
CS 361, Lecture 13

Jared Saia

University of New Mexico

Outline

• Lower Bound for Sorting by Comparison

• Bucket Sort

• Dictionary ADT

1

Administrivia

• Appendix C.1 in the book is an excellent reference for back-

ground math on counting

• Appendix C.2 is good background for probability

2

How Fast Can We Sort?

• Q: What is a lowerbound on the runtime of any sorting al-

gorithm?

• We know that Ω(n) is a trivial lowerbound

• But all the algorithms we’ve seen so far are O(n logn) (or

O(n2)), so is Ω(n logn) a lowerbound?

3

Comparison Sorts

• Definition: An sorting algorithm is a comparison sort if the

sorted order they determine is based only on comparisons

between input elements.

• Heapsort, mergesort, quicksort, bubblesort, and insertion sort

are all comparison sorts

• We will show that any comparison sort must take Ω(n logn)

4

Comparisons

• Assume we have an input sequence A = (a1, a2, . . . , an)

• In a comparison sort, we only perform tests of the form ai <

aj, ai ≤ aj, ai = aj, ai ≥ aj, or ai > aj to determine the

relative order of all elements in A

• We’ll assume that all elements are distinct, and so note that

the only comparison we need to make is ai ≤ aj.
• This comparison gives us a yes or no answer

5

Decision Tree Model

• A decision tree is a full binary tree that gives the possible

sequences of comparisons made for a particular input array,

A

• Each internal node is labelled with the indices of the two

elements to be compared

• Each leaf node gives a permutation of A

6

Decision Tree Model

• The execution of the sorting algorithm corresponds to a path

from the root node to a leaf node in the tree.

• We take the left child of the node if the comparison is ≤ and

we take the right child if the comparison is >

• The internal nodes along this path give the comparisons

made by the alg, and the leaf node gives the output of the

sorting algorithm.

7

Leaf Nodes

• Any correct sorting algorithm must be able to produce each

possible permutation of the input

• Thus there must be at least n! leaf nodes

• The length of the longest path from the root node to a leaf

in this tree gives the worst case run time of the algorithm

(i.e. the height of the tree gives the worst case runtime)

8

Example

• Consider the problem of sorting an array of size two: A =

(a1, a2)

• Following is a decision tree for this problem.

a1<=a2?

yes no

(a1,a2) (a2,a1)

9

In-Class Exercise

• Give a decision tree for sorting an array of size three: A =

(a1, a2, a3)

• What is the height? What is the number of leaf nodes?

10

Height of Decision Tree

• Q: What is the height of a binary tree with at least n! leaf

nodes?

• A: If h is the height, we know that 2h ≥ n!

• Taking log of both sides, we get h ≥ log(n!)

11

Height of Decision Tree

• Q: What is log(n!)?

• A: It is

log(n ∗ (n− 1) ∗ · · · ∗ 1) = logn+ log(n− 1) + · · ·+ log 1

≥ (n/2) log(n/2)

≥ (n/2)(logn− log 2)

= Ω(n logn)

• Thus any decision tree for sorting n elements will have a

height of Ω(n logn)

12

Take Away

• We’ve just proven that any comparison-based sorting algo-

rithm takes Ω(n logn) time

• This does not mean that all sorting algorithms take Ω(n logn)

time

• In fact, there are non comparison-based sorting algorithms

which, under certain circumstances, are asymptotically faster.

13

Bucket Sort

• Bucket sort assumes that the input is drawn from a uniform

distribution over the range [0,1)

• Basic idea is to divide the interval [0,1) into n equal size

regions, or buckets

• We expect that a small number of elements in A will fall into

each bucket

• To get the output, we can sort the numbers in each bucket

and just output the sorted buckets in order

14

Bucket Sort

//PRE: A is the array to be sorted, all elements in A[i] are between

0 and 1 inclusive.

//POST: returns a list which is the elements of A in sorted order

BucketSort(A){

B = new List[]

n = length(A)

for (i=1;i<=n;i++){

insert A[i] at end of list B[floor(n*A[i])];

}

for (i=0;i<=n-1;i++){

sort list B[i] with insertion sort;

}

return the concatenated list B[0],B[1],...,B[n-1];

}

15

Bucket Sort

• Claim: If the input numbers are distributed uniformly over

the range [0,1), then Bucket sort takes expected time O(n)

• Let T (n) be the run time of bucket sort on a list of size n

• Let ni be the random variable givingthe number of elements

in bucket B[i]

• Then T (n) = Θ(n) +
∑n−1
i=0 O(n2

i)

16

Analysis

• We know T (n) = Θ(n) +
∑n−1
i=0 O(n2

i)

• Taking expectation of both sides, we have

E(T (n)) = E(Θ(n) +
n−1∑

i=0

O(n2
i))

= Θ(n) +
n−1∑

i=0

E(O(n2
i))

= Θ(n) +
n−1∑

i=0

(O(E(n2
i)))

• The second step follows by linearity of expectation

• The last step holds since for any constant a and random

variable X, E(aX) = aE(X) (see Equation C.21 in the text)

17

Analysis

• We claim that E(n2
i) = 2− 1/n

• To prove this, we define indicator random variables: Xij = 1

if A[j] falls in bucket i and 0 otherwise (defined for all i,

0 ≤ i ≤ n− 1 and j, 1 ≤ j ≤ n)

• Thus, ni =
∑n
j=1Xij

• We can now compute E(n2
i) by expanding the square and

regrouping terms

18

Analysis

E(ni2) = E((
n∑

j=1

Xij)
2)

= E(
n∑

j=1

n∑

k=1

XijXik)

= E(
n∑

j=1

X2
ij +

∑

1≤j≤n

∑

1≤k≤n,k 6=j

XijXik)

=
n∑

j=1

E(X2
ij) +

∑

1≤j≤n

∑

1≤k≤n,k 6=j

E(XijXik))

19

Analysis

• We can evaluate the two summations separately. Xij is 1

with probability 1/n and 0 otherwise

• Thus E(X2
ij) = 1 ∗ (1/n) + 0 ∗ (1− 1/n) = 1/n

• Where k 6= j, the random variables Xij and Xik are indepen-

dent

• For any two independent random variables X and Y , E(XY) =

E(X)E(Y) (see C.3 in the book for a proof of this)

• Thus we have that

E(XijXik) = E(Xij)E(Xik)

= (1/n)(1/n)

= (1/n2)

20

Analysis

• Substituting these two expected values back into our main

equation, we get:

E(n2
i) =

n∑

j=1

E(X2
ij) +

∑

1≤j≤n

∑

1≤k≤n,k 6=j

E(XijXik))

=
n∑

j=1

(1/n) +
∑

1≤j≤n

∑

1≤k≤n,k 6=j

(1/n2)

= n(1/n) + (n)(n− 1)(1/n2)

= 1 + (n− 1)/n

= 2− (1/n)

21

Analysis

• Recall that E(T (n)) = Θ(n) +
∑n−1
i=0 (O(E(n2

i)))

• We can now plug in the equation E(n2
i) = 2− (1/n) to get

E(T (n)) = Θ(n) +
n−1∑

i=0

2− (1/n)

= Θ(n) + Θ(n)

= Θ(n)

• Thus the entire bucket sort algorithm runs in expected linear

time

22

Dictionary ADT

A dictionary ADT implements the following operations

• Insert(x): puts the item x into the dictionary

• Delete(x): deletes the item x from the dictionary

• IsIn(x): returns true iff the item x is in the dictionary

23

Dictionary ADT

• Frequently, we think of the items being stored in the dictio-

nary as keys

• The keys typically have records associated with them which

are carried around with the key but not used by the ADT

implementation

• Thus we can implement functions like:

– Insert(k,r): puts the item (k,r) into the dictionary if the

key k is not already there, otherwise returns an error

– Delete(k): deletes the item with key k from the dictionary

– Lookup(k): returns the item (k,r) if k is in the dictionary,

otherwise returns null

24

Implementing Dictionaries

• The simplest way to implement a dictionary ADT is with a

linked list

• Let l be a linked list data structure, assume we have the

following operations defined for l

– head(l): returns a pointer to the head of the list

– next(p): given a pointer p into the list, returns a pointer

to the next element in the list if such exists, null otherwise

– previous(p): given a pointer p into the list, returns a

pointer to the previous element in the list if such exists,

null otherwise

– key(p): given a pointer into the list, returns the key value

of that item

– record(p): given a pointer into the list, returns the record

value of that item

25

In-Class Exercise

Implement a dictionary with a linked list

• Q1: Write the operation Lookup(k) which returns a pointer

to the item with key k if it is in the dictionary or null otherwise

• Q2: Write the operation Insert(k,r)

• Q3: Write the operation Delete(k)

• Q4: For a dictionary with n elements, what is the runtime

of all of these operations for the linked list data structure?

• Q5: Describe how you would use this dictionary ADT to

count the number of occurences of each word in an online

book.

26

Dictionaries

• This linked list implementation of dictionaries is very slow

• Q: Can we do better?

• A: Yes, with hash tables, AVL trees, etc

27

Hash Tables

Hash Tables implement the Dictionary ADT, namely:

• Insert(x) - O(1) expected time, Θ(n) worst case

• Lookup(x) - O(1) expected time, Θ(n) worst case

• Delete(x) - O(1) expected time, Θ(n) worst case

28

Direct Addressing

• Suppose universe of keys is U = {0,1, . . . ,m− 1}, where m is

not too large

• Assume no two elements have the same key

• We use an array T [0..m− 1] to store the keys

• Slot k contains the elem with key k

29

Direct Address Functions

DA-Search(T,k){ return T[k];}

DA-Insert(T,x){ T[key(x)] = x;}

DA-Delete(T,x){ T[key(x)] = NIL;}

Each of these operations takes O(1) time

30

Direct Addressing Problem

• If universe U is large, storing the array T may be impractical

• Also much space can be wasted in T if number of objects

stored is small

• Q: Can we do better?

• A: Yes we can trade time for space

31

