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OTTER 3.3 Reference Manual

William McCune

Abstract

OTTER is a resolution-style theorem-proving program for first-order logic with
equality. OTTER includes the inference rules binary resolution, hyperresolution, UR-
resolution, and binary paramodulation. Some of its other abilities and features are con-
version from first-order formulas to clauses, forward and back subsumption, factoring,
weighting, answer literals, term ordering, forward and back demodulation, evaluable
functions and predicates, Knuth-Bendix completion, and the hints strategy. OTTER is
coded in ANSI C, is free, and is portable to many different kinds of computer.

1 Introduction

OTTER (Organized Techniques for Theorem-proving and Effective Research) is a
resolution-style theorem prover, similar in scope and purpose to theAURA [24] and
LMA /ITP [15] theorem provers, which are also associated with Argonne. OTTER applies
to statements written in first-order logic with equality. The primary design considerations
have been performance, portability, and extensibility. The programming language ANSI C
is used.

OTTER features the inference rules binary resolution, hyperresolution, UR-resolution,
and binary paramodulation. These inference rules take a small set of clauses and infer a
clause; if the inferred clause is new, interesting, and useful, it is stored and may become
available for subsequent inferences. Other features of OTTER are the following.

• Statements of the problem may be input either with first-order formulas or with
clauses (a clause is a disjunction with implicit universal quantifiers and no existential
quantifiers). If first-order formulas are input, OTTER translates them to clauses.

• Forward demodulation rewrites and simplifies newly inferred clauses with a set of
equalities, and back demodulation uses a newly inferred equality (which has been
added to the set of demodulators) to rewrite all existing clauses.

• Forward subsumption deletes an inferred clause if it is subsumed by any existing
clause, and back subsumption deletes all clauses that are subsumed by an inferred
clause.

• A variant of the Knuth-Bendix method can search for a complete set of reductions
and help with proof searches.
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• Weight functions and lexical ordering decide the value of clauses and terms.

• Answer literals can give information about the proofs that are found. See Sec. 11.

• Evaluable functions and predicates build in integer arithmetic, Boolean operations,
and lexical comparisons and enable users to “program” aspects of deduction pro-
cesses. See Sec. 9.

• Proofs can be presented in a very detailed form, calledproof objects, which can
be used by other programs, for example, to check or to translate the proofs. See
Sec. 20.1.

• Thehints strategycan be used to provide heuristic guidance to the search. To apply
this feature, the user gives a set ofhint clauses, and clauses similar to the hint clauses
are emphasized during the search. See Sec. 14.

• OTTER’s input is compatible, for the most part, with a complementary program
MACE 2.0 [17], which looks for finite models of first-order statements. Given a
conjecture, OTTER can search for a proof, and MACE can look for a counterexam-
ple, usually from the same input file. MACE 2.0 is included in the standard OTTER

3.3 distribution packages.

Although OTTER has an autonomous mode, most work with OTTER involves interaction
with the user. After encoding a problem into first-order logic or into clauses, the user
usually chooses inference rules, sets options to control the processing of inferred clauses,
and decides which input formulas or clauses are to be in the initial set of support and which
(if any) equalities are to be demodulators. If OTTER fails to find a proof, the user may wish
to try again with different initial conditions. In the autonomous mode, the user inputs a set of
clauses and/or formulas, and OTTER does a simple syntactic analysis and decides inference
rules and strategies. The autonomous mode is frequently useful for the first attempt at a
proof.

1.1 What OTTER Isn’t

Some of the first applications that come to mind when one hears “automated theorem prov-
ing” are number theory, calculus, and plane geometry, because these are some of the first
areas in which math students try to prove theorems. Unfortunately, OTTER cannot do much
in these areas: interesting number theory problems usually require induction, interesting
calculus and analysis problems usually require higher-order functions, and the first-order
axiomatizations of geometry are not practical. (Nonetheless, Art Quaife has proved many
interesting theorems in number theory and geometry using OTTER [22, 21].) For practi-
cal theorem proving in inductive theories, see the work of Boyer, Moore, and Kaufmann
[2, 10].

OTTER is also not targeted toward synthesizing or verifying formal hardware or soft-
ware systems. See [6, 5] for work in those areas.

Summaries of other theorem-proving systems can be found in proceedings of the recent
Conferences on Automated Deduction (CADE) and in coverage of the CADE ATP System
Competition (CASC).
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1.2 History, New Features, and Changes

There have been several previous releases of OTTER, starting with version 0.9, which was
distributed at the 9th International Conference on Automated Deduction (CADE-9) in May
1988. Many new features have been added since then, many bugs have been fixed, and (of
course) many bugs have been introduced.

1.3 Useful Background

This manual does not contain an introduction to first-order logic or to automated deduction.
We assume that the reader knows the basic terminology includingterm(variable, constant,
complex term), atom, literal, clause, propositional variable, function symbol, predicate
symbol, Skolem constant, Skolem function, formula, conjunctive normal form(CNF), res-
olution, hyperresolution, andparamodulation. See [3, 14, 32] for an introductions and
overviews of automated theorem proving, see [23, 1] for collections of important papers,
see [30] for a list of general problems in the field, and see [33, 8, 18] for introductions and
applications that focus on the use of OTTER.

2 Outline of OTTER’s Inference Process

Once OTTER gets going with its real work—making inferences and searching for proofs—it
operates on clauses and on clauses only. If the user inputs nonclausal first-order formulas,
OTTER immediately translates them to clauses, by a straightforward procedure involving
negation normal form conversion, Skolemization, quantifier operations, and conjunctive
normal form conversion.

As with its predecessorsAURA andLMA /ITP, OTTER’s basic inference mechanism is
thegiven-clause algorithm, which can be viewed as a simple implementation of the set of
support strategy [31]. OTTER maintains four lists of clauses:

usable. This list contains clauses that are available to make inferences.

sos. Clauses in listsos (set of support) are not available to make inferences; they are
waiting to participate in the search.

passive. These clauses do not directly participate in the search; they are used only for
forward subsumption and unit conflict. The passive list is fixed at input and does not
change during the search. See Sec. 12.

demodulators. These are equalities that are used as rules to rewrite newly inferred
clauses.

Themain loopfor inferring and processing clauses and searching for a refutation operates
mainly on the listsusable andsos :

While (sos is not empty and no refutation has been found)

3



1. Let given_clause be the ‘‘best’’ clause in sos;
2. Move given_clause from sos to usable;
3. Infer and process new clauses using the inference

rules in effect; each new clause must have the
given_clause as one of its parents and members
of usable as its other parents; new clauses
that pass the retention tests are appended to sos;

End of while loop.

The set of support strategy requires the user to partition the input clauses into two sets:
those with support and those without. For each inference, at least one of the parents must
have support. Retained inferences receive support. In other words, no inferences are made
in which all parents are nonsupported input clauses. At input time, OTTER’s list sos is the
set of supported clauses, andusable is the nonsupported clauses. (Once the main loop
has started,usable no longer corresponds to nonsupported clauses, becausesos clauses
have moved there.) OTTER’s main loop implements the set of support strategy, because no
inferences are made in which all of the parents are from the initialusable list.

The following paragraph tries to answer the frequently asked question “At a certain
point, OTTER has all of the clauses available to make the inference I want, and one of
the potential parents is selected as the given clause—why doesn’t the program make the
inference?”

OTTER’s main loop eliminates an important kind of redundancy. Suppose one can infer
clauseC from clausesA andB, and suppose bothA andB are in listsos . If A is selected
as the given clause, it will be moved tousable and inferences will be made; butA will
not mate withB to inferC, becauseB is still in sos . We must wait untilB has also been
selected as given clause. Otherwise, we would inferC twice. (The redundancy would be
much worse with inference rules such as hyperresolution and UR-resolution with which a
clause can have many parents.) In general, all parents that participate in an inference must
either have been in the initialusable list or have been selected as given clauses. (This is
not true when demodulators are considered as parents.)

The procedure for processing a newly inferred clausenew_cl follows; steps marked with
* are optional.

1. Renumber variables.
* 2. Output new_cl.

3. Demodulate new_cl (including $ evaluation).
* 4. Orient equalities.
* 5. Apply unit deletion.

6. Merge identical literals (leftmost copy is kept).
* 7. Apply factor-simplification.
* 8. Discard new_cl and exit if too many literals or variables.

9. Discard new_cl and exit if new_cl is a tautology.
* 10. Discard new_cl and exit if new_cl is too ‘heavy’.
* 11. Sort literals.
* 12. Discard new_cl and exit if new_cl is subsumed by any clause

in usable, sos, or passive (forward subsumption).
13. Integrate new_cl and append it to sos.

* 14. Output kept clause.
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15. If new_cl has 0 literals, a refutation has been found.
16. If new_cl has 1 literal, then search usable, sos, and

passive for unit conflict (refutation) with new_cl.
* 17. Print the proof if a refutation has been found.
* 18. Try to make new_cl into a demodulator.

-------------
* 19. Back demodulate if Step 18 made new_cl into a demodulator.
* 20. Discard each clause in usable or sos that is subsumed by

new_cl (back subsumption).
* 21. Factor new_cl and process factors.

Steps 19–21 are delayed until steps 1–18 have been applied to all clauses inferred from the
active given clause.

3 Starting OTTER

Although OTTER has a primitive interactive feature (Sec. 15), it is essentially a noninter-
active program. OnUNIX -like systems it reads from the standard input and writes to the
standard output:

otter < input-file> output-file

No command-line options are accepted; all options are given in the input file.

4 Syntax

OTTER recognizes two basic types of statement: clauses and formulas. Clauses are simple
disjunctions whose variables are implicitly universally quantified. OTTER’s searches for
proofs operate on clauses. Formulas are first-order statements without free variables—all
variables are explicitly quantified. When formulas are input, OTTER immediately translates
them to clauses.

4.1 Comments

Comments can be placed in the input file by using the symbol%. All characters from the
first %on a line to the end of the line are ignored. Comments can occur within terms.
Comments are not echoed to the output file.

4.2 Names for Variables, Constants, Functions, and Predicates

Three kinds of character string, collectively referred to asnames, can be used for variables,
constants, function symbols, and predicate symbols:

• An ordinary nameis a string of alphanumerics,$, and_.
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• A special nameis a string of characters in the set*+-/\ˆ<>=‘˜:?@&!;# (and
sometimes| ).

• A quoted nameis any string enclosed in two quotation marks of the same type, either
" or ’ . We have no trick for including a quotation mark of the same type in a quoted
name.

(The reason for separating ordinary and special names has to do with infix, prefix, and post-
fix operators; see Sec. 4.6.) For completeness, we list here the meanings of the remaining
printable characters.

• . (period) — terminates input expressions.

• %— starts a comment (which ends with the end of the line).

• ,()[]{} (and sometimes| ) — are punctuation and grouping symbols.

Variables. Determining whether a simple term is a constant or a variable depends on the
context of the term. If it occurs in a clause, the symbol determines the type: the default
rule is that a simple term is a variable if it starts withu, v , w, x , y , or z . If the flag
prolog_style_variables is set, a simple term is a variable if and only if it starts with
an upper-case letter or with_. (Therefore, variables in clauses must be ordinary names.) In
a formula, a simple term is a variable if and only if it is bound by a quantifier.

Reserved and Built-in Names. Names that start with$ are reserved for special purposes,
including evaluable functions and predicates (Sec. 9), answer literals and terms (Sec. 11),
and some internal system names. The name= and any name that starts witheq , EQ, or
Eq, when used as a binary predicate symbol, is recognized as an equality predicate by the
demodulation and paramodulation processes. And some names, when they occur in clauses
or formulas, are recognized as logic symbols.

Overloaded Symbols. The user can use a name for more than one purpose, for example
as a constant and as a 5-ary predicate symbol. When the flagcheck_arity is set (the
default), the user is warned about such uses. Some built-in names are also overloaded; for
example,| is used both for disjunction and as Prolog-style list punctuation, and although
the symbol- is built in as logical negation, it can be used for both unary and binary minus
as well.

4.3 Terms and Atoms

Recall that, when interpreted, terms are evaluated as objects in some domain, and atoms
are evaluated as truth values. Constants and variables are terms. Ann-ary function symbol
applied ton terms is also a term. Ann-ary predicate symbol applied ton terms is an atom.
A nullary predicate symbol (also referred to as a propositional variable) is also an atom.
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The pure way of writing complex terms and atoms is withstandard application: the
function or predicate symbol, opening parenthesis, arguments separated by commas, then
closing parenthesis, for example,f(a,b,c) and=(f(x,e),x) . If all subterms of a
term are written with standard application, the term is inpure prefix form. Whitespace
(spaces, tabs, newlines, and comments) can appear in standard application terms anywhere
exceptbetween a function or predicate symbol and its opening parenthesis. If the flag
display_terms is set, OTTER will output terms in pure prefix form.

Infix Equality. Some binary symbols can be written in infix form; the most important is
=. In addition, a negated equality,-(a=b) can be abbreviateda!=b .

List Notation. Prolog-style list notation can be used to write terms that usually represent
lists. Table 1 gives some example terms in list notation and the corresponding pure prefix
form. Of course, lists can contain complex terms, including other lists.

Table 1: List Notation
[] $nil
[x|y] $cons(x,y)
[x,y] $cons(x,$cons(y,$nil))
[a,b,c,d] $cons(a,$cons(b,$cons(c,$cons(d,$nil))))
[a,b,c|x] $cons(a,$cons(b,$cons(c,x)))

4.4 Literals and Clauses

A literal is either an atom or the negation of an atom. A clause is a disjunction of literals.
The built-in symbols for negation and disjunction are- and | , respectively. Although
clauses can be written in pure prefix form, with- as a unary symbol and| as a binary
symbol, they are rarely written that way. Instead, they are almost always written in infix
form, without parentheses. For example, the following is a clause in both forms.

Pure prefix: |(-(a),|(=(b1,b2),-(=(c1,c2))))
Infix (abbreviated): -a | b1=b2 | c1!=c2

OTTER accepts both forms. (Clauses are parsed by the general term-parsing mechanism
presented in Sec. 4.6).

4.5 Formulas

Table 2 lists the built-in logic symbols for constructing formulas.

Formulas in Pure Prefix Form. Although the practice is rarely done, formulas can
be written in pure prefix form. Quantification is the only tricky part: there is a
special variable-arity symbol,$Quantified , for quantified formulas. For example,
∀xy∃z(P (x, y, z)|Q(x, z)) is represented by

7



Table 2: Logic Symbols
negation -
disjunction |
conjunction &
implication ->
equivalence <->
existential quantification exists
universal quantification all

$Quantified(all,x,y,exists,z,|(P(x,y,z),Q(x,z))).

Abbreviated Formulas. Formulas are usually abbreviated in a natural way. The asso-
ciativity and precedence rules for abbreviating formulas and the mechanism for parsing
formulas are presented in Sec. 4.6. Here are some examples.

Standard Usage OTTER syntax (abbreviated)
∀xP (x) all x P(x)
∀xy∃z(P (x, y, z) ∨ Q(x, z)) all x y exists z (P(x,y,z) | Q(x,z))
∀x(P (x) ∧Q(x) ∧R(x) → S(x)) all x (P(x) & Q(x) & R(x) -> S(x))

Note that if a formula has a string of identical quantifiers, all but the first can
be dropped. For example,all x all y all z p(x,y,z) can be shortened to
all x y z p(x,y,z) . In expressions involving the associative operations& and | ,
extra parentheses can be dropped. Moreover, a default precedence on the logic symbols
allows us to drop more parentheses:<-> has the same precedence as-> , and the rest in
decreasing order are-> , | , &, - . Greater precedence means closer to the root of the term
(i.e., larger scope). For example, the following three strings represent the same formula.

p | -q & r -> -s | t.
(p | (-(q) & r)) -> (-(s) | t).
->(|(p,&(-(q),r)),|(-(s),t)).

When in doubt about how a particular string will be parsed, one can simply add additional
parentheses and/or test the string by having OTTER read it and then display it in pure prefix
form. The following input file can be used to test the preceding example.

assign(stats_level, 0).
set(display_terms).
formula_list(usable).
p| -q&r-> -s|t. % This formula has minimum whitespace.
end_of_list.

In general, whitespace is required aroundall andexists and to the left of- ; otherwise,
whitespace around the logic symbols can be removed. See Sec. 4.6 for the rules.
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4.6 Infix, Prefix, and Postfix Expressions

Many Prolog systems have a feature that allows users to declare that particular function or
predicate symbols are infix, prefix, or postfix and to specify a precedence and associativity
so that parentheses can sometimes be dropped. OTTER has a similar feature. In fact, the
clause and formula parsing routines use the feature. Users who use only the predeclared
logic operators for clauses and formulas and the predeclared infix equality= can skip the
rest of this section.

Prolog users who are familiar with the declaration mechanism should note the following
differences between the ordinary Prolog mechanism and OTTER’s.

• The predeclared operators are different. See Table 3.

• OTTER does not treat comma as an operator; in particular,a,b,c cannot be a term,
as ina,b,c -> d,e,f .

• OTTER treats the quantifiersall andexists as special cases, because they don’t
seem to fit neatly into the standard Prolog mechanism.

• OTTER requires whitespace in some cases where the Prolog systems do not.

Symbols to be treated in this special way are given a type and a precedence. Either
OTTER predeclares the symbol’s properties, or the user gives OTTER a command of one of
the following forms.

op( precedence , type , symbol ).
op( precedence , type , list-of-symbols ).

The precedence is an integeri, 0 < i < 1000, and type is one of the following:
xfx , xfy , yfx (infix), fx , fy (prefix), xf , yf (postfix). See Table 3 for the commands
corresponding to the predeclared symbols.

Table 3: Predeclared Symbols
op(800, xfy, # ).
op(800, xfx, ->). op(700, xfx, @<).
op(800, xfx, <->). op(700, xfx, @>).
op(790, xfy, |). op(700, xfx, @<=).
op(780, xfy, &). op(700, xfx, @>=).

op(700, xfx, =). op(500, xfy, +).
op(700, xfx, !=). op(500, xfx, -).

op(700, xfx, <). op(500, fx, +).
op(700, xfx, >). op(500, fx, -).
op(700, xfx, <=).
op(700, xfx, >=). op(400, xfy, *).
op(700, xfx, ==). op(400, xfx, /).
op(700, xfx, =/=). op(300, xfx, mod).
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Given an expression that looks like it might be associated in a number of ways, the
relative precedence of the operators determines, in part, how it is associated. A symbol
with higher precedence is more dominant (closer to the root of the term), and one with
lower precedence binds more tightly. For example, the symbols-> , | , &, and - have
decreasing precedence; therefore the expressionp & - q | r -> s is understood as
((p & (-q)) | r) -> s .

In each of the types,f represents the symbol, andx andy , which represent the expres-
sions to which the symbol applies, specify how terms are associated. Given an expression
involving symbols of thesameprecedence, the types of the symbol determines, in part, the
association. See Table 4. The following are examples of associativity:

Table 4: Symbol Types
xfx infix (binary) don’t associate
xfy infix (binary) associate right
yfx infix (binary) associate left
fx prefix (unary) don’t associate
fy prefix (unary) associate
xf postfix (unary) don’t associate
yx postfix (unary) associate

• If + has typexfy , thena+b+c+d is understood asa+(b+(c+d)) .

• If -> has typexfx , thena->b->c is not well formed.

• If - has typefy , then- - -p is understood as-(-(-(p))) . (The spaces are
necessary; otherwise,--- will be parsed as single name.)

• If - has typefx , then- - -p is not well formed.

Caution:The associativity specifications in the infix symbol declarations say nothing about
the logical associativity of the operation, for example, whether(a+b)+c is the same object
as asa+(b+c) . The specifications are only about parsing ambiguous expressions. In most
cases, when an operator isxfy or yfx , it is also logically associative, but the logical
associativity is handled separately; it is built-in in the case of the logic symbols| and& in
OTTER clauses and formulas, and it must be axiomatized in other cases.

Details of the Symbol Declarations. (This paragraph can be skipped by most users.)
The precedence of symbols extends to the precedence of expressions in the following way.
The precedence of an atomic, parenthesized, or standard application expression is 0. Re-
spective examples arep, (x+y) , andp(a+b,c,d) . The precedence of a (well-formed)
nonparenthesized nonatomic expression is the same as the precedence of the root symbol.
For example,a&b has the precedence of&, anda&b|c has the precedence of the greater
symbol. In the type specifications,x represents an expression of lower precedence than the
symbol, andy represents an expression with precedence less than or equal to the symbol.
Considera+b+c , where+ has typexfy ; if association is to the left, then the second oc-
currence of+ doesnot fit the type, becausea+b , which corresponds tox , does not have
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a lower precedence than+; if association is to the right, then all is well. If we extend
the example, under the declarationsop(700, xfx, =) andop(500, xfy, +) , the
expressiona+b+c=d+e must be understood as(a+ (b+c))= (d+e) .

4.7 Whitespace in Expressions

The reason for separating ordinary names from special names (Sec. 4.2) is so that some
whitespace (spaces, tabs, newline, and comments) can be removed. We can writea+b+c
(instead of having to writea + b + c ), because “a+b+c ” cannot be a name, that is, it
must be parsed into five names.

Caution. There is a deficiency in OTTER’s parser having to do with whitespace be-
tween a name and opening parenthesis. The rule to use is:Insert some white space if
and only if it isnot a standard application.For example, the two pieces of white space
in (a+ (b+c))= (d+e) are required, and no white space is allowed afterf or g in
f(x,g(x)) .

4.8 Bugs and Other Anomalies in the Input and Output of Expressions

• The symbol| is either Prolog-style list punctuation or part of a special name. With
the built-in declaration of| as infix, the term[a|b] is ambiguous, with possible
interpretationst1 =$cons(a,b) andt2 =$cons(|(a,b),$nil) . OTTER rec-
ognizes it as the first. The termt2 can be written[(a|b)] . The bug is thatt2 will
be output without the parentheses. This is the only case we know in which OTTER

cannot correctly read a term it has written.

• A term consisting of a unary+ or - applied to a nonnegative integer is always trans-
lated to a constant.

• Parsing large terms without parentheses, saya1+a2+a3+...+a1000 , can be very
slow if the operator is left associative (yfx ). If one intends to parse such terms, one
should make the operator right associative (xyf ).

• Quoted strings cannot contain a quotation mark of the same type.

• The flagcheck_arity sometimes issues warnings when it should not.

• Braces ({} ) can be used to group input expressions, but OTTER always uses ordinary
parentheses on output.

4.9 Examples of Operator Declarations

Group Theory. Suppose we like to see group theory expressions in the form
(ab−1c−1−1)−1, in which right association is assumed. We can approximate this for OTTER

with (a*bˆ *cˆ ˆ)ˆ . (We have to make the group operator explicit;-1 is not a legal
OTTER name; the whitespace shown is required.) The declarationsop(400, xfy, *)
andop(350, yf, ˆ) suffice. Other examples of expressions (with minimum whites-
pace) using these declarations are(x*y)*z=x*y*z and(y*x)ˆ =xˆ *yˆ .
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OTTER Options. Options are normally input (Sec. 5.1) as in the following examples.

set(prolog_style_variables) .
clear(print_kept) .
assign(max_given, 300) .

If, however, we make the declarations (the precedences are irrelevant in this case)

op(100, fx, set).
op(100, fx, clear).
op(100, xfx, assign).

then we may write

set prolog_style_variables .
clear print_kept .
max_given assign 300 .

5 Commands and the Input File

Input to OTTER consists of a small set of commands, some of which indicate that a list of
objects (clauses, formulas, or weight templates) follows the command. All lists of objects
are terminated withend_of_list . The commands are given in Table 5. There are a few
other commands for fringe features (Sec. 19).

Table 5: Commands
include( file name). % read input from another file
op( precedence, type, name(s)). % declare operator(s)
make evaluable( sym, eval-sym). % make a symbol evaluable
set( flag name). % set a flag
clear( flag name). % clear a flag
assign( parametername, integer). % assign to a parameter
list( list name). % read a list of clauses
formula list( list name). % read a list formulas
weight list( weight list name). % read weight templates
lex( symbollist). % assign an ordering on symbols
skolem( symbollist). % identify skolem functions
lrpo multiset status( symbollist). % status for LRPO

5.1 Input of Options

OTTER recognizes two kinds of option: flags and parameters. Flags are Boolean-valued
options; they are changed with theset and theclear commands, which take the name
of the flag as the argument. Parameters are integer-valued options; they are changed with
theassign command, which takes the name of the parameter as the first argument and an
integer as the second. Examples are
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set(binary_res). % enable binary resolution
clear(back_sub). % do not use back subsumption
assign(max_seconds, 300). % stop after about 300 CPU seconds

The options are described and their default values are given in Sec. 6.

5.2 Input of Lists of Clauses

A list of clauses is specified with one of the following and is terminated with
end_of_list . Each clause is terminated with a period.

list(usable).
list(sos).
list(demodulators).
list(passive).

Example:

list(usable).
x = x. % reflexivity
f(e,x) = x. % left identity
f(g(x),x) = e. % left inverse
f(f(x,y),z) = f(x,f(y,z)). % associativity
f(z,x) != f(z,y) | x = y. % left cancellation
f(x,z) != f(y,z) | x = y. % right cancellation

end_of_list.

If the input contains more than one clause list of the same type, the lists will simply be
concatenated.

5.3 Input of Lists of Formulas

A list of formulas is specified with one of the following and is terminated with
end_of_list . Each formula is terminated with a period. (Note that demodulators cannot
be input as formulas.)

formula_list(usable).
formula_list(sos).
formula_list(passive).

Example (analogous to above):

formula_list(usable).
all a (a = a). % reflexivity
all a (f(e,a) = a). % left identity
all a (f(g(a),a) = e). % left inverse
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all a b c (f(f(a,b),c) = f(a,f(b,c))). % associativity
all a b c (f(c,a) = f(c,b) -> a = b). % left cancellation
all a b c (f(a,c) = f(b,c) -> a = b). % right cancellation

end_of_list.

If the input contains more than one formula list of the same type, the lists will simply be
concatenated.

5.4 Input of Lists of Weight Templates

A list of weight templates is specified with one of the following and is terminated with
end_of_list . Each weight template is terminated with a period.

weight_list(pick_given). % to select given clauses
weight_list(purge_gen). % to discard generated clauses
weight_list(pick_and_purge). % to both pick and purge
weight_list(terms). % to order terms

Example:

weight_list(pick_and_purge).
weight(a, 0). % weight of constant a is 0
weight(g($(2)), -50). % twice weight of arg -50
weight(P($(1),$(1)), 100). % sum of weights of args +100
weight(x, 5). % all variables have weight 5
weight(f(g($(3)),$(4)), -300). % see Sec. ‘‘Weighting’’

end_of_list.

See Sec. 10 for the syntax and use of weight templates.

5.5 The Commandslex , skolem , and lrpo multiset status

Each of the commandslex , skolem , and lrpo_multiset_status takes a list of
terms as an argument. Thelex command specifies an ordering on symbols, and the others
give properties to symbols. An example is

lex( [a, b, f(_,_), d, g(_), c] ).

The arguments off andg serve as place-holders only; they identifyf andg as function or
predicate symbols and specify the arity.

lex([...]) . The lex command specifies an ordering (smallest-first) on function and
constant symbols. Lexical ordering on terms is used in four contexts: orienting equal-
ity literals (Secs. 8.1.2 and 8.2.2), deciding whether an equality will be used as a
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demodulator (Secs. 8.1.3 and 8.2.3), deciding whether to apply a lex-dependent de-
modulator (Secs. 8.1.4 and 8.2.4), and evaluating functions/predicates that perform
lexical comparisons (Sec. 9). If alex command is not present, then OTTER uses a
default ordering (Sec. 8).

skolem([...]) . The skolem command identifies constant and function
symbols as Skolem symbols. (If the user inputs quantified formulas
and OTTER Skolemizes, this command is not necessary.) The Skolem
property is used by the optionspara_skip_skolem (Sec. 6.1.4) and
delete_identical_nested_skolem (Sec. 6.1.5).

lrpo multiset status([...]) . This command specifies multiset status for the
lexicographic recursive path ordering (flaglrpo ). See Sec. 8.2.

5.6 Other Commands

The commandop( precedence, type, name(s)) , exampleop(400,xfy,+) , declares
one or more symbols to have special properties with respect to input and output. See
Sec. 4.6.

The command make evaluable( symbol, evaluable-symbol) , for example
make_evaluable(_+_, $SUM(_,_) , copies evaluation properties from an evalu-
able symbol to another symbol, so that one can writex+3 instead of$SUM(x,3) . See
Sec. 9.1.

The commandinclude( file name) causes input to be read from another input
file. When the included file has been read, OTTER resumes reading commands after the
include command. The file name must be recognized as an OTTER name, so if it con-
tains characters such as period, slash, or hyphen, it must be enclosed in (single or double)
quotes. Included files can include still other files.A list of objects (clauses, formulas,
or weight templates) cannot be split among different input files.One can, however, read
clauses into a list from more than one file, as in the following example.

standard input file f1.in file f2.in
include("f1.in"). list(usable). list(usable).
include("f2.in"). p(a). p(b).

end_of_list. end_of_list.

6 Options

Flags are Boolean-valued options, and parameters are integer-valued options. When the
user changes an option, OTTER sometimes automatically changes other options. The user
is informed in the output file when such a change occurs.

Several additional flags and parameters are described in Sec. 19.
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6.1 Flags

Flags are changed with theset andclear commands, for example,

set(sos_queue).
clear(print_given).

6.1.1 Main Loop Flags

A given clause is taken fromsos at the beginning of each iteration of the main loop. The
default is to take the lightest clause with respect to eitherweight_list(pick_given)
or weight_list(pick_and_purge) . If neither weight list is present, the weight of
a clause is its number of symbols.

sos_queue . Default clear. If this flag is set, the first clause insos is selected as the given
clause (the set of support list operates as a queue). This causes a breadth-first search, also
called level saturation. Some information about search levels is printed (see Sec. 16) if this
flag is set.

sos_stack . Default clear. If this flag is set, the last clause insos becomes the given
clause (the set of support list operates as a stack). This causes a depth-first search (which
rarely is useful with OTTER).

input_sos_first . Default clear. If this flag is set, the input clauses insos are given a
very lowpick_given weight so that they are the first clauses selected as given clauses.

interactive_given . Default clear. If this flag is set, then when it’s time to select a
new given clause, the user is prompted for a choice. This flag has priority over all other
flags that govern selection of the given clause.

print_given . Default set. If this flag is set, clauses are output when they become given
clauses.

print_lists_at_end . Default clear. If this flag is set, thenusable , sos , and
demodulators are printed at the end of the search.

6.1.2 Inference Rules

binary_res . Default clear. If this flag is set, the inference rule binary resolution (along
with any other inference rules that are set) is used to generate new clauses. Setting this flag
causes the flagsfactor andunit_deletion to be automatically set.

hyper_res . Default clear. If this flag is set, the inference rule (positive) hyperresolution
(along with any other inference rules that are set) is used to generate new clauses.

neg_hyper_res . Default clear. If this flag is set, the inference rule negative hyperreso-
lution (along with any other inference rules that are set) is used to generate new clauses.

ur_res . Default clear. If this flag is set, the inference rule UR-resolution (unit-resulting
resolution) (along with any other inference rules that are set) is used to generate new clauses.
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para_into . Default clear. If this flag is set, the inference rule “paramodulationinto
the given clause” (along with any other inference rules that are set) is used to generate
new clauses. When using paramodulation, one should include the appropriate clause for
reflexivity of equality, for example,x=x .

para_from . Default clear. If this flag is set, the inference rule “paramodulationfrom
the given clause” (along with any other inference rules that are set) is used to generate
new clauses. When using paramodulation, one should include the appropriate clause for
reflexivity of equality, for example,x=x .

demod_inf . Default clear. If this flag is set, demodulation is applied, as if it were an
inference rule, to the given clause. This is useful when term rewriting is the main objective.
When this flag is set, the given clause is copied, then processed just like any newly generated
clause.

6.1.3 Resolution Restriction Flags

order_hyper . Default set. If this flag is set, then the inference ruleshyper_res
andneg_hyper_res are constrained by an ordering strategy. A literal in a satellite is
allowed to resolve only if it is maximal in the satellite. (A literal is maximal in a clause
if and only if there is no larger literal.) The ordering uses only the lexical value (as in the
lex command or the default, Sec. 5.5) of the predicate symbol. (This flag is irrelevant for
positive hyperresolution with a Horn set.)

unit_res . Default clear. This flag is a restriction on binary resolution. If it is set, then
all binary resolution inferences must be unit resolutions; that is, one of the parents must be
a unit clause. Setting this flag causes to the flagbinary_res to be set as well.

ur_last . Default clear. This flag is a restriction on unit-resulting resolution. If it is set,
then the UR-resolvent must come from the last literal of the nonunit parent (the nucleus).
This is related to thetarget strategyin linked UR-resolution.

6.1.4 Paramodulation Restriction Flags

para_from_left . Default set. If this flag is set, paramodulation is allowedfrom the left
sides of equality literals. (Applies to bothpara_into andpara_from inference rules.)

para_from_right . Default set. If this flag is set, paramodulation is allowedfrom the
right sides of equality literals. (Applies to bothpara_into andpara_from inference
rules.)

para_into_left . Default set. If this flag is set, paramodulation is allowedinto left
sides of positive and negative equalities. (Applies to bothpara_into andpara_from
inference rules.)

para_into_right . Default set. If this flag is set, paramodulation is allowedinto right
sides of positive and negative equalities. (Applies to bothpara_into andpara_from
inference rules.)

para_from_vars . Default clear. If this flag is set, paramodulationfrom variables is
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allowed. Warning: Setting this option may produce too many paramodulants.(Applies to
bothpara_into andpara_from inference rules.)

para_into_vars . Default clear. If this flag is set, paramodulationinto variables is
allowed. Warning: Setting this option may produce too many paramodulants.(Applies to
bothpara_into andpara_from inference rules.)

para_from_units_only . Default clear. If this flag is set, paramodulation is allowed
only if the fromclause is a unit (equality). (Applies to bothpara_into andpara_from
inference rules.)

para_into_units_only . Default clear. If this flag is set, paramodulation is allowed
only if the into clause is a unit. (Applies to bothpara_into andpara_from inference
rules.)

para_skip_skolem . Default clear. If this flag is set, paramodulation is never allowed
into subterms of Skolem expressions [16]. (Applies to bothpara_into andpara_from
inference rules.)

para_ones_rule . Default clear. If this flag is set, paramodulation obeys the 1’s rule.
(The 1’s rule is a special-purpose strategy for problems in combinatory logic; its usefulness
has not been demonstrated elsewhere.) (Applies to bothpara_into andpara_from
inference rules.)

para_all . Default clear. If this flag is set, all occurrences of theinto term are replaced
with the replacement term. (Applies to bothpara_into and para_from inference
rules.)

6.1.5 Flags for Handling Generated Clauses

(Section 6.1.6 describes equality-related flags for handling generated clauses.)

detailed_history . Default set. This flag affects the parent lists in clauses that are
derived bybinary_res , para_from , or para_into . If the flag is set, the positions
of the unified literals or terms are given along with the IDs of the parents. See Sec. 16 for
examples.

order_history . Default clear. This flag affects the order of parent lists in clauses that
are derived by hyperresolution, negative hyperresolution, or UR-resolution. If the flag is
set, then the nucleus is listed first, and the satellites are listed in the order in which the
corresponding literals appear in the nucleus. If the flag is clear (or if the clause was derived
by some other inference rule), the given clause is listed first.

unit_deletion . Default clear. If this flag is set, unit deletion is applied to newly
generated clauses. Unit deletion removes a literal from a newly generated clause if the
literal is the negation of an instance of a unit clause that occurs inusable or sos . For
example, the second literal ofp(a,x) | q(a,x) is removed by the unit-q(u,v) ; but
it is not removed by the unit-q(u,b) , because that unification causes the instantiation of
x . All such literals are removed from the newly generated clause, even if the result is the
empty clause. One can view unit deletion with unit clauseP as demodulation applied to
literals with the demodulatorP = $T. (Unit deletion is not useful if all generated clauses
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are units.)

back_unit_deletion . Default clear. If this flag is set, then whenever a unit clause is
derived and kept, it is used to apply unit deletion to all existing clauses inusable or sos .

delete_identical_nested_skolem . Default clear. If this flag is set, clauses with
the nested Skolem property are deleted. A clause has the nested Skolem property if it
contains a a Skolem expression that (properly) contains an occurrence of its leading Skolem
symbol. For example, iff is a Skolem function, a clause containing a termf(f(x)) or a
termf(g(f(x))) is deleted.

sort_literals . Default clear. If this flag is set, literals of newly generated clauses are
sorted—negative literals, then positive literals, then answer literals. The main purpose of
this flag is to make clauses more readable. In some cases, this flag can speed up subsump-
tion on non-unit clauses.

for_sub . Default set. If this flag is set, forward subsumption is applied during the pro-
cessing of newly generated clauses. (New clauses are deleted if subsumed by any clause in
usable or sos .)

back_sub . Default set. If this flag is set, back subsumption is applied during the pro-
cessing of newly kept clauses. (Clauses inusable or sos are deleted if subsumed by the
newly kept clause.)

factor . Default clear. If this flag is set, factoring is applied in two ways. First, factoring
is applied as a simplification rule to newly generated clauses. If a generated clauseC has
factors that subsumeC, it is replaced with its smallest subsuming factor. Second, it is
applied as an inference rule to newly kept clauses. Note that unlike other inference rules,
factoring is not applied to the given clause; it is applied to a new clause as soon as it is kept.
All factors are generated in an iterative manner. Factoringis attempted on answer literals.
If factor is set, a clause withn literals will not cause a clause with fewer thann literals
to be deleted by subsumption.

6.1.6 Demodulation and Ordering Flags

demod_history . Default set. If this flag is set, then when a clause is demodulated, the
ID numbers of the demodulators are included in the derivation history of the clause.

order_eq . Default clear. If this flag is set, equalities are flipped if the right side is heavier
than the left. See Secs. 8.1.2 and 8.2.2 for the meaning of “heavier”.

eq_units_both_ways . Default clear. If this flag is set, unit equality clauses (both
positive and negative) are sometimes stored in both orientations; the action taken depends
on the flagorder_eq . If order_eq is clear, then whenever a unit, sayα = β, is
processed,β = α is automatically generated and processed. Iforder_eq is set, then the
reversed equality is generated only if the equality cannot be oriented (see Secs. 8.1.2 and
8.2.2).

demod_linear . Default clear. If this flag is set, demodulation indexing is disabled, and a
linear search ofdemodulators are used when rewriting terms. With indexing disabled,
if more than one demodulator can be applied to rewrite a term, then the one whose clause
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number is lowest is applied; this flag is useful when demodulation is used to do “procedural”
things. With indexing enabled (the default), demodulation is much faster, but the order in
whichdemodulators is applied is not under the control of the user.

demod_out_in . Default clear. If this flag is set, terms are demodulated outside-in, left to
right. In other words, the program attempts to rewrite a term before rewriting (left to right)
its subterms. The algorithm is “repeat{rewrite the leftmost outermost rewritable term} until
no more rewriting can be done or the limit is reached”. (The effect is like a standard reduc-
tion in lambda calculus or in combinatory logic.) If this flag is clear, terms are demodulated
inside-out (all subterms are fully demodulated before attempting to rewrite a term). (The
evaluable conditional term$IF( condition, then-value, else-value) is an exception when
inside-out demodulation is in effect. See Sec. 9.)

dynamic_demod . Default clear. If this flag is set,somenewly kept equalities are made
into demodulators (Secs. 8.1.3 and 8.2.3). Setting this flag automatically sets the flag
order_eq .

dynamic_demod_all . Default clear. If this flag is set, OTTER attempts to makeall
newly kept equalities into demodulators (Sec. 8.1.3). Setting this flag automatically sets the
flagsdynamic_demod andorder_eq .

dynamic_demod_lex_dep . Default clear. If this flag is set, dynamic demodulators
may be lex-dependent orLRPO-dependent. See Secs. 8.1.3 and 8.2.3.

back_demod . Default clear. If this flag is set, back demodulation is applied to
demodulators , usable , andsos whenever a new demodulator is added. Back de-
modulation is delayed until the inference rules are finished generating clauses from the
current given clause (delayed untilpost_process ). Setting theback_demod flag au-
tomatically sets the flagsorder_eq anddynamic_demod .

anl_eq . Default clear. If this flag is set, a standard equational strategy will be
applied to the search. This flag is really a metaflag; its only effect is to alter
other flags as follows:set(para_from) , set(para_into) , set(para_from_left) ,
clear(para_from_right) , set(para_into_left) , clear(para_into_right) ,
set(para_from_vars) , set(eq_units_both_ways) , set(dynamic_demod_all) ,
set(back_demod) , set(process_input) , andset(lrpo) . This strategy is derived
mostly from equational strategies developed at Argonne by Larry Wos and Ross Overbeek.
It can also be used for Knuth-Bendix completion. See Sec. 8.3 for more details.

knuth_bendix . Default clear. Setting this flag simply causes the preceding flag,
anl_eq , to be set.

lrpo . Default clear. If this flag is set, then the lexicographic recursive path ordering (also
calledRPOwith status) is used to compare terms. If this flag is clear, weight templates and
lexicographic order are used (Secs. 8.2 and 8.3).

lex_order_vars . Default clear. This flag affects lex-dependent demodulation and the
evaluable functions and predicates that perform lexical comparisons. If this flag is set, then
lexical ordering is a total order on terms; variables are lowest in the term order, withx
≺ y ≺ z ≺ u ≺ v ≺ w≺ v6 ≺ v7 ≺ v8 ≺ · · · . If this flag is clear, then a variable is
comparable only to another occurrence of the same variable; it is not comparable to other
variables or to nonvariables. For example,$LLT(f(x),f(y)) evaluates to$T if and
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only if lex_order_vars is set. If lrpo is set,lex_order_vars has no effect on
demodulation(Sec. 8.1.1).

symbol_elim . Default clear. If this flag is set, then new demodulators are ori-
ented, if possible, so that function symbols (excluding constants) are eliminated. A
demodulator can eliminate all occurrences of a function symbol if the arguments on
the left side are all different variables and if the function symbol of the left side does
not occur in the right side. For example, the demodulatorsg(x) = f(x,x) and
h(x,y) = f(x,f(y,f(g(x),g(y)))) eliminate all occurrences ofg andh, respec-
tively.

rewriter . Default clear. If this flag is set, then the clauses in thesos list will
simply be demodulated by the demodulators, the run will terminate. This is really
just a metaflag, which automatically causes the several other options parameters to be
changed as follows:set(demod_inf) , clear(for_sub) , clear(back_sub) ,
andassign(max_levels, 1) .

6.1.7 Input Flags

check_arity . Default set. If this flag is set, a warning is given if symbols have variable
arities (different numbers of arguments in different places in the input). For example, the
term f(a,a(b)) would be flagged. (Constants have arity 0.) If this flag is clear, then
variable arities are permitted; in the preceding term, the two occurrences ofa would be
treated as different symbols.

prolog_style_variables . Default clear. If this flag is set, a name with no arguments
in a clause is a variable if and only if it starts withA throughZ (upper case) or with_.

echo_included_files . Default set. If this flag is set, input files included with the
include( filename) command are echoed in the same way as ordinary input.

simplify_fol . Default set. If this flag is set, then some propositional simplification is
attempted when converting input first-order formulas into clauses. The simplification oc-
curs after Skolemization, during the CNF translation. If simplification detects a refutation,
it will always produce the empty clause$F, but OTTER will not recognize the proof (i.e.,
give the proof message and stop) unless the flagprocess_input is set.

process_input . Default clear. If this flag is set, inputusable and sos clauses
(including clauses from formula input) are processed as if they had been generated by
an inference rule. (See the procedure for processing newly inferred clauses in Sec. 2.)
The exceptions are (1) the following clause-processing options are not applied to input
clauses:max_literals , max_weight , delete_identical_nested_skolem ,
andmax_distinct_vars , (2) clauses input on listusable remain there if retained,
and (3) some output appears even if the output flags (Sec. 6.1.8) are clear.

tptp_eq . Default clear. If this flag is set, then “EQUAL” is the one and only symbol
recognized as the equality relation for the operations that build in equality (demodulation
and paramodulation).
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6.1.8 Output Flags

very_verbose . Default clear. If this flag is set, a tremendous amount of information
about the processing of generated clauses is output.

print_kept . Default set. If this flag is set, new clauses are output if they are retained (if
they pass all retention tests).

print_proofs . Default set. If this flag is set, all proofs that are found are printed to the
output file. If this flag is clear, no proofs are printed.

build_proof_object_1 . Default clear. If this flag is set, then whenever a proof is
found, atype 1 proof objectis printed to the output file. Proof objects are very detailed proof
and were introduced for two purposes: so that proofs can be checked by an independent
program, and so that proofs can be translated into other forms by other programs. Proof
objects are written in a Lisp-like notation. (Type 2 proof objects are usually preferred.)
Warning: Construction of proof objects is fragile—sometimes it simply fails.

build_proof_object_2 . Default clear. If this flag is set, then whenever a proof is
found, atype 2 proof objectis printed to the output file. Type 2 proof objects are used in the
IVY verification project [19], and a detailed description (definition in ACL2) can be found
there.Warning: construction of proof objects is fragile—sometimes it simply fails.

print_new_demod . Default set. If this flag is set, demodulators that are adjoined during
the search (dynamic_demod ) are printed. New demodulators are always printed during
input processing.

print_back_demod . Default set. If this flag is set, clauses are printed as they are back
demodulated. Back-demodulated clauses are always printed during input processing.

print_back_sub . Default set. If this flag is set, clauses are printed if they are back
subsumed. Back-subsumed clauses are always printed during input processing.

display_terms . Default clear. If this flag is set, all clauses and terms are printed in
pure prefix form (Sec. 4.3). This feature can be useful for debugging the input.

pretty_print . Default clear. If this flag is set, clauses are output in an indented form
that is sometimes easier to read. The parameterpretty_print_indent (default 4)
specifies the number of spaces for each indent level.

bird_print . Default clear. If this flag is set, terms constructed with
the binary function a are output in combinatory logic notation (without the
function symbol a, and left associated unless otherwise indicated). For ex-
ample, the clausea(a(a(S,x),y),z) = a(a(x,z),a(y,z)) is output as
S x y z = x z (y z) . Terms cannot be input in combinatory logic notation.

formula_history . Default clear. If this flag is set, and if quantified formulas are given
as input, then the formulas will occur in proofs, and the clauses derived from the formulas
will refer to the formulas with the justificationclausify .
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6.1.9 Indexing Flags

index_for_back_demod . Default set. If this flag is set, all nonvariable terms in all
clauses are indexed so that the appropriate ones can be quickly retrieved when applying a
dynamic demodulator to the clause space (back demodulation). This type of indexing can
use a lot of memory. If the flag is clear, back demodulation still works, but it is much slower.

for_sub_fpa . Default clear. If this flag is set,FPA indexing is used for forward subsump-
tion. If this flag is clear, discrimination tree indexing is used. Setting this flag can decrease
the amount of memory required by OTTER. Discrimination tree indexing can require a lot
of memory, but it is usuallymuchfaster thanFPA indexing.

no_fapl . Default clear. If this flag is set, positive literals are not indexed for unit conflict
or back subsumption. This option should be used only when no negative units will be
generated (as with hyperresolution), back subsumption is disabled, and discrimination tree
indexing is being used for forward subsumption. This option can save a little time and
memory.

no_fanl . Default clear. If this flag is set, negative literals are not indexed for unit conflict
or back subsumption. This option should be used only when no positive units will be gen-
erated (as with negative hyperresolution), back subsumption is disabled, and discrimination
tree indexing is being used for forward subsumption. This option can save a little time and
memory.

6.1.10 Miscellaneous Flags

control_memory . Default clear. If this flag is set, then the automatic memory-control
feature is enabled (Sec. 17).

propositional . Default clear. If this flag is set, OTTER assumes that all clauses are
propositional, and it makes some optimizations.The user should set this flag only when all
clauses are propositional; otherwiseOTTER may make unsound inferences and/or crash.

really_delete_clauses . Default clear. If this flag is clear, clauses that are deleted
by back subsumption or back demodulation are not really removed from memory; they
are retained in a special place so that they can be printed if they occur in a proof. If the
job involves much back subsumption or back demodulation and if memory conservation is
important, these “deleted” clauses can be removed from memory by setting this flag (and
any proof containing such a clause will not be printed in full).

atom_wt_max_args . Default clear. If this flag is set, the default weight of an atom
(the weight if no template matches the atom) is 1 plus the maximum of the weights of the
arguments. If this flag is clear, the default weight of an atom is 1 plus the sum of the weights
of the arguments.

term_wt_max_args . Default clear. If this flag is set, the default weight of a term
(the weight if no template matches the atom) is 1 plus the maximum of the weights of the
arguments. If this flag is clear, the default weight of a term is 1 plus the sum of the weights
of the arguments.
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free_all_mem . Default clear. If this flag is set, then at the end of the search, most dy-
namically allocated memory is returned to the memory managers. This flag is used mainly
for debugging, in particular, to help find memory leaks. Setting this flag willnot cause
OTTER to use less memory.

sigint_interact . Default set. If this flag is set, then when OTTER receives an in-
terrupt signal from the operating system (usually caused by the user pressing control-C),
OTTER will enter a primitive interactive mode, which is described in Sec. 15.

6.2 Parameters

Parameters are integer-valued options. In the descriptions that follow,∞ is a large integer,
usually the size of the largest ordinary integer on the user’s computer (i.e., INTMAX in
ANSI C).

6.2.1 Monitoring Progress

assign(report, n) . Default−1, range [−1..∞]. If n > 0, then statistics are output
approximately everyn CPU seconds. The time is not exact because statistics will be output
only after the current given clause is finished. This feature can be used in conjunction with
UNIX programs such asgrep andawk to conveniently monitor OTTER jobs.

6.2.2 Placing Limits on the Search

assign(max_seconds, n) . Default−1, range [−1..∞]. If n 6= −1, the search is
terminated after aboutn CPU seconds. The time is not exact because OTTER will wait until
the current given clause is finished before stopping.

assign(max_gen, n) . Default−1, range [−1..∞]. If n 6= −1, the search is terminated
after aboutn clauses have been generated. The number is not exact because OTTER will
wait until it is finished with the current given clause before stopping.

assign(max_kept, n) . Default−1, range [−1..∞]. If n 6= −1, the search is termi-
nated after aboutn clauses have been kept. The number is not exact because OTTER will
wait until it is finished with the current given clause before stopping.

assign(max_given, n) . Default−1, range [−1..∞]. If n 6= −1, the search is termi-
nated aftern given clauses have been used.

assign(max_levels, n) . Default −1, range [−1..∞]. If n 6= −1, the flag
sos_queue will be automatically set, causing a level saturation (breadth-first) search.
In this case the search is terminated aftern levels have been processed.

assign(max_mem, n) . Default−1, range [−1..∞]. If n 6= −1, OTTER will terminate
the search before more thann kilobytes have been dynamically allocated (malloc ).
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6.2.3 Limits on Properties of Generated Clauses

assign(max_literals, n) . Default−1, range [−1..∞]. If n 6= −1, new clauses are
discarded if they contain more thann literals.

assign(max_weight, n) . Default ∞, range [−∞..∞]. New clauses are dis-
carded if their weight is more thann. The weight listpurge_gen or the weight list
pick_and_purge is used to weigh clauses (both lists may not be present; see Sec. 10).

assign(max_distinct_vars, n) . Default−1, range [−1..∞]. If n 6= −1, new
clauses are discarded if they contain more thann distinct variables.

assign(max_answers, n) . Default−1, range [−1..∞]. If n 6= −1, new clauses are
discarded if they contain more thann answer literals.

6.2.4 Indexing Parameters

assign(fpa_literals, n) . Default 8, range [0..100].n is the FPA indexing depth
for literals. (FPA literal indexing is used for resolution inference rules, back subsumption,
and unit conflict. It is also used for forward subsumption if the flagfor_sub_fpa is set.)
If n = 0, indexing is by predicate symbol only; ifn = 1, indexing looks at the predicate
symbol and the leading symbols of the arguments of the literal, and so on. Greater indexing
depth requires more memory, but it can be faster. Changing this parameter will not change
the clauses that are generated or kept.

assign(fpa_terms, n) . Default 8, range [0..100].n is the FPA indexing depth for
terms. (FPA term indexing is used for paramodulation inference rules and back demodula-
tion.) If n = 0, indexing is by symbol only; ifn = 1, indexing looks at the symbol and the
leading symbols of the arguments of the term; and so on. Greater indexing depth requires
more memory, but it can be faster. Changing this parameter will not change the clauses that
are generated or kept.

6.2.5 Miscellaneous Parameters

assign(pick_given_ratio, n) . Default−1, range [−1..∞]. This parameter causes
some given clauses to be selected by weight and others in a breadth-first manner (by age). If
n 6= −1, n given clauses are are selected by (smallestpick_given ) weight, then the first
clause insos is selected as given clause, thenn given clauses are selected by weight, and
so forth. This method allows heavy clauses to enter into the search while focusing mainly
on light clauses. It combines breadth-first search and best-first search (default selection by
weight). If n is−1, then the clause with smallestpick_given weight is always selected.

assign(age_factor, n) . Default 0, range [−∞..∞]. If n 6=0, then the pick-given
weight of clauses is adjusted as follows. Ifg is the number of clauses that have been given
at the time the clause is kept, andn is the age factor, theng/n (with integer division) is
added to the pick-given weight of the clause.

assign(distinct_vars_factor, n) . Default 0, range [−∞..∞]. If n 6=0, then
the pick-given weight of clauses is adjusted as follows. Ifv is the number of variable in the
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clause, andn is the age factor, thenv/n (with integer division) is added to the pick-given
weight of the clause.

assign(interrupt_given, n) . Default−1, range [−1..∞]. If n > 0, then aftern
given clauses have been used, OTTER goes into its interactive mode (Sec. 15).

assign(demod_limit, n) . Default 1000, range [−1..∞]. If n 6= −1, n is the max-
imum number of rewrites that will be applied when demodulating a clause. The count
includes$ symbol evaluation. Ifn is−1, there is no limit. A warning message is printed if
OTTER attempts to exceed the limit.

assign(max_proofs, n) . Default 1, range [−1..∞]. If n = 1, OTTER will stop if it
finds a proof. Ifn > 1, then OTTER will not stop when it has found the first proof; instead,
it will try to keep searching until it has foundn proofs. (Some of the proofs may in fact be
identical.) (Because forward subsumption occurs before unit conflict, a clause representing
a truly different proof may be discarded by forward subsumption before unit conflict detects
the proof.) Ifn = −1, OTTER will find as many proofs as it can (within other constraints).

assign(min_bit_width, n) . Defaultbits-per-long, range [0..bits-per-long]. When
the evaluable bit operations (Sec. 9) produce a new bit string, leading zeros are suppressed
under the constraint thatn is the minimum string length. (The valuebits-per-longis the
number of bits in the C data type long integer.)

assign(neg_weight, n) . Default 0, range [−∞..∞]. The valuen is the additional
weight (positive or negative) that is given to negated literals. Weight templates cannot be
used for this purpose because the negation sign on a literal cannot occur in weight templates.
(Atoms, not literals, are weighed with weight templates; see Sec. 10.)

assign(pretty_print_indent, n) . Default 4, range [0..16]. See flag
pretty_print , Sec. 6.1.8.

assign(stats_level, n) . Default 2, range [0..4]. This indicates the level of detail of
statistics printed in reports and at the end of the search. Ifn = 0, no statistics are output; if
n = 1, a few important search and time statistics are output; ifn = 2, all search and time
statistics are output; ifn = 3, search, time, and memory statistics are output; and ifn = 4,
search, time, and memory statistics and option values are output. This parameter does not
affect the speed of OTTER, because all statistics are always kept.

assign(dynamic_demod_depth, n) . Default -1, range [−1 ..∞].
assign(dynamic_demod_rhs, n) . Default 1, range [−∞..∞].
These two parameters work together, allowing an extension of the ad hoc ordering when
deciding whether a new equality should be a demodulator. (It is not used if flaglrpo
is set.) The equality, sayα = β, is first oriented as described in Sec. 8.1. Ifwt(β) ≤
dynamic_demod_rhs and if wt(α) − wt(β) ≥ dynamic_demod_depth , then the
equality can be a demodulator. With the default values for these parameters, the behavior is
as described in Sec. 8.1

assign(new_symbol_lex_position, n) . Default∞, range [1 ..∞]. New symbols
can be created during the search, usually by $-evaluation. With this parameter, the user can
specify where they will occur in the symbol ordering. If there is alex command, all
new symbols will have a lexical values between thenth and(n + 1)th symbol in thelex
command. The ordering among the new symbols is the default ordering. This also applies
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to input symbols not occurring in thelex command.

7 Demodulation

Basic demodulation is straightforward, but there are many variations and enhancements
whose descriptions are scattered throughout this manual. This section (which is mostly
redundant) lists some overall comments on demodulation and points the reader to the ap-
propriate sections on variations and enhancements.

The Equality Symbol. The binary symbol= (which can be used as an infix symbol) and
any name that starts witheq , EQ, or Eq, when used as a binary predicate symbol, is recog-
nized as an equality predicate by demodulation.An exception:if the flag tptp_eq is set,
thenEQUALis the one and only equality symbol; this flag was introduced for compatibility
with the TPTP problem library [25].

When and How It Is Applied. Demodulation is applied, using equalities in the list
demodulators , to every clause that is generated by an inference rule. Also, when the
flagdemod_inf (Sec. 6.1.2) is set, demodulation is, in effect, treated as an inference rule.

Demodulation of Atomic Formulas. Atomic formulas (literals with any negation sign
removed) can be demodulated. Useful examples are

(x*y = x*z) = (y = z). % one form of cancellation
D(x,y) = D(y,x). % lex-dependent atom demodulator
P(junk) = $T. % trick to get rid of a literal

The appropriate clause simplification occurs if the right side of an atom demodulator is one
of the Boolean constants$T or $F. Negated literals cannot be demodulated, but the atom
of a negative literal can be demodulated.

Inside-out or Outside-in. The user has the option of having terms rewritten inside-out or
outside-in. (See the description of the flagdemod_out_in in Sec. 6.1.6.) Although the
choice makes little difference for many applications, we nearly always recommend inside-
out. Outside-in can be much faster in cases where the left side of the demodulator has a
variable not in the right side.

Order of Demodulators. By default, demodulation uses an indexing mechanism to find
demodulators that can rewrite a given term; if more than one demodulator can apply, the
user has no control over which one is used. To order the set of demodulators for application,
the user can set the flagdemod_linear (Sec. 6.1.6).
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Dynamic Demodulation and Back Demodulation. Positive equality units derived dur-
ing the search can be made into demodulators (Secs. 6.1.6, 8.1.3, and 8.2.3). Demodulators
adjoined during the search can be used to rewrite previously derived clauses (Sec. 6.1.6).

Termination. With the default ad hoc ordering, demodulation is not guaranteed to termi-
nate by itself. Therefore, a parameter (demod_limit ) specifies the maximum number of
rewrite steps that will be applied to a clause. With the lexicographic recursive path ordering
(flag lrpo ), demodulation will always terminate by itself. (Even withlrpo , the parame-
ter demod_limit has effect because demodulation sequences can have an unreasonable
number of steps.)

Introduction of New Variables. A demodulator introduces new variables if it has vari-
ables on the right side that do not occur on the left. TheLRPO flag does not allow demod-
ulators to introduce new variables. The default ordering allows variable introductions only
for input demodulators.

Lex- and LRPO-dependent Demodulation. Ordinary demodulators are used uncondi-
tionally; they usually simplify or canonicalize regardless of the context in which they are
applied. But some equalities that are not normally thought of as rewrite rules can be used
as such and are applied only if the application produces a “better” term. These are called
lex- or LRPO-dependent demodulators (depending on whether the flaglrpo is set). For
example, commutativity of an operation, sayx + y = y + x, can be used to rewriteb + a
to a + b if a + b ≺ b + a. See Secs. 6.1.6, 8.1.4, and 8.2.4. Do not confuse this type of
demodulation with conditional demodulation.

Demodulation of Evaluable Terms. OTTER has many built-in function and predicate
symbols for doing arithmetic, logic operations, bit operations, and other operations. The
evaluation of terms containing these built-in symbols is done as a part of demodulation
(Sec. 9).

Conditional Demodulation. Demodulators can be written with conditions as

condition-> α = β.

The demodulator is applied only if the condition, instantiated with the matching substitu-
tion, demodulates to$T (meaningtrue). This is a “fringe feature”, and it has not been
heavily used (Sec. 19.4).

Demodulation as Equational Programming. OTTER’s demodulation, especially with
the evaluable symbols, can be used as a general-purpose (although not particularly efficient
or convenient) equational programming system (Sec. 9). We have not seen many cases
where this is useful in the context of a traditional refutation search, but it has proved to be
very useful for various symbolic programming tasks, particularly with hyperresolution.
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Demodulation to Delete Clauses. Demodulation can be used as a trick to overcome one
of the deficiencies of the weighting mechanism (Sec. 10) to discard undesired clauses.
Weighting does not implement a true match (one-way unification) operation. If the user
wishes to discard every clause that contains an instance of a particular term, sayf(x,x) , a
demodulator, sayf(x,x) = junk , can be input along with a weight template that gives
junk a purge_gen weight higher thanmax_weight . (When using this and similar
tricks, the user must make sure that the clauses containingjunk are really discarded by
weighting or another means; on occasion we have found proofs that are incorrect because
they depend onjunk .)

8 Ordering and Dynamic Demodulation

This section contains a more complete explanation of the optionslex_order_vars ,
order_eq , symbol_elim , dynamic_demod , dynamic_demod_all , lrpo , and
dynamic_demod_lex_dep . It gives all the rules—built in and optional—for orienting
equality literals and deciding which equalities will be dynamic demodulators. OTTER uses
two kinds of term ordering.

ad hoc ordering.This is a collection of ordering methods that we have accumulated
through many years of experimentation. The methods do not have a substantial theo-
retical foundation, but they are useful in many cases. This is the default ordering; it
is presented in Sec. 8.1.

LRPO. This is thelexicographic recursive path ordering(also calledRPO with status). It
has nice theoretical properties and is easier to use than the ad hoc ordering, but it is
more computationally expensive. TheLRPO ordering is enabled with the flaglrpo ;
it is described in Sec. 8.2.

Both kinds of term ordering use an ordering on constant and function symbols. Thelex
command (Sec. 5.5) is used to assign an ordering on symbols. For example, the command

lex( [a, b, c, d, or(_,_)] ).

specifiesa ≺ b ≺ c ≺ d ≺ or (or is a binary symbol). If alex command is given,
all constant and function symbols in terms that will be compared must be included. If alex
command is not given, OTTER uses the following default ordering.

[ constants , high-arity , · · · , binary , unary ]

Within arity, the lexicographicASCII ordering (i.e., the C library routinestrcomp() ) is
used.

The methods for orienting equalities and for determining dynamic and lex-dependent
demodulators apply to all inferred clauses; if the flagprocess_input is set, they also
apply to inputusable andsos clauses.
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In this section, α and β always refer to the left and right arguments, respec-
tively, of the equality literal under consideration;wt(γ) refers to the weight ofγ using
weight_list_terms ; vars(γ) is the set of variables inγ. The symbols� and≺ are
used for several orderings; the one referred to should be clear from the context.

Table 6 is a quick reference guide to the ordering mechanisms presented in Secs. 8.1
and 8.2.

Table 6: Quick Reference to Ordering
Situation Ad Hoc LRPO

Input demods flip? no if α ≺ β
lex-dependent? if ident-x-vars if neither is greater

Orienting eqs (order eq set)
flip if sym-elim,
occurs-in, or wt-lex-ord

flip if α ≺ β

d_d_all clear
if oriented, var-subset,
andwt(β) ≤ 1 if α � β

Dynamic demod? d_d_all set if oriented and var-subset if α � β

lex-dependent?
if ident-x-vars and
dynamic demod all
set

if neither is greater,
and var-subset

Apply lex-dependent demod? lex-order(ασ, βσ) ασ � βσ
Lex $ evaluation lex-order lex-order

8.1 Ad Hoc Ordering

8.1.1 Term Ordering (Ad Hoc)

Two types of ad hoc term ordering are used: lex-order and weight-lex-order. The user does
not have a choice between these two; the one that is applied depends on the context, as
described in the following subsections.

lex-order. This is a basic lexicographic extension of the symbol order. To compare two
terms, one reads them left to right, stopping at the first symbols where they differ; the
relationship of those symbols determines the term order. The treatment of variables
depends on the flaglex_order_vars :

lex order vars is set. Variables are the lowest in the symbol ordering, withx ≺
y ≺ z ≺ u ≺ v ≺ w≺ v6 ≺ v7 ≺ v8 ≺ · · · . Since the order on symbols is
total (any two symbols are comparable), the lexical order on terms is total (any
two terms are comparable). Note that applying a substitution to a pair of terms
may change their relative order.

lex order vars is clear (the default). A variable is comparable only to itself
and to a term that contains the variable. The order on terms is partial. Note
that if t1 ≺ t2, and ifσ is any substitution, thent1σ ≺ t2σ.

weight-lex-order.In comparing two terms, they are first weighed with
weight_list_terms . If one term is heavier, it is greater in the order. If
the terms have equal weight, they are compared with respect to the lex-order as if
lex_order_vars is clear.
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8.1.2 Orienting Equalities (Ad Hoc)

If the flag order_eq is set andlrpo is clear, then equality literals (both positive and
negative) in inferred clauses are processed as follows.

1. If the symbol_elim flag is set and if the equality is a symbol-eliminating type
(Sec. 6.1.6), the equality is oriented in the appropriate direction.

2. If one argument is a proper subterm of the other argument, the equality is oriented so
that the subterm is the right-hand argument.

3. If one argument is greater in the weight-lex-order, sayγ � δ, the equality is oriented
with γ as the left side.

The preceding steps do not apply to equalities input on the listdemodulators .

8.1.3 Determining Dynamic Demodulators (Ad Hoc)

A dynamic demodulator is a demodulator that is inferred rather than input. If either of the
flagsdynamic_demod or dynamic_demod_all is set, the flagorder_eq will also
be set, and OTTER will attempt to make some or all inferred positive equality units into
demodulators. If the flagprocess_input is set, the procedure applies to inputusable
andsos equalities. The procedure assumes that equalities have already been oriented.

1. If the flagsymbol_elim is set and ifα = β is symbol-eliminating, the equality
becomes a demodulator.

2. If β is a proper subterm ofα, the equality becomes a demodulator.

3. If α � β in the weight-lex-order, and ifvars(α) ⊇ vars(β),

(a) if dynamic_demod_all is set, the equality becomes a demodulator;

(b) if dynamic_demod_all is clear and ifwt(β) ≤ 1, the equality becomes a
demodulator.

4. If dynamic_demod_lex_dep anddynamic_demod_all are both set, ifα and
β are identical-except-variables (Sec. 8.1.4), and ifvars(α) ⊇ vars(β), the equality
becomes a lex-dependent demodulator.

8.1.4 Lex-dependent Demodulation (Ad Hoc)

Two terms areidentical-except-variablesif they are identical after replacing all occurrences
of variables withx . An input or dynamic demodulator is lex-dependent only ifα and
β are identical-except-variables. (See Sec. 8.1.3 for determining lex-dependent dynamic
demodulators.) A lex-dependent demodulator applies to a term only if the replacement term
is smaller in the lex-order. In particular, OTTER will apply a lex-dependent demodulator
α = β if and only if ασ � βσ in the lex-order, whereσ is the matching substitution.
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For example, in the presence of thelex command and the (lex-dependent) demodula-
tors

lex([a, b, c, d, or(_,_)]).

list(demodulators).
or(x,y) = or(y,x).
or(x,or(y,z)) = or(y,or(x,z)).

end_of_list.

the termor(or(d,b),or(a,c)) will be demodulated toor(a,or(b,or(c,d)))
(in several steps).

8.2 LRPO

8.2.1 Term Ordering (LRPO)

The lexicographic recursive path ordering(LRPO, or RPOwith status) [4, 7, 9] is a method
for comparing terms. The important theoretical property ofLRPO is that it is atermination
ordering. That is, letR be a set of demodulators in which in each demodulator, the left side
is LRPO-greater than the right side; then demodulation (applying the demodulators left to
right) is guaranteed to terminate.

To useLRPO one typically uses thelex command (Sec. 5.5) to assign an ordering
on constant and function symbols. If thelex command is not present, OTTER assigns an
ordering (which is frequently ineffective). (OTTER uses a total ordering on symbols that is
fixed at input time. Other implementations ofLRPO use partial orderings or dynamically
changing orderings.)

With respect toLRPO, function symbols can have eitherleft-to-right status(the default)
or multiset status. The commandlrpo multiset status( symbollist) gives symbols
multiset status.

LRPOcomparison is used when orienting equality literals, deciding whether an equality
should be a demodulator or anLRPO-dependent demodulator, and deciding whether to apply
an LRPO-dependent demodulator. LRPO comparison is never used when evaluating the
functions/predicates that perform lexical comparison ($LLT , $LGT, etc.).

8.2.2 Orienting Equalities (LRPO)

If the flagorder_eq is set and if one argument of the equality literal (positive or negative)
is greater in theLRPOorder, the greater argument is placed on the left side. This rule applies
to input demodulators, to inferred clauses, and, if the flagprocess_input is set, to input
usable andsos clauses.
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8.2.3 Determining Dynamic Demodulators (LRPO)

If the flagdynamic_demod is set, OTTER attempts to make all equalities into demodula-
tors (dynamic_demod_all is ignored whenlrpo is set). Ifα � β in the LRPO order,
the derived equality becomes a demodulator (α is not LRPO-less-thanβ, because orient-
ing has already occurred). Ifdynamic_demod_lex_dep is set, if neither argument is
LRPO-less-than the other, and if every variable that occurs inβ also occurs inα, the derived
equality becomes anLRPO-dependent demodulator.

8.2.4 LRPO-dependent Demodulation (LRPO)

An LRPO-dependent demodulator is allowed to rewrite a term if and only if its application
produces anLRPO-less-than term.

8.3 Knuth-Bendix Completion

The Knuth-Bendix completion procedure [12] attempts to transform a setE of equalities
into a terminating, canonical set of rewrite rules (demodulators). If it is successful, the re-
sulting set of rewrite rules, acomplete set of reductions, is a decision procedure for equality
of terms in the theoryE. There are many variations and refinements of the Knuth-Bendix
procedure.

Setting either of the flagsanl_eq or knuth_bendix causes OTTER to automatically
alter a set of options so that its search will behave like a Knuth-Bendix completion proce-
dure. If OTTER’s search stops because itssos list is empty, and if certain other conditions
are met, then the resulting set of equalities should be a complete set of reductions. (OTTER

was not designed to implement a completion procedure, and it has not been optimized for
completion.)

Conjecture. If (1) the setE of equalities, along withx=x , is input in list sos , (2) flag
anl_eq is set, (3) other options that are changed from the defaults do not affect the search,
(4) OTTER stops with “sos empty”, and (5) other thanx=x , the finalusable list is the
same as the finaldemodulators list, then thedemodulators list is a complete set of
reductions forE.

Here is an input file that causes OTTER to search for and quickly find a complete set of
reductions for free groups. Note that the predeclared (right associative) infix operator* is
used.

set(anl_eq).
set(print_lists_at_end).
lex([e, _*_, g(_)]).

list(sos).
x = x.
e*x = x. % left identity
g(x)*x = e. % left inverse
(x*y)*z = x*y*z. % associativity
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end_of_list.

The critical issue in most applications of the Knuth-Bendix completion procedure is the
choice of ordering scheme and/or the specific ordering on symbols. Note, in this case, that
if the lex command is absent, the default symbol ordering suffices because it is essentially
the same as the one specified.

Theanl_eq flag is also very useful when trying to prove equational theorems. When
usinganl_eq to search for proofs, we are not bound by the conditions listed in the above
claim; in fact, we usually apply additional strategies such as limiting the size of retained
equalities, being more selective about making equalities into demodulators, and disabling
LRPO ordering.

With the following input file, OTTER uses theanl_eq option to prove the difficult half
of a group theory theorem of Levi:The commutator operation is associative if and only if
the commutator of any two elements lies in the center of the group.(A textbook proof can
be found in [13].) Note that, contrary to common practice, the symbol order does not cause
the definition of the commutator operationh(_,_) to be used as a rewrite rule to eliminate
commutator expressions inh. Note also that weight templates are used to eliminate clauses
containing terms with particular structures; this decision is purely heuristic, derived from
experimentation and intuition. OTTER finds a proof in about a minute and uses about 6
megabytes of memory.

set(anl_eq).
lex([a,b,c,e,h(_,_),f(_,_),g(_)]).
assign(max_weight, 20). assign(pick_given_ratio, 5).
clear(print_kept).
clear(print_new_demod). clear(print_back_demod).

list(usable).
x = x.
f(e,x) = x. % group theory
f(g(x),x) = e.
f(f(x,y),z) = f(x,f(y,z)).
end_of_list.

list(sos).
f(g(x),f(g(y),f(x,y))) = h(x,y). % definition of commutator
h(h(x,y),z) = h(x,h(y,z)). % commutator is associative
% Denial: there are two elements whose commutator
% is not in the center.
f(h(a,b),c) != f(c,h(a,b)).
end_of_list.

weight_list(purge_gen).
weight(h($(0),f($(0),h($(0),$(0)))), 100).
weight(h(f($(0),h($(0),$(0))),$(0)), 100).
weight(h($(0),f(h($(0),$(0)),$(0))), 100).
weight(h(f(h($(0),$(0)),$(0)),$(0)), 100).
weight(h($(0),h($(0),h($(0),$(0)))), 100).
weight(h($(0),f($(0),f($(0),$(0)))), 100).
weight(h(f($(0),f($(0),$(0))),$(0)), 100).
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end_of_list.

9 Evaluable Functions and Predicates ($SUM, $LT, . . .)

OTTER can be used in a “programmed” mode that is quite different from normal refutational
theorem proving. When using the programmed mode, one generally has in mind a particular
method for solving a problem; and when writing clauses for the programmed mode, one
generally knows exactly how they will be used by OTTER.

The programmed mode frequently involves a set of evaluable function and predicate
symbols known as the$-symbols (because each starts with$). Examples are$SUMand
$LT for integer arithmetic and$ANDfor Boolean operations.

The evaluable symbols operate on five types of OTTER term: integer constants, floating-
point constants, bit-string constants, the Boolean constants$T and$F, and arbitrary terms.
The symbols that evaluate to type Boolean can occur either as function symbols or as pred-
icate symbols. The integer, bit, and floating-point operations behave the same as the under-
lying C operations applied to the data types “long int”, “unsigned long int”, and “double”,
respectively. Table 7 lists the evaluable functions and predicates by type.

Table 7: Evaluable Functions and Predicates
int× int → int $SUM, $PROD, $DIFF , $DIV , $MOD
int× int → bool $EQ, $NE, $LT, $LE, $GT, $GE

float× float → float $FSUM, $FPROD, $FDIFF , $FDIV
float× float → bool $FEQ, $FNE, $FLT, $FLE, $FGT, $FGE

bits× bits → bits $BIT_AND, $BIT_OR, $BIT_XOR
bits× int → bits $SHIFT_LEFT , $SHIFT_RIGHT
bits → bits $BIT_NOT
int → bits $INT_TO_BITS
bits → int $BITS_TO_INT

→ bool $T, $F
bool × bool → bool $AND, $OR
bool → bool $TRUE, $NOT
bool × term× term → term $IF

term× term → bool (lexical) $ID , $LNE, $LLT , $LLE, $LGT, $LGE
term× term → bool (other) $OCCURS, $VOCCURS, $VFREE, $RENAME
term → bool $ATOMIC, $INT , $BITS , $VAR, $GROUND

→ int $NEXT_CL_NUM, $UNIQUE_NUM

Additional notes on the operations (unless otherwise stated, the term in question evalu-
ates if all arguments demodulate/evaluate to the appropriate type):

• int× int → int. The symbol$SUMis addition,$PRODis multiplication,$DIFF is
subtraction,$DIV is integer division, and$MODis remainder.

• float × float → float. These operations are analogous to the integer operations
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except that there is no floating-point remainder operation. The syntax of floating-
point numbers is described in Sec. 19.8

• int × int → bool. These are the ordinary relational operations on integers. The
symbol$EQis =, $NE is 6=, $LT is <, $LE is≤, $GT is >, and$GEis≥.

• bits× int → bits. The shift operations$SHIFT_LEFT and$SHIFT_RIGHT shift
the first argument by the number of places given by the second argument.

• bits × bits → bits. The symbols$BIT_AND, $BIT_OR, and$BIT_XOR are the
bitwise conjunction, disjunction, and exclusive-or operations.

• bits → bits. The symbol$BIT_NOT is the one’s complement operation on bit
strings.

• int → bits. The symbol$INTS_TO_BITS translates a decimal integer to a bit
string.

• bits → int. The symbol$BITS_TO_INT translates a bit string to the corresponding
decimal integer.

• → bool. The symbols$T and$F representtrue and false. When they appear as
literals or atomic formulas in clauses, the clauses are simplified as appropriate.

• bool → bool. The symbol$TRUEis essentially a “no operation” on Boolean con-
stants. It is used to trick hyperresolution into evaluating literals (see below).

• bool × term× term → term. The$IF function is theif-then-elseoperator. When
inside-out (the default) demodulation encounters a term$IF( condition, t1, t2) ,
demodulation takes a path different from its normal inside-out behavior. The term
condition is demodulated (evaluated); if the result is$T, the value of the$IF term
is the result of demodulatingt1; if the result is$F, the value of the$IF term is the
result of demodulatingt2; if the result is neither$T nor $F, demodulation returns to
its normal behavior. Note that if the condition evaluates to a Boolean value, demod-
ulation deviates from its inside-out behavior, because just one oft1 andt2 is demod-
ulated. (If demodulation were always outside-in,$IF would not need to be built in
because it could be efficiently defined with the two demodulatorsif($T,x,y)=x
andif($F,x,y)=y .)

• term× term → bool (lexical). These operations are analogous to the six operations
in int × int → bool except that the comparisons are lexical instead of arithmetic.
The symbol$ID tests identity of terms. The lexical comparison is the same as in
lex-dependent demodulation; in particular, the flaglex_order_vars (Secs. 6.1.6
and 8.1.1) is consulted during these operations.

• term×term → bool (other). The term$OCCURS(t1, t2) is true ift1 is a subterm of
t2, including the case when they are the same. The term$VOCCURS(t1, t2) is true
if t1 is a variable that occurs int2. The term$VFREE(t1, t2) is true ift1 is a variable
that does not occur int2. The term$RENAME(t1, t2) is true if t1 andt2 have the
same structure; that is, if we rename all variables tox, the terms are identical.
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• term → bool. A term is $ATOMIC iff it is a constant (including integer and bit
string), a term is a$INT iff it is an integer, a term is a$BITS iff it is a string of
{0,1}, a term is a$VARiff it is a (unbound) variable, and a term is a$GROUNDiff it
does not contain any variables.

• → int. The term$NEXT_CL_NUM(no arguments) evaluates to the next integer that
will be assigned as a clause identifier (this is useful for placing the ID of a clause
within the clause). A sequence of calls to$UNIQUE_NUM(no arguments) returns
[1, 2, 3, · · · ].

Evaluation occurs as part of the demodulation process. In particular, if demodulation
comes across an evaluable term, say$SUM(2,3) , it tries to convert the arguments into
the appropriate type (integers for$SUM); then if the arguments have the correct type, it
rewrites the term to the result of the operation, in this case, just as if the demodulator
$SUM(2,3)=5 had been present. The evaluation mechanisms, along with ordinary de-
modulation, form a reasonably complete (although not particularly speedy or convenient)
equational programming subsystem.

Evaluation/demodulation can also occur, in a very particular way, during hyperresolu-
tion. (Recall that hyperresolution takes a clause, thenucleus, with some negative literals,
the conditions, and resolves each negative literal with a positive clause, producing a clause
with no negative literals.) Just as evaluation during demodulation can be thought of as
rewriting with an implicit demodulator, evaluation during hyperresolution can be thought
of resolving with the implicit positive unit clause$T (meaning “true”). The mechanism is
this: if hyperresolution encounters a negative literal that has an evaluable predicate symbol,
then it demodulates the atom (the literal without the sign); if the result of the demodulation
is $T, then the literal is considered to have been resolved.

During hyperresolution, demodulation/evaluation is triggered by the presence of an
evaluable literal. In many cases, however, the user defines a Boolean function to trigger
the mechanism. Consider the following definition of list membership, written as demodu-
lators:

member(x,[]) = $F.
member(x,[y|z]) = $IF($ID(x,y),

$T,
member(x,y)).

Because the symbolmember is not evaluable, the demodulation/evaluation mechanism
will not be activated; however, the unary evaluable predicate$TRUEcan be used in the
following way to trigger demodulation/evaluation.

−L1 | · · · | -$TRUE(member( element, list)) | · · · | −Ln | M .

Evaluable functions and predicates are useful to implement forward-chaining rule-based
systems, for example, state-space search problems (Sec. 9.2).

Hyperresolution operates on the conditions (negative literals) in order, left to right. (The
preceding sentence is not quite true because the first step is typically resolution of a positive
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given clause with any one of the conditions, but for this paragraph, we may assume that it is
true.) If a literal resolves or evaluates, the next literal is considered. If nothing more can be
done with a literal, then hyperresolution backtracks to the preceding literal in search of an
alternative. When a nucleus contains evaluable conditions, the order of the conditions is im-
portant both for efficiency and for actually deriving hyperresolvents. Evaluable conditions
typically have variables that must be instantiated when nonevaluable literals are resolved.
If an evaluable literal is too far to the left, its variables will not be sufficiently instantiated
when hyperresolution encounters it, evaluation will fail, and possible paths to hyperresol-
vents will be blocked. If an evaluable literal is too far to the right, then hyperresolution can
explore many paths that are sure to fail.

Technical Note and Advice.The evaluable symbols are an add-on feature rather than an
integral part of OTTER. In particular, the objects that are manipulated (integers, bit strings,
etc.) in most cases are stored by OTTER as character strings rather than as the appropriate
data type. To evaluate a term, say$SUM(2,3) , OTTER must find the strings"2" and"3"
in a hash table, translate them to integers, add them, translate the result to the string"5" ,
then look up"5" , and possibly insert it into the hash table. This procedure is obviously
much slower than it needs to be. If a problem requires a hundred million evaluations, the
user should consider using something else, including writing a special-purpose C program.

Warning 1.The evaluable symbols should not be thought of as theories “built in” to OTTER.
As theories, they are very incomplete, and OTTER uses them only in very constrained ways.

Warning 2. Ordinary resolution inference rules (e.g.,binary_res , hyper_res ,
ur_res ) never apply to evaluable literals.

9.1 Using More Natural Expressions for Evaluation

Writing complex evaluable expressions with$-symbols can be quite tedious. There-
fore, a feature was added that allows more natural expressions. The command
make_evaluable copies the evaluation properties from a$-symbol to any other symbol
of the same arity. The form of the command is

make evaluable( any-symbol , evaluable-symbol ).

The symbols in the command are given dummy arguments to specify the arity. The follow-
ing list contains typical examples for integer arithmetic (assuming the symbols on the left
are already known to be infix).

make_evaluable(_+_, $SUM(_,_)).
make_evaluable(_-_, $DIFF(_,_)).
make_evaluable(_>_, $GT(_,_)).
make_evaluable(_>=_, $GE(_,_)).

Warning 1. If a binary symbol that is recognized by paramodulation or demod-
ulation as an equality symbol is given evaluation properties, it will no longer be
recognized by paramodulation or demodulation. For example, if the command
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make_evaluable(_=_, $EQ(_,_)) is issued, paramodulation and demodulation
will not recognizea=b as an equality. The convention is to use== for evaluation.

Warning 2.This is not an “alias” mechanism; the symbols remain distinct for unification,
matching, and identity testing.

9.2 Evaluation Examples

Equational Programming. The evaluable functions and predicates enable the use of
equalities with demodulation as a general-purpose equational programming language. Here
are some examples.

gcd(x,y) = % greatest common divisor for nonnegative integers
$IF($EQ(x,0),

y,
$IF($EQ(y,0),

x,
$IF($LT(x,y),

gcd(x,$DIFF(y,x)),
gcd(y,$DIFF(x,y))))).

factorial(x) = % factorial for nonnegative integers
$IF($EQ(x,0),

1,
$PROD(x,factorial($DIFF(x,1)))).

quick_sort([]) = []. % naive quicksort
quick_sort([x|y]) = append(quick_sort(le_list(x,y)),

[x|quick_sort(gt_list(x,y))]).
le_list(z,[]) = [].
le_list(z,[x|y]) = $IF($LLE(x,z),

[x|le_list(z,y)],
le_list(z,y)).

gt_list(z,[]) = [].
gt_list(z,[x|y]) = $IF($LGT(x,z),

[x|gt_list(z,y)],
gt_list(z,y)).

A State-Space Search. Here is a complete OTTER input file for a simple state-space
search.

% We have a 3-gallon jug and a 4-gallon jug, both empty,
% and a well. Our goal is to have exactly 2 gallons in the
% 4-gallon jug. We can fill a jug from the well, empty a
% jug onto the ground, and carefully pour water from one
% jug into the other.
%
% j(m, n) is the state in which the 3-gallon jug contains
% m gallons, and the 4-gallon jug contains n gallons.
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set(hyper_res).

make_evaluable(_+_, $SUM(_,_)).
make_evaluable(_-_, $DIFF(_,_)).
make_evaluable(_<=_, $LE(_,_)).
make_evaluable(_>_, $GT(_,_)).

list(usable).
-j(x, y) | j(3, y). % fill the 3-gallon jug
-j(x, y) | j(0, y). % empty the 3-gallon jug
-j(x, y) | j(x, 4). % fill the 4-gallon jug
-j(x, y) | j(x, 0). % empty the 4-gallon jug
-j(x, y) | -(x+y <= 4) | j(0, y+x). % small -> big; it fits
-j(x, y) | -(x+y > 4) | j(x- (4-y),4). % small -> big, until full
-j(x, y) | -(x+y <= 3) | j(x+y, 0). % big -> small; it fits
-j(x, y) | -(x+y > 3) | j(3,y- (3-x)). % big -> small, until full

-j(x, 2). % goal state --- 4-gallon jug containing 2 gallons
end_of_list.

list(sos).
j(0, 0). % initial state --- both jugs empty
end_of_list.

10 Weighting

OTTER recognizes four lists of weight templates. (See Sec. 5.4 for input of weight template
lists.)

weight list(pick given). This list is used for selection of given clauses from list
sos . When the weight of a clause is printed, it is thepick_given weight.

weight list(purge gen). This list is used in conjunction with themax_weight
parameter to discard generated clauses.

weight list(pick and purge). In many cases, one can use the same weight-
ing strategy for both selecting given clauses and purging generated clauses. The
pick_and_purge list serves the purposes of both thepick_given and the
purge_gen lists. If the pick_and_purge list is present, then neither the
pick_given nor thepurge_gen list may be present.

weight list(terms). This list is for calculating the weight of terms when using the
weight-lex-order (Sec. 8.1.1) to compare terms. This occurs when the flaglrpo is
clear when orienting equality literals (Secs. 8.1.2 and 8.1.3).

10.1 Weighing Clauses and Literals

The weight of a clause is always the sum of the weights of its literals (excluding any answer
literals). The weight of a positive literal is the weight of its atom. The weight of a negative
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literal is the weight of its atom plus the value of theneg_weight parameter (Sec. 6.2.5).

10.2 Weighing Atoms and Terms

Atoms and terms are weighed top-down. To weigh a given term, OTTER searches the ap-
propriate weight list (in the order input) for the first matching template. If a match is found,
then the subterms of the given term that match the integers in the template are weighed.
The weight of the given term is the sum of the products of each integer and the weight of
its corresponding subterm, plus the second argument of the weight template. For example,
the template

weight(f(g($(2)),$(-3)), -50).

matches the given term

f(g(h(a)),f(b,x)).

Let wt(t) be the weight of term or atomt. Then

wt(f(g(h(a)),f(b,x)) ) = 2∗wt(h(a) )+(−3)∗wt(f(b,x) )+(−50).

If a matching weight template is not found, then the weight of the given term is 1
plus the sum of the weights of the subterms. (See the flagsatom_wt_max_args and
term_wt_max_args , Sec. 6.1.10, for overrides.) Note that this weighting scheme im-
plies that if no weight templates are present, the default weight of a term or atom is the
number of variable, constant, function, and predicate symbols (the symbol count).

Variables in weight templates are generic. A variable in a weight template will
match any variable, and only a variable, in the given term. As a consequence, it is
never necessary to use different variable names in a weight template. For example,
weight(f(x,x),-7) matches the termf(u,v) , andweight(x,32) matches all
variables.

Warning. The two occurrences of symbolf in the term f(f,x) are treated by
OTTER as different symbols because they have different arities. The weight template
weight(f, 0) applies to the second occurrence but not to the first.

The default weight of an answer literal is 0, but templates can be used to assign weights
to answer literals. The parameterneg_weight never applies to answer literals.

If one wishes to have a weight template containing a Skolem function or constant that
is generated by OTTER, one must first make a short trial run to find out how the formulas
are Skolemized, then return to the input file and insert the weight list containing the Skolem
symbolafter the formula lists.

10.3 Containment Weight Templates

Term weighting has an additional feature that allows the user to specify terms thatcontain
particular terms. This is done with a unary function symbol$dots( t) . If $dots( t)
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occurs in a weight template, it will match any term that contains a term that matches t. This
is very useful for discarding “bad” clauses. Here is part of an output file that illustrates this
feature.

list(sos).
1 [] p(f(g(g(g(g(g(h(h(h(h(j(b)))))))))))).
2 [] p(F(g(g(h(g(H(g(h(g(g(g(B)))))))))))).
3 [] p(f3(g(h(a)),g(g(b)),h(h(c)))).
end_of_list.

weight_list(pick_given).
weight(f($dots(j($(5)))),100).
weight(F($dots(H($dots(B)))),1000).
weight(f3($dots(a),$dots(b),$dots(c)),2000).
end_of_list.

======= end of input processing =======
=========== start of search ===========

given #1: (wt=106) 1 [] p(f(g(g(g(g(g(h(h(h(h(j(b)))))))))))).
given #2: (wt=1001) 2 [] p(F(g(g(h(g(H(g(h(g(g(g(B)))))))))))).
given #3: (wt=2001) 3 [] p(f3(g(h(a)),g(g(b)),h(h(c)))).

11 Answer Literals

The main use of answer literals is to record, during a search for a refutation, instantiations
of variables in input clauses. For example, if the theorem under consideration states that
an object exists, then the denial of the theorem contains a variable, and an answer literal
containing the variable can be appended to the denial. If a refutation is found, then the
empty clause has an answer literal that contains the object whose existence has just been
proved.

Any literal whose predicate symbol starts with$ans , $Ans , or $ANS is an answer
literal. Most routines—including the ones that count literals and decide whether a clause
is positive or negative—ignore any answer literals. The inference rules insert, into the
children, the appropriate instances of any answer literals in the parents. If factoring is
enabled, OTTER doesattempt to factor answer literals.

12 The Passive List

Either clauses or formulas can be input to listpassive . After input, the passive list is fixed
for the rest of the run. Clauses in the passive list are used for exactly two purposes: forward
subsumption and unit conflict. If forward subsumption is enabled, a newly generated clause
will be deleted if it is subsumed by any clause inusable , sos , or passive , and newly
kept unit clauses are checked for unit conflict against unit clauses inusable , sos , or
passive .
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The passive list has been most useful for monitoring the progress of a search. Suppose
we are trying to prove a difficult theorem, we have some lemmas in mind, and we would
like to know whether OTTER has proved the lemmas. Then denials of the lemmas can be
placed in the passive list, and OTTER will report proofs if it proves any lemmas, but the
denials of the lemmas will not interfere with the search for the main theorem. (Recall that
an appropriate value must be assigned tomax_proofs ; otherwise OTTER will stop at the
first proof.)

13 Clause Attributes

Attributes can be attached to clauses. This feature was introduced at the same time as the
hints strategy (Sec. 14), and all of the current attributes are specifically for the hints strat-
egy. In case some future enhancements of OTTER will use attributes, the general attribute
mechanism is given here.

Each attribute is identified by a name, and each attribute has a type. (Users cannot
introduce new attributes—they are built into the code of OTTER.) The attribute types are
integer, string, and term. Attributes are attached to clauses with the operator “#”, and must
appear after all literals.

For example, if attributea1 has type integer, attributea2 has type string, and attribute
a3 has type term, then a user can write a clause with attributes as follows.

f(x,y)!=f(x,z) | y=z # a1(23) # a2("left cancel") # a3(g(b)).

14 The Hints Strategy

Thehints strategycan be used if the user has a set of clauses that might be relevant to finding
a proof. The clauses, calledhints, do not necessarily hold in the theory being explored, and
they are not used for making inferences. Hints are used only as a heuristic for guiding the
search, in particular, in selecting the given clauses and in deciding whether to keep derived
clauses.

The main function of the hints strategy is to adjust the pick-given weight of clauses.
The user can specify, for example, that any derived clause that matches a hint should have
its pick-given weight reduced by 1000. In addition, the user can specify, with an attribute
on a hint, how that hint should be used to adjust the pick-given weight of clauses that match
the hint. Clauses can match hints in several ways as specified by (ordinary) parameters and
by attributes on hints.

Because of the distinction between the pick-given and purge-gen weights of clauses,
and because the hints mechanism affects only the pick-given weight, several additional
flags exist. If a clause matching a hint is derived, one typically wants it to be kept so
that it can be selected as a given clause. However, the clause may be discarded by the
max_weight parameter. To address this problem, the flagskeep_hint_subsumers
and keep_hint_equivalents say that themax_weight parameter should be ig-
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nored for all clauses that match hints in those ways (details are in the following subsec-
tions).

The hints strategy was introduced by Bob Veroff, who implemented it in a previous ver-
sion of OTTER and used it in many applications [27, 28]. OTTER currently has two separate
hints mechanisms, named “hints” and “hints2”, both derived from Veroff’s methods and
ideas. The first is more general, and the second is much faster.

14.1 Hints (the General Version)

The hint clauses are given in one or more lists. All of the lists must be named “hints” as in
the following example.

list(hints).
-p(x) | q(x) | r(x).
end_of_list.

A clauseC can match a hintH in three ways.

1. C subsumesH. This is referred to as “bsub”, in analogy to back subsumption.

2. C is subsumed byH. This is referred to as “fsub”, in analogy to forward subsump-
tion.

3. C is equivalent toH.

Six parameters and two flags determine the behavior of the hints mechanism.

assign(equiv_hint_wt, n) . Default∞, range [−∞..∞]. If n 6=∞, clauses that are
equivalent to a hint receive a pick-given weight ofn.

assign(equiv_hint_add_wt, n) . Default 0, range [−∞..∞]. Clauses that are
equivalent to a hint haven added to their ordinary pick-given weight.

assign(fsub_hint_wt, n) . Default∞, range [−∞..∞]. If n 6= ∞, clauses that are
subsumed by a hint receive a pick-given weight ofn.

assign(fsub_hint_add_wt, n) . Default 0, range [−∞..∞]. Clauses that are sub-
sumed by a hint haven added to their ordinary pick-given weight.

assign(bsub_hint_wt, n) . Default∞, range [−∞..∞]. If n 6= ∞, clauses that
subsume a hint receive a pick-given weight ofn.

assign(bsub_hint_add_wt, n) . Default 0, range [−∞..∞]. Clauses that subsume
a hint haven added to their ordinary pick-given weight.

A clause can match more than one hint, and a clause can match a hint in more than one
way, so the order of operations is relevant. The rules are as follows. (1) The first hint (as
given in the input file) that matches the clause is used. (2) Equivalence is tested first, then
fsub, then bsub. (3) Within match type (e.g., bsub), both types of weight adjustment can be
applied (e.g.,bsub_hint_wt andbsub_hint_ad_wt ).
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The hint-adjustment parameters can be overridden by attributes on individual hints.
(This feature can be used, for example, if some hints are more important than others.) The
attribute names for hints correspond to the six parameters listed above. For example, if
the parameterbsub_hint_add_wt is set to -1000, that value can be overridden for a
particular hint by giving it an attribute as follows.

f(x,f(x,f(x,y)))=f(x,y) # bsub_hint_add_wt(-2000).

The following two flags were introduced because the hints mechanism adjusts the pick-
given weight of clauses and does not affect the purge-gen weight of clauses.

Flagkeep_hint_subsumers . Default clear. If this flag is set, then themax_weight
parameter is ignored for derived clauses that subsume any hints.

Flag keep_hint_equivalents . Default clear. If this flag is set, then the
max_weight parameter is ignored for derived clauses that are equivalent to any hints.

Practical Advice. If one has a set of clauses that one wishes to use as hints, say from a
proof of a related theorem, a good first attempt is to use the following settings.

assign(bsub_hint_add_wt, -1000).
set(keep_hint_subsumers).

If one has more than a few hints, and one wishes to use only the preceding settings, then we
recommend using hints2 (the fast version).

14.2 Hints2 (the Fast Version)

The general hints mechanism described in the preceding paragraphs can be very slow if
there are many hints, because each hint clause is tested until a match is found. The fast
hints mechanism uses indexing to find hints. To activate the fast hints mechanism, hint
clauses are placed in one or more lists named “hints2” as in the following example.

list(hints2).
-p(x) | q(x) | r(x).
end_of_list.

Only one type of matching can be used with hints2—a clause matches a hint if and only if
it subsumes the hint. Two parameters and two flags apply to hints2.

assign(bsub_hint_wt, n) . Default∞, range [−∞..∞]. If n 6= ∞, clauses that
subsume a hint receive a pick-given weight ofn.

assign(bsub_hint_add_wt, n) . Default 0, range [−∞..∞]. Clauses that subsume
a hint haven added to their ordinary pick-given weight.

Flagkeep_hint_subsumers . Default clear. If this flag is set, then themax_weight
parameter is ignored for derived clauses that subsume any hints.
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Flagdegrade_hints2 . Default clear. If this flag is set, Bob Veroff’s hint-degradation
strategy is applied. When a hint is first read, itsbsub_hint_add_wt is associated with
it; this value can come from the parameter or from an attribute. The hint-degradation
strategy says that each time a hint is used to adjust the weight of a derived clause, its
bsub_hint_add_wt is cut in half. Assuming that it initially has a large negative value,
this strategy makes a hint progressively less important as it matches more derived clauses.
This strategy was introduced because (contrary to intuition) many different generalizations
of a hint can be derived.

14.3 Label Attributes on Hints

If a hint clause has a label attribute, for example,

f(x,f(x,f(x,y)))=f(x,y) # label("hint 32 from proof 12").

and if such a hint is used to adjust the pick-given weight of a clauseC, the label is inherited
by C. This feature, which is useful for tracking the application of hints, applies to both the
general and the fast hints mechanisms.

14.4 Generating Hints from Proofs

The main source for hints is proofs of related theorems. (If the goal is to shorten a proof,
hints often come from proofs of the same theorem.)

Flagprint_proof_as_hints . Default clear. If this flag is set, then whenever a proof
is found, it is printed as a hints list in a form that can be input to a subsequent OTTER job.
The proof that is printed contains more detail than the ordinary proofs printed by OTTER.
In particular, when the proof contains demodulation, clauses are printed for each rewrite
step of demodulation. This flag is independent of the hints mechanism.

15 Interaction during the Search

OTTER has a primitive interactive feature that allows the user to interrupt the search, modify
the options, and then continue the search. The interrupt is triggered in two ways: (1) with
OTTER running in the foreground, the user types the “interrupt” character (oftenDELETE or
control-C), or (2) if the parameterinterrupt_given is set ton, the search is interrupted
after everyn given clauses. When interrupted, OTTER immediately goes into a simple loop
to read and execute commands. The accepted commands are listed in Table 8.

The following notes elaborate on the interactive feature.

• The flaginteractive_given (Sec. 6.1.1) can be useful with the interactive fea-
ture. For example, if one thinks the search is going to fail, one can interrupt it, print
list sos , set theinteractive_given flag, then continue, selecting given clauses
interactively.
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Table 8: Interaction Commands
help. Give simple help.
set( flag-name). Set a flag.
clear( flag-name). Clear a flag.
assign( param-name, value). Assign a value to a parameter.
stats. Send statistics to std. output and the terminal.
usable. Print list usable on the terminal.
sos. Print list sos on the terminal.
demodulators. Print list demodulators on the terminal.
passive. Print list passive on the terminal.
fork. Fork and run the child process;

resume parent when child finishes.
continue. Continue the search.
kill. Send statistics to standard output, and exit.

• Thefork command creates a separate copy, called achild, of the entire OTTER pro-
cess. Immediately after the fork, the child is running (waiting for more commands),
and the original process, theparent, is waiting for the child to finish. When the child
finishes, the parent resumes (waiting for more commands). Changes that the child
makes to the clause space, options, and so forth, are not reflected in the parent; when
the parent resumes, it is in exactly the same state as when the fork occurred. (The
timing statistics are not handled correctly in child processes; CPU times are from the
start of the current process; wall-clock time is correct; other timings are not reliable.)

• The interactive routine is an area where a user who is also a C programmer can easily
add features. For example, most of the ordinary input commands could be made
available in the interactive mode.

• This kind of interaction can be disabled by using the command
clear(sigint_interact) .

Warning.Do not interactively change any option that affects term or literal indexing.

16 Output and Exit Codes

OTTER sends most of its output to “standard output”, which is usually redirected by the
user to a file; we just call it the output file. The first part of the output file is an echo of
most of the input and some additional information, including identification numbers for
clauses and description of some input processing. Comments are not echoed to the output.
The second part of the output file reflects the search. Various print flags determine what
is output. Given clauses, generated clauses, kept clauses, and several messages about the
processing of generated and kept clauses can be printed. Both statistics from the parameter
report and proofs can also be printed during the search. The final part of the output file
lists counts of various events (such as clauses given and clauses kept) and times for various
operations.

Whenever a clause is printed, it is printed with its integer identifier (ID) and a justifica-
tion list, which is enclosed in brackets. Examples:
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4 [] -j(x,y)|j(x,0).
13 [hyper,11,8,eval,demod] j(3,1).
41 [31,demod] p([a,b,b,c,c,c,d,e,f]).
14 [new_demod,13] f(y,f(y,f(y,x)))=x.
71 [back_demod,58,demod,70,14,55,11,34,11] e!=e.
12 [demod,9] f(a,f(b,f(g(a),g(b))))!=e.
77 [binary,57.3,30.2] sm|mm| -sl.
33,32 [para_from,26.1.1,15.1.1.2,demod,21] g(x)=f(x,x).
36 [hyper,31,2,26,30,unit_del,19,18,20,19] p(k,g(k)).
4 [factor_simp,factor_simp]

p(x)|p($f1(x))| -q($f2(y))| -q(y)|p($c6).
199 [binary,198.1,191.1,factor_simp] q($c14).

If the justification list is empty, the clause was input. Otherwise, thefirst item in the justifi-
cation list is one of the following.

An inference rule. The clause was generated by an inference rule. The IDs of the par-
ents are listed after the inference rule with the given clause ID listed first (unless
order_history is set) .

A clause identifier. The clause was generated by thedemod_inf rule.

new demod. The clause is a dynamically generated demodulator; it is a copy of the clause
whose ID is listed afternew_demod.

back demod. The clause was generated by back demodulating the clause whose ID is
listed afterback_demod .

demod. The clause was generated by back demodulating an input clause.

factor simp . The clause was generated by factor-simplifying an input clause. For ex-
ample,p(x)|p(a) factor-simplifies top(a) .

The sublist[demod, id1, id2, . . .] indicates demodulation withid1, id2, . . .. The sublist
[unit del , id1, id2, . . .] indicates unit deletion withid1, id2, . . .. The symbolseval in-
dicates that a literal was “resolved” by evaluation (Sec. 9) during hyperresolution. The
sublist[factor simp , factor simp , . . .] indicates a sequence of factor-simplification
steps (Sec. 6.1.5).

In proofs, some clauses are printed with two (consecutive) IDs. In such a case, the
clause is a dynamically generated demodulator, and the two IDs refer to different copies of
the same clause: the first ID refers to its use for inference rules, and the second to its use as
a demodulator.

If the flag detailed_history is set, then for the inference rulesbinary_res ,
para_from , andpara_into , the positions of the unified literals or terms are listed
along with the parent IDs. For example,[binary,57.3,30.2] means that the third
literal of clause 57 was resolved with the second literal of clause 30. For paramodulation,
the “from” parent is listed asID.i.j, wherei is the literal number of the equality literal, and
j (either 1 or 2) is the number of the unified equality argument; the “into” parent is listed
asID.i.j1. · · · .jn, wherei is the literal number of the “into” term, andj1. · · · .jn is the
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position vectorof the “into” term; for example,400.3.1.2 refers to the second argument
of the first argument of third literal of clause 400. If the flagpara_all is set, then the
paramodulation positions are not listed.

When the flagsos_queue is set, the search is breadth first (level saturation), and
OTTER sends a message to the output file when given clauses start on a new level. (Input
clauses have level 0, and generated clauses have level one greater than the maximum of the
levels of the parents. Since clauses are given in the order in which they are retained, the
level of given clauses never decreases.)

Exit Codes. When OTTER stops running, it sends an exit code to the operating system,
giving the reason for termination. The codes are useful when another program or system
calls OTTER. Table 9 lists the exit codes. Note that we do not follow theUNIX convention
of returning zero for normal and nonzero for abnormal termination.

Table 9: Exit Codes
101 Input error(s)
102 Abnormal end (compile-time limit or OTTER bug)
103 Proof(s) found (stopped bymax_proofs)
104 sos list empty
105 max_given parameter exceeded
106 max_seconds parameter exceeded
107 max_gen parameter exceeded
108 max_kept parameter exceeded
109 max_memparameter exceeded
110 Operating system out of memory
111 Interactive exit
112 Memory error (probable OTTER bug)
113 A USR1 signal was received
114 The splitting rule terminated with a possible model
115 max_levels parameter exceeded

17 Controlling Memory

In many OTTER searches, thesos list accumulates many clauses that never enter the search,
possibly wasting a lot of memory. The normal way to conserve memory is to put a max-
imum on the weight of kept clauses. It can be difficult, however, to find an appropriate
maximum. OTTER has a feature, enabled by the commandset(control_memory) ,
that attempts to automatically adjust the maximum.

The memory-control feature operates as follows. When one third of available memory
(max_memparameter) has been filled, OTTER assigns or reassigns a maximum weight. The
new maximum, sayn, is such that 5% of all clauses insos have weight≤ n. From then
on, at every tenth iteration of the main loop, OTTER calculates a prospective new maximum
n′ in the same way. Ifn′ < n, then the maximum is reset ton′. The values1/3 and 5%
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were determined by trial and error. Perhaps these values should be parameters.

Reducingmax weight on the Fly. In many searches, the number of kept clauses grows
much faster than the number of given clauses. In other words, the listsos is very large,
and most of those clauses never participate in the search. To save memory, one can use the
max_weight parameter to discard many of the clauses that will (probably) never become
given clauses.

A few searches and proofs show a phenomenon we call thecomplexity hump. To get
a search started, one must use complex clauses; then one can continue the search using
simpler clauses. That is, the first few steps in the proof are complex, and the remaining
steps are simpler. If one needs to carefully conserve memory when a complexity hump is
present, one can use the parameterschange_limit_after andnew_max_weight to
change the value ofmax_weight after a specified number of given clauses.

assign(change_limit_after, n) . Default 0, range [0..∞]. If n (the value) is
not 0, this parameter has effect. Aftern given clauses have been used, the parameter
max_weight is automatically reset to the value of the parameternew_max_weight .

assign(new_max_weight, n) . Default∞, range [−∞..∞]. See the description of
the preceding parameter.

Note that the memory-control feature (Sec. 17) can also address the complexity hump
phenomenon.

18 Autonomous Mode

If the flagauto is set, OTTER will scan the input clauses for some simple syntactic proper-
ties and decide on inference rules and a search strategy. We think of the autonomous mode
as providing a built-in metastrategy for selecting search strategies. The search strategy that
OTTER selects for a particular set of clauses is usually refutation complete (except for the
flag control_memory ), but the user should not expect it to be especially effective. It
will find proofs for many easy theorems, and even for cases in which it fails to find a proof,
it provides a reasonable starting point.

In the input file, the commandset(auto) must occur before any input clauses, and
all input clauses must be in listusable ; it is an error to place input clauses on any of
the other lists when in autonomous mode. OTTER will move some of the input clauses
to sos before starting the search. When OTTER processes theset(auto) command,
it alters some options, even before examining the input clauses. If the user wishes to
augment the autonomous mode by including some ordinary OTTER commands (includ-
ing overriding OTTER’s choices), the commands should be placed afterset(auto) and
beforelist(usable) .

After list(usable) has been read, OTTER examines the input clauses for several
syntactic properties and decides which inference rules and strategies should be used, and
which clauses should be moved tosos . The user cannot override the decisions that OTTER

makes at this stage.
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OTTER looks for the following syntactic properties of the set of input clauses: (1)
whether it is propositional, (2) whether it is Horn, (3) whether equality is present, (4)
whether equality axioms are present, and (5) the maximum number of literals in a clause.
The program then considers six basic combinations of the properties: (1) propositional, (2)
equality in which all clauses are units, and (3–6) the four combinations of{equality, Horn}.
To see precisely what OTTER does for these cases, the reader can set up and run some
simple experiments.

Please be aware that the autonomous mode reflects individual experience with OTTER;
other users would certainly formulate different metastrategies. For example, one might
prefer UR-resolution to hyperresolution or in addition to hyperresolution in rich Horn or
nearly-Horn theories, and one might prefer to add few or no dynamic demodulators for
equality theories.

19 Fringe Features

This section describes features that are new, not well tested, and not well documented.
OTTER is not as robust when using these features, especially when more than fringe features
is being used.

19.1 Ancestor Subsumption

OTTER does not necessarily prefer short or simple proofs—it simply reports the proofs that
it finds. An optionancestor_subsume extends the concept of subsumption to include
the derivation history, so that if two clause occurrences are logically identical, the one with
fewer ancestors is preferred. The motivation is to find short proofs.

Flag ancestor_subsume . Default clear. If this flag is set, the notion of subsump-
tion (forward and back) is replaced withancestor-subsumption. ClauseC ancestor-
subsumes clauseD iff C properly subsumesD or if C and D are variants and
size(ancestorset(C)) ≤ size(ancestorset(D)).

When settingancestor_subsume , we strongly recommend not clearing the flag
back_subsume , because doing so can cause many occurrences of the same clause to be
retained and used as given clauses.

19.2 The Hot List

The hot list is a strategy that can be used to emphasize particular clauses. It was invented by
Larry Wos in the context of paramodulation, and it has been extended to most of OTTER’s
inference rules. To use the strategy, the user simply inputs one or more clauses in the
special list namedhot . Whenever a clause is generated and kept by OTTER’s ordinary
mechanisms, it is immediately considered for inference with clauses in the hot list.

51



Which Clauses Should Be Hot? Clauses input in the hot list are usually copies of clauses
that occur also insos or usable . They are typically clauses that the user believes will
play a key role in the search for a proof, for example, special hypotheses.

Managing Hot-List Clauses. Input to the hot list is the same as input to other lists and
can be in either clause or formula form, for example,

list(hot).
f(x,x) = x. m(m(x)) = x.
end_of_list.

The flagprocess_input has no effect on hot-list clauses; they are never altered during
input. Hot-list clauses are never deleted, for example by back subsumption or back de-
modulation. Even if a hot-list clause is identical to a clause in another list, it has a unique
identifying number, and proofs that use hot-list clauses generally refer to two copies (with
different ID numbers) of those clauses.

Hot Inference Rules. The inference rules that are applied to newly kept clauses and hot-
list clauses are the same as the rules in effect for ordinary inference, with the exceptions
demod_inf , geometric_rule , and linked_ur_res , which are never applied to
hot-list clauses.

Applying Hot Inference. When hot inference is applied, the newly kept clause is treated
as the given clause, and the hot list is treated as the usable list. (Note that the newly kept
clause is not in the hot list, so it will not be considered for inference with itself, as happens
with the given clause in ordinary inference.) For inference rules such as hyperresolution or
UR-resolution that can use more than two parents,all of the other parents must be in the
hot list; this generally means that the nucleus and other satellites must be in the hot list. Hot
inference is not applied to clauses that are “kept” during processing of the input.

Level of Hot Inference (Parameterheat ). To prevent long sequences of hot inferences
(i.e., hot inference applied to a clause generated by hot inference, and so on) we consider
the heat levelof hot inference. The heat level of an ordinary inference is 0, and the heat
level of a hotly inferred clause is one more than the heat level of the new-clause parent. The
parameterheat , default 1, range [0..100], is the maximum heat level that will be generated.
When a clause is printed, its heat level, if greater than 0, is also printed.

Dynamic Hot Clauses (Parameterdynamic heat weight ). Clauses can be added
to the hot list during a search. If thepick_given weight of a kept clause is less than
or equal to the parameterdynamic_heat_weight , default−∞, range [−∞..∞], then
the clause will be added to the hot list and used for subsequent hot inference. Input clauses
that are “kept” during processing of the input are never made into dynamic hot clauses.
Dynamic hot clauses can be added to an empty hot list (i.e., no input hot list).

52



19.3 Sequent Notation for Clauses

Two flags enable the use of sequent notation for clauses.

Flag input_sequent . Default clear. If this flag is set, clauses in the input file must be
in sequent notation.

Flag output_sequent . Default clear. If this flag is set, then sequent notation is used
when clauses are output.

Syntax:

• All sequent clauses have an arrow.

• The negative literals (if any) are written on the left side of the arrow, are written
without the negation sign, and are separated by commas.

• The positive literals (if any) are written on the right side of the arrow and are separated
by commas.

Table 10 lists some examples.

Table 10: Examples of Sequent Clauses
Ordinary Clause Sequent Clause
-p | -q | -r | s | t p,q,r->s,t
p(a,b,c) -> p(a,b,c)
a!=b a=b ->
$F (the empty clause) ->

Note thatp,q->r,s is ordinarily thought of as (p andq) implies(r or s ).

Sequent clauses are treated as (parsed as) a special case because they can’t be made to
fit within OTTER’s ordinary syntax.

19.4 Conditional Demodulation

A conditional demodulator has the form

condition-> equality-literal.

The equality is applied as a demodulator if and only if the instantiatedconditionevaluates to
$T. The equality of a conditional demodulator is not subjected on input to being flipped or to
being flagged as a lex-dependent demodulator, and conditional demodulators are never back
demodulated. In other ways, conditional demodulators behave as ordinary demodulators.
Examples are (member andgcd are defined in Sec. 9.)

$ATOMIC(x) -> conjunctive_normal_form(x)=x.
member(gcd(4,x),y) -> Equal(f(x,y), g(y)).
$GT($NEXT_CL_NUM,1000) -> e(x,x) = junk.
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19.5 Debugging Searches and Demodulation

The flagvery_verbose causes too much output to be used with large searches. The
following parameters can turn on verbose output for a segment of the search.

assign(debug_first, n) . Default 0, range [0 ..∞]. This parameter is consulted if
the flagvery_verbose is set. Verbose output will begin when a clause is kept and given
an identifier of this value.

assign(debug_first, n) . Default -1, range [-1 ..∞]. This parameter is consulted if
the flagvery_verbose is set. Verbose output will end when a clause is kept and given
an identifier of this value.

assign(verbose_demod_skip, n) . Default 0, range [0 ..∞]. This parameter is
consulted during demodulation if the flagvery_verbose is set. Verbose output will not
occur during the firstn rewrites.

19.6 Special Unary Function Demodulation

A feature, activated by thespecial_unary command, allows OTTER to avoid one of the
problems caused by the lack of associative-commutative matching during demodulation.
The feature is useful when an associative-commutative function and an inverse are present,
as in rings. Without this feature, the followinglex command and demodulators

lex([0,a,b,c,d,e,g(_),f(_,_)]).

list(demodulators).
f(x,y) = f(y,x).
f(x,f(y,z)) = f(y,f(x,z)).
f(x,g(x)) = 0.
f(x,f(g(x),y)) = f(0,y).
f(0,x) = x.
end_of_list.

will cause the expression

f(f(f(g(b),a),c),f(b,g(c)))

to be sorted into

f(a,f(b,f(c,f(g(b),g(c))))).

One would likeb andg(b) to be next to each other so that they could be canceled by one of
the inverse demodulators. The special-unary feature accomplishes just that. The command

special_unary([g(x)])

causesg to be ignored during term comparisons, and the expression will be demodulated to
a. Thespecial_unary command has no effect if the flaglrpo is set.This is a highly
experimental feature. Its behavior has not been well analyzed.
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19.7 The Invisible Argument

OTTER recognizes a built-in unary function symbol$IGNORE(_) . Forward subsumption
treats each term that starts with$IGNOREas the constant$IGNORE, completely ignoring
its argument. For example,p(a,$IGNORE(b)) subsumesp(a,$IGNORE(c)) . All
other operations (in particular, inference rules, demodulation, and back subsumption) treat
$IGNOREas an ordinary function symbol.

The purpose of$IGNOREis to record data about the derivation of a clause without hav-
ing that data prevent the forward subsumption of clauses that would be subsumed without
that data. The$IGNOREterm is the term analog of the answer literal. For example, one
can use$IGNOREterms in the jugs and water puzzle (Sec. 9.2) to record the sequence of
pourings that leads to each state.

19.8 Floating-Point Operations

Table 11 lists a set of floating-point evaluable functions and predicates that are analogous
to the integer arithmetic operations listed in Sec. 9. They operate in the same way as the
integer operations.

Table 11: Floating-Point Operations
float× float → float $FSUM, $FPROD, $FDIFF , $FDIV
float× float → bool $FEQ, $FNE, $FLT, $FLE, $FGT, $FGE

The floating-point constants, however, are a little peculiar, both in the way they look and
in the way they behave. They are written as quoted strings, using either single or double
quotes. (Otherwise, they would not be able to contain decimal points.) Other than the
quotation marks, the form of the floating-point constants accepted by OTTER is exactly the
same as the form accepted by the C programming language (actually the C library used by
the compiler). Examples are"1.2" , "10e6" , "-3.333E-5" . A floating-point constant
must contain either a decimal point or an exponent charactere or E.

The peculiar behavior comes from the fact OTTER stores the floating point numbers
as character strings instead of directly as floating point numbers. To apply a floating-point
operation, OTTER starts with the operand strings, translates them to true floating-point num-
bers (the C data type “double” is used), performs the operation, then translates the result
into a string so that it can be an OTTER constant. As well as being inefficient, this scheme
also has a problem with precision, because a fixed format is used to translate the results
back into strings. The default format is"%.12f" , and it can be changed with a command
such as

float_format("%17.8f")

Caution. OTTER does not check that the string in thefloat_format command is a
well-formed format specification. This is the user’s responsibility.

To fully understand how this works, see the standard C language reference [11, Ap-
pendix B]; in particular, the C library functionssscanf andsprintf are used to translate
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to and from strings.

19.9 Foreign Evaluable Functions

OTTER provides a general mechanism through which one can create one’s own evaluable
functions and predicates. The user (1) declares the function, its argument types, and its
result type, (2) inserts a call to the function in the OTTER source code, (3) writes a C routine
to implement the function, and (4) recompiles OTTER. The user must have a personal copy
of the source code to use this feature. See the source code fileforeign.h for step-by-step
instructions, examples, templates, and test files.

Important note. Many times you can avoid having to do all of this by just writ-
ing your function with demodulators and using existing built-in functions. For ex-
ample, if you need the maximum of two doubles, you can just use the demodulator
float_max(x,y) = $IF($FGT(x,y), x, y) .

19.10 The Inference RulegL for Cubic Curves

Based on work of R. Padmanabhan and others, a new inference rule,gL (“geometric Law”,
or “Local to global”), was added to OTTER. The rule implements a local-to-global gener-
alization principle that has a geometric interpretation for cubic curves. The article [20] and
the monograph [18] contain descriptions of the rule, some details about its implementation
in OTTER, and several new results obtained with its use.

The rulegL applies to single positive unit equalities, and it is implemented in two ways:
as an inference rule, with unification, and as a rewrite rule, for when the target terms are
already identical.

Flag geometric_rule . Default clear. When this flag is set,gL is applied as an
inference rule (along with any other inference rules that are set) to each given clause. The
rulegL applies to single positive unit equalities.

Flag geometric_rewrite_before . Default clear. When this flag is set,gL is
applied as a rewrite rule, before ordinary demodulation, to each generated clause.

Flag geometric_rewrite_after . Default clear. When this flag is set,gL is
applied as a rewrite rule, after ordinary demodulation, to each generated clause.

Flag gl_demod . Default clear. When this flag is set, ordinary demodulation is not
applied to any derived clauses. Instead, after a clause is kept, it is copied, and the copy is
demodulated and processed.

Our experience has shown that given two equalities of equal weight, one the result of
gL and the other not, thegL result is usually more interesting. The following parameter
can give preference togL results.

assign(geo_given_ratio, n) . Default 1, range [−1..∞]. When this parameter is
not−1, it affects selection of the given clause in a way similar topick_given_ratio .
If the ratio is n, then for eachn given clauses selected in the normal way by weight,
one given clause is selected because it is the lightestgL result available insos . If
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pick_given_ratio andgeo_given_ratio are both in effect, then clashes are re-
solved in favor ofgeo_given_ratio .

19.11 Linked UR-Resolution

OTTER has an inference rule,linked_ur_res , that is an application of the linked in-
ference principle to UR-resolution. Linked inference rules can take much larger infer-
ence steps than the corresponding nonlinked rules, thereby avoiding the retention of many
clauses that correspond to low-level deduction steps which can interfere with the overall
proof search strategy.

We refer the reader to [29, 34, 26] for background on linked inference rules, and we fo-
cus here on specifying the constraints on linked UR-resolution for OTTER. The constraints
are specified by six flags, two parameters, and annotations on input clauses.

Linked UR Flags

Flag linked_ur_res . Default clear. If this flag is set, linked UR-resolution is applied
to all given clauses.

Flag linked_ur_trace . Default clear. If this flag is set, detailed information about the
linking process is sent to the output file.

Flag linked_sub_unit_usable . Default clear. If this flag is set, intermediate unit
clauses are checked for subsumption against theusable list.

Flaglinked_sub_unit_sos . Default clear. If this flag is set, intermediate unit clauses
are checked for subsumption against thesos list.

Flag linked_unit_del . Default clear. If this flag is set, unit deletion is applied to
intermediate clauses.

Flag linked_target_all . Default clear. If this flag is set, any literal can be a target.

Linked UR Parameters

assign(max_ur_depth, n) . Default 5, range [0 .. 100]. This parameter limits the
depth of linked UR-resolution. Note that the depth of ordinary UR-resolution is 0.

assign(max_ur_deduction_size, n) . Default 20, range [0 .. 100]. This parame-
ter limits the size of linked UR-resolution inferences, that is, the number of corresponding
binary resolution steps. In other words, the size of a linked inference step is one less than
the number of clauses that participate.

Linked UR Annotations

Each clause that participates in a linked UR-resolution inference is classified as anucleus
(the nonunit clause containing the target literal), alink (nonunit clauses all of whose literals
are resolved), or asatellite(unit clauses).
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Input clauses can be annotated with special literals specifying the role(s) they can play
in linked UR inferences. The clause annotations are as follows.

$NUCLEUS([list-of-literal-numbers]) — the clause (assumed to be nonunit) can be a
nucleus. The argument is a list of positive integers identifying the literals that can act as
targets.

$LINK([]) — the clause (assumed to be nonunit) can act as a link. The argument must
be the empty list.

$BOTH([ list-of-literal-numbers]) — the clause (assumed to be nonunit) can be either a
nucleus or a link, and when it is used as a nucleus, the admissible target literals are given in
the list.

$SATELLITE([]) — the clause (assumed to be unit) can act as a satellite. The argument
must be the empty list.

For example, the annotation on the following four-literal clause says that it can act as a
nucleus with the fourth literal as the target.

$NUCLEUS([4]) | -go | -P31 | -Q31 | R3_LD1_DS5.

Input clauses on theusable list must be annotated to participate in linked UR. Units on
the listsos are assumed to be satellites and need not be annotated.

Most experiments with linked UR-resolution have been done under the following con-
straints. (1) Linked UR is the only inference rule being used, (2) every input clause in the
usable list is annotated, and (3) every clause in thesos list is a unit and isnotannotated.
Linked UR seems to behave correctly under these constraints, but several problems have
been noticed with other initial conditions.

Acknowledgment. The linked UR-resolution rule was implemented by Nick Karonis,
with collaboration from Bob Veroff and Larry Wos.

19.12 Splitting

To address OTTER’s poor performance on many non-Horn problems, a splitting rule was
installed in OTTER (in November 1997). By “splitting” we mean that the search is divided
into two or more independent branches such that if each of the branches is refuted, then the
state before the split has been refuted. Splitting is typically recursive.

OTTER’s splitting implementation uses theUNIX fork() system call, which creates
copies of the state of the OTTER process. An additional hypothesis is asserted on the first
branch, and the first branch continues executing while the second branch waits. If the first
branch is refuted, the second branch starts running with its additional hypothesis. This
method avoids explicit backtracking.

Two splitting methods are available: splitting on ground clauses, and splitting on ground
atoms. In both methods, the parametersplit_depth can be used to limit the depth of
splitting. For example, with the command
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assign(split_depth, 3).

a case such as [1.1.1.1] will not occur.

19.12.1 Splitting on Ground Clauses

Clause splitting can be triggered in two ways: either periodically or when a ground clause
is selected as the given clause. In both methods, the clauses on which splitting occurs can
be constrained by any of the following three flags (all clear by default).

set(split_pos). % split on positive clauses only
set(split_neg). % split on negative clauses only
set(split_nonhorn). % split on non-Horn clauses only

These flags determine eligibility. If none of the flags is set, all ground nonunit clauses are
eligible.

Splitting Periodically on Clauses. To enable the periodic splitting method, one uses the
following command.

set(split_clause).

The default period is every 5 given clauses. To change the period, say to 10 given clauses,
use the following command.

assign(split_given, 10).

Instead of splitting after some number of given clauses, one can split after some number of
seconds, say 4, with the following command.

assign(split_seconds, 4).

The clause on which to split can be selected from the set of eligible clauses in two ways.
The default method is to select the first, lightest (using the pick-given scale) eligible clause
from the sequenceusable+sos . Instead, one can use the command

set(split_min_max).

which says to use the following method to compare two eligible clauses. Prefer the clause
with the lighter heaviest literal (using the pick-given scale); if the heaviest literals have the
same weight, use the lighter clause; if the clauses have the same weight, use the first in
usable+sos .
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Splitting When Given. To specify that clause splitting should be occur whenever an eli-
gible clause is selected as the given clause, one uses the following command.

set(split_when_given).

The Branches for Clause Splitting. If OTTER decides to split on a clause, sayP|Q|R ,
the assumptions for the three cases are

Case 1: P.
Case 2: -P & Q.
Case 3: -P & -Q & R.

One system fork occurs, and Case 1 executes. If it succeeds, a second fork occurs, and
Case 2 executes. If that succeeds, Case 3 executes. If any of the cases fails to produce a
refutation, the failure is propagated to the top, and the entire search fails.

19.12.2 Splitting on Atoms

To split on atoms, OTTER periodically selects a ground atom, sayP, and considers two
branches, one with assertionP, and the other with-P . The following command specifies
splitting on atoms.

set(split_atom).

The parameterssplit_given andsplit_seconds determine (just as for clause split-
ting) when atom splitting occurs. If all input clauses are ground, and if the parameter
split_given is assigned 0, then the resulting procedure is essentially a (very slow)
Davis-Putnam-Loveland-Logemann SAT procedure.

An atom is eligible for splitting if it occurs in an eligible nonunit ground clause. Clause
eligibility is determined just as in the clause splitting case, that is, by the flagssplit_pos ,
split_neg , andsplit_nonhorn .

All clauses inusable+sos are considered when deciding the best eligible atom. The
default method select the lightest atom in the lightest clause (using the pick-given scale).
An optional method for selecting an atom considers the number of occurrences of the atom.
The command

set(split_popular).

says to prefer the atom that occurs in the greatest number of clauses.

Instead of having OTTER decide the atoms on which to split, the user can specify them
in the input file with a command such as

split_atoms([P, a=b, R]).
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which says to split, in order, on those atoms. In this example, we get eight cases, and then
no more splitting occurs. The time at which the splitting occurs is determined, as above, by
the parameterssplit_given andsplit_seconds .

19.12.3 More on Splitting

If OTTER fails to find a proof for a particular case (e.g., the listsos empties or some limit
is reached), the whole attempt fails. If the search strategy is complete, then an emptysos
list indicates satisfiability, and the set of assumptions introduced by splitting give a partial
model. It is up to the user, however, to complete the model.

When OTTER finds a refutation by splitting, the output file does not contain an overall
proof. A proof is given for each leaf in the tree, and those proofs contain clauses such as

496 [264,split.1.1.1.1] nop(C,D)!=nop(A,A).

in which the justification indicates that a split occurred on clause 264, and this clause is
the assertion for case [1.1.1.1]. Other information about splitting is given in the output file,
for example, when a split occurs, the case numbers, the case assertions, and when forked
processed begin and end.

When splitting is enabled, the parametermax_seconds (for the initial process and all
descendant processes) is checked against the wall clock (from the start of the initial process)
instead of against the process clock. This is problematic if the computer is busy with other
processes.

OTTER’s splitting rule is highly experimental, and we do not have much experience
with it. A general strategy that may be useful for non-Horn problems is the following.

set(split_when_given).
set(split_pos). % Also try it without this command.
assign(split_depth, 10).

The OTTER distribution packages should contain a directory of sample input files that use
the splitting rule.

Acknowledgment The splitting rule was developed in collaboration with Dale Myers,
Rusty Lusk, and Mohammed Almulla.

20 Soundness and Completeness

20.1 Soundness

OTTER has a very good record with respect to soundness, but (as far as we know) no parts
of it (the C code) have been formally verified. If anything depends on proofs found by
OTTER, the proofs should be carefully checked, by hand or by an independent program.
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The IVY project [19] contains a component that checks the proof objects (Sec. 6.1.8)
produced by OTTER. The main result of the IVY project is a hybrid system, constructed
in the ACL2 verification environment [10], that takes a first-order conjecture, translates it
to clauses, sends the clauses to OTTER, and checks any proof objects that are returned.
ACL2 has been used to prove various soundness properties of the clause translator, the
proof checker, and their composition as a hybrid system.

20.2 Completeness

If the clause set does not involve equality, or if it involves equality and includes the equality
axioms, then many of the common refutation-complete resolution search strategies can be
easily achieved with OTTER. For example, hyperresolution and factoring, with positive
clauses in the listsos and nonpositive clauses in the listusable , is complete. If the input
clause set is Horn, then factoring is not required. The default method of selecting the given
clause (take one with the fewest symbols) does not interfere with completeness, and neither
forward nor back subsumption, as implemented in OTTER, interferes with completeness of
the basic inference rules.

Completeness issues are more complex when paramodulation is the inference rule, es-
pecially when the set of support strategy is considered. A simple and complete paramodu-
lation strategy for OTTER is (1) paramodulatefrom andinto the given clause, (2) paramod-
ulate from and into both sides of equality literals, (3) paramodulatefrom (but not into)
variables, and (4) place all input clauses in the listsos . The equalityx=x is required, but
the functionally reflexive axioms are not required.

Completeness of the basic inference rules is important, but incomplete restric-
tions and refinements are frequently required to find proofs. For example, we al-
most always use themax_weight parameter; strictly speaking, it is incomplete, but
it saves a lot of time and memory, and careful use of it does not prevent OTTER from
finding proofs in practice. For paramodulation, we generally use the flaganl_eq
with additional restrictions—some are known to be incomplete, and others have not
been analyzed. We sometimes use UR-resolution on non-Horn sets, which is incom-
plete. And we make extensive use of weighting to purge uninteresting clauses and
the optionsdelete_identical_nested_skolem , max_distinct_vars , and
max_literals , all of which interfere with completeness.

21 Limits, Abnormal Ends, and Fixes

OTTER has several compile-time limits. If a limit is exceeded, a message containing the
name of the limit will appear in the output file and/or at the terminal. To raise the limit, find
the appropriate definition (#define ) in a .h or .c file, increase the limit, and recompile
OTTER. (Of course, one must have one’s own copy of the source code to do this.) Some of
the limits are as follows.

MAX_NAME— Maximum number of characters in a variable, constant, function, or predi-
cate symbol.
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MAX_BUF— Maximum number of characters in an input string (clause, formula, com-
mand, weight template, etc.).

MAX_VARS— Maximum number of distinct variables in a clause.

MAX_FS_TERM_DEPTH— Maximum depth of terms in the forward subsumption discrim-
ination tree.

MAX_AL_TERM_DEPTH— Maximum depth of left-hand arguments of equalities in the
demodulation discrimination tree.

Conserving Memory. Several steps can be taken if OTTER is using too much memory.

• Usemax_weight to discard (more) generated clauses. This is a very effective way
to save memory (and time).

• Set the flagcontrol_memory (Sec. 6.1.10), or use the parameters
change_limit_after andnew_max_weight (Sec. 17).

• Decrease (down to 0) the value of thefpa_literals andfpa_terms parame-
ters.

• Set thefor_sub_fpa flag to switch forward subsumption indexing from discrimi-
nation tree toFPA indexing.

• If the inference rules being used are binary resolution or paramodulation, clear the
flagdetailed_history .

• If a lot of back subsumption or back demodulation is expected, set the flag
really_delete_clauses (Sec. 6.1.10).

• If applicable, setno_fapl or no_fanl (Sec. 6.1.9).

• If back demodulation is being used, clear the flagindex_for_back_demod .

• Run an OTTER job until memory runs out, collect interesting lemmas from the output
file, then rerun the job including the lemmas as input clauses. Repeat. (This can be a
good strategy even when memory is not a problem.)

22 Obtaining and Installing OTTER

OTTER 3 is free, and there are no restrictions on copying or distribut-
ing it. The main means of distribution is from the OTTER Web site at
http://www.mcs.anl.gov/AR/otter/ .

Once one has a copy of the OTTER 3 distribution directory, one should look at the file
READMEfor instructions on installing and testing OTTER. On UNIX -like systems, OTTER

may have to be compiled. There may also be executable versions for Microsoft Windows
available on the OTTER Web site.
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