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ABSTRACT
In systems on chip, the energy consumed by the Network on
Chip (NoC) depends heavily on the network traffic pattern.
The higher the communication locality, the lower the energy
consumption will be. In this paper, we use the Communi-
cation Probability Distribution (CPD) to model communica-
tion locality and energy consumption in NoC. Firstly, based
on recent results showing that communication patterns of
many parallel applications follow Rent’s rule [6], we propose
a Rent’s rule synthetic traffic generator. In this method,
the probability of communication between cores is derived
directly from Rent’s rule, which results in CPDs display-
ing high locality. Next, we provide a model for predicting
NoC energy consumption based on the CPD. The model
was tested two NoC systems and several workloads, includ-
ing Rent’s rule traffic, and obtained accurate results when
compared to simulations. The results also show that Rent’s
rule traffic has lower energy consumption than commonly
used synthetic workloads, due to its higher communication
locality. Finally, we exploit the tunability of our traffic gen-
erator to study applications with different locality, analyzing
the impact of the Rent’s exponent on energy consumption.
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1. INTRODUCTION
Using derivations based on Rent’s rule, the wire length dis-

tribution of a VLSI circuit can be estimated from its Rent’s
exponent and coefficient, p and k [4]. This distribution is
relevant to VLSI design and implementation because it is
related to many properties of the system, such as chip area,
signal delay, power consumption, and wire routability [13].

In Systems on Chip (SoC), similar information is provided
by the Communication Probability Distribution (CPD) of
applications. The CPD describes the probability that pack-
ets will travel a certain distance in the Network on Chip
(NoC) for a given traffic pattern. This distribution is di-
rectly related to the energy consumption of an application,
because the larger the distance traveled by packets, the more
energy used. Since current NoCs use 30 to 40% of the power
budget [14, 7], it is desirable for the distance travelled by
packets to be as small as possible in order to minimize this
cost.

In this paper, we use the communication probability dis-
tribution to study NoC traffic locality and energy consump-
tion. Firstly, motivated by the importance of Rent’s rule to
VLSI and supported by recent work showing that communi-
cation patterns of many parallel applications follow Rent’s
rule [6], we propose a method for generating Rent’s rule
traffic patterns. In this method, the probability of commu-
nication between processors is derived directly from Rent’s
rule, leading to CPDs displaying high traffic locality. This
method could be used to simulate real traffic as a fast and
simple alternative to application-driven workloads.

Based on the CPD, we also propose a model for predict-
ing energy consumption in a network on chip. We tested the
model on several synthetic workloads, including Rent’s rule
traffic, running on two different NoC systems and compared
the obtained results with architecture-level simulations. The
results show excellent agreement between predicted and ex-
perimental values. Our approach does not require simulation
and could be used in the primary phases of NoC design, as



well as in the design of energy-efficient applications and bet-
ter application mapping techniques [8]. Finally, using our
traffic generator we also analyze the impact of the Rent’s
exponent of an application on energy consumption.

This paper is organized as follows. Section 2 presents the
methodology used to generate Rent’s rule traffic. Section 3
reviews commonly used synthetic traffic patterns and shows
their CPD. Section 4 introduces the model for estimating
energy consumption. Section 5 presents the experimental
results and section 6 concludes the paper with a final dis-
cussion.

2. RENT’S RULE TRAFFIC PATTERNS

2.1 Rent’s Rule for Parallel Programs
In VLSI, Rent’s rule emerges naturally from circuit place-

ment, in which connections are made as local as possible
to minimize wire footprint, power and latency [2]. Similar
constraints apply to the communication among processors in
multi- and many-core systems. Algorithms used for mapping
parallel applications onto cores aim at producing optimized
layouts that minimize communication distances.

Greenfield et al. [5] argue that, analogous to circuit place-
ment in VLSI, Rent’s rule will naturally arise in multi- and
many-core chips from this optimization process. They ex-
tended the concept of connection locality in circuits to com-
munication locality among cores, proposing a bandwidth-
based version of Rent’s rule,

B = bN
p (1)

where B is the bandwidth sent or received by a cluster of
N network nodes, b is the average bandwidth per node, and
0 ≤ p ≤ 1 is the Rent’s exponent.

In recent work, Heirman et al. [6] showed that many par-
allel applications indeed follow Rent’s rule. They analyzed
13 popular benchmark applications running on 32 and 64
cores. Using a partitioning algorithm they showed that all
of the programs followed Rent’s rule with measured values
of the Rent’s exponent p ranging from 0.55 to 0.74.

2.2 Generating Rent’s Rule Traffic Patterns
The discussion above motivates the use of a synthetic gen-

erator of traffic that follows Rent’s rule. Such a traffic gen-
erator could serve as a simple way to evaluate NoCs with
workloads that mimic the spatial properties of real traffic.
As will be discussed in section 3, many existing synthetic
workloads correspond to special case situations used to stress
the network and routing algorithm. However, the authors
are unaware of work that employs Rent’s rule synthetic traf-
fic as a generic model of parallel applications.

In this section we describe a method to generate traffic
that follows Rent’s rule. In VLSI, the probability of a wire
connecting two terminals with Manhattan distance d apart
is given by (adapted from [4]):

P (d) =
1

4d
[(1 + d (d − 1))p − (d (d − 1))p

+ (d (d + 1))p − (1 + d (d + 1))p] , (2)

We use the equation above to define the probability of com-
munication between two processors, where d corresponds to
the number of hops in the shortest path between source and
destination. Traffic can be generated for each source node by
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Figure 1: Comparison between the wire length dis-
tribution given by [4] and the communication proba-
bility distribution produced by the Rent’s rule traf-
fic generator.

sampling from the probability in equation 2 for every possi-
ble destination node. Repeating this process for all possible
source nodes in the network results in traffic that follows
Rent’s rule.

To validate our method, we generated traffic using equa-
tion 2 and measured the resulting CPD. This distribution
was then compared to the wire length distribution given by
Davis et al. [4], which is derived directly from Rent’s rule
and is widely used in wire length estimates of real circuits.
Figure 1 shows a log-log plot of the comparison between the
wire length distribution given by [4] and the CPD produced
by our traffic generator. In this figure, p = 0.75, which is
a typical exponent for VLSI architectures, and the network
has 1024 nodes. The plot shows a virtually exact match
between the two curves.

The formula for the CPD of synthetic Rent’s rule traffic
can be derived from equation 2 and is given by:

CPD(d) = ΓP (d) ·
2

√

N−2
X

i=1

“√
N − i

” “√
N + i − d

”

, (3)

for 0 <
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N + i − d
”

≤
√

N.

where Γ is the normalization coefficient such that

2

√

N−2
X

d=1

CPD(d) = 1.

Figure 2(a) shows the CPD produced by our generator on
an 8×8 mesh network.

An advantage of this method is its ability to generate traf-
fic patterns with arbitrary Rent’s exponents. Because the
Rent’s exponent is related to communication locality and
complexity of applications, it is possible to study the NoC
under several application scenarios by varying a single pa-
rameter in the model.

3. SYNTHETIC WORKLOADS
In this section we review some commonly used synthetic

traffic patterns and compute their CPD, which is similar to
the spatial hop distribution presented in [12]. We compare
the obtained distributions with the CPD of Rent’s rule traf-
fic.



Uniform Random Traffic.In uniform random traffic, each
source is equally likely to send packets to each destination.
This is the most commonly used traffic pattern for network
evaluation because it is straightforward to implement, it
makes no assumptions about the application, and it is ana-
lytically tractable. Because source nodes do not differentiate
between near and distal destination nodes, uniform random
traffic does not exploit locality of communication. Figure
2(b) shows the CPD for uniform random traffic on a 8×8
mesh network.

Bit Permutation Traffic.In permutation traffic, each source
src sends all of its traffic to a single destination, des =
π(src), where π corresponds to a permutation function. Be-
cause this type of traffic concentrates load on individual
source-destination pairs, they tend to stress the load bal-
ance of a topology and routing algorithm. Bit permutations
are a subclass of permutations in which the destination ad-
dress is computed by permuting the bits of the source ad-
dress. The CPDs of bit transpose, bit complement and bit
rotation permutation traffic are show in figure 2(c), 2(d)
and 2(e), respectively. These distributions are considerably
different from each other as well as from uniform random
traffic. Details on how to generate these traffic patterns are
given in [3].

Nearest Neighbor Traffic.Nearest neighbor traffic is com-
monly used to evaluate the impact of communication locality
on the performance and power consumption of the network
on chip [11]. A fixed percentage of traffic goes to the nearest
neighbors with some radius r and the rest of the traffic is
uniform and random. The CPD of nearest neighbor traffic
with r = 1 and locality factor of 50% is shown in figure 2(f).

The traffic patterns described above are useful in practice
as special cases to analyze the network, but bear little or no
resemblance to real traffic. When compared to Rent’s rule
traffic (figure 2(a)), most of these workloads display poor
communication locality. As will be seen in Section 5, these
differences in the CPD have considerable effect on the energy
consumption of the NoC.

4. MODELING ENERGY CONSUMPTION
The analysis of NoC energy consumption using simula-

tions can be computationally expensive, especially when deal-
ing with application-driven workloads or large system sizes.
In this section we provide a simple model for predicting en-
ergy consumption based on the CPD, which does not require
computer simulations. This model is primarily designed for
direct networks in which the length of the wires is the same
for every hop, such as mesh and folded torus, but it could
be easily extended to other topologies.

The average energy of a flit traversing a path of length d
in the network is given by

Eflit (d) = d · Elink + (d + 1) · Erouter, (4)

where Elink and Erouter are the energy consumed by the
flit when traversing a link and a router, respectively, and d
is given by the number of hops traversed in the path. The
total energy consumed by an application is obtained by first
summing Eflit over all communication distances weighted
by the probability of a packet traveling that distance. This

value is then multiplied by the number of flits per packet
(Nflits) and the total number of packets (Npackets):

Etotal = Npackets · Nflits ·
max
X

d=1

Eflit (d) · CPD (d) . (5)

In equation 5, we assume a constant number of flits per
packet. The constants Elink and Erouter used in equation 4
can be obtained from architecture-level power models, such
as Orion 2 [9].

For traffic that follows Rent’s rule, the model presented
above provides a unique advantage over other approaches
[8, 10, 11]. Given the Rent’s exponent, the CPD of traffic
can be easily obtained from equation 3. As a result, the
energy consumption of an application can be predicted di-
rectly from the Rent’s exponent. The ability of our model to
perform predictions for Rentian traffic based on a single ap-
plication parameter could significantly simplify and speedup
NoC energy analysis.

A potential limitation of this method is that it is based
on the assumption that the energy used for communication
is proportional to the distance traveled by packets. This is
approximately true for most networks on chip and is com-
monly used in the literature as a simplication step [8, 10,
11]. However, contention in the network may lead to extra
dynamic and static energy that are not taken into account
in the model and which might introduce errors in the model
predictions.

5. RESULTS

5.1 NoC Energy Consumption
We analized the energy consumption of different traffic

patterns and tested the predictions of equation 5 on two
NoC configurations with different process technologies. The
first system is an 8×8 mesh network running at 1GHz, on
a 1×1cm die, and 65nm technology. Flit size was set to 64
bits and packets have five flits each. The routing algorithm
was dimension-order routing with wormhole flow control and
4 virtual channels. Constants for flit energy were obtained
using Orion 2 assuming activity factor of 0.5. For each of the
traffic patterns, 20,000 packets were injected in the network.
The exponents used for Rent’s rule traffic were p = 0.55
and p = 0.75, corresponding to the two extremes of Rent’s
exponents measured in [6]

The energy predictions were compared to computer simu-
lations and the obtained values are shown in figure 3(a). The
results show excellent agreement between predicted and ex-
perimental energy values, with correlation coefficient of 0.98.
Table 1 shows the same results in more detail. The best pre-
diction was obtained for nearest neighbor traffic, with 0.7%
error, and the worst for bit transpose, with error of 12.01%.
As discussed in section 4, prediction errors can be explained
by nonlinear factors in energy consumption and variations
in network contention for different traffic patters.

The second system is a 10×10 network, on 45nm process
technology and clock frequency of 3GHz. Flits have 32 bits
each and the packet size is ten flits. The results are shown
in figure 3(b). For this system, there is also a close match
between predicted and experimental values, with correlation
coefficient of 0.99. The results are shown in detail in table 1.
A maximum error of 3.74% was obtained for uniform random
traffic and a minimum error of 0.23% for bit complement.



1 2 3 4 5 6 7 8 9 1011121314
0

0.2

0.4

0.6

0.8

Distance

P
ro

ba
bi

lit
y

Rent’s Rule p = 0.75

(a)

1 2 3 4 5 6 7 8 9 1011121314
0

0.05

0.1

0.15

0.2

Distance

P
ro

ba
bi

lit
y

Uniform Random

(b)

1 2 3 4 5 6 7 8 9 1011121314
0

0.05

0.1

0.15

0.2

0.25

Distance

P
ro

ba
bi

lit
y

Bit Transpose

(c)

1 2 3 4 5 6 7 8 9 1011121314
0

0.05

0.1

0.15

0.2

0.25

Distance

P
ro

ba
bi

lit
y

Bit Complement

(d)

1 2 3 4 5 6 7 8 9 1011121314
0

0.05

0.1

0.15

0.2

Distance

P
ro

ba
bi

lit
y

Bit Rotation

(e)

1 2 3 4 5 6 7 8 9 1011121314
0

0.2

0.4

0.6

0.8

Distance

P
ro

ba
bi

lit
y

Nearest Neighbor 50%

(f)

Figure 2: CPDs for a variety of traffic on a 8×8 mesh network. (a) Rent’s rule with Rent’s exponent of
0.75.(b) Uniform random. (c) Bit transpose. (d) Bit complement. (e) Bit rotation. (f) Nearest neighbor
with localization factor of 50%.
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Figure 3: Predicted and simulated energy consumption for (a) 8×8 mesh NoC on 65nm and (b) 10×10 mesh
NoC on 45nm.



The results above show that the proposed model produces
accurate results over a wide range of traffic patterns, for dif-
ferent system configurations and also across different tech-
nology generations. This methodology could be used as a
simple and fast tool for first-order assessment of energy con-
sumption once the communication pattern of an application
is known. Figure 3 also shows that Rent’s rule traffic con-
sumes the least energy when compared to the other work-
loads, especially for the 10×10 system. This could be pre-
dicted from the CPDs in figure 2, since this is the traffic with
the most communication locality. It should be expected that
Rent’s rule traffic provides a better model of communication
locality of real applications than the other synthetic work-
loads.

5.2 Varying the Rent’s Exponent
For VLSI devices, the value of the Rent’s exponent is

commonly used as a measure of circuit complexity. Sim-
ple, highly regular circuits have small values of the Rent’s
exponent, which are associated with high locality of commu-
nication. Conversely, the Rent’s exponent is large for more
complex circuits in which a significant part of the commu-
nication is global. Analogously, in the bandwidth version of
Rent’s rule, small values of p represent simple applications
with mostly nearest-neighbor communication, while large
values correspond to applications with relatively poor com-
munication locality. In this section we analyze the impact
of the Rent’s exponent on the energy used for communica-
tion, which could have important implications to application
design.

We generated Rent’s rule traffic for a variety of Rent’s
exponents and measured the energy consumption for three
network sizes: 6×6, 8×8, and 10×10. The process technol-
ogy used in the simulations was 45nm for all three systems.
The results depicted in figure 4 show a significant increase
in the energy consumption as the Rent’s exponent increases
in all three networks. The impact of the Rent’s exponent on
energy is also stronger for the larger systems. As p varies
from 0.1 to 0.9, there is an increase of 51% in energy for
the 6×6 NoC, 68% for the 8×8 NoC and 83% for the 10×10
network.

These results show quantitatively that the price to be paid
for communication complexity is high and will tend to in-
crease in the future. As we move towards larger systems with
potentially hundreds of cores, the demand for less complex
and more energy-efficient applications will increase. Energy-
efficient algorithms are an important topic in other fields,
such as sensor networks [1], and will likely become a major
issue in application design for systems on chip.

These experiments illustrate the flexibility of our synthetic
traffic generator and its applicablity in the analysis of NoC.
By varying the Rent’s exponent, it is possible to gener-
ate a continuum of application complexity scenarios, even
ones that do not exist yet, and for systems with arbitrary
sizes. The analysis presented here would not be possible
with conventional execution-driven and trace-driven appli-
cation workloads, which are limited to existing applications
only.

6. DISCUSSION
In this paper we used the Communication Probability Dis-

tribution to model traffic locality and energy consumption
in NoC. We proposed a synthetic traffic generator based on
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Figure 4: Energy consumption of 6×6, 8×8, and
10×10 NoCs for Rent’s rule traffic as a function of
the Rent’s exponent.

Rent’s rule that mimics the CPD of real traffic patterns.
This method can be used as simple way to evaluate NoC
designs under a variety of application complexity scenarios
without having to resort to application-driven workloads.

Although the method is devised to be more realistic than
commonly used synthetic traffic patterns, it has some lim-
itations. For example, temporal aspects such as burtiness
and variations of the Rent’s exponent over time [6] were not
considered. Also, many applications exhibit traffic patterns
with a central node, which could be better modeled with a
combination of Rentian and hotspot traffic. Extending the
model to consider these factors is a good direction for future
work.

Based on the CPD, we also proposed a simple model for
predicting NoC energy consumption. The model is based on
the assumption that energy is proportional to the distance
traveled by packets. Our methodology was tested on two
system configurations and 6 different traffic patterns and
produced accurate results. One advantage of this model is
the ability to predict energy directly from the Rent’s expo-
nent for traffic patterns that follow Rent’s rule. The results
also showed that the energy consumed by Rent’s rule traffic
is less than that of other synthetic workloads, because it has
more locality of communication.

Finally, we used Rent’s rule traffic patterns to analyze the
impact of the Rent’s exponent on NoC energy consumption.
We showed quantitatively that the cost of communication
complexity is significant, and will likely become a constraint
to the scalability of future networks on chip.
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