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Abstract

A measure of search difficulty, fitness distance
correlation (FDC), is introduced and exam-
ined in relation to genetic algorithm (GA)
performance. In many cases, this correlation
can be used to predict the performance of a
GA on problems with known global maxima.
It correctly classifies easy deceptive problems
as easy and difficult non-deceptive problems
as difficult, indicates when Gray coding will
prove better than binary coding, and is con-
sistent with the surprises encountered when
GAs were used on the Tanese and royal road
functions. The FDC measure is a conse-
quence of an investigation into the connection
between GAs and heuristic search.

1 INTRODUCTION

A correspondence between evolutionary algorithms
and heuristic state space search is developed in (Jones,
1995b). This is based on a model of fitness landscapes
as directed, labeled graphs that are closely related to
the state spaces employed in heuristic search. We ex-
amine one aspect of this correspondence, the relation-
ship between the fitness functions of GAs and heuristic
functions. By quantifying the extent to which a GA
fitness function approaches an ideal of heuristic search,
a measure of search difficulty is obtained. This mea-
sure is neutral with respect to the various claims about
what specific properties of a GA are important for its
success. For instance, it does not involve schemata
and makes no claim about their importance. Work on
heuristics suggests that the relationship between fit-
ness and distance to a goal will have a strong effect on
search difficulty. A simplistic way to examine this uses
correlation, which proves quite useful in practice. In
situations where correlation is too simple a summary
statistic, the structure of their relationship is often ap-
parent from a scatter plot of fitness and distance.
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2 GA DIFFICULTY

The search for factors affecting the ability of the GA
to solve optimization problems has been a major fo-
cus within the theoretical GA community. One ap-
proach to the question has been the study of deceptive
problems proposed by Goldberg (1987), based on the
work of Bethke (1981). The importance of deception
to GAs is a contentious issue. Conflicting and extreme
statements have been made, ranging from claims that
deception is the only thing that is important in mak-
ing a problem hard for a GA (Das & Whitley, 1991),
through claims that deception is neither necessary nor
sufficient for a problem to be hard for a GA (Grefen-
stette, 1993), to informal claims that deception is ir-
relevant to real-world problems. It is clear that some
deceptive problems are hard but also that there are
other factors that cause difficulty for a GA, such as
epistasis, multimodality, noise, and spurious correla-
tions (or hitch-hiking) (Schaffer et al., 1991; Forrest &
Mitchell 1993a).

Another attempt to capture what it is that makes for
GA difficulty is centered around the notion of “rugged
fitness landscapes.” Work in this area is often based
on Weinberger’s (1990) correlation length, as in that of
Manderick et al. (1991). The approach raises questions
similar to deception as it is apparent that a landscape
can be smooth yet hard to search, as in “needle in
a haystack” problems and also extremely rugged yet
easy to search, as in Horn and Goldberg’s (1995) max-
imally rugged landscape. As with deception, rugged-
ness does not appear to be necessary or sufficient for
a problem to be difficult for a GA. Associated with
ruggedness is the notion of “epistatic interactions.”
This was the basis of a proposed viewpoint on GA dif-
ficulty proposed by Davidor (1991). Once again, there
are certainly highly epistatic problems that are hard,
but there are also hard problems that are not epistatic.
Kargupta (1995) has recently considered how signal
and noise combine to affect GA search, an approach
that appears promising.

These hypotheses of what makes a problem hard for a



GA all have something to recommend them, but ap-
pear to be only a piece of the whole story. It is clear
that we are still some way from a definitive statement
about what will make a problem hard for a GA, as
evidenced by the surprising results encountered on the
royal road functions in Mitchell et al. (1992). We sug-
gest that the relationship between fitness and distance
to the goal is very important for GA search. This re-
lationship is apparent in scatter plots of fitness versus
distance and is often well summarized by the corre-
lation between fitness and distance (FDC). Prelimi-
nary results indicate that examining the relationship
between fitness and distance provides a reliable indi-
cation of problem difficulty for a GA, that does not
suffer from the problems of other approaches. This re-
sult is particularly interesting as the FDC measure is
neutral with respect to the workings of a GA.

3 FITNESS DISTANCE
CORRELATION

A model of fitness landscapes developed by Jones
(1995b) suggests that there are strong connections
between GA search and heuristic search. This per-
spective has also been advocated by Tackett (1994)
based on a correspondence between genetic program-
ming and beam search. In both fields, search can be
viewed as a process of navigation on directed graphs
whose vertices are labeled according to some function.
In GAs, this function is a fitness function and in heuris-
tic search it is an heuristic function. In heuristic state-
space search, there is a large body of work on prop-
erties of heuristic functions (Pearl, 1984). A general
principle of heuristic functions is that they should cor-
relate well with the distance to the goal of the search,
as was suggested as early as 1966 by Doran and Michie
(1966). Heuristic search algorithms, for example A*,
treat the heuristic function values as an estimate of a
distance (Hart et al., 1968). If the connection between
GAs and heuristic search is important, the degree to
which fitness functions are in accord with this principle
may provide an indication of how difficult a landscape
graph will be to search.

That is, we propose to view fitness functions as heuris-
tic functions and to interpret GA fitness function val-
ues as estimates of the distance to the nearest goal
of the search (often a global maximum). FDC is one
method of quantifying the relationship between fitness
and distance.

The easiest way to measure the extent to which the
fitness function values are correlated with distance to
a global optimum is to examine a problem with known
optima, take a sample of individuals and compute the
correlation coefficient, r, given the set of (fitness, dis-
tance) pairs. If we are maximizing, we should hope
that fitness increases as distance to a global maxima
decreases. With an ideal fitness function, r will there-

fore be —1.0. When minimizing, the ideal fitness func-
tion will have r = 1.0. In this paper, we will al-
ways maximize. Given a set F = {f1, fa,..., fu} of
n individual fitnesses and a corresponding set D =

{dy,ds, ...,d,} of the n distances to the nearest global
maximum, we compute the correlation coefficient r, as
__ CFD
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is the covariance of F and D, and sg, sp, f and d are
the standard deviations and means of F' and D respec-
tively. In this paper, Hamming distances are always
used, and the distance associated with an individual is
the distance to the closest global maximum. In a more
general setting, one could use the minimum distance to
a point that satisfied the object of the search, and dis-
tance would be computed using the operator that de-
fined the edges of the landscape graph. We conjecture
that measures computed using the actual operators
of the GA would provide better predictions, although
these will be more difficult to compute. Hamming dis-
tance is a simple first approximation to distance under
the actual operators of a GA.

We use r (FDC) as our measure of problem difficulty.
As a summary statistic of the relationship between two
random variables, correlation works best if the vari-
ables follow a bivariate normal distribution. There is
no guarantee that this will be the case if we have a
random sample of fitnesses, and there are therefore
situations in which r will be a poor summary statistic
of the relationship between fitness and distance. It 1s
important to realize that correlation is only one of the
possible ways that the relationship between fitness and
distance can be examined. It appears quite useful, al-
though in this paper we show examples of problems for
which it is too simplistic. Examining a scatter plot of
fitness versus distance is very informative in the cases
where there is a structure in this relationship that can-
not be detected by correlation.

4 SUMMARY OF RESULTS

Our initial studies of FDC have concentrated on three
topics: (1) investigating its prediction of GA behavior
on a number of reasonably well-studied problems, (2)
testing whether it would have predicted results that
at one time seemed surprising, and (3) investigating
whether it can detect differences in coding and repre-
sentation. In the results that follow, FDC is computed
exhaustively when the problem space contains 2'2 or
fewer points, and via a sample of 4000 randomly cho-
sen points otherwise. When the exhaustive method is
used, the FDC values are exact. Variances in FDC
when sampling are not shown. These are often very



small, indicating that FDC is often very reliable, even
on small samples. For example, in ten computations
of FDC on a 64-bit royal road problem (sample size
4000), the mean r value was —0.177095, and the vari-
ance was 0.000026. Variance in FDC is an important
subject, because 1t relates to landscape isotropy, an
issue not considered here.

Figure 1 shows the r values for some instances of all
the problems we studied. The vertical number line in-
dicates the value of r obtained. The problems may
be roughly grouped into three classes: (1) mislead-
ing (r > 0.15), in which fitness tends to increase
with distance from the global optimum, (2) difficult
(—=0.15 < r < 0.15), in which there is very little
correlation between fitness and distance from global
optimum,! and (3) straightforward (r < —0.15), in
which fitness tends to increase as the global optimum
is approached. An explanation of the abbreviations
used in Figure 1, together with a short description of
the problems and their sources can be found in Table 1.

Figure 2 shows some example scatter plots of fitness
and distance from which r is computed. In these plots,
a small amount of noise has been added to distances
(and in many cases fitnesses) so that identical fit-
ness/distance pairs can be distinguished (Lane, 1994).
This often makes it much easier to see the relationship
between fitness and distances. The noise was not used
in the calculation of r, it is for display purposes only.

4.1 CONFIRMATION OF KNOWN
RESULTS

This section investigates FDC’s predictions on a col-
lection of problems of known difficulty. The r values
for these problems are all plotted in Figure 1.

4.1.1 Misleading Problems

Deb and Goldberg’s (1992) 6-bit fully deceptive
function and Whitley’s (1991) 4-bit fully deceptive
functions? have r values of 0.30, 0.51 and 0.36 respec-
tively. This indicates that fitnesses tend to increase
with distance from the global optimum. In these func-
tions, r does not change when several copies of one of
the functions are concatenated to make a longer prob-
lem, as is commonly done (this invariance is proved in
(Jones, 1995b)). The scatter plots of these problems
show an interesting additive structure. Figures 2(a)
to 2(c) show one to three copies of Deb and Gold-
berg’s function and Figures 2(e) to 2(g) show one to
three copies of Whitley’s F2 function. Ackley’s (1987)

'In situations where correlation is too simplistic to de-
tect a relationship between fitness and distance, r values
will also be close to zero.

®Whitley (1991) discusses three fully deceptive func-
tions, the first, with 3 bits, is due to Goldberg et al. (1989).
The second and third have 4 bits and will be referred to as
Whitley’s F2 and F3.

Trap functions, Grefenstette’s (1993) difficult but non-
deceptive function, and Holland’s royal road (1993) all
also exhibit strong positive correlation.

4.1.2 Straightforward Problems

Turning to “easy” problems, Ackley’s (1987) One Max
function exhibits perfect negative correlation (r =
—1.0). His Two Max function, also very simple, has
r = —0.41. For K < 3, the NK landscape problems
produce high negative correlation (—0.83, —0.55 and
—0.35), though r moves rapidly towards 0.0 as K in-
creases, which qualitatively matches the rapid increase
in search difficulty found by Kauffman (1989; 1993)
and others. The r values for the NK landscapes are the
means from ten different landscapes. Deb and Gold-
berg’s (1992) 6-bit fully easy problem (r = —0.23)
and Grefenstette’s (1993) deceptive but easy problem
(r = —0.33) have similar values. Horn and Goldberg’s
(1995) maximally modal function has very strong neg-
ative correlation (r = —0.94) and is known to be easily
optimized by a GA. Ackley’s (1987) Porcupine, also
maximally modal, exhibits similar FDC (r = —0.88).

4.1.3 Long Path Problems

Horn, Goldberg and Deb’s long path problem (1994)
has r = —0.90, indicating that the problem should be
simple. This problem is difficult for the hillclimber
it was constructed to be difficult for, but GAs appar-
ently have little trouble with it. This r value was ob-
tained through sampling, which will tend to miss the
few points that lie on the path. When r is calculated
for the entire space, its value falls (towards 0.0) consid-
erably. If we calculate r just for the points on the path,
it is strongly negative, as it is for the points not on the
path (e.g., for strings with 12 bits, we get r = —0.39
and » = —0.67) but combining the samples gives a
much lower correlation (r = —0.19). This is a first
illustration of how correlation may sometimes prove
too simplistic a summary statistic of the relationship
between fitness and distance. However, the striking
structure of the problem is immediately apparent from
the scatter plot, as can be seen in Figure 2(h).

4.1.4 Zero Correlation

The needle in a haystack, the 2-, 3-, and 4-state busy
beaver problems and the NK(12,11) landscape, all
known to be difficult problems, had r approximately
0.0. The needle in a haystack function is zero every-
where except for one point. If such a function is sam-
pled and the needle is not included in the sample, the
correlation coefficient cannot be computed as there 1s
no variance in fitness. If there is any variation at all
in the fitness and distance values, the correlation co-
efficient will be defined. A slight amount of uniform
low-fitness noise gives correlation close to 0.0.

Some of De Jong’s functions have unexpectedly low r
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Figure 1: Summary of results. Horizontal position is merely for grouping, vertical position indicates the value
of r. Abbreviation explanations and problem sources are given in Table 1.

values. For example, F2(12) has r = 0.1. Although
the correlation measures correctly predict that F2(12)
will be harder for the GA than GF2(12), the low cor-
relation for F2(12) is misleading. The scatter plots
for these functions (not shown) reveal that they con-
tain high fitness points at all distances from the global
optimum (a result of “cliffs” in the encoding), a rela-
tionship that is not well summarized by correlation.
From this, it is reasonable to expect that a GA will
have no trouble locating a very high fitness point. If
instead of computing FDC based on distance to the
global optimum, we select a set of high fitness points
(for example, the top 1% of all points), and compute
FDC, we obtain r = —0.25, a strong indication that
this is a simple task. This is a second example of a
relationship between fitness and distance which is not
detected by correlation, but which is clear from the
scatter plots.

4.2 CONFIRMATION OF UNEXPECTED
RESULTS

Here we examine the predictions of FDC on two prob-
lem sets whose results were surprising to GA re-
searchers at the time they were obtained. These are
the Tanese functions and the royal road functions. In
both cases, FDC’s predictions match the behavior of
the GA.

4.2.1 Tanese Functions

Tanese (1989) found that on Walsh polynomials on 32
bits with 32 terms each of order 8 (which we will denote
by T(32,32,8)), a standard GA found it very difficult
to locate a global optimum. FDC gives an r value ex-
tremely close to 0.0 for all the instances of T(32,32,8)
we have considered, as it does for T(16,16,4) func-
tions. When the number of terms is reduced, the
problem becomes far easier, for instance, T(16,8,4)
functions typically have an r value of approximately



Table 1: The problems of Figure 1. Where a problem has two sources, the first denotes the original statement
of the problem and the second contains the description that was implemented.

Abbreviation Problem Description Source

BBk Busy Beaver problem with k states. Rado (1962); Jones & Rawlins (1993)
Deb & Goldberg 6-bit fully deceptive and easy functions. Deb & Goldberg (1992)

Fk(j) De Jong’s function k with j bits. De Jong (1975); Goldberg (1989)
GFk(7) As above, though Gray coded. De Jong (1975); Goldberg (1989)

Goldberg, Korb & Deb
Grefenstette easy
Grefenstette hard
Holland royal road
Horn, Goldberg & Deb
Horn & Goldberg
Liepins & Vose (k)
Mix(n)

NIAH

NK(n, k)

One Max

Plateau(n)
Porcupine(n)

R(n,b)

Tanese (I,n, o)
Trap(n)

Two Max(n)

Whitley Fk

3-bit fully deceptive.

The deceptive but easy function.

The non-deceptive but hard function.
Holland’s 240-bit royal road function.

The long path problem with 40 bits.

A 33-bit maximally rugged function.
Deceptive problem with & bits.

Ackley’s mix function on n bits.

Needle in a haystack.

Kauffman’s NK landscape. N = n, K = k.
Ackley’s single-peaked function.

Ackley’s plateau function on n bits.
Ackley’s porcupine function on n bits.
Mitchell et al. n-bit royal road, b-bit blocks.
I-bit Tanese function of n terms, order o.
Ackley’s trap function on n bits.

Ackley’s two-peaked function on n bits.
4-bit fully deceptive function k.

Goldberg et al. (1989)
Grefenstette (1993)
Grefenstette (1993)

Holland (1993); Jones (1995a)
Horn et al. (1994)

Horn & Goldberg (1995)
Liepins & Vose (1991)

Ackley (1987)

§4.1.4

Kauffman (1989)

Ackley (1987)

Ackley (1987)

Ackley (1987)

Mitchell et al. (1992)

Tanese (1989); Forrest & Mitchell (1993b)
Ackley (1987)

Ackley (1987)

Whitley (1991)

—0.37. These figures are consistent with the experi-
ment of Forrest and Mitchell (1993b), who found that
increasing string length made the problem far simpler
in T(128,32,8) functions. It is not practical to use FDC
on T(128,32,8) functions because they have at least 2°°
global optima and the FDC algorithm requires com-
puting the distance to the nearest optimum.

4.2.2 Royal Road Functions

Mitchell, Forrest and Holland (1992) examined the
performance of a GA on two “royal road” functions,
R1 and R2. Under R1 a 64-bit string is rewarded if
it is an instance of 8 non-overlapping order 8, defin-
ing length 8, schemata. In addition to the rewards
given by R1, R2 rewards instances of some order 16
and order 32 schemata that are combinations of the
low-order schemata of R1. It was thought that the ad-
ditional building blocks of R2 would make the prob-
lem simpler for a GA. The opposite proved true. The
GA performed slightly better on R1. FDC could have
been used to predict this, or at least that R2 would
not be simpler than R1. On a range of royal road
functions, including the originals, R1 has a slightly
smaller r value than R2. Perhaps due to insufficient
sampling, the difference does not appear significant on
the original R(64,8) problem. However, it clearly is (at
the 0.0001 confidence level with a Wilcoxon rank-sum
test) on R(32,4), R(24,3) and R(16,2). Ackley’s (1987)
Plateau functions are very similar to R1 and also have
strongly negative FDC values.

4.3 CONFIRMATION OF KNOWLEDGE
REGARDING CODING

In this section, we examine the effects of other choices
that affect landscape structure. These can also be de-
tected by FDC. We look at the effect of changes in em-
bedding and in encoding. FDC’s predictions regarding
Gray versus binary coding lead to the discovery that
the superiority of one code over another depends on
the number of bits used to encode the numeric values.

4.3.1 Liepins and Vose’s Transform

The deceptive problem of Liepins and Vose (1990) ex-
hibits almost perfect correlation (r = 0.99), as shown
in Figure 2(k). The transformation they give alters
what they call the “embedding” of the problem. The
transformed problem is interesting because it is de-
scribed as “fully easy” yet it has almost zero corre-
lation. Examining scatter plots of fitness and dis-
tance gives the explanation; the plot resembles an X,
as shown in the example in Figure 2(l). One portion
of the space has a very good FDC (r ~ —1.0) and the
remainder has a poor FDC (r & 1.0). The overall re-
sult i1s an r value close to zero. This is a third example
of how correlation can prove a poor summary statis-
tic. Once again, the structure in the problem is quickly
revealed when the scatter diagram is plotted. It is rea-
sonable to expect that the (large) portion of the space
with FDC approximately —1.0 should allow the global
solution to be found without undue trouble. We ran
a standard GA (population 100, 50 generations, tour-
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functions on more than 12 bits are computed from a random sample of 4000 points. The functions are as follows:
(a-c) one, two and three copies of Deb & Goldberg’s fully deceptive 6-bit problem (r = 0.30). Notice the additive
effect. (d) Holland’s royal road on 128 bits (b = 8, k = 4 and g = 0), (r = 0.27). (e-g) one, two and three copies
of Whitley’s F2, a fully deceptive 4-bit problem (r = 0.51). (h) Horn, Goldberg & Deb’s long path problem with
11 bits (r = —0.12). Notice the path. (i,j) De Jong’s F3 binary and Gray coded with 15 bits as a maximization
problem (r = —0.86 and —0.57). (k) Liepins and Vose’s fully deceptive problem on 10 bits (r = 0.98) and (1)
their transformed problem (r = —0.02). Correlation cannot detect the X.

nament selection) and found the global optimum 66
times out of 100 on the 10-bit problem.

4.3.2 Gray Versus Binary Coding

Although it is common knowledge that Gray coding is
often useful in function optimization, there has never
been any method for deciding whether one coding will
perform better than another, other than simply trying
the two. Experiments along these lines have been per-
formed by Caruana and Schaffer (1988). They studied
De Jong’s (1975) functions (and one other) and found
that Gray coding was significantly better than binary
coding, when considering online performance, on four
of the five functions. When they looked at the best
solutions found under either coding, Gray was signifi-
cantly better on one of the five. In no case did binary

coding perform significantly better than Gray.

Using FDC, it is possible to examine different encod-
ings and make predictions about which will be bet-
ter. Accurate predictions are typically obtained us-
ing a small fraction of the evaluations used by the
GA to solve the problem. FDC’s predictions about
the relative worth of binary and Gray codes depend
on the number of bits in the encoding. For exam-
ple, consider the positions in Figure 1 of F2(n) and
GF2(n); binary and Gray coded versions of De Jong’s
second function on two real variables. F2(n) indi-
cates that n/2 bits were used to code for each vari-
able. When n = 8, we calculated r(F2(8)) = —0.24
whereas r(GF2(8)) = —0.06, indicating that with 8

bits, binary coding is likely to make search easier than



Gray coding.? But now consider r(F2(12)) = —0.10
versus r(GF2(12)) = —0.41. With 12 bits, Gray
coding should be better than binary. With 16 bits,
r(F2(16)) = r(GF2(16)) = —0.19. Finally, with 24
bits (the number used by Caruana and Schaffer), we
have r(F2(24)) = —0.09 and r(GF2(24)) = —0.26.
Once again, Gray coding should be better (as found
by Caruana and Schaffer for online performance).

Preliminary results indicate that the reversals in FDC
are reliable indicators of GA performance. For exam-
ple, in 10,000 runs on F2 with a fairly standard GA
(population 50, 25 generations, tournament selection,
mutation probability 0.001, two-point crossover proba-
bility 0.7), binary coding on 8 bits found the optimum
approximately 4% more often than Gray coding did.
On 12 bits, the GA with Gray coding found the op-
timum approximately 4% more often than it did with
binary coding. On 16 bits, the difference fell to ap-
proximately 0.5%. This reversal from 8 to 12 bits and
then equality at 16 bits are what FDC predicts.

It 1s difficult to reproduce the results of Caruana and
Schaffer for a number of reasons. One is that FDC is
telling us something about how difficult it is to locate
global maxima, whereas Caruana and Schaffer exam-
ined online performance and best fitness. While these
are obviously related to the FDC measure, it is not
clear to what extent FDC will be a reliable predictor of
these performance criteria. As another example of the
difficulty of comparison, FDC indicates that Gray cod-
ing will perform worse than binary coding on F3 when
15, 30 and 50 bits are used, yet Caruana and Schaffer
found no significant difference on either of their perfor-
mance measures. However, the resources given to the
GA by Caruana and Schaffer allowed their GA to solve
the problem on every run with both encodings. When
we restricted the resources available to the GA, a dif-
ference in performance on the two encodings became
clear. For example, on 15 bits, with a population of
size 50 and 25 generations, a standard GA found the
optimum 1050 times out of 2000, compared to only
673 out of 2000 using Gray coding. With 30 bits, a
population of 100 and 50 generations, binary coding
succeeded on 100 out of 500 runs, while Gray coding
succeeded on only 34 out of 500. Figures 2(i) and 2(j)
show sampled scatter plots for 15 bits.

Issues such as these make it difficult to compare FDC
predictions with the results of Caruana and Schaffer.
A comparison with the binary coding results of Davis
(1991) is even more difficult as we do not know how
many bits were used to encode the variables, which,
as we have seen, may alter performance considerably,

9 As the De Jong functions require minimization, posi-
tive r values are ideal. We have inverted the sign of r for
these functions, to be consistent with the rest of the paper.
This is the r that will result if we convert the problem to
a maximization problem by subtracting all fitnesses from
a constant.

and the evaluation metric he used was unusual. To
date, we have found nothing to indicate that FDC is
misleading in its predictions regarding Gray and bi-
nary coding. Our preliminary experiments with a GA,
using the number of times the global optimum is en-
countered as a performance measure, have all matched
FDC’s predictions.

5 DISCUSSION

There is an appealing informal argument that the cor-
relation between fitness and distance is important for
success 1n search. Suppose you get out of bed in the
night, hoping to make your way through the dark
house to a cupboard in the kitchen. The degree to
which you will be successful will depend on how accu-
rately your tdea of where you are corresponds to where
you actually are. If you believe you are in the hallway
leading to the kitchen but are actually in the bedroom
closet, the search is unlikely to end happily. This sce-
nario can also be used to informally argue against the
claim that good parent/offspring fitness correlation is
sufficient for successful search. Determining whether
the floor is more or less flat will not help you find
the kitchen. If r has a large magnitude, we conjec-
ture that parent/child fitness correlation will also be
high. If FDC is high, good correlation of fitnesses be-
tween neighbors should be a consequence. Thus we
see good parent/child fitness correlation as a neces-
sary but not sufficient condition for a landscape to be
easily searchable. If this is correct, such correlation is
not sufficient as it will also exist when FDC gives a
value that is large and positive. This may be unim-
portant if problems with large positive FDC are purely
artificial constructions of the GA community.

It is not clear what it means for a problem instance to
be difficult or easy. As a result, it is inherently difficult
to test a measure of difficulty. A convincing demon-
stration will need to account for variability in the re-
sources that are used to attack a problem, the size of
the problem, variance in stochastic algorithms, defini-
tion of success and other difficult issues. FDC can only
indicate how hard it is to locate what one is interested
in locating. If it is only told about global maxima, it
is unreasonable to expect information about whether
a search algorithm will find other points or regions. If
all of the global optima are not known and FDC is run
on a subset of them, its results may indicate that the
correlation is zero. When the other optima are added,
the correlation may be far from zero. FDC is useful
in saying something about problems whose solutions
are already known. It can be hoped that information
on small instances of problems will be applicable to
larger instances, but in general this will not be the
case. This paper has not considered prediction of GA
performance on functions with unknown solutions. Re-
search in this direction is in progress.



Probably the safest interpretation of FDC values is as
an indication of approximately how difficult a problem
should be. For example, if » = —0.5 for a problem, but
a GA never solves it, there i1s an indication that the
GA user is doing something wrong.

Hamming distance is not a distance metric that ap-
plies to any of a GA’s operators. Distance between
strings s; and s; under normal GA mutation is more
akin to the reciprocal of the probability that s; will be
converted to s5 in a single application of the mutation
operator. Hamming distance is closely related to this
distance, which is presumably one reason why FDC’s
indications correlate well with GA performance. Apart
from using a distance metric related to distance under
mutation, FDC has no knowledge of the workings of
a GA. It is encouraging that the measure works well
on a large number of problems, but also surprising, as
one would expect an accurate measure of GA hardness
to incorporate explicit knowledge of the GA.

FDC would presumably be more accurate if it were
based on the distances between points according to the
operator in use by the algorithm. That Hamming dis-
tance works as an indicator of GA performance hints
that a simplistic (i.e., easily computed) distance met-
ric on permutations (e.g., the minimum number of
remove-and-reinsert operations between two permuta-
tions) may also prove useful as a metric in FDC when
considering ordering problems, even if the algorithms
in question do not make use of that operator. This
approach was used successfully by Boese et al. (1994)
and Boese (1995) in a strikingly similar situation.

6 SUMMARY

This paper proposed that the relationship between fit-
ness and distance to goal has a great influence on
search difficulty for a GA. One simple measure of this
relationship is the correlation coefficient between fit-
ness and distance (FDC) which has proved a reliable,
although not infallible, indicator of GA performance
on a wide range of problems. On occasion, correlation
is too simplistic a summary statistic, in which case
a scatter plot of fitness versus distance will often re-
veal the structure of the relationship between fitness
and distance. FDC can be used to compare different
approaches to solving a problem. For instance, FDC
predicted that the relative superiority of binary and
Gray coding for a GA was dependent on the number
of bits used to encode variables. Subsequent empirical
tests have supported this.

The FDC measure resulted from thinking of a GA as
searching on landscape graphs. Al has long regarded
search from a similar perspective, and a simple change
in language is sufficient to view GAs as state-space
search algorithms using heuristic evaluation functions.
In AI, the heuristic function is explicitly chosen to be
as well correlated with distance to the goal state as

possible, and it is easy to argue that a similar fitness
function in a GA will make for easy search. From
there, it i1s a small step to consider to what extent our
current GA landscapes match this ideal, and to use
that as an indicator of search difficulty. That this is
successful will be unsurprising to those in the AT com-
munity who work on heuristic search algorithms. We
believe much can be learned about GAs by considering
their relationship with heuristic state-space search.
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