CS 361, Lecture 11

Jared Saia
University of New Mexico

Outline

- Annihilators review
- The final "Lookup Table"
- Non-homogeneous Recurrences
- Limitations
\qquad

We define three basic operations we can perform on this sequence:

1. Multiply the sequence by a constant: $c A=\left\langle c a_{0}, c a_{1}, c a_{2}, \cdots\right\rangle$
2. Shift the sequence to the left: $\mathbf{L} A=\left\langle a_{1}, a_{2}, a_{3}, \cdots\right\rangle$
3. Add two sequences: if $A=\left\langle a_{0}, a_{1}, a_{2}, \cdots\right\rangle$ and $B=\left\langle b_{0}, b_{1}, b_{2}, \cdots\right\rangle$, then $A+B=\left\langle a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, \cdots\right\rangle$
\qquad

- We first express our recurrence as a sequence T
- We use these three operators to "annihilate" T, i.e. make it all 0 's
- Key rule: can't multiply by the constant 0
- We can then determine the solution to the recurrence from the sequence of operations performed to annihilate T
- The annihilator $\mathbf{L}-a$ annihilates sequences of the form $\left\langle c_{1} a^{n}\right\rangle$
- The annihilator ($\mathbf{L}-a)(\mathbf{L}-b)$ (where $a \neq b$) anihilates sequences of the form $\left\langle c_{1} a^{n}+c_{2} b^{n}\right\rangle$
- Our lookup table has a big gap: What does $(\mathbf{L}-a)(\mathbf{L}-a)$ annihilate?
- It turns out it annihilates sequences such as $\left\langle n a^{n}\right\rangle$
\qquad

$$
\begin{aligned}
(\mathbf{L}-a)\left\langle n a^{n}\right\rangle & =\left\langle(n+1) a^{n+1}-(a) n a^{n}\right\rangle \\
& =\left\langle(n+1) a^{n+1}-n a^{n+1}\right\rangle \\
& =\left\langle(n+1-n) a^{n+1}\right\rangle \\
& =\left\langle a^{n+1}\right\rangle \\
(\mathbf{L}-a)^{2}\left\langle n a^{n}\right\rangle & =(\mathbf{L}-a)\left\langle a^{n+1}\right\rangle \\
& =\langle 0\rangle
\end{aligned}
$$

$$
\left(\mathbf{L}-a_{0}\right)^{b_{0}}\left(\mathbf{L}-a_{1}\right)^{b_{1}} \ldots\left(\mathbf{L}-a_{k}\right)^{b_{k}}
$$

annihilates only sequences of the form:

$$
\left\langle p_{1}(n) a_{0}^{n}+p_{2}(n) a_{1}^{n}+\ldots p_{k}(n) a_{k}^{n}\right\rangle
$$

where $p_{i}(n)$ is a polynomial of degree $b_{i}-1$ (and $a_{i} \neq a_{j}$, when $i \neq j$)

Generalization

\qquad

- It turns out that $(\mathbf{L}-a)^{d}$ annihilates sequences of the form $\left\langle p(n) a^{n}\right\rangle$ where $p(n)$ is any polynomial of degree $d-1$
- Example: $(\mathbf{L}-1)^{3}$ annihilates the sequence $\left\langle n^{2} * 1^{n}\right\rangle=$ $\langle 1,4,9,16,25\rangle$ since $p(n)=n^{2}$ is a polynomial of degree $d-1=2$
- Q: What does $(\mathbf{L}-3)(\mathbf{L}-2)(\mathbf{L}-1)$ annihilate?
- A: $c_{0} 1^{n}+c_{1} 2^{n}+c_{2} 3^{n}$
- Q: What does $(\mathbf{L}-3)^{2}(\mathbf{L}-2)(\mathbf{L}-1)$ annihilate?
- A: $c_{0} 1^{n}+c_{1} 2^{n}+\left(c_{2} n+c_{3}\right) 3^{n}$
- Q: What does $(\mathbf{L}-1)^{4}$ annihilate?
- A: $\left(c_{0} n^{3}+c_{1} n^{2}+c_{2} n+c_{3}\right) 1^{n}$
- Q: What does $(\mathbf{L}-1)^{3}(\mathbf{L}-2)^{2}$ annihilate?
- A: $\left(c_{0} n^{2}+c_{1} n+c_{2}\right) 1^{n}+\left(c_{3} n+c_{4}\right) 2^{n}$
\qquad
- ($\mathbf{L}-a$) annihilates only all sequences of the form $\left\langle c_{0} a^{n}\right\rangle$
- ($\mathbf{L}-a)(\mathbf{L}-b)$ annihilates only all sequences of the form $\left\langle c_{0} a^{n}+\right.$ $\left.c_{1} b^{n}\right\rangle$
- $\left(\mathbf{L}-a_{0}\right)\left(\mathbf{L}-a_{1}\right) \ldots\left(\mathbf{L}-a_{k}\right)$ annihilates only sequences of the form $\left\langle c_{0} a_{0}^{n}+c_{1} a_{1}^{n}+\ldots c_{k} a_{k}^{n}\right\rangle$, here $a_{i} \neq a_{j}$, when $i \neq j$
- $(\mathbf{L}-a)^{2}$ annihilates only sequences of the form $\left\langle\left(c_{0} n+c_{1}\right) a^{n}\right\rangle$
- $(\mathbf{L}-a)^{k}$ annihilates only sequences of the form $\left\langle p(n) a^{n}\right\rangle$, $\operatorname{degree}(p(n))=k-1$
- Write down the annihilator for the recurrence
- Factor the annihilator
- Look up the factored annihilator in the "Lookup Table" to get general solution
- Solve for constants of the general solution by using initial conditions
\qquad

Consider the recurrence $T(n)=7 T(n-1)-16 T(n-2)+12 T(n-$ 3), $T(0)=1, T(1)=5, T(2)=17$

- Write down the annihilator: From the definition of the sequence, we can see that $\mathbf{L}^{3} T-7 \mathbf{L}^{2} T+16 \mathbf{L} T-12 T=0$, so the annihilator is $\mathbf{L}^{3}-7 \mathbf{L}^{2}+16 \mathbf{L}-12$
- Factor the annihilator: We can factor by hand or using a computer program to get $\mathbf{L}^{3}-7 \mathbf{L}^{2}+16 \mathbf{L}-12=(\mathbf{L}-2)^{2}(\mathbf{L}-3)$
- Look up to get general solution: The annihilator ($\mathbf{L}-$ $2)^{2}(\mathbf{L}-3)$ annihilates sequences of the form $\left\langle\left(c_{0} n+c_{1}\right) 2^{n}+\right.$ $\left.c_{2} 3^{n}\right\rangle$
- Solve for constants: $T(0)=1=c_{1}+c_{2}, T(1)=5=$ $2 c_{0}+2 c_{1}+3 c_{2}, T(2)=17=8 c_{0}+4 c_{1}+9 c_{2}$. We've got three equations and three unknowns. Solving by hand, we get that $c_{0}=1, c_{1}=0, c_{2}=1$. Thus: $T(n)=n 2^{n}+3^{n}$
- Consider a recurrence of the form $T(n)=T(n-1)+T(n-$ 2) $+k$ where k is some constant
- The terms in the equation involving T (i.e. $T(n-1)$ and $T(n-2))$ are called the homogeneous terms
- The other terms (i.e.k) are called the non-homogeneous terms

Example (II)

Consider the recurrence $T(n)=2 T(n-1)-T(n-2), T(0)=0$, $T(1)=1$

- Write down the annihilator: From the definition of the sequence, we can see that $\mathbf{L}^{2} T-2 \mathbf{L} T+T=0$, so the annihilator is $\mathbf{L}^{2}-2 \mathbf{L}+1$
- Factor the annihilator: We can factor by hand or using the quadratic formula to get $\mathbf{L}^{2}-2 \mathbf{L}+1=(\mathbf{L}-1)^{2}$
- Look up to get general solution: The annihilator $(\mathbf{L}-1)^{2}$ annihilates sequences of the form $\left(c_{0} n+c_{1}\right) 1^{n}$
- Solve for constants: $T(0)=0=c_{1}, T(1)=1=c_{0}+c_{1}$, We've got two equations and two unknowns. Solving by hand, we get that $c_{0}=0, c_{1}=1$. Thus: $T(n)=n$
- In a height-balanced tree, the height of two subtrees of any node differ by at most one
- Let $T(n)$ be the smallest number of nodes needed to obtain a height balanced binary tree of height n
- Q: What is a recurrence for $T(n)$?
- A: Divide this into smaller subproblems
- To get a height-balanced tree of height n, need one subtree of height $n-1$, and one of height $n-2$, plus a root node
- Thus $T(n)=T(n-1)+T(n-2)+1$

In Class Exercise

\qquad

Consider the recurrence $T(n)=6 T(n-1)-9 T(n-2), T(0)=1$, $T(1)=6$

- Q1: What is the annihilator of this sequence?
- Q2: What is the factored version of the annihilator?
- Q3: What is the general solution for the recurrence?
- Q4: What are the constants in this general solution?
(Note: You can check that your general solution works for $T(2)$)
- Let's solve this recurrence: $T(n)=T(n-1)+T(n-2)+1$ (Let $T_{n}=T(n)$, and $T=\left\langle T_{n}\right\rangle$)
- We know that $\left(\mathbf{L}^{2}-\mathbf{L}-1\right)$ annihilates the homogeneous terms
- Let's apply it to the entire equation:

$$
\begin{aligned}
\left(\mathbf{L}^{2}-\mathbf{L}-1\right)\left\langle T_{n}\right\rangle & =\mathbf{L}^{2}\left\langle T_{n}\right\rangle-\mathbf{L}\left\langle T_{n}\right\rangle-1\left\langle T_{n}\right\rangle \\
& =\left\langle T_{n+2}\right\rangle-\left\langle T_{n+1}\right\rangle-\left\langle T_{n}\right\rangle \\
& =\left\langle T_{n+2}-T_{n+1}-T_{n}\right\rangle \\
& =\langle 1,1,1, \cdots\rangle
\end{aligned}
$$

\qquad

- This is close to what we want but we still need to annihilate $\langle 1,1,1, \cdots\rangle$
- It's easy to see that $\mathbf{L}-1$ annihilates $\langle 1,1,1, \cdots\rangle$
- Thus $\left(\mathbf{L}^{2}-\mathbf{L}-1\right)(\mathbf{L}-1)$ annihilates $T(n)=T(n-1)+T(n-$ 2) +1
- When we factor, we get $(\mathbf{L}-\phi)(\mathbf{L}-\hat{\phi})(\mathbf{L}-1)$, where $\phi=\frac{1+\sqrt{5}}{2}$ and $\hat{\phi}=\frac{1-\sqrt{5}}{2}$.

Lookup

- Looking up $(\mathbf{L}-\phi)(\mathbf{L}-\widehat{\phi})(\mathbf{L}-1)$ in the table
- We get $T(n)=c_{1} \phi^{n}+c_{2} \widehat{\phi}^{n}+c_{3} 1^{n}$
- If we plug in the appropriate initial conditions, we can solve for these three constants
- We'll need to get equations for $T(2)$ in addition to $T(0)$ and $T(1)$

General Rule

To find the annihilator for recurrences with non-homogeneous terms, do the following:

- Find the annihilator a_{1} for the homogeneous part
- Find the annihilator a_{2} for the non-homogeneous part
- The annihilator for the whole recurrence is then $a_{1} a_{2}$
- Consider $T(n)=T(n-1)+T(n-2)+2$.
- The residue is $\langle 2,2,2, \cdots\rangle$ and
- The annihilator is still $\left(\mathbf{L}^{2}-\mathbf{L}-1\right)(\mathbf{L}-1)$, but the equation for $T(2)$ changes!
- Consider $T(n)=T(n-1)+T(n-2)+2^{n}$.
- The residue is $\langle 1,2,4,8, \cdots\rangle$ and
- The annihilator is now $\left(\mathbf{L}^{2}-\mathbf{L}-1\right)(\mathbf{L}-2)$.
- Consider $T(n)=T(n-1)+T(n-2)+n$.
- The residue is $\langle 1,2,3,4, \cdots\rangle$
- The annihilator is now $\left(\mathbf{L}^{2}-\mathbf{L}-1\right)(\mathbf{L}-1)^{2}$.
\qquad
- Consider $T(n)=T(n-1)+T(n-2)+n^{2}$.
- The residue is $\langle 1,4,9,25, \cdots\rangle$ and
- The annihilator is $\left(\mathbf{L}^{2}-\mathbf{L}-1\right)(\mathbf{L}-1)^{3}$.

Another Example

\qquad

- Consider $T(n)=T(n-1)+T(n-2)+n^{2}-2^{n}$.
- The residue is $\langle 1-1,4-4,9-8,25-16, \cdots\rangle$ and the
- The annihilator is $\left(\mathbf{L}^{2}-\mathbf{L}-1\right)(\mathbf{L}-1)^{3}(\mathbf{L}-2)$.
\qquad
- Our method does not work on $T(n)=T(n-1)+\frac{1}{n}$ or $T(n)=$ $T(n-1)+\lg n$
- The problem is that $\frac{1}{n}$ and $\lg n$ do not have annihilators.
- Our tool, as it stands, is limited

