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ABSTRACT

Phylogenies (that is, tree-of-life relationships) dedife®m gene order data may prove crucial in answering somesfionental
open questions in biomolecular evolution. Real-world ries¢ is strong in determining these relationships. For gtem
pharmaceutical companies may use phylogeny reconstruotiirug discovery for finding plants with similar gene protian.
Health organizations study the evolution and spread ofsesusuch as HIV to gain understanding of future outbreaksl An
governments are interested in aiding the production of $tufts like rice, wheat, and corn, by understanding the tiecede.
Yet very few techniques are available for such phylogemnetionstructions. Appropriate tools for analyzing suctadaay
help resolve some difficult phylogenetic reconstructiooiems; indeed, this new source of data has been embracedry m
biologists in their phylogenetic work.

With the rapid accumulation of whole genome sequences fada diversity of taxa, phylogenetic reconstruction based o
changes in gene order and gene content is showing promigieutely for resolving deep (i.e., old) branches. Howeve-
construction from gene-order data is even more computtipimtensive than reconstruction from sequence dataicogerly
in groups with large numbers of genes and highly rearrangadmmes. We have developed a software suite, GRAPPA, that ex-
tends the breakpoint analysis (BPAnalysis) method of Sfhakal Blanchette while running much faster: in a recentsialof
a collection of chloroplast data for species of Campan@laos a 512-processor Linux supercluster with Myrinet, weeaed
a one-million-fold speedup over BPAnalysis. GRAPPA cutisenan use either breakpoint or inversion distance (coegbut
exactly) for its computation and runs on single-processachines as well as parallel and high-performance computers

Keywords: high-performance computing, computational genomics|qggny reconstruction, breakpoint analysis, gene rear-
rangement, drug discovery

1. INTRODUCTION

Curiosity about the origins of species and their evolutigméstory has motivated many biologists and natural hiaterto study
phylogenetics. Phylogenetics attempts to reconstruat fitata about a collection of modern species, a plausibletyoary

history for the group, a history that is most often represerity a bifurcating (binary) tree, called a phylogeny. Todah

phylogenies are reconstructed from molecular and genatiwlith the help of computers and are proving to be esseatid

in the pharmaceutical industry.

In this paper, we briefly introduce phylogenies, survey sofithe main reconstruction methods and the data they use, the
list some of the most prominent industrial uses of phylogeepnstruction, most of which necessitated significantpating
efforts. We then present some of our own work in reconstnggdhylogenies from gene-order data, work that resultetién t
widely used software suite GRAPPA, discussing the higtieperance aspects of our design and our implementation.

The organization of this paper is as follows. Section 2 ithices phylogenies, while Section 3 surveys existing commer
cial applications of phylogeny reconstruction, and Secddoriefly reviews the principal computational methods usetthe
reconstruction of phylogenies. Section 5 gives an overgéwaigorithm engineering, an emerging discipline that addes
methodologies by which modern algorithm designs can befoamed into efficient and robust code. Section 6 illussaiés
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Figure 1. Two phylogenies: some plants of tBampanulaceatamily (left) and some Herpes viruses affecting humansjig

approach as was applied by members of our group to an extiaigggy for phylogeny reconstruction from gene-ordea-dat
starting with the method of breakpoint analysis of Sankoff 8lanchetté and producing the software suite called GRAPPA
(see, e.g?), which runs at least three orders of magnitude faster arallplizes extremely wef. Section 7 concludes with our
personal take on the current impact of high-performancepedimg applied to discrete optimization problems in conagional
biology

2. PHYLOGENIES

A phylogeny is a reconstruction of the evolutionary histofw collection of organisms; it usually takes the form of aole-
tionary tree, in which modern organisms are placed at theefeand ancestral organisms occupy internal nodes, withdbes

of the tree denoting evolutionary relationships. Figurédves two proposed phylogenies, one for several speciee@dim-
panulaceadbluebell flower) family and the other for Herpes virused #r@ known to affect humans. In the left-hand figure,
estimates of evolutionary distance are used to label eagé; éd the right-hand figure, the length of each edge is sdaled
represent that distance. Neither phylogeny shows thelgesgiaracteristics of ancestral species at the interrddsi@lthough
some phylogeny reconstructions (as we shall see) infer cliatacteristics.

Reconstructing phylogenies is a major component of modesearch programs in many areas of biology and medicine (as
well as linguistics). Scientists are of course interesteghylogenies for the usual reasons of scientific curiogdy.under-
standing of evolutionary mechanisms and relationshipstiseaheart of modern pharmaceutical research for drug @ésgpois
helping researchers develop defenses against rapidlytimyitaruses such as HIV, is at the basis of the design of gesdit
enhanced organisms, etc. In developing such an understaride reconstruction of phylogenies is a crucial toolt aows
one to test new models of evolution.

3. COMMERCIAL ASPECTSOF PHYLOGENY RECONSTRUCTION

Simple identification of organisms via phylogeny has, tedgtelded more patent filings than any other use of phylogeny
industry. Just as a public health entomologist might keegference collection of mosquitoes or ticks to aid in idecdition,

so do many industry bioinformaticians keep collections ehg sequences. When a microorganism of unknown origin is
discovered, the final identification is generally done viguemncing. If the gene sequence from the organism of intelees

not match a sequence already in the collection, inferencéosé relatives to that organism is done via phylogeny. 8ecg
motifs unique to that organism or to a specific phylogeneatizig are often then patented as a means of identificatiomédr t
organism or group. Examples include sequence motifs useddautification of close relatives of Mycobacterium tuhdosis

in sputum culture and for differentiating among tubercigetrains (GenProbe 1991, 1999,

A more unusual application of phylogenetic analysis to @&fical problem is its use in studying the dynamics of micabbi
communities. Engeleet al. (1998f sequenced genes to identify and quantify microbes in sddrbeand after pesticide
exposure. Because many microbes in many such populatidiestare novel, their gene sequences are studied phylaggdhyet
in order to understand the composition of the communityughmut the experiment.

Phylogenetic analysis has been used in vaccine developkivéien a vaccine is developed, it is often specific to a pdaticu
variant of a cell wall or protein coat component. Halbtial. (1994 used phylogenetic analysis to infer that porcine reproduc-
tive and respiratory syndrome virus isolates from the USEmepe were from separate populations, and thus enginteied
vaccine to confer immunity against both populations. Indbetinuing effort to develop HIV vaccines, the populatigmdmics



of HIV are studied by examining DNA markers which originaterh disparate populations; initial population boundases
then established with phylogenetic analysis (GenProt@3)t

The phylogenetic distribution of biochemical pathways ébeelet al., 2000¥ is studied in the development of antibacte-
rials and herbicides. Glyphosate (better known as RouriRogeo and Pondmaster) was the first herbicide specificatjgtad
at a pathway, the shikimate pathway, because that pathway gesent in mammals (Grossbard and Atkins, 1988ecause
plants and some microbes rely on this pathway, they aredkileglyphosate. Antimicrobials targeting the shikimatéhpay
are also being developed (Robeetsal, 1998)!! In the pharmaceutical industry, the phylogenetic distiduof a pathway is
often studied before a drug is developed in order to undeddtee effective range of an antimicrobial targeted at tagtway-2
(Brown and Warren, 1998). The mevalonate pathway was ifisshthy Wildinget al. (2000):2 as a target for drug development
for gram positive cocci-specific antimicrobials. Thesetbda contain genes from the eukaryotic mevalonate pathinaty
were captured by the ancestors to this group of bacterigomdllof years ago. The microbial genes have diverged to souch a
extent that this pathway can be targeted separately in thiesebes from our own mevalonate pathway.

Finally, phylogenetic analysis is used in the pharmacaultiwustry for predicting the natural ligands for cell aaé
receptors which are potential drug targets. Just as théagjmecprocess produces hierarchical lineages from asisggécies,
so can a process of duplication and divergence producetiécally related gene families from a single ancestrakg&everal
large gene families contain drug receptors. In fact, a sifigmily, the G protein coupled receptors (GPCRS) contaiogem
than 40% of the targets of most pharmaceutical companiearddeedin U, a potent neuropeptide that causes contraction o
smooth muscle, was (correctly) predicted phylogenetidalbe a possible ligand for FM3 an orphan GPCR (Szeketes,
2000)14 Chamberst al. (2000)° used phylogenies to infer a class of modified nucleotidegjasds for a small group of
GPCRs. UDP-glucose, and related molecules, involved inadgmdrate biosynthesis, were shown to be ligands for KIABDO
Zhuet al. (20016 predicted and confirmed not only the ligand but also the phaaiogy of a novel GPCR for histamine via
phylogeny.

Thus phylogeny reconstruction is a significant task withiatesearch departments of pharmaceutical companies.

4. COMPUTATIONAL PHYLOGENETICS

Phylogenies have been reconstructed “by hand” for over tupghy taxonomists, using morphological characters arsicba
principles of genetic inheritance. With the advent of malacdata, however, it has become necessary to developtaigsrto
reconstruct phylogenies from the very large amount of datdaravailable through DNA sequencing, amino-acid and jrote
characterization, gene expression data, and whole-gedesteiptions.

Until recently, most of the research focused on the devetopiraf methods for phylogeny reconstruction from DNA se-
guences (which can be regarded as strings on a 4-chargutabat), using a model of evolution based mostly on nudeoti
substitution. Because amino-acids, the building blockifef are coded by substrings of four nucleotides known atoos,
the same methods were naturally extended to sequences afic@dhich can be regarded as strings on an alphabet of 22
characters—in spite of the 64 possible codes, only 22 amaids are encoded, with many codes representing the same
amino-acid). Proteins, which are built from amino-acid® the natural next level, but are proving difficult to chaesize
in evolutionary terms. Recently, another type of data haslmeade available through the characterization of entineges:
gene content and gene order data. For some organisms, shcimas, mouse, fruit fly, and several plants and lower-order
organisms, as well as for a large collection of organell@toghondria, the animal cells’ “energy factories”, andarolplasts,
the plant cells’ “photosynthesis factories”), we have dyaiomplete description of the entire genome, gene by gBaeause
plausible mechanisms of evolution include gene rearraegénduplication, and loss, and because evolution at thed (¢he
“genome level”) is much slower than evolution driven by ntigtas in the nucleotide base pairs (the “gene level”) and ag m
enable us to recover deep evolutionary relationshipsethas been considerable interest in the phylogeny commimihe
development of algorithms for reconstructing phylogehiased on gene order or gene content. Appropriate tools fdyzan
ing such data may help resolve some difficult phylogenetiomstruction problems, particularly those dealing witkcadied
“deep” evolutionary questions—i.e., ancient events ingonary history—because such changes in the genome asid:zo
erably rarer than alterations in the DNA sequences. Thissmwce of data has therefore been embraced by many bidogist
in their phylogenetic work/=1° in spite of the fact that its analysis is considerably moféadilt than the analysis of DNA
sequence data. There is no doubt that, as our understarnfdévglation improves, yet newer (and probably more complex)
types of data will be collected and well need to be analyzgihiiogeny reconstruction.

To date, almost every model of evolution proposed for maatepphylogenies gives rise to NP-hard optimization proldem
Three main lines of work have evolved: more or l@sshocheuristics (a natural consequence of the NP-hardness of the
problems) that run quickly, but offer no quality guarantaad may not even have a well defined optimization criteriachs



as the populaneighbor-joiningheuristié®, optimization problems based orparsimonycriterion, which seeks the phylogeny
with the least total amount of change needed to explain nmodiata (a modern version of Occam’s razor); and optimization
problems based on maximum likelihooctriterion, which seeks the phylogeny that is the most likgligder some suitable
statistical model) to have given rise to the modern d#&d.hocheuristics are fast and often rival the optimization method
in terms of accuracy; parsimony-based methods may takenexpial time, but, at least for DNA data, can often be run to
completion on datasets of moderate size; while methodsdb@senaximum-likelihood are very slow (the point estimation
problem alone appears intractable) and so restricted fosreall instances, but appear capable of outperformingttmersin
terms of the quality of solutions. In the case of gene-or@eachowever, only parsimony criteria have been proposédarso
we do not yet have detailed enough models (or ways to estitin@iteparameters) for using a maximume-likelihood approach

5. HIGH-PERFORMANCE APPROACHESIN DISCRETE ALGORITHMS

The term “algorithm engineering” was first used with speitifimm 1997, with the organization of the fir$torkshop on Al-
gorithm Engineering (WAE 978ince then, this workshop has taken place every summerrimpEland a parallel one started
in the US in 1999, th&\orkshop on Algorithm Engineering and Experiments (ALESEXvhich has taken place every win-
ter, colocated with thé\CM/SIAM Symposium on Discrete Algorithms (SOD¥gorithm engineering refers to the process
required to transform a pencil-and-paper algorithm intolaust, efficient, well tested, and easily usable implentantaThus

it encompasses a number of topics, from modelling cacheviimhi® the principles of good software engineering; its mai
focus, however, is experimentation. In that sense, it mayidged as a recent outgrowth Bkperimental Algorithmigawvhich

is specifically devoted to the development of methods, taoidl practices for assessing and refining algorithms threxg
perimentation. The onlinACM Journal of Experimental Algorithmics (JEAt URL wwv. j ea. acm or g, is devoted to this
area.

High-performance algorithm engineering focuses on onkeifitany facets of algorithm engineering. The high-perforcea
aspect does not immediately imply parallelism; in fact, iy highly parallel task, most of the impact of high-performa al-
gorithm engineering tends to come from refining the serial pbthe code. For instance, in the example we will use in the
next section, the million-fold speed-up was achieved tghoaicombination of a 512-fold speedup due to parallelisne (bat
will scale to any number of processors) and a 2,000-fold dypeén the serial execution of the code. (For more details on
high-performance algorithm engineering as it applies topatational biology, se#:)

All of the tools and techniques developed over the last fieeyor algorithm engineering are applicable to high-pentance
algorithm engineering. However, many of these tools neetthéun refinement. For example, cache-aware programming is a
key to performance (particularly with high-performancecimaes, which have deep memory hierarchies), yet it is niotved
understood, in part through lack of suitable tools (few pssor chips have built-in hardware to gather statisticheméhavior
of caching, while simulators leave much to be desired) apdihbecause of complex machine-dependentissues (rdfretg e
at cache-independent algorithm degjyf® may offer some new solutions). As another example, proféimgnning program
offers serious challenges in a serial environment (any Iprgfiool affects the behavior of what is being observed},thase
challenges pale in comparison with those arising in a paratldistributed environment (for instance, measuring camica-
tion bottlenecks may require hardware assistance fromehgank switches or at least reprogramming them, which ie soir
affect their behavior).

6. AN ILLUSTRATION: A HIGH-PERFORMANCE SOFTWARE SUITE FOR RECONSTRUCTING
PHYLOGENIESFROM GENE-ORDER DATA

6.1. Gene-Order Data

Reconstruction from gene-order data is a relatively neweandr, as it is only recently that a significant number of gees
have been fully mapped at the gene level. Most such data camerhitochondrial and chloroplast genomes. Chloroplasts
and mitochondria are single-chromosome organelles thatlithin plant and animal cells and produce the energy reqy

the cell. They have relatively small genomes (typically &nes for mitochondria and around 120 genes for chloropast)
tend to have the same collection of genes in most organismhbiich they appear. Thus, for instance, humans, mice, aritd fru
flies have mitochondria with exactly the same 37 genes, lautittee mitochondria differ in gene order (one small diffees
between humans and mice, a much more complex rearrangestergdn humans and fruit flies). Note that genes are most
often directional: that is, they can only be transcribedrfrone specific end to the other; but they may not appear with the
same polarity along the chromosome, so biologists reptélein polarity with a sign and thus can represent a chromaso
as an ordering of signed integers, with each integer agsdlcigith a specific gene. The evolutionary process that tg&mm

the chromosome without changing its gene content and nuimtledes inversions, transpositions, and inverted trasisipns,



each of which corresponds to a breakage in the DNA (in two mretlplaces) that is repaired with a placement error—for
instance, if the strand breaks in two places, the fragmemtd®en the breaks can be reattached with the ends switcrestirg
an inversion.

6.2. Approachesto Phylogeny Reconstruction from Gene Orders

A natural optimization problem for phylogeny reconstrantfrom this type of data is to reconstruct the most parsimasi
tree, the evolutionary tree with the minimum number of péexievolutionary events (from among inversions, transioos,
and inverted transpositions). For any choice of permitieghts, such a problem is computationally very intensiveskm or
conjectured to be NP-hard); worse, to date, no good algost(efficient or not) exist for solving such problems. Anathe
approach is first to estimate leaf-to-leaf distances (bapeth some metric) between all genomes, and then to use aastand
distance-based heuristic suchasghbor-joining®to construct the tree. Such approaches are quite fast angnmeg valuable

in reconstructing the underlying tree, but cannot recdveiincestral gene orders. A third approach is to encode treegeler
data as sequences of characters and use standard parsimihogsto reconstruct a tree from these sequetfc®s.

Blanchetteet al?® developed a direct approach, which they calledakpoint phylogenyfor the special case in which
the genomes all have the same set of genes and each genesappaar This special case is of interest to biologists, who
hypothesize that inversions (which can affect gene orddrnbt gene content) are the main evolutionary mechanisna for
range of genomes or chromosomes (chloroplast, mitocharturiman X chromosome, etc.) Simulation studies we conducte
suggested that this approach works well for certain dagdset, it obtains trees that are close to the model tred)that the
implementation developed by Sankoff and Blanchette Be@al ysi s software! is too slow to be used on anything other
than small datasets with a few gerfég>

6.3. Breakpoint Analysis

When each genome has the same set of genes and each gens agpetly once, a genome can be described by an ordering
(circular or linear) of these genes, each gene given withremtation that is either positivei) or negative €g;). Given two
genomess andG’ on the same set of geneshreakpointin G is defined as an ordered pair of gen@g,g;), such that; and

gj appear consecutively in that order@) but neither(g;,g;) nor (—gj, —gi) appears consecutively in that order@ The
breakpoint distance between two genomes is the number akpoints between that pair of genomes. The breakpoint sfore

a tree in which each node is labelled by a signed ordering mégés then the sum of the breakpoint distances along thesedge
of the tree.

Given three genomes, we define theiedianto be a fourth genome that minimizes the sum of the breakpiiétlnces
between it and the other three. Thtedian Problem for Breakpoini®PB) is to construct such a median and is NP-Hrd.
Sankoff and Blanchette developed a reduction from MPB tdtiagelling Salesman Problem (TSP), perhaps the most studie
of all optimization problem$® Their reduction produces an undirected instance of the T@R the directed instance of MPB
by the standard technique of representing each gene by afpaities connected by an edge that must be included in any
solution.

BPAnal ysi s (see Figure 2) is the method developed by Blanchette andofdnlsolve the breakpoint phylogeny. Within

For all tree topologies do
Initially label all internal nodes with gene orders
Repeat
For each internal node Vv, with neighbors A, B, and C, do

Solve the MPB on A, B, C to yield label m
If relabelling v with mimproves the score of T, then do it

until no internal node can be relabelled

Return the best tree found

Figure2. BPAnal ysi s

a framework that enumerates all trees, it uses an iteradueistic to label the internal nodes with signed gene ord€éhis
procedure is computationally very intensive. The outeplemumerates all2n — 5)!! leaf-labelled trees om leaves, an



exponentially large valué. The inner loop runs an unknown number of iterations (untitvavgence), with each iteration
solving an instance of the TSP (with a number of cities eqodirmice the number of genes) at each internal node. The
computational complexity of the entire algorithm is thupenential ineachof the number of genomes and the number of
genes, with significant coefficients. The procedure neeéis remains a heuristic: even though all trees are exdraimg
each MPB problem solved exactly, the tree-labeling phass dot ensure optimality unless the tree has only threedeave

6.4. Re-Engineering BPAnalysisfor Speed

Profiling Algorithmic engineering suggests a refinement cycle in Witie behavior of the currentimplementation is studied
in order to identify problem areas which can include exs@ssésource consumption or poor results. We used extensive
profiling and testing throughout our development cycle chifallowed us to identify and eliminate a number of such prots.

For instance, converting the MPB into a TSP instance domtite running time whenever the TSP instances are not too
hard to solve. Thus we lavished much attention on that reutiown to the level of hand-unrolling loops to avoid modulo
computations and allowing reuse of intermediate exprassiwe cut the running time of that routine down by a factortof a
least six—and thereby nearly tripled the speed of the oMewdk. We lavished equal attention on distance computstiod on

the computation of the lower bound, with similar resultsn€tant profiling is the key to such an approach, because ¢mitigl

of the principal “culprits” in time consumption changeseafeach improvement, so that attention must shift to diffeparts

of the code during the process—including revisiting alsemaproved code for further improvements. These steps deal/a
speed-up by one order of magnitude on @a@mpanulaceadataset.

Cache Awareness The originalBPAnal ysi s is written in C++ and uses a space-intensive full distancgixyas well as
many other data structures. It has a significant memory fodtfover 60MB when running on th€ampanulaceadataset)
and poor locality (a working set size of about 12MB). Our iempkntation has a tiny memory footprint (1.8MB on tbam-
panulaceaalataset) and good locality (all of our storage is in arragsafpocated in the main routine and retained and reused
throughout the computation), which enables it to run alncosbpletely in cache (the working set size is less than 600KB)
Cache locality can be improved by returning to a FORTRANesty programming, in which storage is static, in which retsor
(structures/classes) are avoided in favor of separatgsariawhich simple iterative loops that traverse an arragdrly are
preferred over pointer dereferencing, in which code isicepgd to process each array separately, etc. While we tamee-
sure exactly how much we gain from this approach, studieadfe-aware algorithri%34indicate that the gain is likely to be
substantial—factors of anywhere from 2 to 40 have been tegoNew memory hierarchies show differences in speed legtwe
cache and main memory that exceed two orders of magnitude.

Low-Level Algorithmic Changes Unless the original implementation is poor (which was netdhse wittBPAnal ysi s),
profiling and cache-aware programming will rarely providerenthan two orders of magnitude in speed-up. Further gains
can often be obtained by low-level improvement in the alfponic details. In our phylogenetic software, we made twdsuc
improvements. The basic algorithm scores every single waéh is clearly very wasteful; we used a simple lower bqund
computable in linear time, to enable us to eliminate a trabauit scoring it. On th&€ampanulaceadataset, this bounding
eliminates over 95% of the trees without scoring them, tespin a five-fold speed-up. The TSP solver we wrote is atthear
the same basic include/exclude search a&Pimal ysi s, but we took advantage of the nature of the instances crégtéuk
reduction to make the solver much more efficient, resulting speed-up by a factor of 5-10. These improvements allgprin
from a careful examination of exactly what information iswdéy available or easily computable at each stage and from a
deliberate effort to make use of all such information.

6.5. A High-Performance | mplementation

Our resulting implementatiolGRAPPA' incorporates all of the refinements mentioned above, plerstspecifically made
to enable the code to run efficiently in parallel 5éer details). Because the basic algorithm enumerates atependently
scores every tree, it presents obvious parallelism: we ear Bach processor handle a subset of the trees. In ordersio do
efficiently, we need to impose a linear ordering on the sell piogsible trees and devise a generator that can start abéraay
point along this ordering. Because the number of trees iarg®) an arbitrary tree index would require unboundedigit
integers, considerably slowing down tree generation. ©lutisn was to design a tree generator that starts with trdexk
and generates trees with indicfis+ cn| n € a¢ }, wherek andc are regular integers, all without using unbounded-prenisi

*The double factorial is a factorial with a step of 2, so we h@re-5)!! = (2n—5)-(2n—7)-...-3
TGenome Rearrangement Analysis through Parsimony and Btiydogenetic Algorithms




arithmetic. Such a generator allows us to sample tree spacay useful feature in research) and, more importanttywalus
to use a cluster of processors, where processod < i < c— 1, generates and scores trees with indidesscn| ne « }.

The University of New Mexico’s Albuguerque High Performar€omputing Center operates the Alliance 512-processor
supercluster, calledosLobog(shown in Figure 3). This platform is a cluster of 256 IBM Neitfy 4500R nodes, each with

Figure 3. University of New Mexico’s LosLobos SuperCluster

dual 733 MHz Intel Pentium Il processors and 1 GB RAM, intemected by Myrinet 2000 switches.osLobosruns the
Linux operating system, and our experiments use the GNU oidenversion egcs-2.91.66 optimized for Pentium Rr@3(
-npent i unpr o), and MPICH v. 1.1.13 libraries for message passing ovelMyrnet with Myricom GM v. 1.3.0 drivers.

We ranGRAPPAon LosLobosand obtained a 512-fold speed-up (linear speedup with cespéhe number of processors):
a complete breakpoint analysis (with inversion distanfmshe 13 genomes in the Campanulaceae data set ran in é&s$.th
hours. When combined with the 2000-fold speedup obtainexiih algorithm engineering, our run on tGampanulaceae
dataset demonstratednillion-fold speed-up over the original implementation.

In addition, we made sure that gains held across a wide yarigtiatforms and compilers: we tested our code under Linux,
FreeBSD, Solaris, and Windows, using compilers from GNUg,Rortland group, Intel (beta release), Microsoft, and &nd,
running the resulting code on Pentium- and Sparc-basedinmeschWhile thegcc compiler produced marginally faster code
than the others, the performance we measured was comptetadjstent from one platform to the other.

7. IMPACT IN COMPUTATIONAL BIOLOGY

Computational biology presents numerous complex optitisirgroblems, such as multiple sequence alignment, pleylpg
reconstruction, characterization of gene expressionctstre prediction, etc. In addition, the very large databassed in com-
putational biology give rise to serious algorithmic engirieg problems when designing query algorithms on thesabdaes.
While several programs in use in the area (such as BLASTwseenchi . nl m ni h. gov/ BLAST/ ) have already been engi-
neered for performance, most such efforts have been moessad hoc The emergence of a discipline of algorithm engineer-
ing®® is bringing us a collection of tools and practices that caagied to almost any existing algorithm or software paekag
to speed up its execution, often by very significant factévben these tools and practices are joined to high-perfocman-
plementations designed for modern parallel platformstraoas gains (our example shows six orders of magnitude) esuftc
While we illustrated the approach and its potential resnith a specific program in phylogeny reconstruction basedeme
order data, we are now in the process of applying the samedbexition of fundamental methods (such as branch-and-thoun
parsimony or maximum-likelihood estimation) as well as radgorithms.

Of course, even large speed-ups have only limited benefitsdaretical terms when applied to NP-hard optimization
problems: even our million-fold speed-up wi@RAPPAonly enables us to move from about 10 taxa to 14 taxa. Yet the
very process of algorithm engineering often uncovers satibaracteristics of the algorithm that were overlooked iess
careful analysis and may thus enable us to develop muchr lzégterithms. In our case, while we were implementing the



rather complex algorithm of Berman and Hannenhalli for catimy the inversion distance between two signed permutstio
an algorithm that had not been implemented before, we camealize that the algorithm could be simplified as well as
accelerated, deriving in the process the first true lineae-tlgorithm for computing these distané&s.We would not have
been tempted to implement this algorithm in the context efdtiginal program, which was already much too slow whengisin
the simpler breakpoint distance. Thus faster experiméméd, even when they prove incapable of scaling to “indalssized”
problems, nevertheless provide crucial opportunitiegkmioring and understanding the problem and its solutions.

Thus we see two potential major impacts in computationdbip First, the much faster implementations, when mature
enough, can alter the practice of research in biology andaimed For instance pharmaceutical companies spend laidgdbs
on computing equipment and research personnel to recebptiylogenies as a vital tool in drug discovery, yet may ktve
to wait a year or more for the results of certain computatioeducing the running time of such analyses from a couple of
years down to a day would make a significant difference in /et and pace of drug discovery and development. Secondly,
biologists in research laboratories around the world uftevace for data analysis, much of it rife with undocumentedtistics
for speeding up the code at the expense of optimality, yibtsédiw for their purposes. Software that produces soligion
with known qualities (such as approximation guaranteed)rans several orders of magnitude faster, even when it regmai
impractical for real-world problems, would neverthelesalde these researchers to test simpler scenarios, comuoalels,
develop intuition on small instances, and perhaps even $emous conjectures about biological mechanisms.
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