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The benefits of negative detection for obscuring information are
explored in the context of Artificial Immune Systems (AIS). AIS
based on string matching have the potential for an extra secu-
rity feature in which the “normal” profile of a system is hidden
from its possible hijackers. Even if the model of normal behav-
ior falls into the wrong hands, reconstructing the set of valid
or “normal” strings is anNP-hard problem. The data-hiding
aspects of negative detection are explored in the context ofan
application to negative databases. Previous work is reviewed
describing possible representations and reversibility properties
for privacy-enhancing negative databases. New algorithmsare
presented which allow on-line creation, updates and clean-up of
negative databases, some experimental results illustratethe im-
pact of these operations on the size of the negative database. Fi-
nally some future challenges are discussed.

1 INTRODUCTION

A striking feature of the natural immune system is its use of negative detection
in whichself is represented (approximately) by the set of circulating lympho-
cytes that fail to match self. The negative-detection scheme has been used in
several artificial immune system (AIS) applications, and the benefits of such
a scheme have been explored in terms of the number of requireddetectors
[24, 14, 13, 49, 50], success in distinguishing self from nonself [20, 16], and
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the ease with which negative detection can be distributed across multiple lo-
cations. In this paper we explore a fourth interesting property of negative
representations, namely their ability to hide informationabout self. This in-
formation hiding ability has interesting implications forintrusion detection
as well as for applications in which privacy is a concern and where it may be
useful to adopt a scheme in which only the negative representation is available
for querying.

This paper extends results first presented in [15] which introduced the con-
cept of anegative database. In a negative database, a collection of data is
represented by its logical complement. The termpositive informationdenotes
the elements of the category or set of interest (e.g., self) while negative infor-
mationdenotes all the other elements of the universe. A negative database is
then a representation of the negative information. In addition to introducing
this concept, the previous paper showed that negative information can be rep-
resented efficiently (even though the negative image will typically be much
larger than the positive image), that such a representationcan beNP-hard to
reverse (thereby hiding the exact composition of self), andthat simple mem-
bership queries can be computed efficiently. For instance, aquery of the form
“is stringx in the database” can be answered promptly, while a request ofthe
form “give me all the strings in the positive image that startwith a 1” cannot.
However, the paper did not show that common database operations (such as
inserts and deletes) can be performed easily on the negativerepresentation or
that a negative database can be maintained dynamically. Section 4 presents
new algorithms that address these matters.

Many AIS used for anomaly detection represent the entity to be protected
as a set of strings and, in parallel with the immune system, identification of
anomalies is performed by an alternate set of strings (knownas detectors) and
a match rule that are designed not to match elements of self. In this context,
there may be an additional incentive for negative detectionusing negative
databases. When the negative information is represented asdiscussed in [15],
it is provably hard to infer the positive image even if all thenegative infor-
mation is available. In the context of anomaly detection andsecurity this
provides an extra level of protection since it prevents someone from hijack-
ing the detector set, deriving from it the normal profile of the system, and
using that information to devise new attacks.

Section 2 reviews earlier work that is generally relevant tothe topic of
negative information; Section 3 reviews previous work on negative databases,
showing that a negative representation can be constructed which occupies
only polynomially more space than its positive counterpart, while retaining
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some interesting querying capabilities. Section 4 presents on-line algorithms,
including how to initialize a negative database and how to perform updates.
Section 5 presents a study on the impact of updates on the sizeof the negative
database and introduces an operation aimed at controlling its growth. Section
6 considers the implications of our results.

2 RELATED WORK

Negative representations of data have had several proponents in the past, es-
pecially in art where artists like Whiteread and Escher havetaken advantage
of the so called figure-ground relationship. Examples can also be found in
mathematics and statistics where sometimes it is easier to obtain an answer
by looking at the complement of the problem we intend to solveand comple-
menting the solution. For the purpose of this paper, however, we will review
how negative representations of information have influenced the field of AIS.

As mentioned in the introduction, the natural immune systemcan be in-
terpreted as representing data negatively. This observation has led to algo-
rithm designs which take advantage of some of the inherent properties of
negative representations. In particular, designers have taken advantage of
the fact that negative detectors are more amenable to distributed implementa-
tions than positive detectors and that, for the purposes of anomaly detection,
negative representations of data seem more natural. The negative selection
algorithm whereby a set of negative detectors is created wasintroduced in
[19]. Anomaly-detection systems based on these ideas can befound in [46, 3,
51, 32, 11, 26, 27, 28]. Other applications have also been proposed that range
from image classification to recommender systems [33, 47, 25, 42, 46, 8, 5, 6].
We note that many AIS are not based on string matching and therefore are not
directly affected by the results presented here; the interested reader is referred
to [12, 45].

Protecting information stored in a database from examination by unautho-
rized parties has been a concern since the inception of the field [41, 40, 44].
Some approaches relevant to the current discussion involvecryptographic
protection of databases [17, 43, 48], multi-party computation schemes [52,
23], the use of one-way functions [22, 38], and dynamic accumulators [7, 4].

Section 4 outlines an algorithm for generating and maintaining negative
databases. These operations need to be adjusted in order to produce “hard”
negative databases. There is a large body of work regarding the issues and
techniques involved in the generation of hard-to-solveNP-complete prob-
lems [30, 29, 39, 34] and in particular of SAT instances [35, 9]. Much of this

3



work is focused on the case where instances are generated without paying
attention to their specific solutions. Efforts concerned with the generation of
hard instances when there is a specific solution we want the instance to pos-
sess include [18, 1]. Finally, the problem of learning a distribution, whether
by evaluation or generation [31, 37], is also closely related to constructing the
sorts of databases in which we are interested.

3 NEGATIVE DATABASES

The notion of negative databases was introduced in [15], whereby for a given
set of fixed length strings, called the positive databaseDB (self), all the pos-
sible records or strings not inDB are represented i.e.U − DB (nonself)
whereU denotes the universe of all possible strings of the same length de-
fined over the same alphabet. It was shown that the size of the resulting
negative database, denotedNDB, can be constructed to be polynomially re-
lated to the size ofDB, even though (U −DB�DB) in the expected case.
The intuition behind our compact representation is that there must be subsets
of strings with significant overlaps, and that these overlaps can be used to
represent these subsets succinctly. We have adopted the strategy of extending
the alphabet over which strings are defined, in this case binary, to include an
extra symbol∗ known as the don’t care symbol. A string exhibiting the∗ at
positioni represents two strings; one with a 1 at positioni and one with a 0 at
positioni with the remaining positions unchanged, as the following example
illustrates. Positioni in the string is referred to as a “defined position” if it
contains either a 0 or a 1.

DB (U −DB) Negative Database
010 000
011 001 *0*
110 100 ⇒

101 1*1
111

Including this third symbol allows one entry (or record) in the negative database
to represent several strings (records) inU−DB? . A stringx is represented in
NDB —meaningx is not inDB, if there is at least one stringy in NDB that
matches it, otherwise the string is inDB. Two strings are said to match if all
of their positions match; the don’t care symbol is taken to match everything.

? We considerDB to remain defined over the{0,1} alphabet.
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Espondaet al. [15] give two algorithms for creating anNDB under the
representation described above. One common feature is thatboth take as input
DB—meaningDB must be held in its entirety at one time. Both operate by
examining chosen subsets of bit positions to determine which patterns are not
present inDB and must be depicted inNDB, the basic objective being to
find the subsets of bit positions that serve to represent the largest number of
strings inU −DB.

An interesting property of this representation concerns the difficulty of in-
ferringDB givenNDB. For an arbitrary set of strings defined over{0, 1, ∗}

determining which strings are not represented is anNP-hard problem. To
sustain this claim it is sufficient to note that there is a mapping from Boolean
formulae toNDBs such that finding which entries are not represented by
NDB (that is, which entries are inDB) is equivalent to finding satisfying
assignments to the corresponding boolean formula, which isknown to be an
NP-hard problem. The specifics of the proof can be found in Ref. [15], an
example of the mapping is given in Figure 1.

Boolean Formula NDB

(x2 or x̄5) and *0**1
(x̄2 or x3) and *10**

(x2 or x̄4 or x̄5) and ⇒ *0*11
(x1 or x̄3 or x4) and 0*10*
(x̄1 or x2 or x̄4 or x5) 10*10

FIGURE 1
Mapping SAT toNDB: In this example the boolean formula is written in conjunctive
normal form and its defined over five variables (x1, x2, x3, x4, x5). The formula is
mapped to anNDB where each clause corresponds to a record and each variable in
the clause is represented as a 1 if it appears negated, as a 0 ifit appears un-negated
and as a∗ if it does not appear in the clause at all. It is easy to see thata satisfying
assignment of the formula such as{x1= TRUE,x2= TRUE,x3= TRUE,x4= FALSE,
x5= FALSE} corresponding to string 11100 isnot represented inNDB.

4 CREATING AND MAINTAINING NEGATIVE DATABASES

In this section we present an on-line algorithm for creatingand maintaining
a negative database under the representation discussed in Section 3. Negative
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databases should be viewed as logical containers of stringsor detectors and it
is important to point out that when the strings stored therein implement some
partial matching rule, as is the case in AIS, removing or inserting a single
string changes the definition ofDB or selfaccording to the particulars of that
match rule.

The algorithms discussed in this section have the flexibility to create neg-
ative databases with varying structures (see instance-generation models [35,
9, 10]), an implementation of the algorithms must make some restrictions in
order to yieldNDBs that are hard to reverse on average. The following are
some properties, regarding string matching, that the algorithms take advan-
tage of:

Property 1: A string y is subsumed by stringx if every string matched by
y is also matched byx. A string x obtained by replacing some ofy’s
defined positions with don’t cares, subsumesy.

Property 2: A set of2n distinct strings that are equal in all butn positions
match exactly the same set of strings as a single one with thosen posi-
tions set to the don’t care symbol.

4.1 Initialization
A natural default initialization ofDB is to the empty set. The corresponding
initialization of NDB would be toU—the set of all strings. As discussed
in Section 3 anNDB contains strings defined over{0, 1, ∗} so one possible
initial state forNDB would be simply to store the string∗l, wherel is the
string length. This clearly matches every string inU , but doing so would
trivially defeat our purpose of making it difficult for someone to know exactly
whatNDB represents. We need to make it hard to know whatDB is, even
whenDB is empty.

The algorithm presented in Figure 2 creates a database whosestrings will
match any string inU (see example in Fig. 3). The rationale behind it comes
from the isomorphism betweenNDBs and Boolean formulae (Sect. 3, Fig.
1). Hence, our algorithm is designed to potentially create the equivalent of
unsatisfiable SAT formulas ofl variables. The high-level strategy is to select
m bit positions and create, for each possible bit assignmentVp of these posi-
tions, a string withVp and don’t care symbols elsewhere. A negative database
created in this way will have2m records, each matching2l−m distinct strings,
clearly covering all ofU .

Figure 2 modifies this strategy to expand the number of possible NDBs
output by the algorithm. The modifications are:
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• Potentially add more than one string to match a specific pattern (line
3).

• Augment the original pattern withn other positions. This allows each
of thel possible positions to be specified in the resulting pattern.How-
ever the choice ofn has great impact on the complexity of the algorithm
as line 6 loops2n times. A value of 3 will suffice to generate some
types of 3-SAT formulas (see Fig. 1) while keeping the complexity
reasonable.

• Using a subset of positions of the selected patterns to create an entry
(line 8–9).

It is straightforward to verify using the properties laid out at the beginning
of the section that the algorithm produces anNDB that matches every string
in U .

The purpose of the current choices ofk1 andk2, lines 3 and 8 respectively,
is to give the algorithm the necessary flexibility to generate genuinely hard-
to-reverseNDB instances. We return to this question in Sections 5 and 6,
as some restriction to these values might be warranted to produce negative
databases with some desired structure.

Empty DB Create(l)
1. Pickdlog(l)e bit positions at random
2. for every possible assignmentVp of these positions{
3. selectk1 randomly1 <= k1 <= l

4. for j=1 tok1{

5. Randomly select0 ≤ n ≤ O(log2(l))

6. select an additionaln distinct positions
7. for every possible assignmentVq of these positions{
8. Pickk2 bits at random from the patternsVp andVq

9. Create a entry forNDB with thek2

chosen bits and fill the remainingl − k2

positions with the don’t care symbol.}}}

FIGURE 2
Empty DB Create. Randomly creates a negative database that represents every bi-
nary string of lengthl.
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Empty DB Create(4) Delete(1111,NDB) Insert(1111,NDB)
000* 000* 000*
001* 001* 001*
01*0 01*0 01*0
01*1 01*1 01*1
10*0 10*0 10*0
10*1 10*1 10*1
111* 110* 110*
110* 11*0 11*0

*110 *110
*11*

FIGURE 3
Possible states ofNDB after successively performing initialization, deletion and in-
sertion of a string.

4.2 Updates

We now turn our attention to modifying the negative databaseNDB in a dy-
namic scenario. The policies and algorithms used for selecting which strings
should be added or retired remain application specific. It isworth empha-
sizing that the meaning of the insert and delete operations are inverted from
their traditional sense, since we are storing a representation of what isnot is
some databaseDB. For instance, the operation “insertx into DB” is imple-
mented as “deletex from U−DB” and “deletex from DB” as “insertx into
U −DB”.

The core operation for both the insert and delete procedures, presented in
Figure 4 (NegativePatternGenerate), takes a stringx and the currentNDB

and outputs a stringy that subsumesx without matching any other string in
DB. The function starts by picking a random orderingπ of the bit positions,
to be used in all string operations, so as to remove biases from later choices.
Lines 2–6 find a minimum subset of bits from the input stringx such that
no string outside{U − DB} ∪ {x} is matched. Step 4 of the algorithm
ensures that inserting a don’t care symbol at the selected position doesn’t
cause the string to match something inDB. Property 1, listed at the beginning
of the section, establishes that the resulting string matches whichever strings
the original input stringx matched. Steps 7–9 create a string containing the
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Negative Pattern Generate(NDB, x)
1. Create a random permutationπ

2. for all specified bitsbi in π(x)

3. Letx′ be the same asπ(x) but with bi complemented
4. if x′ is subsumeda by some string inπ(NDB)

5. Keep track of theith bit value in a set indicator vector (SIV)
6. Set the value of theith bit of π(x) to the * symbol
7. Randomly choose0 ≤ t ≤ |SIV |

8. R← t randomly selected bits from SIV
9. Create a patternVk usingπ(x) and the bits indicated byR.
10. returnπ′(Vk)b

aSee Property 1 in Section 4.
bπ′ is the inverse permutation ofπ.

FIGURE 4
NegativePatternGenerate. Takes as input a stringx defined over{0, 1, ∗} and a
databaseNDB and outputs a string that matchesx and nothing else outside ofNDB.

pattern found in the previous steps plus possibly some extrabits; note that
the added bits were part of the original input stringx so it is automatically
guaranteed that the result will subsumex. It is important to emphasize that,
for an actual implementation of the algorithm, the value oft (line 7) might be
restricted or even fixed to provide a desiredNDB structure (see Section 5).

Insert intoNDB

The purpose of the insert operation is to introduce a subset of strings into the
negative database (thereby removing them fromDB) while safeguarding its
irreversibility properties. Figure 5 shows the pseudocodeof the insert opera-
tion, lines 1 and 2 enable the procedure to create several entries inNDB por-
trayingx, as for the initialization ofNDB shown in Fig. 2, the actual number
of entries should be set to accommodate efficiency constraints and to preserve
the irreversibility ofNDB. Likewise steps 3–5 set some of the unspecified
positions ofx (if any) so that it may be possible for a set of strings represent-
ing x, that exhibit bits not found inx, to be entered inNDB (see property 2
at the top of the section). Finally the call to NegativePatternGenerate (see
Sect. 4.2 and Fig. 4) produces a string representingx which is then inserted
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Insert(x, NDB)
1. Randomly choose1 ≤ j ≤ O(l)

2. for k = 1 to j do
3. Randomly select0 ≤ n ≤ O(log2(l))

4. Randomly select fromx, n distinct unspecified bit positions
5. for every possible bit assignmentBp of the selected positions
6. x′ ← x ·Bp

7. y ← NegativePatternGenerate(NDB, x′)
8. addy to NDB

FIGURE 5
Insertx into NDB. Inserting a string intoNDB amounts to removing the corre-
sponding binary strings fromDB.

in NDB (see example in Fig. 3).

Delete fromNDB

This operation aims to remove a subset of strings from being represented in
NDB. It is worth noting that this operation cannot simply be implemented
by looking for a particular entry inNDB and removing it, since it may be
the case that a string is represented by several entries inNDB and an entry
in NDB can in turn represent several strings, some of which might not be
our intent to remove. Figure 6 gives a general algorithm for removing a string
or set of strings from being depicted inNDB, note that inputx may be any
string over{0, 1, ∗} an thus many strings may cease from being represented
by a single call.

The algorithm takes the currentNDB and the string to be removedx as
input. Line 1 identifies the subset,Dx, of NDB that matchesx and removes
it. As mentioned previously, removing an entry that matchesx might also un-
intentionally delete some additional strings. Lines 3–7 reinsert all the strings
represented byDx exceptx. For each stringy in Dx that hasn unspecified
positions (don’t care symbols) there aren strings to be inserted intoNDB

that match everythingy matches exceptx. Each new stringy′
i is created by

using the specified bits ofy and the complement of the bit specified at theith

position ofx as the following example illustrates:
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x Dx All but x

111*0*
101001 1*1*0* 1*110*

1*1*00

To see that this in fact excludesx from NDB, and nothing else, note
the following: Each new stringy′

i, by construction, differs fromx in its ith

position therefore none of the new strings matchx. If a totally specified string
z 6= x is matched byy ∈ Dx thenz must have the same specified positions
asy, now, sincez is different fromx it follows that it must disagree with it
in at least one bit, say bitk, z will be matched byy′

k. Finally, observe that
sincey subsumes each new entryy′

i no unwanted strings are included by the
operation (see example in Fig. 3).

Delete(x, NDB)
1. LetDx be all the strings inNDB that matchx
2. RemoveDx from NDB.
3. for all y ∈ Dx

4. for each unspecified positionqi of y

5. if theith bit of x is specified
6. Create a new stringyi using the specified bits ofy and the

complement of theith bit of x.
7. Insert(yi, NDB)

FIGURE 6
Delete fromNDB. Delete a string fromNDB amounts to appending the corre-
sponding binary strings toDB.

One very important fact to point out about this algorithm is that it may
cause the size ofNDB to grow unreasonably. It is important for any im-
plementation to prevent|Dx|, the number of entries inNDB that match a
particular totally specified string, from being a function of the size of the neg-
ative database and/or to instrument a clean-up operation that bounds the size
of NDB. The following section investigates the impact of this operation on
the size ofNDB and introduces a scheme that allows control over the growth
of NDB.
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FIGURE 7
NDB size as a function of the number of consecutive Deletes (DB size) for strings
of lengthl = 24 andr = 6 specified bits.NDB initially represents an emptyDB.
Strings used as arguments for Delete are selected randomly.Results of 5 independent
runs are plotted, each run ends when|NDB| ≥ 3y wherey represents the ideal
NDB growth.

5 EXPERIMENTAL RESULTS

In this section we investigate how the size of a negative database,NDB, is
affected by a sequence of Delete operations (Fig. 6). We focus our attention
on Delete as it dominates the growth ofNDB (see Section 4.2).

For the purpose of the experiments, a specific structure is imposed on
NDB, one in which each entry has at leastr specified positions. We fix
the values ofk1 = 1 andk2 = r in lines 3 and 8 of the initialization algo-
rithm (Fig. 2) and set the value oft in line 7 of NegativePatternGenerate
(Fig. 4) to ensure that the resulting patternVk in line 9 has no less thanr
bits specified. These restrictions allow for a cleaner analysis of the impact
of the Delete operation, and generate a class of instances that are expected to
be harder to solve than those where an arbitrary number of specified bits per
string is allowed (see Ref. [35]). Furthermore, we ensure that only one string
is added toNDB per call to the Insert operation (Fig. 5) by setting the values
of j = 1 andn = 0 in lines 1 and 4 respectively.

As was pointed out in Section 4.2 that the number of strings appended
to NDB, after each call to Delete (Fig. 6), is a function of the number of
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FIGURE 8
NDB size as a function of the number of consecutive Deletes (DB size) for strings
of lengthl = 24 andr = 10 specified bits.NDB initially represents an emptyDB.
Deleted strings are selected randomly. Results of 5 independent runs are plotted, each
run ends when|NDB| ≥ 3y wherey represents the idealNDB growth.

entries,Dx, that match the binary stringx that is to be deleted, and of the
number of specified bits each string inDx has. For our current model, the
number of strings added toNDB during a single call to Delete is simply
(l − r)|Dx|. Figures 7 and 8 show the effects of executing a sequence of
Delete operations on anNDB that initially represents every binary string
of length l (initially stands for an emptyDB) for two different values ofr
(note that executing a Delete operation is equivalent to inserting a string into
DB). Liney = (l− r)|DB|+2r depicts the idealNDB growth; this occurs
when each call to Delete causes the addition of at most(l − r) strings to
NDB i.e. |Dx| = 1, its plot is shown alongside the experimental results
for comparison. Notice how the size ofNDB stays close toy for an initial
number of operations and quickly starts to deviate as the number of strings
in DB surpasses some threshold. Figures 7 and 8 show the growth ofNDB

until its size has reached3y.

5.1 Controlled Growth

The results of the preceding section show the increasing growth rate ofNDB

after an initial linear progression. In this section we propose a scheme aimed

13



at reducing the growth rate ofNDB so as to increase the number of strings
that can be added toDB efficiently.

The operation presented in Figure 9 takes as input a negativedatabase
NDB and outputs a negative databaseNDB′ that represents exactly the
same set of binary strings i.e. matches exactly those strings not inDB. The
function includes a parameterτ (line 4) which is meant to drive the size of
the resulting database. If the Insert operation introducesfewer thanτ entries
per call then Clean-up will not increase the size ofNDB. For the purpose of
the current experimentsτ is set to2r−|K| wherer is the minimum number of
specified bits and|K| is the number of specified bits in patternK.

Clean-up(NDB)
1. Randomly select a stringx from NDB

2. Find a subpatternK of x not found inDB a

3. LetDK be all strings inNDB that haveK
4. if |DK | > τ

5. RemoveDK from NDB

6 Create a stringVK of lengthl with K as
a subpattern and the remaining positions set to *

7. Insert(VK , NDB)

aAccording to lines 1–6 of NegativePatternGenerate (Fig.4.

FIGURE 9
Clean-up. Outputs a negative database that represents the same binary strings as its
inputNDB but with a different set of entries.

Lines 1–2 (Fig. 9) find a subpatternK of a string inNDB, such that no
string inDB has that pattern i.e. every string in{0, 1}l with such a pattern
is represented inNDB (see Property 1 in Sect. 4). Line 3 finds allNDB

entriesDK that exhibit this pattern and line 5 removes them. Note that,by
removingDK , only strings in{0, 1}l that haveK stop from being repre-
sented inNDB. Lines 6–7 reinsert every string and only strings withK as a
subpattern intoNDB (see Sect. 4.2).

The clean-up operation can be executed whenever spare processing time
is available and it should be performed several times to increase the chances
that the size ofNDB will be significantly reduced. Figures 10 and 11 show
the results of executing the clean-up operation interspersed with Delete oper-
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FIGURE 11
NDB size as a function of the number of Deletes (DB size) interspersed with Clean-
up operations for strings of lengthl = 24 andr = 10 specified bits. The Clean-Up
procedure is called 6000 consecutive times for each 20 consecutive Delete operations.
NDB initially represents an emptyDB. The strings used as argument for Delete
are selected randomly. Results of 5 independent runs are plotted, each run ends when
|NDB| ≥ 3y wherey represents the idealNDB growth.

ations. The plots show how the number of Delete operations isincreased (on
average roughly 16% forr = 10 and 9% forr = 6) as compared to figures 7
and 8.

On a final note, its relevant to point out that as the number of operations on
NDB increases the incidence of strings with more thanr specified bits may
also grow. One possibility to deal with this phenomenon is toincrease the
minimum number of specified bits required per record, and reinsert all those
negative entries with fewer specified bits. This will have the immediate effect
of increasing the size ofNDB, since increasing the specified bits in a record
requires inserting additional strings to ensureDB is represented exactly (see
Property 2 is Sect. 4) but will reduce the rate at whichNDB grows with each
update.

6 DISCUSSION

In this paper we have reviewed the concept of negative databases and intro-
duced them as a means for storing strings or detector sets in the context of
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anomaly detection systems based on string matching. Negative representa-
tions of data can provide an extra level of protection for systems in which
acquiring the detector set (the set of strings that detect anomalies) might pro-
duce a security breach. We described an algorithm for generating negative
databases on-line that, unlike the previous work where the positive database
was assumed to exist at one place and at one time in order to obtain its neg-
ative representation, allows for the negative representation to be updated dy-
namically.

In applications of AIS to anomaly detection, the set of detectors or strings
typically implement a partial matching rule. This allows the system to in-
clude, in the definition ofself, strings that have not been observed before
(also known as a generalization). This contrasts with the previous negative
database work where the negative information of a set is represented exactly.
An important observation in regards to partial matching is that, for the ir-
reversibility result to hold, it must be the case that the match rule complies
with the generalized satisfiability problem [21] accordingto the isomorphism
with Boolean formulas described in Section 3. Moreover, even though it was
shown in [15] that findingDB given onlyNDB isNP-hard, this does not
mean that everyNDB is hard to reverse. The algorithms presented in Sec-
tion 4 have a series of free parameters that will need to be tuned in order to
realize the irreversibility properties afforded by the negative representation.

We have developed a preliminary version of the on-line algorithms pre-
sented here and those introduced in Ref. [15], referred to asthe batch method.
Quantitative results are still premature but some qualitative observations are
relevant: Unlike the batch method, where the critical time cost is query-
ing many negative patterns against the positive database, the online version
spends its time querying the input record against the negative database. The
negative database is typically larger than the positive database, and has been
so in our tests.

The prototype, based on the algorithms in this paper is limited to records
constructed from small two or three letter alphabets (16 to 24 bits). In order
to evaluate the difficulty of retrieving positive records given onlyNDB we
convertNDB into a Boolean formula, taking advantage of the relationship
anNDB has with SAT, and input it to a well-known SAT solver [36, 2]. The
solver returns the difficulty of obtaining a solution (specific to the particular
heuristics used in the solver). One interesting observation is that the com-
plexity of reversing the output of the on-line algorithm is significantly higher
that that of the batch version. It appears that starting froman unsatisfiable
formula and gradually adding satisfying assignments (adding records toDB,
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deleting them fromNDB) is more challenging for the heuristics employed
by the solver. We also expect the difficulty of reversing a negative database
to increase as the length of the strings in the database grow.

Both the processes of insertion and deletion causeNDB to grow in size.
We provide some experimental results that show how the size of the negative
database is affected by updates (Delete in particular (Fig.6)), and introduce
a clean-up procedure (Fig. 9)) whose aim is to reduce the sizeof NDB

and thus control its growth. This operation transforms anNDB into another
negative database that represents the same set of binary strings, in the future
we would like to investigate how a variant of this operation may be used to
search the space of hard-to-reverse negative databases.

Negative detection has been a trademark characteristic of artificial immune
systems since they were first introduced and it is often lauded for its ability for
distributed detection and its flexibility in detecting anomalies. Our research
has led us to investigate the more general question of negative data representa-
tions and their properties. This led to the discovery that representing negative
information in a certain manner exhibits an interesting andpotentially useful
property, namely that it makes it hard to recover the corresponding positive
information. In the context of AIS for anomaly detection it adds an extra
layer of security by making it hard to retrieve the profile of the system being
monitored by simply analyzing the detector set. In other applications involv-
ing databases, it enhances privacy by naturally allowing only certain types of
queries. Our current efforts are focused on the practical aspects of generating
negative databases as well as in drawing out some additionalproperties that
distinguish them from their positive counterpart.
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