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Overview

Algorithm Engineering
High-Performance Algorithm Engineering
Phylogenies
Computational Phylogenetics
An Example: Gene-Order Phylogenies

Breakpoint phylogeny
Inversion and other genomic distance measures
GRAPPA: a high-performance software tool for
reconstructing phylogenies from gene-order data
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Algorithm Engineering

The process required to transform a
pencil-and-paper algorithm into an efficient,
robust, and easily usable implementation.

Tools come from software engineering,
algorithm design, computer architecture, etc.

Main focus is experimentation.
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Algorithm Engineering (cont’d)

Yearly workshop in Europe: Workshop on
Algorithm Engineering (WAE), starting in
1997.

Yearly workshop in the US: Workshop on
Algorithm Engineering and Experiments
(ALENEX), started in 1999.

Main journal is the ACM Journal of
Experimental Algorithmics (JEA).
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High-Performance Algo. Engineering

Running time and quality of solutions as the
paramount goal.

Includes parallelism (both shared-memory and
message-passing), but most impact comes from refining the
serial part of the code.

Cache-aware programming is a key to performance with
high-performance machines, which have deep memory
hierarchies.
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Phylogenies

A phylogeny is a reconstruction of the evolutionary
history of a collection of organisms; it usually takes
the form of a tree.

Modern organisms are placed at the leaves and ancestral
organisms occupy internal nodes.

The edges of the tree denote evolutionary relationships.
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12 Species of Campanulaceae

Tobacco

Platycodon
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Campanula
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Trachelium

Merciera

Wahlenbergia
2.42
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2.82
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Herpes Viruses that Affect Humans

EHV2HVS
KHSV

EHV1

HSV2
HSV1

VZV

HCMV

EBV

HHV7

HHV6

PRV
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Phylogenies (cont’d)

Reconstructing phylogenies is a major component of
modern research programs in many areas of biology
and medicine:

pharmaceutical research for drug discovery
understanding rapidly mutating viruses (such as
HIV)
designing genetically enhanced organisms
explaining and predicting gene expression
most centrally, understanding genomic evolution
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Computational Phylogenetics

Is extremely computation-intensive.
some pharmaceutical companies have been analyzing the
same dataset for over two years on farms of > 200
processors.

Sequence data (RNA, DNA, aminoacid, and protein)
has been used for over 20 years and is well
understood, but methods do not scale up.
Genomic data (gene order and content of whole
genomes) provides information on deep relationships,
but is much harder to analyze than sequence data.
Using mixed data remains uncharted territory.
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Computational Phylogenetics (cont’d)

Methods developed by algorithm designers are rarely
used by biologists: optimization criteria are chosen
for algorithmic reasons more than biological ones.

Methods used by biologists are typically ad hoc and
offer no guarantees: parameters are set with little
understanding of their effects on efficiency or quality.

Getting the two groups to work together requires an
atmosphere of mutual respect for each group’s
research goals and methodologies.
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An Example: the Bluebell Family

Jansen’s group at UT Austin provided full gene
sequences for the chloroplasts of 12 species of
Campanulaceae (Bluebells), plus tobacco.
A chloroplast is a semi-independent organism that lives within
plant cells and allows them to photosynthesize.
Chloroplasts have a single chromosome with about 120 genes.

Optimization target: reconstruct the phylogeny with
the least total number of genomic changes.
An application of Occam’s razor; biologists call this the principle
of parsimony.
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The Bluebell Family (cont’d)

We reimplemented a tool due to D. Sankoff and
M. Blanchette using algorithm engineering.

Results: a speed-up by three to four orders of
magnitude in the serial part of the code and a total
speed-up by over one million when run on the
512-processor Los Lobos supercluster at UNM.

Reasons: cache-awareness, detailed code optimiza-

tion, better combinatorial optimization, better bound-

ing, and parallelization.
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Breakpoint Analysis: An Overview

An iterative improvement procedure:

Initially label all internal nodes with gene orders
Repeat

For each internal node v, with neighbors A, B,
and C, do

Solve the MPB on A,B,C to yield label m

If relabelling v with m improves the score of T ,
then do it

until no internal node can be relabelled
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MPB: Median Problem for Breakpoints

Given 3 gene orders, represented as 3 signed
permutations π1, π2, and π3, find a 4th
permutation πm that minimizes the sum of the
distances

d(π1, πm) + d(π1, πm) + d(π1, πm)

where each distance is the number of break-

points, i.e., the number of adjacencies present in

one permutation but not in the other.
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MPB: an example

Let the (circular) permutations be

1 -2 4 3

1 2 -3 -4

2 -3 -4 -1

A possible median is -1 2 -3 -4, with cost 5

d ( ( 1 -2 4 3 ) , ( -1 2 -3 -4 ) ) = 3

d ( ( 1 2 -3 -4 ) , ( -1 2 -3 -4 ) ) = 2

d ( ( 2 -3 -4 -1 ) , ( -1 2 -3 -4 ) ) = 0
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MPB (cont’d)

Sankoff showed to to convert this problem to the
Travelling Salesperson Problem.

cost = 2

cost = 1

cost = 0

cost = − max

4
+

1

+ −

−
2

+

−
3

+−
edges not shown have cost = 3

+2 −3 −4 −1
+1 +2 −3 −4
+1 −2 +4 +3

corresponding to genome
an optimal solution

+1 +2 −3 −4

The cost of an edge A −B is the number of genomes that do NOT have the adjacency A B

Adjacency A B becomes an edge from A to −B
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Re-Engineering: Coding Aspects

Memory Use
GRAPPA uses static allocation and has a working set
size of 500KB, compared to 12MB for BPAnalysis

Cache Awareness
GRAPPA minimizes pointer dereferencing, has
hand-unrolled loops, and re-uses allocated storage

Profiling
Identifies bottlenecks to balance the computation
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Re-Engineering: Algorithmic Aspects

Taking Advantage of Special Structures
The TSP has only 2 non-trivial edges (cost 1 and 2)

Using all Available Information
TSP bounds can use full local legality test

Lower Bound for Each Tree
Triangle inequality implies that a tour of the leaves is
at most twice the cost of any tree
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Re-Engineering: Parallel Aspects

Efficient Tree Generation
Avoid multi-precision arithmetic, allow generation from
any count with variable gap – provides parallel
generation and also sampling of search space

(current) Portable MPI Implementation
Exploits “embarrassing” parallelism (each processor
handles a fraction of the trees)

(future) Hybrid Mode Implementation
Exploits shared-memory parallelism at each node for
combinatorial optimization
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Algorithmic Benefits

In re-engineering an algorithm, one comes to
understand it better than anyone else—and
so one often finds algorithmic improvements.

We developed the first true linear-time algorithm for
computing the inversion distance between two signed
permutations.

We developed the first family of fast-converging
phylogeny reconstruction algorithms for sequence
data.
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Impact in Computational Biology

Much faster implementations can alter the
practice of research in biology and medicine.
Reducing the time of an analysis from 2 years down to a
day makes an enormous difference in the pace and cost of
drug discovery and development.

Fast and accurate analysis software enables
researchers to pursue more leads, develop
better intuition on small datasets, and form
new conjectures about biological
mechanisms.
Even when the software does not scale up to
“industrial-strength”.
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