 IEEE Symposium on Security and Privacy (May
2001). Available at http://www.csl.sri.com/users/ddean/papers/
oakland01.pdf. Accessed 21 April 2006.

[262] WAN, T., AND YANG, X. D. IntruDetector: a software platform for testing network
intrusion detection algorithms. In Seventeenth Annual Computer Security Applica-
tions Conference, 10–14 Dec. 2001, New Orleans, LA, USA (Los Alamitos, CA,
USA, 2001), IEEE Computer Society, pp. 3–11.

[263] WANG, K., AND STOLFO, S. J. Anomalous payload-based network intrusion de-
tection. In Recent Advances in Intrusion Detection: 7th International Symposium,

http://www.sdl.sri.com/papers/r/a/raid2001-pac/prob_corr.pdf
http://www.sdl.sri.com/papers/r/a/raid2001-pac/prob_corr.pdf
http://www.cs.fit.edu/~pkc/dmsec03/dmsec03notes.pdf
http://www.cs.fit.edu/~pkc/dmsec03/dmsec03notes.pdf
http://www.csl.sri.com/users/ddean/papers/oakland01.pdf
http://www.csl.sri.com/users/ddean/papers/oakland01.pdf

170 References

RAID 2004, Sophia Antipolis, France, September 15-17, 2004. Proceedings (2004),
vol. 3224 of Lecture Notes in Computer Science, Springer, pp. 203–222.

[264] WARRENDER, C., FORREST, S., AND PEARLMUTTER, B. A. Detecting intrusions
using system calls: Alternative data models. In IEEE Symposium on Security and
Privacy (1999), pp. 133–145.

[265] WIERS, D. Tunneling SSH over HTTP(S), 2006. http://dag.wieers.com/
howto/ssh-http-tunneling/, Accessed 2006 Sept 13.

[266] WILLIAMS, P., ANCHOR, K., BEBO, J., GUNSCH, G., AND LAMONT, G.
CDIS: Towards a computer immune system for detecting network intrusions. In
Lecture Notes in Computer Science 2212 (2001), Springer-Verlag, pp. 117–133.
Presented at the 4th International Symposium on Recent Advanced in Intrusion
Detection (RAID 2001). http://en.afit.edu/ISSA/publications/
WilliamsRAID.pdf Accessed 19 August 2002.

[267] WU, S., CHANG, H., JOU, F., WANG, F., GONG, F., SARGOR, C., QU, D.,
AND CLEAVELAND, R. Jinao: Design and implementation of a scalable intrusion
detection system for the ospf routing protocol. To appear in Journal of Computer
Networks and ISDN Systems. http://projects.anr.mcnc.org/JiNao/
JiNaoJournal.ps Accessed 30 December 2002.

[268] YE, N. A Markov chain model of temporal behavior for anomaly detection. In Pro-
ceedings of the 2000 IEEE Systems, Man, and Cybernetics Information Assurance
and Security Workshop, 2000 (2000), pp. 171–174.

[269] YE, N., CHEN, Q., EMRAN, S. M., AND NOH, K. Chi-square statistical profiling
for anomaly detection. In IEEE Systems, Man, and Cybernetics Information Assur-
ance and Security Workshop June 6–7, 2000 at West Point, New York (June 2000),
pp. 187–193.

[270] YE, N., EHIABOR, T., AND ZHANG, Y. First-order versus high-order stochas-
tic models for computer intrusion detection. Quality and Reliability Engineering
International 18, 3 (May 2002), 243–50.

[271] YE, N., EMRAN, S., CHEN, Q., AND VILBERT, S. Multivariate statistical analysis
of audit trails for host-based intrusion detection. IEEE Transactions on Computers
51, 7 (July 2002), 810–20.

[272] YE, N., AND LI, X. Application of decision tree classifiers to computer intrusion
detection. In DATA MINING 2000 Data Mining Methods and Databases for Engi-
neering, Finance and Other Fields, July 2000, Cambridge, UK (Southampton, UK,
2000), N. Ebecken and C. Brebbia, Eds., WIT Press, pp. 381–90.

http://dag.wieers.com/howto/ssh-http-tunneling/
http://dag.wieers.com/howto/ssh-http-tunneling/
http://en.afit.edu/ISSA/publications/WilliamsRAID.pdf
http://en.afit.edu/ISSA/publications/WilliamsRAID.pdf
http://projects.anr.mcnc.org/JiNao/JiNaoJournal.ps
http://projects.anr.mcnc.org/JiNao/JiNaoJournal.ps

References 171

[273] YE, N., YU, M., AND EMRAN, S. M. Probabilistic networks with undirected
links for anomaly detection. In IEEE Systems, Man, and Cybernetics Information
Assurance and Security Workshop June 6–7, 2000 at West Point, New York (June
2000), pp. 175–179.

[274] YEGNESWARAN, V., BARFORD, P., AND ULLRICH, J. Internet intrusions: global
characteristics and prevalence. In Proceedings of the 2003 ACM SIGMETRICS in-
ternational conference on Measurement and modeling of computer systems (2003),
ACM Press, pp. 138–147.

[275] YEUNG, D.-Y., AND CHOW, C. Parzen-window network intrusion detectors. In
16th International Conference on Pattern Recognition, 11–15 Aug. 2002, Quebec
City, Que., Canada (Los Alamitos, CA, USA, 2002), R. Kasturi, D. Laurendeau,
and C. Suen, Eds., vol. 4, IEEE Computer Society, pp. 385–8.

[276] ZANERO, S., AND SAVARESI, S. M. Unsupervised learning techniques for an
intrusion detection system. In Proceedings of the 2004 ACM symposium on Applied
computing (2004), ACM Press, pp. 412–419.

[277] ZHANG, Y., AND LEE, W. Intrusion detection in wireless ad-hoc networks. In
MobiCom 2000. Sixth Annual International Conference on Mobile Computing and
Networking, 6–11 Aug. 2000, Boston, MA, USA (New York, NY, USA, 2000), ACM,
pp. 275–83.

172 References

173

Appendix A

Snort configuration

snort is started at system boot time by using the command:

snort -Dq -O -A none -c /usr/local/etc/snort.conf\

not net 198.49.217.0/25

The snort configuration file contains the following:

Configuration directives

config reference_net: 198.49.217.128/25

config logdir: /var/log/snort

config umask: 022

config show_year

config stateful

defragment IP packets

preprocessor frag2

TCP stream reassembly

preprocessor stream4: disable_evasion_alerts

preprocessor stream4_reassemble:\

noalerts, clientonly, ports [80]

174 Appendix A. Snort configuration

limit to packets inbound for web server

log tcp !198.49.217.0/25 any -> any 80\

(session: printable;)

The shell script that moves the collected data so it does not grow too big in a single
directory is:

#! /bin/sh

#

move the snort directory to avoid the "too many links" message

#

#date=‘date +%d-%m-%Y‘

date=‘date +%Y-%m-%d‘

mv /var/log/snort /var/log/snort-$date

mkdir /var/log/snort

	List of Figures
	List of Tables
	Introduction
	Anomaly detection systems and generalization
	Web servers are a good testbed for anomaly detection research
	IDS testing
	Summary and dissertation overview

	Background
	Intrusion detection
	Review papers
	Architectures
	Theory

	Anomaly detection
	Algorithms
	Generalization

	Testing intrusion detection systems
	Frameworks for testing
	Data sets for testing HTTP IDSs

	HTTP
	The HTTP protocol
	Structure in the HTTP request
	Potential sources of diversity between web sites
	HTTP attacks
	Difficulties for anomaly detection posed by HTTP
	Generalization and HTTP

	Summary

	Algorithms for HTTP anomaly detection
	Request length
	Character distributions
	Ordering of parameters
	Presence or absence of parameters
	Enumerated or random parameter values
	Markov Model
	Linear combination
	n-grams
	DFA
	Determining similarity between a request and the DFA

	Targeted generalization heuristics
	File name heuristics
	Floating-point numbers
	Upper and lower case
	Email addresses
	Deleting unusual lines
	Grouping putative attacks
	Add alternates
	Default values of heuristics

	Summary

	Experimental setup
	The algorithm test framework
	Parsing HTTP
	Normal data
	Attack data
	Summary

	Experiments and results
	Support for claims about HTTP
	Web sites are diverse
	HTTP is a nonstationary data source
	Attack diversity

	DFA and n-gram learning
	Sufficient data for learning
	DFA and order of training data

	Space requirements of the algorithms
	Algorithm accuracy
	Length
	Mahalanobis distance
	2 distance
	Markov model
	Linear combination
	n-grams
	DFA
	Algorithm comparison
	False positives

	Effect of heuristics
	Heuristics and accuracy
	Heuristics and structure size

	New data tests

	Discussion
	Normal set size, generalization, and accuracy
	Length
	2 distance between character distributions
	Directed graphs
	Comparing algorithms via normal set growth rate

	Heuristics
	Identifying undergeneralization in the model
	Heuristics and the normal set

	Characters versus lexical structure
	Algorithm accuracy
	Length
	Character distributions
	Markov Model
	CGI parameter algorithms
	Linear combination
	Directed graphs

	HTTP
	Diversity and variability allowed by the protocol
	HTTP is a nonstationary data source

	Attacks in the training data
	The algorithms and harmless attacks in the training data

	Conclusion
	Contributions
	Moving beyond HTTP
	Future work

	References
	Snort configuration

