
CS 361, Lecture 25

Jared Saia

University of New Mexico

Outline

• B-Trees

• Skip Lists

• Graph Theory Intro

1

B-Trees

• B-Trees are balanced search trees designed to work well on

disks

• B-Trees are not binary trees: each node can have many

children

• Each node of a B-Tree potentially contains several keys, not

just one

• When doing searches, we decide which child link to follow by

finding the correct interval of our search key in the key set

of the current node.

2

Disk Accesses

• Consider any search tree

• The number of disk accesses per search will dominate the

run time

• Unless the entire tree is in memory, there will usually be a

disk access every time an arbitrary node is examined

• The number of disk accesses for most operations on a B-tree

is proportional to the height of the B-tree

• I.e. The info on each node of a B-tree can be stored in main

memory

3

B-Tree Properties

The following is true for every node x

• x stores keys, key1, . . . keyl(x) in sorted order (nondecreasing)

• x contains pointers, c1(x), . . . , cl+1(x) to its children

• Let ki be any key stored in the subtree rooted at the i-th child

of x, then k1 ≤ key1(x) ≤ k2 ≤ key2(x) · · · ≤ keyl(x) ≤ kl+1

4

B-Tree Properties

• All leaves have the same depth

• Lower and upper bounds on the number of keys a node can

contain. Given as a function of a fixed integer t

– If the tree is non-empty, the root must have at least one

key, and 2 children

– Every node other than the root must have at least (t−1)

keys, and all internal nodes other than the root must have

at least t children.

– Every node can contain at most 2t − 1 keys, and so any

internal node can have at most 2t children

5



Note

• The above properties imply that the height of a B-tree is no

more than logt
n+1

2 , for t ≥ 2, where n is the number of keys.

• If we make t, larger, we can save a larger (constant) fraction

over RB-trees in the number of nodes examined

• A (2-3-4)-tree is just a B-tree with t = 2

6

In-Class Exercise

We will now show that for any B-Tree with height h and n keys,

h ≤ logt
n+1

2 , where t ≥ 2.

Consider a B-Tree of height h > 1

• Q1: What is the minimum number of nodes at depth 1, 2,

and 3

• Q2: What is the minimum number of nodes at depth i?

• Q3: Now give a lowerbound for the total number of keys

(e.g. n ≥???)

• Q4: Show how to solve for h in this inequality to get an

upperbound on h

7

Splay Trees

• A Splay Tree is a kind of BST where the standard operations

run in O(logn) amortized time

• This means that over l operations (e.g. Insert, Lookup,

Delete, etc), where l is sufficiently large, the total cost is

O(l ∗ logn)

• In other words, the average cost per operation is O(logn)

• However a single operation could still take O(n) time

• In practice, they are very fast

8

Skip Lists

• Technically, not a BST, but they implement all of the same

operations

• Very elegant randomized data structure, simple to code but

analysis is subtle

• They guarantee that, with high probability, all the major op-

erations take O(logn) time

• We’ll discuss them more next class

9

High Level Analysis

Comparison of various BSTs

• RB-Trees: + guarantee O(logn) time for each operation,

easy to augment, − high constants

• AVL-Trees: + guarantee O(logn) time for each operation,

− high constants

• B-Trees: + guarantee O(logn) time for each operation,

works well for trees that won’t fit in memory, − inserts and

deletes are more complicated

• Splay Tress: + small constants, − amortized guarantees only

• Skip Lists: + easy to implement, − runtime guarantees are

probabilistic only

10

Which Data Structure to use?

• Splay trees work very well in practice, the “hidden constants”

are small

• Unfortunately, they can not guarantee that every operation

takes O(logn)

• When this guarantee is required, B-Trees are best when the

entire tree will not be stored in memory

• If the entire tree will be stored in memory, RB-Trees, AVL-

Trees, and Skip Lists are good

11



Skip List

• Technically, not a BST, but they implement all of the same

operations

• Very elegant randomized data structure, simple to code but

analysis is subtle

• They guarantee that, with high probability, all the major op-

erations take O(logn) time

12

Skip List

• A skip list is basically a collection of doubly-linked lists,

L1, L2, . . . , Lx, for some integer x

• Each list has a special head and tail node, the keys of these

nodes are assumed to be −MAXINT and +MAXINT respec-

tively

• The keys in each list are in sorted order (non-decreasing)

13

Skip List

• Every key is in the list L1.

• For all i > 2, if a key x is in the list Li, it is also in Li−1.

Further there are up and down pointers between the x in Li
and the x in Li−1.

• All the head(tail) nodes from neighboring lists are inter-

connected

14

Example

1 2

2

3 4

4

4

5

5 6head tail

head

head

tail

tail

15

Search

Search(k){

pLeft = L_x.head;

for (i=x;i>=0;i--){

Search from pLeft in L_i to get the rightmost elem, r,

with value <= k;

pLeft = pointer to r in L_(i-1);

}

if (pLeft==k)

return pLeft

else

return nil

}

}

16

Insert

p is a constant between 0 and 1, typically p = 1/2

Insert(k){

First call Search(k), let pLeft be the leftmost elem <= k in L_1

Insert k in L_1, to the right of pLeft

i = 2;

while (rand()<p){

insert k in the appropriate place in L_i;

}

17



Deletion

• Deletion is very simple

• First do a search for the key to be deleted

• Then delete that key from all the lists it appears in from

the bottom up, making sure to “zip up” the lists after the

deletion

18

In-Class Exercise

A trick for computing expectations of discrete positive random

variables:

• Let X be a discrete r.v., that takes on values from 1 to n

E(X) =
n∑

i=1

P (X ≥ i)

19

Why?

n∑

i=1

P (X ≥ i) = 1 ∗ P (X = 1) + 2 ∗ P (X = 2) + . . . (1)

= E(X) (2)

20

In-Class Exercise

Q: How much memory do we expect a skip list to use up?

• Let Xi be the number of lists elem i is inserted in

• Q: What is P (Xi ≥ 1), P (Xi ≥ 2), P (Xi ≥ 3)?

• Q: What is P (Xi ≥ k) for general k?

• Q: What is E(Xi)?

• Q: Let X =
∑n
i=1Xi. What is E(X)?

21

Height of Skip List

• Assume there are n nodes in the list

• Q: What is the probability that a particular key i achieves

height k logn for some constant k?

• A: If p = 1/2, P (Xi ≥ k logn) = 1
nk

22

Height of Skip List

• Q: What is the probability that any of the nodes achieve

height higher than k logn?

• A: We want

P (X1 ≥ k logn or X2 ≥ k logn or . . . or Xn ≥ k logn)

• By a Union Bound, this probability is no more than

P (X1 ≥ k logn) + P (X2 ≥ k logn) + · · ·+ P (Xn ≥ k logn)

• Which equals n
nk

= n1−k

23



Height of Skip List

• If we choose k to be, say 10, this probability gets very small

as n gets large

• In particular, the probability of having a skip list of size ex-

ceeding k logn is o(1)

• So we say that the height of the skip list is O(logn) with

high probability

24

Search Time

• Note that the expected number of “siblings” of a node, x,

at any level i is 2

• Why? Because for a node to be a sibling of x at level i, it

must have failed to advance to the next level

• The first node that advances to the next level ends the pos-

sibility of further siblings.

• This is the same as asking expected number of times we

need to flip a coin to get a heads - the answer is 2

25

Search Time

• The expected number of “siblings” of a node, x, at any level

i is 2

• The number of levels is O(logn) with high probability

• From these two facts, we can argue that the expected search

time is O(logn)

• (Warning: The argument is not as simple as multiplying these

two values. We can’t do this since the two random variables

are not independent.)

26


