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The benefits of negative detection for obscuring infornratice
explored in the context of Artificial Immune Systems (AIS)SA
based on string matching have the potential for an extra-secu
rity feature in which the “normal” profile of a system is hiade
from its possible hijackers. Even if the model of normal heha
ior falls into the wrong hands, reconstructing the set ofdval
or “normal” strings is an\P-hard problem. The data-hiding
aspects of negative detection are explored in the conteahof
application to negative databases. Previous work is redew
describing possible representations and reversibilipperties
for privacy-enhancing negative databases. New algorithras
presented which allow on-line creation, updates and cigraaf
negative databases, some experimental results illugtratem-
pact of these operations on the size of the negative database
nally some future challenges are discussed.

1 INTRODUCTION

A striking feature of the natural immune system is its useagfative detection
in which selfis represented (approximately) by the set of circulatimgpgyo-
cytes that fail to match self. The negative-detection s@hbas been used in
several artificial immune system (AIS) applications, arglltlenefits of such
a scheme have been explored in terms of the number of requétedtors
[24, 14, 13, 49, 50], success in distinguishing self fromsetf{20, 16], and



the ease with which negative detection can be distributeasaanultiple lo-
cations. In this paper we explore a fourth interesting prigpef negative
representations, namely their ability to hide informatédrout self. This in-
formation hiding ability has interesting implications fmtrusion detection
as well as for applications in which privacy is a concern ahéne it may be
useful to adopt a scheme in which only the negative repratents available
for querying.

This paper extends results first presented in [15] whiclodhiced the con-
cept of anegative databaseln a negative database, a collection of data is
represented by its logical complement. The t@asitive informatiordenotes
the elements of the category or set of interest (e.g., sélifpwegative infor-
mationdenotes all the other elements of the universe. A negatitabdae is
then a representation of the negative information. In &liio introducing
this concept, the previous paper showed that negativenreton can be rep-
resented efficiently (even though the negative image wildglly be much
larger than the positive image), that such a representatineNP-hard to
reverse (thereby hiding the exact composition of self), thiadl sSimple mem-
bership queries can be computed efficiently. For instangaeay of the form
“is string x in the database” can be answered promptly, while a requéiséof
form “give me all the strings in the positive image that steith a 1” cannot.
However, the paper did not show that common database opesdsuch as
inserts and deletes) can be performed easily on the negafivesentation or
that a negative database can be maintained dynamicallyioBecpresents
new algorithms that address these matters.

Many AlS used for anomaly detection represent the entityetprotected
as a set of strings and, in parallel with the immune systeamtification of
anomalies is performed by an alternate set of strings (kremnetectors) and
a match rule that are designed not to match elements of selifiid context,
there may be an additional incentive for negative detedtising negative
databases. When the negative information is representtidasssed in [15],
it is provably hard to infer the positive image even if all thegative infor-
mation is available. In the context of anomaly detection aedurity this
provides an extra level of protection since it prevents smmdrom hijack-
ing the detector set, deriving from it the normal profile oé tystem, and
using that information to devise new attacks.

Section 2 reviews earlier work that is generally relevanthe topic of
negative information; Section 3 reviews previous work ogative databases,
showing that a negative representation can be construdwéchveccupies
only polynomially more space than its positive counterpattile retaining



some interesting querying capabilities. Section 4 presamiine algorithms,
including how to initialize a negative database and how tdopm updates.
Section 5 presents a study on the impact of updates on thefdize negative
database and introduces an operation aimed at contraltiggawth. Section
6 considers the implications of our results.

2 RELATED WORK

Negative representations of data have had several profminethe past, es-
pecially in art where artists like Whiteread and Escher haken advantage
of the so called figure-ground relationship. Examples can bk found in
mathematics and statistics where sometimes it is easidstionoan answer
by looking at the complement of the problem we intend to salve comple-
menting the solution. For the purpose of this paper, howevemwill review
how negative representations of information have infludrbe field of AIS.

As mentioned in the introduction, the natural immune systam be in-
terpreted as representing data negatively. This observats led to algo-
rithm designs which take advantage of some of the inheresypigsties of
negative representations. In particular, designers halkent advantage of
the fact that negative detectors are more amenable toldittd implementa-
tions than positive detectors and that, for the purposesaifaly detection,
negative representations of data seem more natural. Traiveegelection
algorithm whereby a set of negative detectors is createdimesduced in
[19]. Anomaly-detection systems based on these ideas ciubd in [46, 3,
51, 32,11, 26, 27, 28]. Other applications have also begmgsex that range
from image classification to recommender systems [33, 442516, 8, 5, 6].
We note that many AIS are not based on string matching andftirerare not
directly affected by the results presented here; the istedereader is referred
to [12, 45].

Protecting information stored in a database from exanmondiy unautho-
rized parties has been a concern since the inception of tig4ig, 40, 44].
Some approaches relevant to the current discussion inaiygographic
protection of databases [17, 43, 48], multi-party compoitaschemes [52,
23], the use of one-way functions [22, 38], and dynamic acdators [7, 4].

Section 4 outlines an algorithm for generating and maiingimegative
databases. These operations need to be adjusted in orderiace “hard”
negative databases. There is a large body of work regartagsues and
techniques involved in the generation of hard-to-so\W/®@-complete prob-
lems [30, 29, 39, 34] and in particular of SAT instances [35Much of this



work is focused on the case where instances are generateouivitaying

attention to their specific solutions. Efforts concernethwie generation of
hard instances when there is a specific solution we want #tarine to pos-
sess include [18, 1]. Finally, the problem of learning ardistion, whether
by evaluation or generation [31, 37], is also closely relateconstructing the
sorts of databases in which we are interested.

3 NEGATIVE DATABASES

The notion of negative databases was introduced in [15]r@lyefor a given
set of fixed length strings, called the positive databiage(self), all the pos-
sible records or strings not iDB are represented i.el/ — DB (nonself
whereU denotes the universe of all possible strings of the sameHeshey
fined over the same alphabet. It was shown that the size ofethdting
negative database, denot®d B, can be constructed to be polynomially re-
lated to the size oD B, even thoughl{ — DB > D B) in the expected case.
The intuition behind our compact representation is thatetheust be subsets
of strings with significant overlaps, and that these overlegn be used to
represent these subsets succinctly. We have adoptedakenstof extending
the alphabet over which strings are defined, in this caseyitminclude an
extra symbok known as the don’t care symbol. A string exhibiting that
position: represents two strings; one with a 1 at positi@md one with a 0 at
positioni with the remaining positions unchanged, as the followingregle
illustrates. Positiorni in the string is referred to as a “defined position” if it
contains eithera 0 or a 1.

DB (U - DB) Negative Database
010 000
011 001 *0*
110 100 =
101 1*1
111

Including this third symbol allows one entry (or record)le inegative database
to represent several strings (recordsyin D B* . A stringz is represented in

N DB —meaninge is notin D B, if there is at least one stringin N D B that
matches it, otherwise the string isinB. Two strings are said to match if all
of their positions match; the don’t care symbol is taken taaima&verything.

* We considerD B to remain defined over th§d,1} alphabet.



Espondaet al. [15] give two algorithms for creating alV D B under the
representation described above. One common feature isdttatake as input
D B—meaningD B must be held in its entirety at one time. Both operate by
examining chosen subsets of bit positions to determinetwbédterns are not
present inDB and must be depicted iV DB, the basic objective being to
find the subsets of bit positions that serve to representtigest number of
strings inU — DB.

An interesting property of this representation conceradifficulty of in-
ferring DB given N D B. For an arbitrary set of strings defined o{ér 1, x}
determining which strings are not represented is\&@R-hard problem. To
sustain this claim it is sufficient to note that there is a niagfrom Boolean
formulae toN D Bs such that finding which entries are not represented by
NDB (that is, which entries are iWB) is equivalent to finding satisfying
assignments to the corresponding boolean formula, whikhasvn to be an
NP-hard problem. The specifics of the proof can be found in RES],[an
example of the mapping is given in Figure 1.

Boolean Formula NDB
(z2 Or z5) and *Q**1
(22 orz3) and *10**

(zgorgyorgs)and = | *0*11
(z1 or a3 orz4) and 0*10*
(€1 Orzo Or 24 OF x5) 10*10

FIGURE 1

Mapping SAT toN D B: In this example the boolean formula is written in conjuneti
normal form and its defined over five variablas (x2, x3, x4, 5). The formula is
mapped to ariV D B where each clause corresponds to a record and each variable i
the clause is represented as a 1 if it appears negated, asittapjfears un-negated
and as & if it does not appear in the clause at all. It is easy to seedlsatisfying
assignment of the formula such &8, = TRUE, z2= TRUE, z3= TRUE, z4= FALSE,

x5= FALSE } corresponding to string 11100n®trepresented it D B.

4 CREATING AND MAINTAINING NEGATIVE DATABASES

In this section we present an on-line algorithm for creaing maintaining
a negative database under the representation discussectiorS3. Negative



databases should be viewed as logical containers of swinggstectors and it
is important to point out that when the strings stored threiraplement some
partial matching rule, as is the case in AIS, removing orriisg a single
string changes the definition &f B or selfaccording to the particulars of that
match rule.

The algorithms discussed in this section have the flexjttiditcreate neg-
ative databases with varying structures (see instancergion models [35,
9, 10]), an implementation of the algorithms must make sossgictions in
order to yieldN D Bs that are hard to reverse on average. The following are
some properties, regarding string matching, that the @hgos take advan-
tage of:

Property 1. A string y is subsumed by string if every string matched by
y is also matched by. A stringx obtained by replacing some gfs
defined positions with don’t cares, subsumes

Property 2: A set of2™ distinct strings that are equal in all butpositions
match exactly the same set of strings as a single one witle thpssi-
tions set to the don’t care symbol.

4.1 Initialization

A natural default initialization oD B is to the empty set. The corresponding
initialization of N DB would be toU—the set of all strings. As discussed
in Section 3 anV.D B contains strings defined ové®, 1, «} so one possible
initial state for VDB would be simply to store the string, wherel is the
string length. This clearly matches every stringlin but doing so would
trivially defeat our purpose of making it difficult for soma®to know exactly
what N D B represents. We need to make it hard to know what is, even
whenD B is empty.

The algorithm presented in Figure 2 creates a database shrowgs will
match any string iV (see example in Fig. 3). The rationale behind it comes
from the isomorphism betweeN D Bs and Boolean formulae (Sect. 3, Fig.
1). Hence, our algorithm is designed to potentially crehtedquivalent of
unsatisfiable SAT formulas dfvariables. The high-level strategy is to select
m bit positions and create, for each possible bit assignivigof these posi-
tions, a string withl, and don’t care symbols elsewhere. A negative database
created in this way will havé™ records, each matchiy~™ distinct strings,
clearly covering all of.

Figure 2 modifies this strategy to expand the number of plesaitD Bs
output by the algorithm. The modifications are:



e Potentially add more than one string to match a specific pattme
3).

e Augment the original pattern with other positions. This allows each
of thel possible positions to be specified in the resulting pattdow-
ever the choice of has great impact on the complexity of the algorithm
as line 6 loop™ times. A value of 3 will suffice to generate some
types of 3-SAT formulas (see Fig. 1) while keeping the comiple
reasonable.

e Using a subset of positions of the selected patterns toecaaentry
(line 8-9).

Itis straightforward to verify using the properties laict @tithe beginning
of the section that the algorithm produces® B that matches every string
inU.

The purpose of the current choicesiefandk,, lines 3 and 8 respectively,
is to give the algorithm the necessary flexibility to genemgenuinely hard-
to-reverseN D B instances. We return to this question in Sections 5 and 6,
as some restriction to these values might be warranted wupeonegative
databases with some desired structure.

Empty_D B _Create(l)
1. Pick[log(1)] bit positions at random
2. for every possible assignmé¥s of these positions
3 select;; randomlyl <= k; <=1
4 for j=1tok;{
5 Randomly seledi < n < O(logz(1))
6. select an additional distinct positions
7 for every possible assignmé¥if of these positions
8 Pickk, bits at random from the patteri§ andV/
9 Create a entry foN D B with the ko
chosen bits and fill the remainirg- k-
positions with the don’t care symbgk.}

FIGURE 2
Empty.D B_Create. Randomly creates a negative database that rejsresery bi-
nary string of length.



Empty_DB _Create(4) | Delete(1111NDB) | Insert(1111NDB)
000* 000* 000*
001* 001* 001*
01*0 01*0 01*0
01*1 01*1 01*1
10*0 10*0 10*0
10*1 10*1 10*1
111* 110* 110*
110* 11*0 11*0

*110 *110
*11*

FIGURE 3
Possible states aV D B after successively performing initialization, deletiamdan-
sertion of a string.

4.2 Updates

We now turn our attention to modifying the negative databsigeB in a dy-
namic scenario. The policies and algorithms used for sapethich strings
should be added or retired remain application specific. Wasth empha-
sizing that the meaning of the insert and delete operationgaerted from
their traditional sense, since we are storing a representaf what isnotis
some databasP B. For instance, the operation “inserinto DB” is imple-
mented as “delete from U — D B” and “deleter from D B” as “insertz into
U-DB".

The core operation for both the insert and delete procedpresented in
Figure 4 (NegativePatternGenerate), takes a stringand the currenv DB
and outputs a string that subsumes without matching any other string in
DB. The function starts by picking a random orderingf the bit positions,
to be used in all string operations, so as to remove biasaslater choices.
Lines 2—6 find a minimum subset of bits from the input stringuch that
no string outside{U — DB} U {z} is matched. Step 4 of the algorithm
ensures that inserting a don’t care symbol at the selectsiiigoo doesn't
cause the string to match somethindi®. Property 1, listed at the beginning
of the section, establishes that the resulting string nestethichever strings
the original input stringe matched. Steps 7-9 create a string containing the



Negative_Pattern_Generate(N DB, )

1. Create arandom permutation

2. for all specified bit$; in 7 (x)

3 Letz’ be the same as(z) but with b; complemented
4 if 2/ is subsumed by some string inf(NDB)

5. Keep track of theé!” bit value in a set indicator vector (SIV)
6 Set the value of thé” bit of (z) to the * symbol

7. Randomly choose <t < |STV|

8. R « trandomly selected bits from SIV

9. Create a patter¥i, usingz(z) and the bits indicated big.
10. returnt’(V4)P

aSee Property 1 in Section 4.
bz’ is the inverse permutation af

FIGURE 4
NegativePatternGenerate. Takes as input a stringdefined over{0, 1, +} and a
databaséV D B and outputs a string that matcheand nothing else outside &f D B.

pattern found in the previous steps plus possibly some éxtsa note that
the added bits were part of the original input stringo it is automatically
guaranteed that the result will subsumelt is important to emphasize that,
for an actual implementation of the algorithm, the value @ihe 7) might be
restricted or even fixed to provide a desi®¥d B structure (see Section 5).

InsertintoNDB

The purpose of the insert operation is to introduce a sulisgtings into the
negative database (thereby removing them fioif8) while safeguarding its
irreversibility properties. Figure 5 shows the pseudoanfdbe insert opera-
tion, lines 1 and 2 enable the procedure to create severa®intN D B por-
trayingz, as for the initialization ofV D B shown in Fig. 2, the actual number
of entries should be set to accommodate efficiency condraind to preserve
the irreversibility of NDB. Likewise steps 3-5 set some of the unspecified
positions ofx (if any) so that it may be possible for a set of strings represe
ing x, that exhibit bits not found im, to be entered iV D B (see property 2
at the top of the section). Finally the call to NegatRatternGenerate (see
Sect. 4.2 and Fig. 4) produces a string representindpich is then inserted



Insert(xz, NDB)
1. Randomly choose < j < O(1)
2.fork=1tojdo
3. Randomly seledi < n < O(logz(1))
4.  Randomly select from, n distinct unspecified bit positions
5.  forevery possible bit assignmeh}, of the selected positions
6. ¥ —z-B,
7. y < NegativePatternGeneratelV DB, z')
8. addy to NDB
FIGURE 5

Insertx into NDB. Inserting a string intdV DB amounts to removing the corre-
sponding binary strings fromv B.

in NDB (see example in Fig. 3).

Delete fromN DB

This operation aims to remove a subset of strings from bepgesented in
NDB. ltis worth noting that this operation cannot simply be iemknted
by looking for a particular entry ilv DB and removing it, since it may be
the case that a string is represented by several entri®dl# and an entry
in NDB can in turn represent several strings, some of which mighbeo
our intent to remove. Figure 6 gives a general algorithmédanaving a string
or set of strings from being depicted MD B, note that input: may be any
string over{0, 1, «} an thus many strings may cease from being represented
by a single call.

The algorithm takes the curredtD B and the string to be removedas
input. Line 1 identifies the subsdd,., of N D B that matches and removes
it. As mentioned previously, removing an entry that matchesght also un-
intentionally delete some additional strings. Lines 3-igert all the strings
represented by, exceptz. For each string in D, that hash unspecified
positions (don't care symbols) there atestrings to be inserted int’ DB
that match everything matches except. Each new string; is created by
using the specified bits afand the complement of the bit specified at itfe
position ofz as the following example illustrates:

10



T D, All but z

111*0*
101001 1*1*0* | 1*110*
1*1*00

To see that this in fact excludesfrom N DB, and nothing else, note
the following: Each new string/, by construction, differs from: in its i‘"
position therefore none of the new strings matclf a totally specified string
z # x is matched by € D, thenz must have the same specified positions
asy, now, sincez is different fromz it follows that it must disagree with it
in at least one bit, say bit, z will be matched byy,.. Finally, observe that
sincey subsumes each new enfryno unwanted strings are included by the
operation (see example in Fig. 3).

Delete(x, NDB)

1. Let D, be all the strings inV D B that matchz

2. RemoveD,, from NDB.

3.forally € D,

4 for each unspecified positiagg of y

5. if the i*” bit of z is specified

6 Create a new string using the specified bits @fand the
complement of thé*" bit of .
Insertfy;, N DB)

~

FIGURE 6
Delete fromNDB. Delete a string fromV DB amounts to appending the corre-
sponding binary strings t® B.

One very important fact to point out about this algorithmhattit may
cause the size oV DB to grow unreasonably. It is important for any im-
plementation to preven®,|, the number of entries itV DB that match a
particular totally specified string, from being a functidrtee size of the neg-
ative database and/or to instrument a clean-up operataotiunds the size
of NDB. The following section investigates the impact of this @ien on
the size ofV D B and introduces a scheme that allows control over the growth
of NDB.

11
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FIGURE 7

N DB size as a function of the number of consecutive DeleteB Gize) for strings
of lengthl = 24 andr = 6 specified bits.N D B initially represents an emptip B.
Strings used as arguments for Delete are selected randBesylts of 5 independent
runs are plotted, each run ends whenDB| > 3y wherey represents the ideal
N DB growth.

5 EXPERIMENTAL RESULTS

In this section we investigate how the size of a negativeldea N D B, is
affected by a sequence of Delete operations (Fig. 6). Wesfoou attention
on Delete as it dominates the growth/@fD B (see Section 4.2).

For the purpose of the experiments, a specific structure j$®d on
N DB, one in which each entry has at leasspecified positions. We fix
the values of; = 1 andks = 7 in lines 3 and 8 of the initialization algo-
rithm (Fig. 2) and set the value ofin line 7 of NegativePatternGenerate
(Fig. 4) to ensure that the resulting pattéfpin line 9 has no less than
bits specified. These restrictions allow for a cleaner aiglgf the impact
of the Delete operation, and generate a class of instanaearéhexpected to
be harder to solve than those where an arbitrary number offigzkbits per
string is allowed (see Ref. [35]). Furthermore, we ensuaédhnly one string
is added taV D B per call to the Insert operation (Fig. 5) by setting the value
of j = 1andn = 0inlines 1 and 4 respectively.

As was pointed out in Section 4.2 that the number of stringeeaged
to NDB, after each call to Delete (Fig. 6), is a function of the numtfe

12
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FIGURE 8

N DB size as a function of the number of consecutive DelefeB &ize) for strings
of lengthl = 24 andr = 10 specified bits.N D B initially represents an empti B.
Deleted strings are selected randomly. Results of 5 indipenuns are plotted, each
run ends whenN DB| > 3y wherey represents the ide&f D B growth.

entries,D,,, that match the binary string that is to be deleted, and of the
number of specified bits each string i, has. For our current model, the
number of strings added t DB during a single call to Delete is simply
(I — r)|D.|. Figures 7 and 8 show the effects of executing a sequence of
Delete operations on alW DB that initially represents every binary string
of length! (initially stands for an emptyp B) for two different values of-
(note that executing a Delete operation is equivalent tertirgy a string into
DB). Liney = (I —r)|DB|+ 2" depicts the idealN D B growth; this occurs
when each call to Delete causes the addition of at rfiost r) strings to
NDB i.e. |D,| = 1, its plot is shown alongside the experimental results
for comparison. Notice how the size 8f D B stays close tg for an initial
number of operations and quickly starts to deviate as thebeunrof strings

in DB surpasses some threshold. Figures 7 and 8 show the groitiads
until its size has reaches;.

5.1 Controlled Growth

The results of the preceding section show the increasingtnate of N DB
after an initial linear progression. In this section we pre@a scheme aimed

13



at reducing the growth rate & DB so as to increase the number of strings
that can be added tB B efficiently.

The operation presented in Figure 9 takes as input a negaditabase
NDB and outputs a negative databaSé B’ that represents exactly the
same set of binary strings i.e. matches exactly those stringin DB. The
function includes a parameter(line 4) which is meant to drive the size of
the resulting database. If the Insert operation introdeesr thanr entries
per call then Clean-up will not increase the size\ab B. For the purpose of
the current experimentsis set to2”~ % wherer is the minimum number of
specified bits andK| is the number of specified bits in pattefh

Clean-up(\NDB)

1. Randomly select a stringfrom NDB

2. Find a subpatterk” of « not found inDB 2

3 Let Dg be all strings inN D B that havek’

4, if |DK| >T

5 RemoveDy from NDB

6 Create a strinfyx of length! with K as
a subpattern and the remaining positions set to *
InsertVx, NDB)

N

aAccording to lines 1-6 of NegativBatternGenerate (Fig.4.

FIGURE 9
Clean-up. Outputs a negative database that representarttelsnary strings as its
input N D B but with a different set of entries.

Lines 1-2 (Fig. 9) find a subpattef of a string in/N.D B, such that no
string in DB has that pattern i.e. every string {0, 1} with such a pattern
is represented iV DB (see Property 1 in Sect. 4). Line 3 finds AllDB
entriesDy that exhibit this pattern and line 5 removes them. Note that,
removing D, only strings in{0, 1}/ that haveK stop from being repre-
sented inV D B. Lines 6—7 reinsert every string and only strings wifras a
subpattern intdvV D B (see Sect. 4.2).

The clean-up operation can be executed whenever sparespiogdime
is available and it should be performed several times teege the chances
that the size ofV D B will be significantly reduced. Figures 10 and 11 show
the results of executing the clean-up operation intergglensth Delete oper-

14
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FIGURE 10

N DB size as a function of the number of DeletésR size) interspersed with Clean-
up operations for strings of length= 24 andr = 6 specified bits. The Clean-Up
procedure is called 3000 consecutive times for each thresecoitive Delete oper-
ations. N DB initially represents an emptip B. The strings used as argument for
Delete are selected randomly. Results of 5 independentateglotted, each run
ends when N D B| > 3y wherey represents the ide& DB growth.
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FIGURE 11

N DB size as a function of the number of DeletésR size) interspersed with Clean-
up operations for strings of length= 24 andr = 10 specified bits. The Clean-Up
procedure is called 6000 consecutive times for each 20 catige Delete operations.
N DB initially represents an empt{p B. The strings used as argument for Delete
are selected randomly. Results of 5 independent runs atteghl@ach run ends when
|NDB| > 3y wherey represents the ide& DB growth.

ations. The plots show how the number of Delete operatiomeigased (on
average roughly 16% for = 10 and 9% forr = 6) as compared to figures 7
and 8.

On afinal note, its relevant to point out that as the numbepefations on
N DB increases the incidence of strings with more thapecified bits may
also grow. One possibility to deal with this phenomenon isntwease the
minimum number of specified bits required per record, anasest all those
negative entries with fewer specified bits. This will have itmmediate effect
of increasing the size ¥ D B, since increasing the specified bits in a record
requires inserting additional strings to ensilr® is represented exactly (see
Property 2 is Sect. 4) but will reduce the rate at whi¢b B grows with each
update.

6 DISCUSSION

In this paper we have reviewed the concept of negative ds¢sand intro-
duced them as a means for storing strings or detector sel® inantext of

16



anomaly detection systems based on string matching. Negapresenta-
tions of data can provide an extra level of protection forteys in which

acquiring the detector set (the set of strings that detemhaties) might pro-
duce a security breach. We described an algorithm for géngraegative

databases on-line that, unlike the previous work where tisitipe database
was assumed to exist at one place and at one time in orderdaootst neg-

ative representation, allows for the negative represiemt&d be updated dy-
namically.

In applications of AIS to anomaly detection, the set of detecor strings
typically implement a partial matching rule. This allowsthystem to in-
clude, in the definition obelf, strings that have not been observed before
(also known as a generalization). This contrasts with tleipus negative
database work where the negative information of a set iesemted exactly.
An important observation in regards to partial matchinghiztt for the ir-
reversibility result to hold, it must be the case that theahatile complies
with the generalized satisfiability problem [21] accordiaghe isomorphism
with Boolean formulas described in Section 3. Moreoverngb@ugh it was
shown in [15] that findingD B given only N DB is N"P-hard, this does not
mean that everyW D B is hard to reverse. The algorithms presented in Sec-
tion 4 have a series of free parameters that will need to bedtimorder to
realize the irreversibility properties afforded by the atdge representation.

We have developed a preliminary version of the on-line allgors pre-
sented here and those introduced in Ref. [15], referredtioeaisatch method.
Quantitative results are still premature but some qualéaibservations are
relevant: Unlike the batch method, where the critical tinostds query-
ing many negative patterns against the positive datablaseyrtline version
spends its time querying the input record against the negdttabase. The
negative database is typically larger than the positivalelge, and has been
S0 in our tests.

The prototype, based on the algorithms in this paper isdidib records
constructed from small two or three letter alphabets (164tbigs). In order
to evaluate the difficulty of retrieving positive recordsei only N DB we
convertN DB into a Boolean formula, taking advantage of the relatiomshi
an N DB has with SAT, and input it to a well-known SAT solver [36, 2hd
solver returns the difficulty of obtaining a solution (sgicto the particular
heuristics used in the solver). One interesting obsemasigdhat the com-
plexity of reversing the output of the on-line algorithmiigrsficantly higher
that that of the batch version. It appears that starting fasnunsatisfiable
formula and gradually adding satisfying assignments agickcords taD B,
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deleting them fromV D B) is more challenging for the heuristics employed
by the solver. We also expect the difficulty of reversing aatizg database
to increase as the length of the strings in the database grow.

Both the processes of insertion and deletion caigeB to grow in size.
We provide some experimental results that show how the $iteemegative
database is affected by updates (Delete in particular @)ig.and introduce
a clean-up procedure (Fig. 9)) whose aim is to reduce thediZ€ DB
and thus control its growth. This operation transformsg\ab B into another
negative database that represents the same set of biriagssin the future
we would like to investigate how a variant of this operatioaynie used to
search the space of hard-to-reverse negative databases.

Negative detection has been a trademark characteristitifafial immune
systems since they were firstintroduced and it is often lddoidts ability for
distributed detection and its flexibility in detecting analies. Our research
has led us to investigate the more general question of wegidta representa-
tions and their properties. This led to the discovery thatesenting negative
information in a certain manner exhibits an interesting poténtially useful
property, namely that it makes it hard to recover the coordmg positive
information. In the context of AIS for anomaly detection dds an extra
layer of security by making it hard to retrieve the profile loé tsystem being
monitored by simply analyzing the detector set. In othelliappons involv-
ing databases, it enhances privacy by naturally allowirlg oartain types of
queries. Our current efforts are focused on the practigets of generating
negative databases as well as in drawing out some addifwopérties that
distinguish them from their positive counterpart.
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