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ABSTRACT

Phylogenies (that is, tree-of-life relationships) derived from gene order data may prove crucial in answering some fundamental
open questions in biomolecular evolution. Real-world interest is strong in determining these relationships. For example,
pharmaceutical companies may use phylogeny reconstruction in drug discovery for finding plants with similar gene production.
Health organizations study the evolution and spread of viruses such as HIV to gain understanding of future outbreaks. And
governments are interested in aiding the production of foodstuffs like rice, wheat, and corn, by understanding the genetic code.
Yet very few techniques are available for such phylogeneticreconstructions. Appropriate tools for analyzing such data may
help resolve some difficult phylogenetic reconstruction problems; indeed, this new source of data has been embraced by many
biologists in their phylogenetic work.

With the rapid accumulation of whole genome sequences for a wide diversity of taxa, phylogenetic reconstruction based on
changes in gene order and gene content is showing promise, particularly for resolving deep (i.e., old) branches. However, re-
construction from gene-order data is even more computationally intensive than reconstruction from sequence data, particularly
in groups with large numbers of genes and highly rearranged genomes. We have developed a software suite, GRAPPA, that ex-
tends the breakpoint analysis (BPAnalysis) method of Sankoff and Blanchette while running much faster: in a recent analysis of
a collection of chloroplast data for species of Campanulaceae on a 512-processor Linux supercluster with Myrinet, we achieved
a one-million-fold speedup over BPAnalysis. GRAPPA currently can use either breakpoint or inversion distance (computed
exactly) for its computation and runs on single-processor machines as well as parallel and high-performance computers.

Keywords: high-performance computing, computational genomics, phylogeny reconstruction, breakpoint analysis, gene rear-
rangement, drug discovery

1. INTRODUCTION

Curiosity about the origins of species and their evolutionary history has motivated many biologists and natural historians to study
phylogenetics. Phylogenetics attempts to reconstruct, from data about a collection of modern species, a plausible evolutionary
history for the group, a history that is most often represented by a bifurcating (binary) tree, called a phylogeny. Today, such
phylogenies are reconstructed from molecular and genetic data with the help of computers and are proving to be essentialtools
in the pharmaceutical industry.

In this paper, we briefly introduce phylogenies, survey someof the main reconstruction methods and the data they use, then
list some of the most prominent industrial uses of phylogenyreconstruction, most of which necessitated significant computing
efforts. We then present some of our own work in reconstructing phylogenies from gene-order data, work that resulted in the
widely used software suite GRAPPA, discussing the high-performance aspects of our design and our implementation.

The organization of this paper is as follows. Section 2 introduces phylogenies, while Section 3 surveys existing commer-
cial applications of phylogeny reconstruction, and Section 4 briefly reviews the principal computational methods usedin the
reconstruction of phylogenies. Section 5 gives an overviewof algorithm engineering, an emerging discipline that addresses
methodologies by which modern algorithm designs can be transformed into efficient and robust code. Section 6 illustrates this
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Figure 1. Two phylogenies: some plants of theCampanulaceaefamily (left) and some Herpes viruses affecting humans (right)

approach as was applied by members of our group to an existingstrategy for phylogeny reconstruction from gene-order data—
starting with the method of breakpoint analysis of Sankoff and Blanchette1 and producing the software suite called GRAPPA
(see, e.g.,2), which runs at least three orders of magnitude faster and parallelizes extremely well.3 Section 7 concludes with our
personal take on the current impact of high-performance computing applied to discrete optimization problems in computational
biology

2. PHYLOGENIES

A phylogeny is a reconstruction of the evolutionary historyof a collection of organisms; it usually takes the form of an evolu-
tionary tree, in which modern organisms are placed at the leaves and ancestral organisms occupy internal nodes, with theedges
of the tree denoting evolutionary relationships. Figure 1 shows two proposed phylogenies, one for several species of the Cam-
panulaceae(bluebell flower) family and the other for Herpes viruses that are known to affect humans. In the left-hand figure,
estimates of evolutionary distance are used to label each edge; in the right-hand figure, the length of each edge is scaledto
represent that distance. Neither phylogeny shows the possible characteristics of ancestral species at the internal nodes, although
some phylogeny reconstructions (as we shall see) infer suchcharacteristics.

Reconstructing phylogenies is a major component of modern research programs in many areas of biology and medicine (as
well as linguistics). Scientists are of course interested in phylogenies for the usual reasons of scientific curiosity.An under-
standing of evolutionary mechanisms and relationships is at the heart of modern pharmaceutical research for drug discovery, is
helping researchers develop defenses against rapidly mutating viruses such as HIV, is at the basis of the design of genetically
enhanced organisms, etc. In developing such an understanding, the reconstruction of phylogenies is a crucial tool, as it allows
one to test new models of evolution.

3. COMMERCIAL ASPECTS OF PHYLOGENY RECONSTRUCTION

Simple identification of organisms via phylogeny has, to date, yielded more patent filings than any other use of phylogenyin
industry. Just as a public health entomologist might keep a reference collection of mosquitoes or ticks to aid in identification,
so do many industry bioinformaticians keep collections of gene sequences. When a microorganism of unknown origin is
discovered, the final identification is generally done via sequencing. If the gene sequence from the organism of interestdoes
not match a sequence already in the collection, inference ofclose relatives to that organism is done via phylogeny. Sequence
motifs unique to that organism or to a specific phylogenetic group are often then patented as a means of identification for that
organism or group. Examples include sequence motifs used for identification of close relatives of Mycobacterium tuberculosis
in sputum culture and for differentiating among tuberculosis strains (GenProbe 1991, 1992).4,5

A more unusual application of phylogenetic analysis to a practical problem is its use in studying the dynamics of microbial
communities. Engelenet al. (1998)6 sequenced genes to identify and quantify microbes in soil before and after pesticide
exposure. Because many microbes in many such population studies are novel, their gene sequences are studied phylogenetically
in order to understand the composition of the community throughout the experiment.

Phylogenetic analysis has been used in vaccine development. When a vaccine is developed, it is often specific to a particular
variant of a cell wall or protein coat component. Halburet al.(1994)7 used phylogenetic analysis to infer that porcine reproduc-
tive and respiratory syndrome virus isolates from the US andEurope were from separate populations, and thus engineeredtheir
vaccine to confer immunity against both populations. In thecontinuing effort to develop HIV vaccines, the population dynamics



of HIV are studied by examining DNA markers which originate from disparate populations; initial population boundariesare
then established with phylogenetic analysis (GenProbe, 1993).8

The phylogenetic distribution of biochemical pathways (Overbeeket al., 2000)9 is studied in the development of antibacte-
rials and herbicides. Glyphosate (better known as Roundup,Rodeo and Pondmaster) was the first herbicide specifically targeted
at a pathway, the shikimate pathway, because that pathway isnot present in mammals (Grossbard and Atkins, 1985).10 Because
plants and some microbes rely on this pathway, they are killed by glyphosate. Antimicrobials targeting the shikimate pathway
are also being developed (Robertset al., 1998).11 In the pharmaceutical industry, the phylogenetic distribution of a pathway is
often studied before a drug is developed in order to understand the effective range of an antimicrobial targeted at that pathway12

(Brown and Warren, 1998). The mevalonate pathway was identified by Wildinget al.(2000)13 as a target for drug development
for gram positive cocci-specific antimicrobials. These bacteria contain genes from the eukaryotic mevalonate pathwaythat
were captured by the ancestors to this group of bacteria millions of years ago. The microbial genes have diverged to such an
extent that this pathway can be targeted separately in thesemicrobes from our own mevalonate pathway.

Finally, phylogenetic analysis is used in the pharmaceutical industry for predicting the natural ligands for cell surface
receptors which are potential drug targets. Just as the speciation process produces hierarchical lineages from a single species,
so can a process of duplication and divergence produce hierarchically related gene families from a single ancestral gene. Several
large gene families contain drug receptors. In fact, a single family, the G protein coupled receptors (GPCRs) contains more
than 40% of the targets of most pharmaceutical companies. Neuromedin U, a potent neuropeptide that causes contraction of
smooth muscle, was (correctly) predicted phylogenetically to be a possible ligand for FM3 an orphan GPCR (Szekereset al.,
2000).14 Chamberset al. (2000)15 used phylogenies to infer a class of modified nucleotides as ligands for a small group of
GPCRs. UDP-glucose, and related molecules, involved in carbohydrate biosynthesis, were shown to be ligands for KIAA0001.
Zhu et al. (2001)16 predicted and confirmed not only the ligand but also the pharmacology of a novel GPCR for histamine via
phylogeny.

Thus phylogeny reconstruction is a significant task within the research departments of pharmaceutical companies.

4. COMPUTATIONAL PHYLOGENETICS

Phylogenies have been reconstructed “by hand” for over a century by taxonomists, using morphological characters and basic
principles of genetic inheritance. With the advent of molecular data, however, it has become necessary to develop algorithms to
reconstruct phylogenies from the very large amount of data made available through DNA sequencing, amino-acid and protein
characterization, gene expression data, and whole-genomedescriptions.

Until recently, most of the research focused on the development of methods for phylogeny reconstruction from DNA se-
quences (which can be regarded as strings on a 4-character alphabet), using a model of evolution based mostly on nucleotide
substitution. Because amino-acids, the building blocks oflife, are coded by substrings of four nucleotides known as codons,
the same methods were naturally extended to sequences of codons (which can be regarded as strings on an alphabet of 22
characters—in spite of the 64 possible codes, only 22 amino-acids are encoded, with many codes representing the same
amino-acid). Proteins, which are built from amino-acids, are the natural next level, but are proving difficult to characterize
in evolutionary terms. Recently, another type of data has been made available through the characterization of entire genomes:
gene content and gene order data. For some organisms, such ashuman, mouse, fruit fly, and several plants and lower-order
organisms, as well as for a large collection of organelles (mitochondria, the animal cells’ “energy factories”, and chloroplasts,
the plant cells’ “photosynthesis factories”), we have a fairly complete description of the entire genome, gene by gene.Because
plausible mechanisms of evolution include gene rearrangement, duplication, and loss, and because evolution at this level (the
“genome level”) is much slower than evolution driven by mutations in the nucleotide base pairs (the “gene level”) and so may
enable us to recover deep evolutionary relationships, there has been considerable interest in the phylogeny communityin the
development of algorithms for reconstructing phylogeniesbased on gene order or gene content. Appropriate tools for analyz-
ing such data may help resolve some difficult phylogenetic reconstruction problems, particularly those dealing with so-called
“deep” evolutionary questions—i.e., ancient events in evolutionary history—because such changes in the genome are consid-
erably rarer than alterations in the DNA sequences. This newsource of data has therefore been embraced by many biologists
in their phylogenetic work,17–19 in spite of the fact that its analysis is considerably more difficult than the analysis of DNA
sequence data. There is no doubt that, as our understanding of evolution improves, yet newer (and probably more complex)
types of data will be collected and well need to be analyzed inphylogeny reconstruction.

To date, almost every model of evolution proposed for modelling phylogenies gives rise to NP-hard optimization problems.
Three main lines of work have evolved: more or lessad hocheuristics (a natural consequence of the NP-hardness of the
problems) that run quickly, but offer no quality guaranteesand may not even have a well defined optimization criterion, such



as the popularneighbor-joiningheuristic20; optimization problems based on aparsimonycriterion, which seeks the phylogeny
with the least total amount of change needed to explain modern data (a modern version of Occam’s razor); and optimization
problems based on amaximum likelihoodcriterion, which seeks the phylogeny that is the most likely(under some suitable
statistical model) to have given rise to the modern data.Ad hocheuristics are fast and often rival the optimization methods
in terms of accuracy; parsimony-based methods may take exponential time, but, at least for DNA data, can often be run to
completion on datasets of moderate size; while methods based on maximum-likelihood are very slow (the point estimation
problem alone appears intractable) and so restricted to very small instances, but appear capable of outperforming the others in
terms of the quality of solutions. In the case of gene-order data, however, only parsimony criteria have been proposed sofar:
we do not yet have detailed enough models (or ways to estimatetheir parameters) for using a maximum-likelihood approach.

5. HIGH-PERFORMANCE APPROACHES IN DISCRETE ALGORITHMS

The term “algorithm engineering” was first used with specificity in 1997, with the organization of the firstWorkshop on Al-
gorithm Engineering (WAE 97). Since then, this workshop has taken place every summer in Europe and a parallel one started
in the US in 1999, theWorkshop on Algorithm Engineering and Experiments (ALENEX99), which has taken place every win-
ter, colocated with theACM/SIAM Symposium on Discrete Algorithms (SODA). Algorithm engineering refers to the process
required to transform a pencil-and-paper algorithm into a robust, efficient, well tested, and easily usable implementation. Thus
it encompasses a number of topics, from modelling cache behavior to the principles of good software engineering; its main
focus, however, is experimentation. In that sense, it may beviewed as a recent outgrowth ofExperimental Algorithmics, which
is specifically devoted to the development of methods, tools, and practices for assessing and refining algorithms through ex-
perimentation. The onlineACM Journal of Experimental Algorithmics (JEA), at URL www.jea.acm.org, is devoted to this
area.

High-performancealgorithm engineering focuses on one of the many facets of algorithm engineering. The high-performance
aspect does not immediately imply parallelism; in fact, in any highly parallel task, most of the impact of high-performance al-
gorithm engineering tends to come from refining the serial part of the code. For instance, in the example we will use in the
next section, the million-fold speed-up was achieved through a combination of a 512-fold speedup due to parallelism (one that
will scale to any number of processors) and a 2,000-fold speedup in the serial execution of the code. (For more details on
high-performance algorithm engineering as it applies to computational biology, see.21 )

All of the tools and techniques developed over the last five years for algorithm engineering are applicable to high-performance
algorithm engineering. However, many of these tools need further refinement. For example, cache-aware programming is a
key to performance (particularly with high-performance machines, which have deep memory hierarchies), yet it is not yet well
understood, in part through lack of suitable tools (few processor chips have built-in hardware to gather statistics on the behavior
of caching, while simulators leave much to be desired) and inpart because of complex machine-dependent issues (recent efforts
at cache-independent algorithm design22,23 may offer some new solutions). As another example, profilinga running program
offers serious challenges in a serial environment (any profiling tool affects the behavior of what is being observed), but these
challenges pale in comparison with those arising in a parallel or distributed environment (for instance, measuring communica-
tion bottlenecks may require hardware assistance from the network switches or at least reprogramming them, which is sure to
affect their behavior).

6. AN ILLUSTRATION: A HIGH-PERFORMANCE SOFTWARE SUITE FOR RECONSTRUCTING
PHYLOGENIES FROM GENE-ORDER DATA

6.1. Gene-Order Data

Reconstruction from gene-order data is a relatively new endeavor, as it is only recently that a significant number of genomes
have been fully mapped at the gene level. Most such data come from mitochondrial and chloroplast genomes. Chloroplasts
and mitochondria are single-chromosome organelles that live within plant and animal cells and produce the energy required by
the cell. They have relatively small genomes (typically 37 genes for mitochondria and around 120 genes for chloroplast)and
tend to have the same collection of genes in most organisms inwhich they appear. Thus, for instance, humans, mice, and fruit
flies have mitochondria with exactly the same 37 genes, but the three mitochondria differ in gene order (one small difference
between humans and mice, a much more complex rearrangement between humans and fruit flies). Note that genes are most
often directional: that is, they can only be transcribed from one specific end to the other; but they may not appear with the
same polarity along the chromosome, so biologists represent their polarity with a sign and thus can represent a chromosome
as an ordering of signed integers, with each integer associated with a specific gene. The evolutionary process that operates on
the chromosome without changing its gene content and numberincludes inversions, transpositions, and inverted transpositions,



each of which corresponds to a breakage in the DNA (in two or three places) that is repaired with a placement error—for
instance, if the strand breaks in two places, the fragment between the breaks can be reattached with the ends switched, creating
an inversion.

6.2. Approaches to Phylogeny Reconstruction from Gene Orders

A natural optimization problem for phylogeny reconstruction from this type of data is to reconstruct the most parsimonious
tree, the evolutionary tree with the minimum number of permitted evolutionary events (from among inversions, transpositions,
and inverted transpositions). For any choice of permitted events, such a problem is computationally very intensive (known or
conjectured to be NP-hard); worse, to date, no good algorithms (efficient or not) exist for solving such problems. Another
approach is first to estimate leaf-to-leaf distances (basedupon some metric) between all genomes, and then to use a standard
distance-based heuristic such asneighbor-joining20 to construct the tree. Such approaches are quite fast and mayprove valuable
in reconstructing the underlying tree, but cannot recover the ancestral gene orders. A third approach is to encode the gene-order
data as sequences of characters and use standard parsimony methods to reconstruct a tree from these sequences.24,25

Blanchetteet al.26 developed a direct approach, which they calledbreakpoint phylogeny, for the special case in which
the genomes all have the same set of genes and each gene appears once. This special case is of interest to biologists, who
hypothesize that inversions (which can affect gene order, but not gene content) are the main evolutionary mechanism fora
range of genomes or chromosomes (chloroplast, mitochondria, human X chromosome, etc.) Simulation studies we conducted
suggested that this approach works well for certain datasets (i.e., it obtains trees that are close to the model tree), but that the
implementation developed by Sankoff and Blanchette, theBPAnalysis software,1 is too slow to be used on anything other
than small datasets with a few genes.24,25

6.3. Breakpoint Analysis

When each genome has the same set of genes and each gene appears exactly once, a genome can be described by an ordering
(circular or linear) of these genes, each gene given with an orientation that is either positive (gi) or negative (−gi). Given two
genomesG andG′ on the same set of genes, abreakpointin G is defined as an ordered pair of genes,(gi ,g j), such thatgi and
g j appear consecutively in that order inG, but neither(gi ,g j) nor (−g j ,−gi) appears consecutively in that order inG′. The
breakpoint distance between two genomes is the number of breakpoints between that pair of genomes. The breakpoint scoreof
a tree in which each node is labelled by a signed ordering of genes is then the sum of the breakpoint distances along the edges
of the tree.

Given three genomes, we define theirmedianto be a fourth genome that minimizes the sum of the breakpointdistances
between it and the other three. TheMedian Problem for Breakpoints(MPB) is to construct such a median and is NP-hard.27

Sankoff and Blanchette developed a reduction from MPB to theTravelling Salesman Problem (TSP), perhaps the most studied
of all optimization problems.28 Their reduction produces an undirected instance of the TSP from the directed instance of MPB
by the standard technique of representing each gene by a pairof cities connected by an edge that must be included in any
solution.

BPAnalysis (see Figure 2) is the method developed by Blanchette and Sankoff to solve the breakpoint phylogeny. Within

For all tree topologies do

Initially label all internal nodes with gene orders

Repeat

For each internal node v, with neighbors A, B, and C, do

Solve the MPB on A,B,C to yield label m
If relabelling v with m improves the score of T, then do it

until no internal node can be relabelled

Return the best tree found

Figure 2. BPAnalysis

a framework that enumerates all trees, it uses an iterative heuristic to label the internal nodes with signed gene orders. This
procedure is computationally very intensive. The outer loop enumerates all(2n− 5)!! leaf-labelled trees onn leaves, an



exponentially large value.∗ The inner loop runs an unknown number of iterations (until convergence), with each iteration
solving an instance of the TSP (with a number of cities equal to twice the number of genes) at each internal node. The
computational complexity of the entire algorithm is thus exponential ineachof the number of genomes and the number of
genes, with significant coefficients. The procedure nevertheless remains a heuristic: even though all trees are examined and
each MPB problem solved exactly, the tree-labeling phase does not ensure optimality unless the tree has only three leaves.

6.4. Re-Engineering BPAnalysis for Speed

Profiling Algorithmic engineering suggests a refinement cycle in which the behavior of the current implementation is studied
in order to identify problem areas which can include excessive resource consumption or poor results. We used extensive
profiling and testing throughout our development cycle, which allowed us to identify and eliminate a number of such problems.
For instance, converting the MPB into a TSP instance dominates the running time whenever the TSP instances are not too
hard to solve. Thus we lavished much attention on that routine, down to the level of hand-unrolling loops to avoid modulo
computations and allowing reuse of intermediate expressions; we cut the running time of that routine down by a factor of at
least six—and thereby nearly tripled the speed of the overall code. We lavished equal attention on distance computations and on
the computation of the lower bound, with similar results. Constant profiling is the key to such an approach, because the identity
of the principal “culprits” in time consumption changes after each improvement, so that attention must shift to different parts
of the code during the process—including revisiting already improved code for further improvements. These steps provided a
speed-up by one order of magnitude on theCampanulaceaedataset.

Cache Awareness The originalBPAnalysis is written in C++ and uses a space-intensive full distance matrix, as well as
many other data structures. It has a significant memory footprint (over 60MB when running on theCampanulaceaedataset)
and poor locality (a working set size of about 12MB). Our implementation has a tiny memory footprint (1.8MB on theCam-
panulaceaedataset) and good locality (all of our storage is in arrays preallocated in the main routine and retained and reused
throughout the computation), which enables it to run almostcompletely in cache (the working set size is less than 600KB).
Cache locality can be improved by returning to a FORTRAN-style of programming, in which storage is static, in which records
(structures/classes) are avoided in favor of separate arrays, in which simple iterative loops that traverse an array linearly are
preferred over pointer dereferencing, in which code is replicated to process each array separately, etc. While we cannot mea-
sure exactly how much we gain from this approach, studies of cache-aware algorithms29–34indicate that the gain is likely to be
substantial—factors of anywhere from 2 to 40 have been reported. New memory hierarchies show differences in speed between
cache and main memory that exceed two orders of magnitude.

Low-Level Algorithmic Changes Unless the original implementation is poor (which was not the case withBPAnalysis),
profiling and cache-aware programming will rarely provide more than two orders of magnitude in speed-up. Further gains
can often be obtained by low-level improvement in the algorithmic details. In our phylogenetic software, we made two such
improvements. The basic algorithm scores every single tree, which is clearly very wasteful; we used a simple lower bound,
computable in linear time, to enable us to eliminate a tree without scoring it. On theCampanulaceaedataset, this bounding
eliminates over 95% of the trees without scoring them, resulting in a five-fold speed-up. The TSP solver we wrote is at heart
the same basic include/exclude search as inBPAnalysis, but we took advantage of the nature of the instances createdby the
reduction to make the solver much more efficient, resulting in a speed-up by a factor of 5–10. These improvements all spring
from a careful examination of exactly what information is readily available or easily computable at each stage and from a
deliberate effort to make use of all such information.

6.5. A High-Performance Implementation

Our resulting implementation,GRAPPA,† incorporates all of the refinements mentioned above, plus others specifically made
to enable the code to run efficiently in parallel (see2 for details). Because the basic algorithm enumerates and independently
scores every tree, it presents obvious parallelism: we can have each processor handle a subset of the trees. In order to doso
efficiently, we need to impose a linear ordering on the set of all possible trees and devise a generator that can start at an arbitrary
point along this ordering. Because the number of trees is so large, an arbitrary tree index would require unbounded-precision
integers, considerably slowing down tree generation. Our solution was to design a tree generator that starts with tree indexk
and generates trees with indices{k+ cn | n∈ N }, wherek andc are regular integers, all without using unbounded-precision

∗The double factorial is a factorial with a step of 2, so we have(2n−5)!! = (2n−5) · (2n−7) · . . . ·3
†Genome Rearrangement Analysis through Parsimony and otherPhylogenetic Algorithms



arithmetic. Such a generator allows us to sample tree space (a very useful feature in research) and, more importantly, allows us
to use a cluster ofc processors, where processori, 0≤ i ≤ c−1, generates and scores trees with indices{i +cn | n∈ N }.

The University of New Mexico’s Albuquerque High Performance Computing Center operates the Alliance 512-processor
supercluster, calledLosLobos(shown in Figure 3). This platform is a cluster of 256 IBM Netfinity 4500R nodes, each with

Figure 3. University of New Mexico’s LosLobos SuperCluster

dual 733 MHz Intel Pentium III processors and 1 GB RAM, interconnected by Myrinet 2000 switches.LosLobosruns the
Linux operating system, and our experiments use the GNU C compiler version egcs-2.91.66 optimized for Pentium Pro (-O3
-mpentiumpro), and MPICH v. 1.1.13 libraries for message passing over theMyrinet with Myricom GM v. 1.3.0 drivers.

We ranGRAPPAonLosLobosand obtained a 512-fold speed-up (linear speedup with respect to the number of processors):
a complete breakpoint analysis (with inversion distances)for the 13 genomes in the Campanulaceae data set ran in less than 1.5
hours. When combined with the 2000-fold speedup obtained through algorithm engineering, our run on theCampanulaceae
dataset demonstrated amillion-fold speed-up over the original implementation.3

In addition, we made sure that gains held across a wide variety of platforms and compilers: we tested our code under Linux,
FreeBSD, Solaris, and Windows, using compilers from GNU, the Portland group, Intel (beta release), Microsoft, and Sun,and
running the resulting code on Pentium- and Sparc-based machines. While thegcc compiler produced marginally faster code
than the others, the performance we measured was completelyconsistent from one platform to the other.

7. IMPACT IN COMPUTATIONAL BIOLOGY

Computational biology presents numerous complex optimization problems, such as multiple sequence alignment, phylogeny
reconstruction, characterization of gene expression, structure prediction, etc. In addition, the very large databases used in com-
putational biology give rise to serious algorithmic engineering problems when designing query algorithms on these databases.
While several programs in use in the area (such as BLAST, seewww.ncbi.nlm.nih.gov/BLAST/) have already been engi-
neered for performance, most such efforts have been more or lessad hoc. The emergence of a discipline of algorithm engineer-
ing35 is bringing us a collection of tools and practices that can beapplied to almost any existing algorithm or software package
to speed up its execution, often by very significant factors.When these tools and practices are joined to high-performance im-
plementations designed for modern parallel platforms, enormous gains (our example shows six orders of magnitude) may result.
While we illustrated the approach and its potential resultswith a specific program in phylogeny reconstruction based ongene
order data, we are now in the process of applying the same to a collection of fundamental methods (such as branch-and-bound
parsimony or maximum-likelihood estimation) as well as newalgorithms.

Of course, even large speed-ups have only limited benefits intheoretical terms when applied to NP-hard optimization
problems: even our million-fold speed-up withGRAPPAonly enables us to move from about 10 taxa to 14 taxa. Yet the
very process of algorithm engineering often uncovers salient characteristics of the algorithm that were overlooked ina less
careful analysis and may thus enable us to develop much better algorithms. In our case, while we were implementing the



rather complex algorithm of Berman and Hannenhalli for computing the inversion distance between two signed permutations,
an algorithm that had not been implemented before, we came torealize that the algorithm could be simplified as well as
accelerated, deriving in the process the first true linear-time algorithm for computing these distances.36 We would not have
been tempted to implement this algorithm in the context of the original program, which was already much too slow when using
the simpler breakpoint distance. Thus faster experimentaltools, even when they prove incapable of scaling to “industrial-sized”
problems, nevertheless provide crucial opportunities forexploring and understanding the problem and its solutions.

Thus we see two potential major impacts in computational biology. First, the much faster implementations, when mature
enough, can alter the practice of research in biology and medicine. For instance pharmaceutical companies spend large budgets
on computing equipment and research personnel to reconstruct phylogenies as a vital tool in drug discovery, yet may still have
to wait a year or more for the results of certain computations; reducing the running time of such analyses from a couple of
years down to a day would make a significant difference in the cost and pace of drug discovery and development. Secondly,
biologists in research laboratories around the world use software for data analysis, much of it rife with undocumented heuristics
for speeding up the code at the expense of optimality, yet still slow for their purposes. Software that produces solutions
with known qualities (such as approximation guarantees) and runs several orders of magnitude faster, even when it remains
impractical for real-world problems, would nevertheless enable these researchers to test simpler scenarios, comparemodels,
develop intuition on small instances, and perhaps even formserious conjectures about biological mechanisms.
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