
Aleksandra Faust

Candidate

Computer Science

Department

This dissertation is approved, and it is acceptable in quality and form for pub-

lication:

Approved by the Dissertation Committee:

Dr. Lydia Tapia, Chairperson

Dr. Trilce Estrada

Dr. Rafael Fierro

Dr. Melanie Moses

Dr. Lance Williams

i

Reinforcement Learning and Planning for
Preference Balancing Tasks

by

Aleksandra Faust

B.S., University of Belgrade, Serbia, 1997
M.C.S., University of Illinois, Urbana-Champaign, 2004

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Computer Science

The University of New Mexico

Albuquerque, New Mexico

July, 2014

Dedication

To Nina, Adrian, and Eric

”He who moves not forward, goes backward.” - Goethe

iii

Acknowledgments
I am indebted to many for their help, support, and encouragement along this
journey. Above all, I want to thank my advisor, Lydia Tapia. I am grateful for
all the insightful advice, guidance, and championship. I have learned a lot from
you, and you enabled me to do more than I thought I would be able to. I am also
thankful for the members of my thesis committee, Rafael Fierro, Trilce Estrada,
Melanie Moses, and Lance Williams, for their feedback, questions, and comments.
In particular, thank you, Rafael Fierro, for advising me on control theory. And
thank you Patricio Cruz and Rafael Figurea for Figure 5.13. Ivana Palunko and
Domagoj Tolic, thank you for introducing me to the UAVs and control theory and
for all the hours of very fruitful discussions. I am thankful for Peter Ruymgaart’s
valuable discussions and ideas, and for David Ackley’s robust computing idea
and consequent discussions. I am grateful to Marco Morales, Peter Stone, and
Shawna Thomas for their very helpful feedback. I would like to thank Patricio
Cruz for assisting with experiments.

Also, I am indebted to my lab colleagues, Nick Malone, Kaz Manavi, Torin
Adamson, and John Baxter for listening through all the dry-runs and asking prob-
ing questions. Additionally I would like to thank Nick Malone for all the pro-
ductive discussions, and for sharing one of the coldest rooms in the universe; and
Torin Adamson for creating virtual environment models.

My family deserves my deepest gratitude. Eric, thank you for the uncondi-
tional support through all the long hours. And Nina and Adrian, thank you for
all the patience. Mom, Dad, and Srdjan, thank for you being my cheerleading
team. To my friends, Lisa Wilkening, Richard Griffith, Tamar Ginossar, and Alena
Satpathi, thank you for encouraging me to embark on this journey, and for shar-
ing ups and downs along the way. Last but not least, I am deeply indebted to
my colleagues at Sandia National Labs: Bardon Rohrer, Kurt Larson, John Fed-
dema, Marcus Chang, Lorraine Bacca, Joselyne Gallegos, David Gallegos, Steven
Gianoulakis, Phil Lewis and Bernadette Montano. You made this journey possi-
ble.

iv

Reinforcement Learning and Planning for Preference Balancing
Tasks

by

Aleksandra Faust

B.S., University of Belgrade, Serbia, 1997

M.C.S., University of Illinois, Urbana-Champaign, 2004

Ph.D., Computer Science, University of New Mexico, 2014

Abstract

Robots are often highly non-linear dynamical systems with many degrees of free-

dom, making solving motion problems computationally challenging. One so-

lution has been reinforcement learning (RL), which learns through experimen-

tation to automatically perform the near-optimal motions that complete a task.

However, high-dimensional problems and task formulation often prove challeng-

ing for RL. We address these problems with PrEference Appraisal Reinforcement

Learning (PEARL), which solves Preference Balancing Tasks (PBTs). PBTs define

a problem as a set of preferences that the system must balance to achieve a goal.

The method is appropriate for acceleration-controlled systems with continuous

state-space and either discrete or continuous action spaces with unknown sys-

tem dynamics. We show that PEARL learns a sub-optimal policy on a subset of

states and actions, and transfers the policy to the expanded domain to produce a

more refined plan on a class of robotic problems. We establish convergence to task

goal conditions, and even when pre-conditions are not verifiable, show that this

is a valuable method to use before other more expensive approaches. Evaluation

is done on several robotic problems, such as Aerial Cargo Delivery, Multi-Agent

Pursuit, Rendezvous, and Inverted Flying Pendulum both in simulation and ex-

v

perimentally. Additionally, PEARL is leveraged outside of robotics as an array

sorting agent. The results demonstrate high accuracy and fast learning times on a

large set of practical applications.

vi

Contents

List of Figures xii

List of Tables xv

List of Algorithms xvii

1 Introduction 1

1.1 Research Objective . 3

1.2 Contributions . 5

2 Related Work 8

2.1 Motion Planing (MP) . 8

2.2 Decision-making . 11

2.2.1 Markov Decision Process (MDP) 12

2.3 Reinforcement Learning (RL) . 16

2.3.1 Exploration vs. Exploitation 18

vii

Contents

2.3.2 Task Representation . 19

2.3.3 Value Iteration RL . 20

2.3.4 Policy Search Methods . 22

2.3.5 RL in Continuous Domains 23

2.3.6 RL Paradigms . 27

2.3.7 RL and Planning . 29

2.4 Optimal Control and Lyapunov Stability Theory 31

2.4.1 Optimal Control and RL . 34

2.4.2 Stochastic Control and RL . 35

2.5 Applications . 36

3 PrEference Appraisal Reinforcement Learning (PEARL) 39

3.1 PEARL for Robotic Problems . 40

3.1.1 MDP Setup . 42

3.1.2 Feature Selection . 43

3.2 Case Study: Large-scale Pursuit Task 45

3.3 Conclusion . 50

4 PrEference Appraisal Reinforcement Learning (PEARL) for Determinis-

tic Discrete Action MDPs 52

4.1 Preliminaries . 55

4.2 Methods . 57

viii

Contents

4.2.1 Learning Minimal Residual Oscillations Policy 58

4.2.2 Minimal Residual Oscillations Trajectory Generation 61

4.2.3 Swing-free Path-following . 64

4.2.4 UAV Geometric Model . 67

4.2.5 Path Planning and Trajectory Generation Integration 68

4.3 Results . 70

4.3.1 Learning Minimal Residual Oscillations Policy 71

4.3.2 Minimal Residual Oscillations Trajectory Generation 73

4.3.3 Swing-free Path-following . 85

4.3.4 Automated Aerial Cargo Delivery 88

4.4 Conclusion . 95

5 PEARL for Deterministic Continuous Action MDPs 101

5.1 Methods . 103

5.1.1 Problem Formulation . 104

5.1.2 Policy Approximation . 106

5.1.3 Continuous Action Fitted Value Iteration (CAFVI) 113

5.1.4 Discussion . 115

5.2 Results . 116

5.2.1 Policy Approximation Evaluation 117

ix

Contents

5.2.2 Minimal Residual Oscillations Task 120

5.2.3 Rendezvous Task . 122

5.2.4 Flying Inverted Pendulum 128

5.3 Conclusions . 136

6 PEARL for Stochastic Dynamical Systems with Continuous Actions 139

6.1 Methods . 140

6.1.1 Problem Formulation . 141

6.1.2 Least Squares Axial Policy Approximation (LSAPA) 142

6.1.3 Stochastic Continuous Action Fitted Value Iteration 146

6.2 Results . 148

6.2.1 Setup . 148

6.2.2 Minimal Residual Oscillations Task 149

6.2.3 Rendezvous Task . 150

6.2.4 Flying Inverted Pendulum 151

6.3 Conclusion . 152

7 PEARL as a Local Planner 157

7.1 Integrated Path and Trajectory Planning 158

7.2 Results . 161

7.2.1 Simulations . 161

x

Contents

7.2.2 Experiments . 164

7.3 Conclusion . 165

8 PEARL for Non-Motion Tasks 167

8.1 PEARL for Computing Agents . 168

8.2 Case Study in Software: PEARL Sorting 171

8.3 Conclusion . 175

9 Conclusions 178

A Proof for Lemma 5.1.3 181

B Proof for Theorem 5.1.4 182

C Axial Sum Policy Optimality 186

Acronyms 188

Glossary 189

Symbols 195

References 197

xi

List of Figures

1.1 Decision making cycle . 2

2.1 Relationship between transitional probabilities, rewards, models,

value functions and policies . 18

3.1 PrEference Appraisal Reinforcement Learning (PEARL) framework 41

3.2 Time to plan Multi-Agent Pursuit Task per space dimensionality . 48

3.3 Multi-Agent Pursuit Task learning transfer 51

4.1 Quadrotor carrying a suspended load. 55

4.2 Automated aerial cargo delivery software architecture 58

4.3 Quadrotor orthographic wireframes 68

4.4 Convergence of feature parameter vector 73

4.5 Resulting trajectories from 100 policy trials 74

4.6 AVI trajectory comparison to DP and cubic trajectories 81

4.7 AVI experimental trajectories . 83

4.8 AVI experimental results of altitude changing flight 84

xii

List of Figures

4.9 Swing-free Path-following results. 88

4.10 Benchmark environments . 89

4.11 Quadrotor and load trajectories in Coffee Delivery Task 97

4.12 Path bisecting for Coffee Delivery Task 98

4.13 Roadmap size analysis results. 99

4.14 Second testbed configuration results 100

4.15 Accumulated path-following error in the second testbed configu-

ration . 100

5.1 Quadratic value function example 107

5.2 Eccentricity of the quadratic functions 117

5.3 Policy approximation computational time per action dimensionality119

5.4 Learning results for Manhattan, and Axial Sum, and Convex Sum

policies . 121

5.5 Comparison of simulated cargo delivery trajectories 123

5.6 Comparison of experimental Minimal Residual Oscillations Task

trajectories . 124

5.7 Preference Balancing Task (PBT) examples. 126

5.8 Cargo-bearing UAV and a ground-based robot rendezvous 127

5.9 Comparison of simulated Rendezvous Task trajectories 129

5.10 Trajectory created with Initial Balance policy 135

xiii

List of Figures

5.11 Trajectory created with Flying Inverted Pendulum policy. 135

5.12 Trajectory created with Flying Inverted Pendulum policy with 5% of noise.135

5.13 Flying Inverted Pendulum trajectory snapshots 137

6.1 Stohastic Minimal Residual Oscillations Task learning curve and

trajectory . 154

6.2 Rendezvous Task trajectories with N (1, 1) 155

6.3 Stohasic flying inverted pendulum trajectory 156

6.4 Stochastic flying pendulum trajectory charcterisitcs 156

7.1 Decoupled (a) and integrated (b) architecture frameworks 157

7.2 City simulation envrionment . 161

7.3 Trajectory statistics in the City Environment. 163

7.4 Experimental trajectories planned with continuous actions 166

8.1 Sorting learning curve and value progression 173

8.2 Sorting progression . 176

xiv

List of Tables

3.1 Multi-Agent Pursuit trajectory characteristics 50

4.1 Approximate value iteration hyper-parameters 70

4.2 Summary of AVI trajectory results 82

4.3 Summary of path-following results 86

4.4 Summary of path and trajectory results in the Cafe 91

4.5 Summary of experimental results in different obstacle configurations 94

5.1 Summary of chapter-specific key symbols and notation. 106

5.2 Summary of policy approximation performance 118

5.3 Summary of trajectory characteristics over 100 trials 125

5.4 Summary of experimental trajectory characteristics 126

5.5 Initial conditions for Flying Inverted Pendulum Task for the 100

sample selection . 134

5.6 Simulation results for inverted flying pendulum 138

6.1 Summary of chapter-specific key symbols and notation 142

xv

List of Tables

6.2 Stochastic Minimal Residual Oscillations Task learning results

summary . 153

6.3 Summary of planning results created with Least Squares Axial

Policy Approximation (LSAPA) . 155

7.1 Trajectory characteristics for continuous and discrete action plan-

ners. 164

8.1 Impact of initial distance, array length, and noise on sorting 177

xvi

List of Algorithms

2.1 Value iteration. Adapted from [22] 16

2.2 General Value Iteration Learning Framework adapted from [27] . . 20

2.3 Approximate Value Iteration (AVI) adopted from [36] 27

3.4 PEARL feature selection . 44

4.5 Swing-free Path-following . 66

4.6 Collision-free Cargo Delivery Trajectory Generation 80

5.7 Continuous Action Fitted Value Iteration (CAFVI) 114

5.8 Learning to fly inverted pendulum 132

5.9 Flying inverted pendulum controller 133

6.10 Least squares axial policy approximation (LSAPA) 146

6.11 Stochastic continuous action fitted value iteration (SCAFVI) 147

7.12 Task-based motion planner . 159

xvii

Chapter 1

Introduction

Robots improve human lives by performing tasks that humans are unable or un-

willing to perform. Search and rescue missions, space exploration, and assistive

technology are some examples. In all these cases, robots must act autonomously in

unfamiliar and often changing environments, and must be capable of efficient de-

cision making. For successful, autonomous goal-oriented motion, we must ensure

safety, communicate what we wish the robot to do (formulate a task), and act in

real-time. Yet, robots are dynamical systems that are often highly non-linear with

many Degrees of Freedoms (DOFs), making solving motion problems computa-

tionally challenging, especially when they need to act in real-time. Three chal-

lenges primarly contribute to the difficulty of autonomous motion: high number

of DOF s, robot dynamics, and environment complexity.

There are many high-dimensional robotic applications including multi-robot

coordination and control of complex kinematic linkages. These complex robotic

problems frequently require planning high-dimensional motions that complete

the task in a timely manner. Motion Planning (MP) identifies a sequence of ac-

tions that moves the robot in accordance to its dynamics (physical constraints)

1

Chapter 1. Introduction

Figure 1.1: Decision making cycle.

and task objectives. Since manually accounting for all possibilities is often infeasi-

ble, sampling-based, learning-based, and other intelligent methods are the norm

[69].

Robots are mechanical systems, and their movement can be addressed through

the control of dynamical systems that describe them. Designing input to perform

a task typically requires system dynamics knowledge. Classical optimal control

approaches use a combination of open-loop and closed loop controllers to gener-

ate and track trajectories [72] requiring knowledge of the system dynamics [59].

On the other hand, the dynamics are frequently either unknown or intractable to

solve.

Third, the physical environments where robots work must be considered when

solving MP tasks. The resulting path or trajectory must be feasible and collision-

free. For example, traveling through water might or might not be allowed de-

pending on the task and the robot. Because the physical environments are con-

tinuous spaces and robots are high-dimensional, calculating allowed transitions

2

Chapter 1. Introduction

is a computational challenge. Sampling-based methods, such as probabilistic

roadmaps (PRMs) [56] and Rapidly Exploring Random Trees (RRT) [70, 63], have

shown great promise in overcoming computational feasibility challenges.

1.1 Research Objective

This research solves robot MP problems for a specific class of tasks: PBTs with

safety, decision-making efficiency, and reuse in mind. The proposed solution

overcomes the high-dimensionality, unknown dynamics, and physical environ-

ment challenges described above. The research develops conditions and methods

for transferring the learned knowledge when the environment, task, or the robot

change.

We consider robots as mechanical systems with unknown, non-linear control-

affine dynamics controlled with acceleration. A robot’s decision-making cycle is a

closed feedback loop (see Figure 1.1). Robots receive information about their en-

vironment (or world), make the decision with the goal in mind, and actuate their

system to perform the motion in order to complete the task. Determination of the

external signal on the system, or action, is the responsibility of a motion planning

agent (see Figure 1.1). The agent examines the current state and makes the deci-

sion that performs best with respect to some task or goal. The high dimensionality

of the search space presents challenges for finding a suitable trajectory. The main

focus of this research is the decision maker in Figure 1.1, and how it needs to act

in order to perform a task.

One of the primary difficulties is how to describe the task. Some approaches

for task formulation have been to learn from human demonstration, or experimen-

tation and human feedback [1, 13, 14]. However, certain important tasks cannot

3

Chapter 1. Introduction

be readily demonstrated because they are either not attainable by humans or they

are too costly or risky to demonstrate. Sometimes the task goals and constraints

that the robot must obey are unknown or difficult to calculate. For example, con-

sider a simple manipulation task. A robot is required to set a glass on a table

without breaking it. We do not know precisely the amount of force that causes

the glass to shatter, yet we can describe our preferences: low force and fast task

completion. In an another example, it is difficult, even for expert pilots, to demon-

strate a UAV flight that does not disturb the UAV’s freely suspended load [39]. We

consider these types of problems as PBTs. These tasks have one goal state and a

set of opposing preferences on the system. Balancing the speed and the quality

of the task are often seen as two opposing preferential constraints. For example,

the time-sensitive Cargo Delivery Task must deliver the suspended load to origin

as soon as possible with minimal load displacement along the trajectory (Figure

4.1b). The Rendezvous Task (Figure 5.7a) requires the cargo-bearing UAV and a

ground robot to meet without a predetermined meeting point. In these tasks, the

robot must manipulate and interact with its environment while completing the

task in timely manner.

Reinforcement learning (RL) solves control of unknown or intractable dynam-

ics by learning from experience and observations. The outcome of the RL is a

control policy. RL has been successful for robotic task learning [61] in several

problems such as table tennis [92], swing-free UAV delivery [39, 40], and a self-

driving car [51]. However, traditional RL methods do not handle continuous and

high-dimensional state spaces well [47]. We rely on RL to learn control policy for

PBTs without knowing the robot’s dynamics.

The objective of this research is to develop, analyze, and evaluate a solution for

solving efficiently PBTs on systems with unknown dynamics. The solution will

formally define PBT, develop a software framework, and characterize its success

4

Chapter 1. Introduction

conditions. The evaluation objective of this research to demonstrate the method’s

applicability on several non-trivial problems both in simulation and experimen-

tally.

1.2 Contributions

This research solves motion-based high-dimensional PBTs using RL in continuous

domains, and develops sufficient conditions under which the method is guaran-

teed to be successful. We also demonstrate that the method works in some cases

where the conditions are relaxed. The body of the research is based on the follow-

ing publications:

• Aleksandra Faust, Peter Ruymgaart, Molly Salman, Rafael Fierro, Lydia

Tapia, ”Continuous Action Reinforcement Learning for Control-Affine Sys-

tems with Unknown Dynamics”, Acta Automatica Sinica, in print.

• Aleksandra Faust, Ivana Palunko, Patricio Cruz, Rafael Fierro, Lydia Tapia,

”Aerial Suspended Cargo Delivery through Reinforcement Learning”, un-

der submission, Technical Report TR13-001, Department of Computer Sci-

ence, University of New Mexico, August 2013.

• Rafael Figueroa, Aleksandra Faust, Patricio Cruz, Lydia Tapia, Rafael Fierro,

”Reinforcement Learning for Balancing a Flying Inverted Pendulum,” In

Proc. The 11th World Congress on Intelligent Control and Automation, July

2014.

• Aleksandra Faust, Ivana Palunko, Patricio Cruz, Rafael Fierro, Lydia Tapia,

”Learning Swing-free Trajectories for UAVs with a Suspended Load,”

5

Chapter 1. Introduction

IEEE International Conference on Robotics and Automation (ICRA), pages

48874894, Karlsruhe, Germany, May 2013.

• Aleksandra Faust and Nicolas Malone and Lydia Tapia, ”Planning

Constraint-balancing Motions with Stochastic Disturbances,” under submis-

sion.

• Aleksandra Faust, Ivana Palunko, Patricio Cruz, Rafael Fierro, Lydia Tapia,

”Learning Swing-free Trajectories for UAVs with a Suspended Load in

Obstacle-free Environments,” Autonomous Learning workshop at IEEE In-

ternational Conference on Robotics and Automation (ICRA), Karlsruhe, Ger-

many, May 2013.

Combined together, this research gives a problem definition, PEARL, and

convergence conditions. We present PEARL for solving high-dimensional PBT

(Figure 3.1) on a class of problems. PEARL trains the planning agent on small

problems, and transfers the learned policy to be used for planning on high-

dimensional problems. The key to PEARL is the feature selection method that

constructs task-preference features invariant to the robot’s state space dimension-

ality. Because the method learns and performs the task in the feature space, such

transfer is possible.

To that end, this dissertation presents the following specific contributions:

• Feature extractions presented in Chapter 3

• A solution to an aerial transportation PBT (Chapter 4) in environments with

static obstacles

• Conditions for learning in small, low-dimensional, spaces and transferring

the policy to larger, higher dimensional spaces (Chapter 4)

6

Chapter 1. Introduction

• Efficient policy approximation for continuous actions (Chapter 4)

• Theoretical analysis and proofs of task goal’s asymptotic stability in (Chap-

ter 5)

• Continuous Action Fitted Value Iteration (CAFVI), a RL algorithm, for

Markov decision processs (MDPs) with continuous states and actions (Chap-

ter 5)

• Stochastic Continuous Action Fitted Value Iteration (SCAFVI) a stochastic

version of CAFVI (Chapter 6)

• Applications of PEARL as local planner for solving PBTs for MDPs with

continuous states and actions (Chapter 7)

• Application of PEARL for algorithm execution (Chapter 8)

Evaluation of PEARL and its components results in solving several tasks detailed

below

• Coordinated Multi-Agent Pursuit Task (Chapter 3)

• Cargo Delivery Task (Chapter 4)

• Two heterogeneous agent Rendezvous Task (Chapter 5)

• Flying Inverted Pendulum in (Chapter 5).

• Stochastic version of Cargo Delivery Task, Flying Inverted Pendulum, and

Rendezvous Tasks (Chapter 6)

• Coffee Delivery Task (Chapter 4)

• Package Delivery Task in Cities (Chapter 7)

• Array Sorting Task (Chapter 8)

7

Chapter 2

Related Work

PEARL formulates a MP problem as a decision-making problem. It solves it with

RL and uses control theory tools for the analysis. This chapter gives necessary

background from four diverse fields, and presents the work related to PEARL

and its applications. Primers on MP, decision-making, RL and control theory

tools are in Sections 2.1, 2.2, 2.3, and 2.4, respectively. We complete the chapter by

discussing the application relevant to this research in Section 2.5.

2.1 Motion Planing (MP)

The basic MP problem is finding a valid path between known start and end goal

states of some object. MP typically works in configuration space, C-space, a set of

all the robot’s poses in its physical environment (configurations) [69]. The subset

in C-space that represents the robot’s valid configurations is referred to as C-free

[69]. The size of the C-space grows exponentially with the robot’s DOFs. Even in

the simplest case of environments with static obstacles, the C-space is large, and

computational feasibility is in the forefront of issues that need to be addressed in

8

Chapter 2. Related Work

MP algorithm design [68].

To cope with the C-space complexities, a number of specialized methods are

used for solving MP problems [31]. The approaches are commonly highly sen-

sitive to the topology of the C-space, with some approaches working well in rel-

atively free environments, and others in narrow passages or cluttered environ-

ments. A less computationally expensive algorithm can afford to search a large

area in mostly C-free space. On the other hand, a more computationally intensive

algorithm can search in more obstacle-laden environments, but is practical only in

small areas. In particular, various C-space approximation methods, e.g., random

sampling and others, have been successful in addressing the C-space complexity

[31]. Sampling-based methods, as the name suggests, perform the MP by approx-

imating the C-space with a countable (and often finite) sample set [31].

Kavraki et al. introduced PRM as one of the first sampling-based algorithms

that works well in high-dimensional spaces [56]. The method consists of two

phases: learning and querying. The learning phase constructs a roadmap, which

is a graph lying fully in C-free. The nodes are C-free configurations, and the

edges are collision-free paths between nodes. To construct a roadmap, C-space

is sampled. After retaining only C-free samples and adding them as nodes in the

roadmap, a local planner of choice connects each sample with its k nearest neigh-

bors. The local planner creates a sequence of configurations between two nodes.

If all configurations are in C-free, the edge is added to the roadmap. Once the

roadmap is constructed, it can be queried. A query consists of start and goal

points in C-free, and a solution to a query is a valid path in C-free. To solve a

query, PRMs first add the start and goal states to the roadmap using the con-

nection methods described above. Then, a graph search finds the shortest path

from start to goal in the roadmap, with respect to some metric, often Euclidean

distance. Alternatively, other problem-specific metrics could be used: clearance,

9

Chapter 2. Related Work

the least number of roadmap edges, etc. Since the original publishing, PRMs are

an algorithm of choice for path planning in high-dimensional static environments

and have been extended for biased sampling [10, 134] for complex robotic prob-

lems, including moving obstacles [52, 109], noisily modeled environments (e.g.,

with sensor) [76], and localization errors [4, 9]. They are used in a wide variety

of applications such as robotic arm motion planning [77, 78], molecular folding

[6, 103, 123], and a six-legged lunar rover [48]. Also, PRMs have been previously

integrated with RL e.g., a manipulator moving in a dynamic space [103] and for

stochastic reachability [80].

In the contrast to PRMs that can be reused over several queries, there are meth-

ods that incrementally search C-space [70, 63]. RRT chooses the next sample in the

locality of the previous sample while conforming to nonholonomic and kinody-

namic differential constraints. They have been adapted to work under uncertainty

[25]. The ability to handle the system constraints made RRTs popular method for

collision detection on physical robots in dynamic environments: arm manipula-

tors [95], UAVs [62], and multi-agent systems [34] among others.

The classical MP problem assumes that the agent knows the goal state prior

to the start of planning [69, 31, 68]. In modern applications, this assumption is

too strong. For example, an agent might know to recognize the goal state without

knowing ahead of time the location of the goal state. In other problems the start

and goal states change, and we need to learn from experience and adapt. The

dynamics of the system cannot be overlooked either, and in some problems we

need to find a feasible trajectory rather than just a path. While both trajectories and

paths are sequences of robot’s positions, a trajectory is a timed sequence, while a

path contains no time information [32].

10

Chapter 2. Related Work

2.2 Decision-making

A robot interacts with an environment in a closed loop (Figure 1.1): decision-

making loop. At each time step, the agent observes the environment and the

robot’s internal conditions, and gathers that information into what we call a state.

The decision-making module examines the state and makes a decision about what

to do next, e.g., what action to perform. The action changes the system and its en-

vironment. That change is reflected in the next state that the agent observes. The

time between subsequent observations is the time step. Although in general the

time step can vary, for the problems considered it will fixed. The environment is

external to the robot. The robot contains a decision-making component that we

refer to as a decision-making agent, or simply as an agent. States of robot’s other

modules are external to the decision-making agent, and in general the agent has

no knowledge of them unless communicated through the state. Nevertheless, we

will use the term robot to refer to decision-making agent when it is clear from the

context that are not concerned with the entire robotic system, e.g., the robot makes

a decision.

The agent observes a reward in addition to observing a state. The reward is

a numerical input that communicates to the agent the quality of the immediate

state. Note that a reward in some literature is defined as a mapping between state-

action pairs rather than only the state [120]. The reward allows us to a formulate

a goal for the agent - the agent’s goal is to maximize the return, the cumulative

reward over its lifetime [120]. The action causes a change in the state. The result

of an action is another state. We can consider a mapping between pairs of states,

and actions that assign a probability of arriving at one state, when the action is

applied on the other state. This mapping is called a probability transition function.

A decision-making problem can be formalized with a Markov Decision Process

(MDP), which we discuss next.

11

Chapter 2. Related Work

2.2.1 Markov Decision Process (MDP)

Given states, actions, a probability transition function, and a reward, a MDP for-

malizes a decision-making problem.

Definition 2.2.1. A first order Markov Decision Process (MDP) M is a tuple

(S, A, D, R) where:

1. S is a set of states s,

2. A is a set of actions a,

3. probability transition function D : S× A× S→ R, where D(s1, a, s2) is a proba-

bility of resulting in state s2 when action a is applied to state s1,

D(s1, a, s2) = Pr (s(t + 1) = s2|s(t) = s1, a(t) = a) ,

s(t) and a(t) are state and action at time t,

4. reward signal R : S → R is an immediate reward associated with state s, R(s) =

Rs, and

5. states S satisfy the Markov property, i.e., the effect of the state depends on only of the

current state, Pr(st+1|s(t), a(t)) = Pr(s(t + 1)|s(t), a(t), s(t− 1), . . . , s(0)).

Definition 2.2.1 describes a MDP as a stochastic automata with utilities [122].

The Markov property ensures that states capture all information needed for state

transitions. It requires MDP to be memoryless, i.e., it does not matter how a par-

ticular state was reached to predict future states. From the generalized definition,

several variants can be distinguished based on the time step, state and action set

sizes, and the type of probability transition function:

12

Chapter 2. Related Work

• When the state transitions occur at regular intervals c ∈ R, c > 0, i.e., the

time step ∆t = c is fixed, the associated MDP is the discrete-time MDP. When

∆t→ 0 MDP is continuous-time [122].

• When the state space S is a finite, countable, or continuous set, the MDP is

finite-state, countable-state, or continuous-state MDP, respectively. We use

terms discrete and finite interchangeably [122].

• Similarly, MDPs with actions A that are finite, countable, or continuous sets,

are called finite-action, countable-action, or continuous-action MDPs, respec-

tively [122].

• When probability transition function is a deterministic process, i.e., an ac-

tion’s effect is uniquely determined by the current state, we refer to the MDP

as deterministic process MDP. The probability transition function, in this case,

can be simplified to a function that maps state-action pairs to their state out-

comes, D : S× A→ S, and we call it a transition function, or simply system

dynamics [122].

This research is concerned with discrete-time, deterministic MDPs, and the fol-

lowing introduction is restricted to these types of MDPs unless stated otherwise.

An objective of a decision-making problem defined with a MDP is to move

the system through the states in such way as to maximize the accumulated re-

ward starting at an arbitrary state [122]. The objective can be formalized through

definition of a state-value function, a mapping between states and returns. The

state-value function of a state is a measure of the state’s quality, and quantifies the

expected return attainable from that state.

Definition 2.2.2. Function

V(s(0)) =
∞

∑
t=0

γtR(s(t)). (2.1)

13

Chapter 2. Related Work

is called the state-value function of a discrete-time deterministic MDPM (S, A, D, R).

R(s(t)) is an immediate reward observed at time t starting at state s, and 0 ≤ γ ≤ 1 a

discount constant.

Discount factor γ determines how much the immediate payoff is weighted

against the payoff in the future [122]. The bigger the discount factor, the more

“long-sighted” the agent is. A discount constant γ of less than one ensures that the

state value remains finite. MDPs with undiscounted objectives (γ = 1) typically

use a finite-horizon to maintain finite-valued objective, i.e., the value function is

V(s) = ∑n
t=0 R(s(t)) for some n ∈N [122].

Among all possible state-value functions, the optimal state-value function is

the one that returns the highest value for all states [20]. We define it next.

Definition 2.2.3. The optimal state-value function, V∗, is supremum state-value func-

tion, i.e.,

V∗(s) = sup
V

V(s). (2.2)

Now, we can define a policy as a solution of an MDP problem, and show the

connection between policies and state-value functions. Then, we introduce the

optimal solution to a discrete-time deterministic MDP.

Definition 2.2.4. A solution to a discrete-time, deterministic MDPM (S, A, D, R)

is a policy π : S → A, which assigns an action a to perform in state s, i.e., π(s, a) = s′.

A state-value function defined by the policy π is Vπ(s) = ∑∞
t=0 γtπt(s).

Similarly to the optimal state-value function, the optimal solution to a discrete-

time deterministic MDP is a policy that maximizes the objective, state-value func-

tion. Thus the following definition formalizes the optimal solution.

14

Chapter 2. Related Work

Definition 2.2.5. A solution to a discrete-time MDPM (S, A, D, R) is optimal, iff the

policy π∗ : S → A is optimal, i.e., the policy maximizes the discounted cumulative state

reward Vπ∗(s) = V∗. We denote the optimal policy, π∗.

Last, we introduce a greedy policy w.r.t. to a state-value function V.

Definition 2.2.6. A policy π : S → A is greedy w.r.t. to a state-value function V, iff

πV(s) = argmaxa∈A V(s′), where s′ = D(s, a).

The greedy policy w.r.t. to optimal state-value function, V∗, is an optimal pol-

icy, πV∗ = π∗. The proof can be found in [122]. This is important because it allows

us to find an optimal policy by calculating the state-value function.

The Bellman equation [20] shows that the state state-value function V∗ can be

recursively represented as

V∗(s) = R(s) + γ max
a∈A

V∗(D(s, a)). (2.3)

The state-value function is a fixed point for an operator that adds an immediate

state reward to the discounted value of the state that results from the system’s

transition following greedy policy. The Bellman Equation (2.3) has a unique solu-

tion when the γ is less than one [122], and it give us practical means to iteratively

calculate the state-value function in order to obtain the MDPsolution [20]. These

methods are called dynamic programming.

Indeed, dynamic programming, and in particular, value iteration methods iter-

atively find the state-value function. For example, V-iteration (Algorithm 2.1), a

Value Iteration, solves finite-state, finite-action MDPs with a completely known

probability transition function [22]. V-iteration starts with an arbitrary state-value

function and iteratively calculates state-values traversing all states in each itera-

tion. V-iteration is simple to implement, but is not very efficient. Its running time

of O(n|S||A|) and memory requirement of O(2|S|+ |A|) make it computationally

15

Chapter 2. Related Work

impractical to use in large state and action spaces, and infeasible in continuous

MDPs. Further, it requires knowledge of the probability transition function D.

Algorithm 2.1 Value iteration. Adapted from [22].

Input: MDPM (S, A, D, R), discount factor γ, # of iterations n

Output: state-value function V

1: for i = 1, . . . , n do

2: for s ∈ S do

3: Vn(s) = R(s) + γ maxa∈A Vn−1(D(s, a))

4: end for

5: end for

6: return Vn

2.3 Reinforcement Learning (RL)

Reinforcement learning (RL), a field of machine learning, is a family of algorithms

that solve MDPs [120]. MDPs can be solved in several ways including dynamic

programming and RL. The two methods are similar, but have some major dif-

ferences. The first difference is that dynamic programming assumes that the re-

wards and state transitions are known ahead of time, while RL assumes they are

not known. RL finds the policy by gradually exploring the state space, and learns

the MDP using a technique called bootstrapping that relies on available samples.

Bootstrapping means that the state values are estimated using estimates of other

states [120]. The second major difference between dynamic programming and RL

is that dynamic programming is constrained to a finite state space, which is not

the case for all RL algorithms (Section 2.3.5).

The goal of the RL agent is to find an optimal policy π : S→ A that maximizes

the accumulated payoff. A policy determines an action that the agent should

16

Chapter 2. Related Work

take from a state. In addition to state-value function, V, there is another func-

tion relevant to the RL algorithm: the action-value function, or Q-function. Recall

that state-value function V : S → R is an estimate of the expected accumulated

payoff that could be accomplished from the current state. Similarly Q-function,

Q : SxA → R represents the expected maximum accumulated payoff associated

with transition from state s, using action a. Both of these functions are referred to

as value functions. Either one of the them induces a greedy policy, where the ac-

tion chosen maximizes the value function. Equation (2.4) shows the relationship

between value functions V and Q.

Qπ(s, a) = Vπ(D(s, a)) (2.4)

The action-value function, Q , is easier to calculate when the transition function is

not known, which is why it is often used in RL instead of the state-value function

[27]. For example, when the agent is constructing the value function by interacting

with the system, the Q-function stores the cumulative reward associated with the

transition, without explicitly learning the transition model as well. Definition 2.3.1

shows that the greedy policy w.r.t. Q does not depend on the probability transition

function.

Definition 2.3.1. A policy πQ : S → A is greedy w.r.t. to an action-value function Q,

iff πQ(s) = argmaxa∈A Q(s, a).

Similarly to the state-value function, we can define an optimal action-value

function as the supremum of all Q functions, and it can be shown that greedy

policy associated with an optimal action-value function is an optimal solution to

the given MDP, i.e., πQ∗ = π∗ [130].

The three functions Q, V, and π are closely related. Determining one value

function induces the other two (Figure 2.1). Thus, an RL algorithm needs only to

17

Chapter 2. Related Work

Figure 2.1: Relationship between transitional probabilities, rewards, models, value func-
tions and policies. Transitional probabilities (P) and a reward signal (R) determine the
system model. The model determines state value function (V), and state action function
(Q). Value functions V and Q induce each other, and each one of them induces a policy
(π).

learn one of the three functions, and the other two can be derived [27]. Indeed,

different RL algorithms focus on finding one of these three functions.

2.3.1 Exploration vs. Exploitation

Another aspect of RL is the consideration of whether an agent is using and up-

dating the same policy at the time of learning, or if the learning and exploitation

phases are separated. Methods that continuously update the current policy are

on-line reinforcement learning, while the latter cases are off-line or batch reinforcement

learning1 [67]. On-line RL interacts with an unknown system while learning the

policy and must balance two opposing goals, exploration and exploitation [120].

Exploration is needed to learn, while exploitation uses the already learned knowl-

edge to control the agent’s behavior. Because the two are opposing goals, they

commonly meet in ε-greedy policy, which follows the current learned policy with

1Another set of terms commonly used in the literature is on-policy and off-policy, respec-
tively.

18

Chapter 2. Related Work

probability 1− ε, and performs a random (exploratory) action with ε probability,

for some ε > 0. The problem with ε-greedy policy and on-line RL in general is that

there are no safety guarantees to the system. This is because the random actions

can put the system into an unsafe position, e.g., collision with an obstacle [67].

On the other hand, batch RL has two phases, learning and planning [67]. During

learning, which is typically done in simulation, the agent follows another policy

that can be 100% exploration [67]. Once the policy is learned, the agent switches

to the planning mode, exploiting the learned policy with no exploration. The ad-

vantage is that batch RL is safer because it does not perform random actions, but

it cannot adapt to the changes in its environment [67, 27].

2.3.2 Task Representation

RL must consider the nature of the task. If the task itself has a defined end state,

we call such a task an episodic task [120]. The corresponding RL algorithm accom-

plishes the task in a finite number of steps. This fixed sequence of steps is called

an episode. The consequence of having the guarantee of a finite number of steps is

the assurance that the value function for any state is finite [120]. In contrast, tasks

without a defined end, which continue to run potentially indefinitely are called

non-episodic [120]. There is a possibility of unbounded value function growth for

the non-epsiodic tasks, jeopardizing the algorithm’s convergence. For that reason,

the accumulated reward is discounted with γ ∈ (0, 1), which guarantees that the

value functions remain finite even for non-episodic tasks. However, both episodic

and non-episodic tasks can be unified under one architecture, by adding a special

absorbing state where the agent gets trapped at the end of an episode [120], which

is the view we adopt in this research.

19

Chapter 2. Related Work

2.3.3 Value Iteration RL

RL algorithms that work in finite domains share the same framework represented

in Algorithm 2.2 [27] for an infinite horizon, value and policy iteration algo-

rithm. After initialization, the agent is continuously executes actions, observes

the new state, and updates its value function. This generic framework can be

easily adapted for episodic tasks, as well as for off-line learning.

Algorithm 2.2 General Value Iteration Learning Framework adapted from [27]
Input: Policy π

1: InitializeQ(s, a)∀s, a

2: Observe current state s

3: while not end of the episode do

4: select an action according to the policy π and execute it

5: receive the reward r

6: Observe current state s′

7: Value update

8: s← s′

9: end while

10: pi′(s) = argmaxaV(s)

Output: Policy π′

Seeking to bring tools of supervised machine learning to system prediction

problems, Sutton introduces Temporal Difference (TD) learning [121]. Sutton’s

goal is not only to be able to perform goal-oriented searches, but rather to learn

how the system works, and use the learned knowledge to predict the next state.

The key idea is that actual system observations are backtracked to the previously

visited states. The backtracks are performed as the difference between the time

steps, thus the name: temporal difference. When applied to only the previous

20

Chapter 2. Related Work

step, the method is called TD(0). TD(0) follows the policy evaluation framework

in Algorithm 2.2, and the value update is done with

V(s) = (1− α)V(s) + α(R + γV(s′)). (2.5)

The update assigns a new estimate to the state-value function in state s as a

weighted average of the existing estimate and the new estimate: the sum of the

observed reward and the current estimate of the state-value in s’. The policy is an

input to the algorithm, and does not change for the duration of the episode. Learn-

ing the constant, α determines how influential is the new information. Larger

values of α put more emphasis on the new information. TD(0) converges to the

optimal policy for sufficiently small α [120]. To backtrack several steps, the system

needs to keep track of the visited states. Then the updates are done to all eligible

states, such that they decay by factor λ, as the agent moves further away from

the state. This type of memory and updates are called eligibility traces. They are

applicable to any method that is based on the idea of the temporal difference.

Watkins made a key observation that two policies can be efficiently evaluated

and thus improved upon, using a single-step evaluation by measuring the effect

of an action on a policy [129]. The expected return in the current state under a

policy π is compared to a policy that differs in a single step: instead of following π

another action is chosen. Thus, Watkins introduced the action-value function that

measures the ”goodness” of state-action pairs. Learning value functions for states

and associating them with a greedy policy allows the system to learn to maximize

the payoff without having to systematically explore the entire state space, like

dynamic programming does. This method is called Q-learning, which updates

the learns the policy by updating the Q-function using

Q(s, a) = (1− α)Q(s, a) + α(R + γ max
a′∈A

Q(s′, a′)). (2.6)

The updated value of the state-action pair is the weighted average of the current

best knowledge and the new estimate. In effect, Watkins’ Q-learning is similar

21

Chapter 2. Related Work

to Sutton’s TD methods [121], although the approaches come from different per-

spectives. The primary difference is that the estimates in TD learning are based on

an action, rather then a state. This seemingly subtle difference implies that TD(0)

uses ε-greedy policy to estimate V(s), while Q-learning is an off-policy method

because it is free to use any policy to choose a transition out of state s. Q-learning

converges to an optimal Q, as long each state action pair is visited infinitely, and

when the learning rate is sufficiently small [130].

Sarsa, introduced by Rummery and Niranjan [112], is an on-policy variant of

Q learning. The update step of Sarsa is:

Q(s, a) = (1− α)Q(s, a) + α(R + γQ(s′, a′)) (2.7)

where a′ = π(s′). Instead of using maxa′ Q(s′, a′) as an estimate of the value of the

next state like Q-learning does, Sarsa estimates the value of state s’ assuming the

current policy will be followed, a′ = π(s′). It uses an observed (s,a,R,s’) tuple in

conjunction with a′, hence the name Sarsa. Note that selecting a′ is potentially less

computationally expensive than searching for the maximum. To converge to the

optimal policy, Sarsa needs to use ε-greedy policy in order to continue exploring

the environment. It tends to converge faster than Q-learning because, intuitively,

its search through the state space is more focused [120].

2.3.4 Policy Search Methods

Another RL approach is policy search, where a policy is represented as a

parametrized vector and the policy is directly searched, in contrast to the value it-

eration methods described in Section 2.3.3 that iteratively improve on value func-

tions [27]. Typically, the policy search is performed as a gradient descent on the

parameters. A popular method that falls in this category is the actor-critic method

originally introduced by Barto et al. [18]. Inspired by neurons Barto et al. de-

22

Chapter 2. Related Work

signed a feedback method for neural networks to learn control on the inverted

pendulum problem. This work was first in what later became a series of similar

approaches all sharing the basic framework, but differing in choice of approxima-

tors [27]. The actor-critic method is a gradient-based policy search method, which

means that the policy is differentiable by the parameter. The method works in two

phases. First, the value function is computed for the current policy. Then the value

function is used to make a gradient descent in the direction of the higher return,

which obtains the new policy. The policy is the actor, and the value function is the

critic [18, 27]. Recently, Peters and Schaal improved on the actor-critic method us-

ing natural gradient descent rather than standard gradient descent [105]. Natural

policy gradient is the steepest descent w.r.t. Fisher Information. Fisher Informa-

tion is a measure of the information quantity that a random variable contains,

and thus its gradient provides more appropriate direction of policy improvement.

The Natural Actor-Critic method converges faster and with fewer samples than

traditional actor critic methods. The authors showed that, on the cart balancing

problem, the Natural Actor-Critic method achieves optimum learning eight times

faster than true actor-critic method.

2.3.5 RL in Continuous Domains

The methods described in Section 2.3.3 work for finite state spaces because they

require tabular representation of the state action space. However, the tabular rep-

resentation limits the practicality of the value iteration methods since the size of

the value function table grows exponentially with the number of DOF. For large

discrete or continuous MDPs, the methods in Section 2.3.3 needs to be modified.

The learning paradigm remains the same, but the function we learn, whether it

is a state-value, action-value, or policy, need to be approximated [120, 27]. RL

with approximators is more relevant to the MP field because the majority of MP

23

Chapter 2. Related Work

problems work in high-dimensional state spaces. The state space grows expo-

nentially with the C-space dimensionality (see Section 2.1), thus often making the

discretized space too large. Typically, the RL learns the value (cost) function and

derives a greedy control policy with respect to the value.

Unlike RL in finite spaces, where exhaustive search is possible and theoretical

guarantees of convergence to the optimal policy exist, the convergence conditions

are sparse and a current topic of research in the continuous case [47]. However, in

practice the algorithms work well and can be much faster than their discrete coun-

terparts. This is because the major drawback of discrete algorithms is that they do

not take into account the similarity between the states, and every state needs to be

examined [27]. The approximation functions allow generalization over the state

space based on similarity (proximal similarity or feature based). In any event,

the approximation methods sample the system until the approximation is suffi-

cient and the error is bounded. Choosing approximators is a current research area

[135]. Well-chosen approximator functions produce solutions to MDPs that per-

form well, while poorly chosen functions produce no results.

It is theoretically possible to come up with the optimal policy in finite state

spaces [130]. However, few problems in MP have truly finite state spaces. Thus,

the step of discretization of the state space introduces approximation to the al-

gorithm, and the derived policy is unlikely to be optimal [27]. Another issue to

consider when discretizing the state and action space is that the discretization of

actions needs to be compatible with the discretization of the state space, and pre-

serve the Markovian property of the system [27]. For example, if the state space

is discretized in too large areas, an action might not result in a change of state.

The value functions use tabular representation for discrete state spaces. Thus,

unnecessarily fine discretization of the state space will lead to larger function rep-

resentation and longer learning time [27].

24

Chapter 2. Related Work

Two types of approximations are common: parametric and nonparametric

[27]. Parametric approximation uses some function V̂ : S ×R → R, the target

function. A special case is a linear approximation, where the target function is

represented with a linear map of a feature vector V̂(s,θ) = θTF (s) [27]. Because

a feature maps the entire robot’s state subspace to a single point, RL in continuous

spaces is sensitive to feature selection [27]. A popular choice of feature vectors are

discretization, and basis functions [135, 27, 120, 122, 47]. Discretization partitions

the domain, scaling exponentially with the space dimensionality. Basis functions,

such as kernels and radial base function networks, offer more learning flexibil-

ity. But they can require manual parameter tuning, and the feature number can

increase exponentially with the space dimensionality [135, 27]. Nonparametric

approximation creates features from the available data. Neural networks is an ex-

ample [27]. Although it is much more difficult to show the convergence properties

for RL with function approximators, convergence for linear parametric approxi-

mators is easier to show than for nonparametric approximators [27].

In continuous action RL, the decision-making step, which selects an input

through a policy, becomes a multivariate optimization [47]. The optimization

poses a challenge in the RL setting because the objective function is not known.

Robots need to perform input selection many times per second, 50-100 Hz is not

unusual [61]. The decision-making challenges brought action selection in con-

tinuous spaces to the forefront of current RL research, with the main idea that the

gradient descent methods find maximums for known, convex value functions [47]

and in actor-critic RL [44] (Section 2.3.4). Gradient descent methods for policy ap-

proximation work well in some convex cases. Hover, they require an estimate of

the gradient, can be stuck in the local minima, and can take a long time to con-

verge which requires descent step adjustments along the way, especially for near-

linear functions [47]. Some gradient-free approaches such as Gibbs sampling [60],

Monte Carlo methods [71], and sample-averages [12] have been tried. On-line

25

Chapter 2. Related Work

optimistic sampling planners have been researched [26, 28, 81, 128]. Specifically,

Hierarchical Optimistic Optimization applied to Trees (HOOT) [81], uses hierar-

chical discretization to progressively narrow the search on the most promising

areas of the input space, thus ensuring arbitrarily small error.

Approximate Value Iteration (AVI) (Algorithm 2.3) is a continuous-state ex-

tension of the value-iteration [36, 27, 120]. It produces an approximate solu-

tion to a MDP with continuous state spaces and a finite action set. The value

function is approximated with a linearly parametrized feature vector. It is in an

Expectation-Maximization (EM) algorithm which relies on a sampling of the state

space transitions, an estimation of the feature vector parameters, and a linear re-

gression to find the parameters that minimize the least square error. Algorithm

2.3 presents AVI [36]. To learn the approximation of the state-value function, AVI

learns the parametrization θ. Starting with an arbitrary vector θ, in each itera-

tion, the state space is uniformly, randomly sampled to produce a set of new state

samples M. A new estimate of the state value function is calculated according to

V(s) = R(s) + γ maxa∈A θ
TF ◦ D(s, a) for all samples s ∈ M. 0 < γ < 1 is a

discount factor, and D(s, a) is sampled transition when action a is applied to state

s. A linear regression then finds a new value of θ that fits the calculated estimates

V(s) into a quadratic form θTF (s). The process repeats until a maximum number

of iterations is performed.

AVI does not directly depend on the time step size. Similarly, the algorithm

is agnostic to the time it takes to reach the goal state and to any ordering there

might be in the state space chain. It randomly explores the state space and learns

a function that assigns a scalar representing a quality of a state. Its running time

is O(M2 · iterations · ‖actions‖), where M is the number of samples, iterations, the

number of iterations to perform; and actions is the size of the discretized action

space. AVI assumes that a simulator is available to find a new estimate of the

26

Chapter 2. Related Work

Algorithm 2.3 Approximate Value Iteration (AVI) adopted from [36].

Input: MDP (S, A, D, R)

Input: feature vector F

Output: θ

1: θ ← zero vector

2: while NOT(max iterations) do

3: M, RM = randomly select n states from s and

observe rewards

4: for each (s, r) ∈ (M, RM) do

5: for each a ∈ A do

6: q(a) = r + γθTF ◦D(s,a)

7: end for

8: V(s) = maxa∈A q(a)

9: end for

10: θ ← argminθ(‖θ
TF −V‖2)

11: end while

12: return θ

state value, based on a greedy policy. A related approach is on-line Fitted Value

Iteration [27], where a TD-like update is used for estimates and a gradient descent

is used to find the parameter value. Both on-line and off-line value iterations can

be done with either state value functions or with action value functions. Both

methods are referred to as approximate Q learning.

2.3.6 RL Paradigms

This section introduces several learning paradigms in which RL operates in or-

der to improve the learning efficiency. We discuss model-based RL learing from

27

Chapter 2. Related Work

demonstration, and learning transfer.

When a RL algorithm learns the transitional probabilities first, thus creating an

internal model of the process, it is called model-based reinforcement learning [50]. In

contrast, the methods that learn one of the value functions or a policy, directly

are referred to as model-free. In general, model-based algorithms are able to

obtain better policies with less observation than the model-free algorithms, al-

though it might take them more steps to achieve the same level of performance

[50]. One example is BECCA [110, 111]. In BECCA, a feature creator performs

autonomous discretization of the state space while a reinforcement learner learns

the discretized model and acts on it. BECCA was used to train a robotic arm to

perform a pointing task [77, 79, 78].

Value functions are driven by the reward function and transitional probabili-

ties of the system. So, instead of focusing on learning a value function or a policy,

an algorithm might attempt to first learn the reward structure. We call the ap-

proach inverse reinforcement learning [96]. Apprenticeship learning [1], or appren-

ticeship via inverse reinforcement learning (AIRL), solves MDPs where demon-

strations of the tasks are available without an evident reward signal from the en-

vironment. The algorithms use observations of an expert behavior to teach the

agent the optimal actions in certain states of the environment. AIRL is a special

case of the general area of Learning from Demonstration (LfD) [13, 14], where the

goal is to learn a complex task by observing a set of expert demonstrations. AIRP

is the intersection of LfD and RL [1]. At a high level, the reward is extracted from

the demonstrations and formed such that the agent is discouraged from deviating

from the demonstration. Separately, a model is learned and refined. The model

that maximizes the reward is then used to generate a trajectory. To achieve au-

tonomous helicopter flight as an example of apprenticeship learning, Abbeel et al.

developed a sophisticated learning methodology and environment [2].

28

Chapter 2. Related Work

To address learning generalization and to attain knowledge transfer between

tasks, RL researchers have been developing learning transfer methods. Taylor and

Stone [125] proposed value function transfer between tasks in different state and

action spaces using a behavior transfer function to transfer the value function to

the new domain. Sherstov and Stone in [125, 126] examine action transfer between

the tasks, learning the optimal policy and transferring only the most relevant ac-

tions from the optimal policy. We take the opposite approach. To save compu-

tational time, we learn a sub-optimal policy on a subset of actions, and transfer

it to the expanded action space to produce a more refined plan. McMahan et al.

[84] suggested learning a partial policy for fixed start and goal states. Such partial

policies manage state space complexity by focusing on states that are more likely

to be encountered. Another approach examines action transfer between the tasks,

learns the optimal policy, and transfers only the most relevant actions from the

optimal policy [115]. Another RL approach solves manipulation tasks with hard

[119] and soft [65] constraints by learning in the low-dimensional task space.

2.3.7 RL and Planning

Section 2.1 mentions that planning is concerned with finding a path from a start

to a goal state. To formulate the planning method in RL terms, the agent must

receive some sort of reward at every transition, or equivalently each transition

must be associated with a cost. The reward structure is a way of communicating

to the agent when the goal was achieved. Since the rewards come from the outside

world, they are external and unknown to the agent.

C-space corresponds directly to the MDP state space, and the action space is

directly transferable between the planning paradigm and the RL framework. The

transitional probabilities are also the same between the problem formulations,

29

Chapter 2. Related Work

and not known to the agent. Typically, the planning problem corresponds to an

episodic task because the planning problem has a defined goal state. An episode

concludes when an agent reaches the goal. Some planning problems rely on a

heuristic to guide the search towards the goal. Value functions play the role of the

heuristics in RL. RL approaches go one step further and update and improve the

heuristic based on the empirical evidence.

Planning methods are traditionally off-line methods [69], meaning that the

path is found and calculated ahead of time, in an open loop manner without

the feedback of success. Some off-line RL methods work in a very similar way.

However, more modern planning approaches require the agent to plan on-line,

adjusting the plan as the robot moves through the environment. On-line RL algo-

rithms are very well suited for these approaches. Sutton and Barto introduced the

relationship between planning and RL [120]. In their view planning is the process

of taking a model as an input and producing a policy (Figure 2.1). Transitional

probabilities and rewards are used to generate a model. The model produces sim-

ulated experiences which use backups based on the Bellman optimality Equation

(2.3) to derive the value function and therefore the policy [20]. This model con-

siders only off-line, model-based RL to conform to the planning framework. The

authors further differentiate planning from learning by pointing out that the plan-

ning derives plans from the simulated experience only, while the learning can be

done either from the simulated experience or performed on the real data produced

by an actual system [120].

LaValle [69] considers a traditional view to be a three-phase framework pre-

sented in [120], in which learning, planning, and execution phases are separated.

LaValle coins the term reinforcement planning for the methods that overlap plan-

ning and RL. He uses a more modern interpretation of planning, and introduces

a simulation-based framework where the model is not necessary the input to the

30

Chapter 2. Related Work

planning. Both model-based and model-free RL are considered planning. The

simulation-based framework of reinforcement planning is typically used with a

Monte Carlo simulator of the system, but can be used with the actual system. This

research views planning and RL in the light of the simulation-based framework,

and takes a holistic view not differentiating between learning and planning.

Action selection plays a central role in RL-based planning [128] as well. Out-

side of RL, Johnson and Hauser [55] developed a MP approach based on reacha-

bility analysis for trajectory tracking in acceleration-bound problems. Zhang et al.

[139] proposed a sampling-based planner that finds intermediate goals for trajec-

tory planning for systems with dynamical constraints.

2.4 Optimal Control and Lyapunov Stability Theory

This section gives a very brief introduction into the key concepts of control and

Lyapunov stability theories relevant to the presented research. The topic of control

theory is the study of the influence on a system that changes over time [17]. A

system that changes over time, a dynamical system, is represented with a set of

variables, state space, and is influenced with another set of variables, control input.

Control input, or just input, changes the system’s state variables over time. The

control theory is concerned with developing control input laws that accomplish a

certain goal, usually minimizing cumulative cost over a trajectory. For example,

one control problem is developing a law for temperature change in a rocket that

propels the spaceship without causing an explosion [17].

Specifically, robot motion over time can be described with a system of non-

linear difference equations. Because robots are mechanical systems that can be

moved using an external force, a special case of nonlinear systems, a discrete-time

31

Chapter 2. Related Work

control affine system, models their motion [69, 53, 94]. Consider a robot with d f

DOFs. If an acceleration a(k) ∈ Rd f is applied to the robot’s center of mass at

time-step k, the new position-velocity vector (state) s(k + 1) ∈ R2d f is,

D : s(n + 1) = g(s(k)) + f (s(k))a(k), (2.8)

for some functions f , g. Note that the system, Equation (2.8), satisfies the Marko-

vian property from Definition 2.2.1.

To solve the optimal control problem often a reference trajectory is produced

off-line in an open loop fashion, and then at run-time a lower level controller

tracks the reference trajectory, adapting to unmodeled system dynamics and en-

vironmental factors [72]. Another technique first linearizes the system and then

applies linear-quadratic-regulator (LQR) method locally [59]. All classical meth-

ods for solving non-linear control problems require knowledge of the system dy-

namics [59].

A second question in control theory is how to predict the behavior of given a

controlled system, that is the system and its control law [17]. Under this scenario,

we are interested in assessing the system’s end state given an initial state. For

example, a marble rolling down a side of a bowl will either eventually come to

rest in the bottom of the bowl, or if it is pushed too hard, will escape the bowl on

the other side. The ending state, which the system will not leave once reached, is

called equilibrium [17].

Lyapunov stability theory gives us tools to assess the stability of an equilib-

rium. We say that a equilibrium is stable in sense of Lyapunov if an outcome of any

initial condition sufficiently close to equilibrium, after certain amount of time, re-

mains arbitrarily close to the equilibrium. Formally [45, 17],

Definition 2.4.1. We say that a equilibrium x is Lyapunov stable on X if starting at

32

Chapter 2. Related Work

any state in vicinity of the equilibrium, the systems remains close to it,

∀ε > 0, ∃δ > 0, ∀y(0) ∈ X such that ‖x− y(0)‖ < δ⇒ ∀n ∈N, ‖x− y(n)‖ < ε

If the trajectory converges to the equilibrium, the equilibrium point is asymptotically

stable in the sense of Lyapunov.

∀ε > 0, ∃δ > 0, ∀y(0) ∈ X such that ‖x− y(0)‖ < δ⇒ lim
n→∞
‖x− y(n)‖ = 0

The consequence is that, similar starting conditions give similar results [17].

If the two outcomes converge to each other over time, we call that point asymp-

totically stable equilibrium in the sense of Lyapunov. Often used to show stability of

origin, Lyapunov direct method is based on Lyapunov stability theorem, which

gives sufficient conditions for stability of the origin [59, 45]. The method requires

a construction of a positive, semi-definite scalar function of state W : X → R

that monotonically decreases along a trajectory and reaches zero in equilibrium

[45]. This function can be loosely interpreted as the system’s energy, positive and

deceasing over time until it is depleted and the system stops. When the func-

tion is strictly monotonically decreasing, the origin is asymptotically stable [59].

Formally adapted from [45],

Theorem 2.4.1. (Lyapunov Stability Theorem for Controlled Discrete-Time Systems). If

in a neighborhood X of the equilibrium state x0 = 0 of the system, Equation (2.8), there

exists a function W : X×N→ R such that:

1. Nonnegative outside of equilibrium, W(x, n) > 0,x(n) 6= 0

2. Zero in the equilibrium, W(0, n) = 0

3. Decreases along the trajectory W(x(n + 1), n + 1)−W(x(n), n) ≥ 0,

33

Chapter 2. Related Work

the equilibrium is stable. Further, if the rate of change is strictly decreasing

W(x(n + 1), n + 1)−W(x(n), n) > 0

outside of the origin, the origin is asymptotically stable. W is called control Lyapunov

function.

When the control Lyapunov function is a measure of distance from the de-

sired state (error), the system is guaranteed to progress to its equilibrium in a

controlled fashion without increasing the error even temporarily. This because the

Lyapunov stable equilibrium does not increase its control Lyapunov function over

time. Construction of a control Lyapunov function proves the Lyapunov stability

of the origin. However, construction of such a function is a non-trivial problem.

Classically, the control law is written, and then a control Lyapunov function is

constructed [17].

2.4.1 Optimal Control and RL

Efficient, near-optimal nonlinear system control is an important topic of research

both in feedback controls and RL. When the system dynamics is known [137] de-

velops adaptive control for interconnected systems. When the system dynamics

is not known, optimal [86, 35, 127] and near-optimal [85, 24, 90] control for inter-

connected nonlinear systems are developed for learning the state-value function

using neural networks. A generalized Hamilton-Jacobi-Bellman (HJB) equation

for control-affine systems can be approximately solved with iterative least-squares

[29]. For linear unknown systems [54] gives an optimal control using approximate

dynamic programming. Convergence proofs exist for neural network-based ap-

proximate value iteration dynamic programming for linear [7] and control-affine

systems [30], both with known dynamics.

34

Chapter 2. Related Work

Finally, when designing control for physical systems, safety is an important

factor to consider. Task completion of a RL-planned motion can be assessed with

Lyapunov stability theory. Perkins and Barto show how safe RL can be accom-

plished by choosing between predetermined control laws to secure Lyapunov sta-

bility and guarantee task completion [104]. Combination of control Lyapunov

functions with RL results in stable and efficient power grid control [43]. Integral

quadratic constraint framework trains neutral networks with RL with guaranteed

stability [11].

Note that RL developed from the controls [23, 27] uses different notation than

RL methods developed through machine learning and MDPs [120, 132]. For ex-

ample, notation for states, state space, actions, action space, reward, and policy

in MDP notation are s, S, a, A, R, π, and in controls notation are x, X,u, U, ρ,h,

respectively. In this thesis MDP notation is used.

2.4.2 Stochastic Control and RL

To address control under disturbances, piecewise linearization was used for

quadrotor trajectory tracking under wind-gust disturbances [8]. Another ap-

proach requiring system dynamics knowledge uses harmonic potential fields for

UAV MP in environments with a drift field [83]. Another need for handling dis-

turbances is in aerial robotics for obstacle avoidance. Path planning and obsta-

cle avoidance in the presence of stochastic wind for a blimp was solved using

dynamic programming with discrete MDPs [58], and later with augmented MDPs

[57]. Other methods to handle MP and trajectory generation under uncertainties

use low-level controllers for stabilization of trajectories within reach tubes [33], or

trajectory libraries [75].

35

Chapter 2. Related Work

2.5 Applications

This section describes the work related to the applications we use to evaluate

PEARL. We cover Unmanned Aerial Vehicle (UAV) control, , Multi-Agent Pursuit

Tasks, and robust sorting.

Unmanned aerial vehicles (UAVs) show potential for use in remote sensing,

transportation, and search and rescue missions [64]. One such UAV, the quadro-

tor, is an ideal candidate for autonomous cargo delivery due to its high maneu-

verability, vertical takeoff and landing, single-point hover, and ability to carry

loads 50% to 100% of their body weight. For example, cargoes may consist of

food and supply delivery in disaster-struck areas, patient transport, or spacecraft

landing. The four rotor blades of quadrotors make them easier to maneuver than

helicopters. However, they are still inherently unstable systems with complicated

nonlinear dynamics. The addition of a suspended load further complicates the

system’s dynamics, posing a significant control challenge. Planning motions that

control the load position is difficult, so automated learning methods are necessary

for mission safety and success. Recent research has begun to develop control poli-

cies for mini UAVs, including approaches that incorporate learning [64]. Learning

system dynamics model parametrization has been successful for adaptation to

changes in aerodynamics conditions and system calibration [88]. Schoellig et al.

[113] use an expectation-maximization learning algorithm to achieve quadrotor

trajectory tracking with a target trajectory and simple linear model. Lupashin et

al. [74] apply policy gradient descent techniques to perform aggressive quadro-

tor multi-flips that improve over repeated iterations. They improve upon it in

[73] by segmenting the trajectory into keyframes and learning the parameters for

each segment separately. Even the task of suspended load delivery has been ad-

dressed for UAVs [101, 117, 21, 99]. Palunko et al. successfully applied dynamic

programming to solve swing-free trajectories for quadrotors [99, 100] where they

36

Chapter 2. Related Work

showed an example of manual obstacle avoidance of a quadrotor with suspended

load by generating swing-free trajectories using dynamic programming. Bernard

et al. [21] developed a controller for helicopters with suspended loads using two

feedback loops. Hehn and D’Andrea developed a controller for a quadrotor bal-

ancing an inverted pendulum [49]. Further examples of quadrotors interacting

with the environment can be seen in aerial grasping [87, 106], ball throwing [108],

and aerial robotic construction [133].

Swing-free trajectories have been studied outside of the UAV domain. They

are important in industrial robotics with applications such as cranes in construc-

tion sites and for cargo loading in ports [5, 136]. Residual oscillation reduction is

applicable to manufacturing environments where parts need to be transported in

a limited space. Zameroski et al. [138] and Starr et al. [118] applied dynamic pro-

gramming to reduce residual vibrations of a freely suspended payload. Schultz et

al. [114] developed a controller for suspended mass.

Various variants of the pursuit-prey tasks have been studied in the RL and

multi-agent literature [97, 135, 107]. A typical predator-pursuit task works in a

grid world with multiple-agents pursing a prey. In the classical variant, both pur-

suers and the prey are autonomous agents. The pursuers work together as a team

of independent agents [135]. Ogren et al. [98] approach multi-agent coordination

through the construction of a control Lyapunov function that defines a desired for-

mation, similar to our proposed solution. But, their approach uses a given control

law to move the agents, while we use an RL-derived planner.

Voronoi decomposition solves high-dimensional manipulation problems by

projecting the robot’s configuration space onto a low-dimensional task space

[116]. Another RL approach solves manipulation tasks with hard [119] and soft

[65] constraints.

37

Chapter 2. Related Work

Reinforcement programming has used Q-learning to generate an array sorting

program using more traditional programming constructs, such as counters, if

statements, while loops, etc., as MDP actions [131]. Our implementation, in con-

trast, considers element insertion as the only possible action. Ackley motivated

software development practices for robust software where the programs are re-

silient to unrealiable information for array sorting [3].

38

Chapter 3

PrEference Appraisal Reinforcement

Learning (PEARL)

This chapter presents PEARL, the proposed solution for solving PBT tasks in high-

dimensional spaces for robotic systems with unknown dynamics. This chapter

contributes:

• PEARL overview in Section 3.1.

• PBT definition and a feature extractor in Sections 3.1.1 and 3.1.2.

• A solution to high-dimensional robotics Multi-Agent Pursuit Task in Section

3.2.

PBTs are defined with a recognizable goal state, and a set of often oppos-

ing preferences that the trajectory should regard while progressing the system

to the goal. These tasks can be difficult or impossible to demonstrate, e.g., a

Mars landing, or quadrotor Minimal Residual Oscillations Task (Definition 4.1.4).

But the preferences, guiding principles, can be described. Unlike soft and hard-

constraints, discussed in Section 2.3.6, our tasks do not have known constraints

39

Chapter 3. PrEference Appraisal Reinforcement Learning (PEARL)

and bounds; they are set up as preferences to guide dynamically feasible trajec-

tory generation. What is unknown, though, are the priorities between the prefer-

ences that generate dynamically feasible trajectories to the goal. To cope with the

learning complexity, the PEARL features define a basis in the task space similarly

to the methods introduced in Section 2.5. However, PEARL autonomously learns

the relationship between the features. The number of features is invariant to the

problem dimensionality, and the computation time scales polynomially with the

state space dimension. Given the feature selection, the Multi-Agent Pursuit Task,

used for demonstration, learns with only three pursuers. The resulting planner

plans trajectories for a large number of agents, working with several thousand

dimensions offline, and in real-time at 50 Hz for 100-dimensional problems.

In contrast to the related work in Section 2.4.1, PEARL designs features and

constructs policy approximation that ensures Lyapunov stability in the determin-

istic case. We empirically verify the goal’s stability and the quality of the resulting

trajectories.

3.1 PEARL for Robotic Problems

PEARL solves PBT in two phases, learning and acting (Figure 3.1), adhering to the

batch RL paradigm. Recall from Section 2.3.1 that on-line learning must perform

on-going exploration, which can be potentially unsafe for the physical hardware

and the environment. For that reason, our solution uses batch RL. The learning

phase uses one of the AVI-based RL algorithms. The value function is approxi-

mated with a with linear map of features, or preferences. The learning agent dis-

covers the relative weights between the preferences (preference appraisal). Once

the value function approximation is learned, we can use it to generate any number

of trajectories. These trajectories can have different starting and ending positions

40

Chapter 3. PrEference Appraisal Reinforcement Learning (PEARL)

Figure 3.1: PrEference Appraisal Reinforcement Learning (PEARL) framework for learn-
ing and executing PBT. The user-provided preferences are encoded into polymorphic fea-
tures. The learning agent appraises preference priorities on a low-dimensional training
problem. The planner takes an initial state of a high-dimensional problem and produces
actions in a closed feedback loop.

and use different (but compatible) models. In Chapter 4 we find the sufficient

criteria to allow the transfer of the learned policy to a variety of situations.

The acting phase produces a trajectory that performs the task using the pref-

erences and the learned weights. The acting is a closed-loop feedback system, or

a decision-making as described in Chapter 2, that can work on-line or plan tra-

jectories off-line in simulation. We will examine in detail the learning and acting

phases in Chapters 4, 5, and 6. Chapter 4 will present a basic greedy planner that

works with discrete actions. Chapter 5 will give policy approximations for contin-

uous actions MDPs, and will show convergence to the task goal for control-affine

systems. Chapter 6 will modify the greedy policy for the stochastic systems.

41

Chapter 3. PrEference Appraisal Reinforcement Learning (PEARL)

The learner and planner share features. We have seen in Chapter 2 that RL

is sensitive to the feature selection. Our proposed features, presented in Section

3.1.2 are polymorphic and separate PEARL from standard batch RL. They enable

both the learning on small problems and the policy transfer to high-dimensional

problems. Later, in Chapter 4, we will analyze conditions for changing MDPs

(states, actions, and simulators) between learning and planning.

3.1.1 MDP Setup

Because single-robot problems are a special cases of multi-robot problems, we

present a MDP setup and a feature creation for a generalized multi-robot prob-

lem. The multi-robot system consists of dr robots, where ith robot has dri DOFs.

We assume the robots work in continuous state and action spaces, are controlled

through acceleration applied to their center of mass, and have the dynamics that is

not explicitly known. Let si, ṡi, s̈i ∈ Rdri be the ith robot’s position, velocity, and

acceleration, respectively. The MDP state space is S = Rds , where ds = 2 ∑dr
i=1 dri

is the dimensionality of the joint multi-robot system. The state s ∈ S is joint vec-

tor s = [s1, ..., sdr
, ṡ1, ..., ṡdr

]T, and action a ∈ A = Rm is the joint acceleration

vector, a = [s̈1, ..., s̈dr
]T. The state transition function that we assume is unknown,

is a joint dynamical system of individual robots D = D1 × ...×Ddr
, each being

control-affine (2.8).

We assume the presence of a simulator or dynamics samples for each robot, for

training purposes. The reward R is set to one when the joint multi-robot system

achieves the goal, and zero otherwise. The tuple defines the joint MDP for the

multi-robot problem. A feature vector linear map, V̂(s) = θTF (s, dr), approxi-

mates the state-value function.

42

Chapter 3. PrEference Appraisal Reinforcement Learning (PEARL)

3.1.2 Feature Selection

PBTs that we consider, are defined with no objectives, o1, ...,ono , and prefer-

ences with respect to the objectives. The objectives are points in positional or

velocity space, oi ∈ Rdri , i = 1, .., no. There are two types of preferences that

can be associated with an objective: distance-reducing and intensity-reducing; both

preference types have the goal of reducing their measure to an objective. The

distance-reducing preferences aim at reducing the distance to the objective, while

the intensity-reducing preferences reduce the inverse of the square of distance

(intensity). For example, swing-free quadrotor flight (Chapters 4 and 5) has

four distance-reducing features, distance from the goal, speed magnitude, load’s

distance from the resting position, and load’s speed magnitude. An intensity-

reducing feature would be the distance from an obstacle.

To learn PBT with no objectives, o1, ...,ono , we form a feature for each objec-

tive. Assuming the low-dimensional task space and high-dimensional MDP space

no � ds, we consider task-preference features, F (s, ds) = [F1(s, ds), ..., Fno(s, ds)]T.

Parametrized with the state space dimensionality, ds, the features map the state

space S to the preference space and, depending on the preference type, measure

either the squared distance to the objective or intensity. Let Si ⊂ {1, .., dr} be a sub-

set of robots that an objective oi applies to, and poi
j (s) be a projection of jth robot’s

state onto minimal subspace that contains oi. For instance, when an objective oi

is a point in a positional space, poi
j (s) is the jth robot’s position. Similarly when oi

is a point in a velocity space, poi
j (s) is jth robot’s velocity. Then, distance-reducing

features are defined with

Fi(s, ds) = ∑
j∈Si

‖poi
j (s)− oi‖2,

43

Chapter 3. PrEference Appraisal Reinforcement Learning (PEARL)

and intensity-reducing features are defined with

Fi(s, ds) = (1 + ∑
j∈Si

(‖poi
j (s)− oi‖2))−1.

Algorithm 3.4 summarizes the feature selection procedure.

Algorithm 3.4 PEARL feature selection.
Input: o1, ...,ono objectives, pt1, ..., ptno preference types

Input: MDPM (S, A, D, R),

Output: F (s, ds) = [F1(s, ds), ..., Fn(s, ds)]T

1: for i = 1, . . . , no do

2: if pt1 is intensity then

3: Fii(s, ds) = (1 + ∑j∈Si
(‖poi

j (s)− oi‖2))−1 {inensity preference}

4: else

5: Fi(s, ds) = ∑j∈Si
‖poi

j (s)− oi‖2, {distance preference}

6: end if

7: end for

8: return F (s, ds)

Features selected in this manner have the following properties allowing

PEARL to have the potential to learn on small problems and transfer the learn-

ing to larger problems:

• Feature domain: The features are Lipschitz continuous and defined for the en-

tire state space, Fi : Rm → R, i = 1, .., ds, in contrast to tiling and radial basis

functions [135, 27] that are active only on a section of the problem domain.

• Projection to preference space: Features project state subspace into a point that

measures the quality of the preferences. Thus, the state-value function ap-

proximation V̂ = θTF (s, ds) is an ds-dimensional manifold in the preference

44

Chapter 3. PrEference Appraisal Reinforcement Learning (PEARL)

space, and their number does not change as the team size or domain space

change.

• State space polymorphism: Because they are based on the vector norm and pro-

jection, the features are polymorphic with respect to the domain dimension-

ality. Since the learning is more computationally intensive than the plan-

ning, we use lower-dimensional problems for training. The feature vector

size is invariant to the number of agents, state space dimensionality, and

physical space dimensions. If the agents operate in 2D space, the features

consider only planar space. But, when the same agents are placed in an 3D

environment, the feature set remains unchanged although the 3D space is

considered in feature calculations.

• Polynomial computation time: The feature computation time is polynomial in

state space dimensionality.

Problems with only distance reducing features are guaranteed to complete the

task if the learning converges to all negative parameters as we will see in Theorem

5.1.2. In the problems with mixed objectives, the agents will follow preferences,

but there are no formal completion guarantees. Thus, an empirical study evalu-

ates the method.

3.2 Case Study: Large-scale Pursuit Task

We first demonstrate PEARL on a Multi-Agent Pursuit Task. Our variant of the

task considers only the pursuers chasing the prey, while the prey follows a prede-

termined trajectory unknown to the pursuers. The problem formulation we use

differs from the typical formulation (see Section 2.5) in three ways. First, it works

in an arbitrarily large continuous state and action space rather than the discretized

45

Chapter 3. PrEference Appraisal Reinforcement Learning (PEARL)

grid world. Second, it learns and plans in joint agent-position-velocity space, and

handles variable team size without additional learning. Lastly, we require the

pursuers to keep distance among themselves, thus we learn and plan in the joint

pursuers’ space. We formulate the task as follows:

Definition 3.2.1. (Pursuit task.) A set of r agents must follow the prey agent in close

proximity, while maintaining distance among themselves. The agents know the current

position and velocity of the prey (leader), but do not know the future headings.

To solve the pursuit task we set up a MDP and a feature vector (preferences)

as outlined in Section 3.1.2. Assuming dr agents, with d f DOF each, the state

space is the joint agent-position-velocity vector space S = R2d f dr . State s’s co-

ordinates sij, ṡij, i = 1, .., dr, j = 1..d f denote ith’s agent position and velocity

in direction of axis j. The action space A are acceleration vectors on the agents,

A = Rd f dr , s̈ij is ith agent’s acceleration in the j direction. To design the fea-

ture vector for the pursuit task, we look at the qualitative preferences from the

task definition. From the problem description, three preferences and objectives

are desired: close proximity to the prey (positional objective), following the prey

(velocity objective), and maintaining distance between the agents (positional ob-

jective). The first two are distance-reducing, while the last one is an intensity-

reducing feature. Thus, the feature vector has three components F (s, d f , dr) =

[F1(s, d f , dr) F2(s, d f , dr) F3(s, d f , dr)]T. Following the method from Section 3.1.2,

we express the distance to the prey as F1(s, d f , dr) = ∑dr
i=1 ∑

d f
j=1(sij − pj)

2, and

following the prey, as minimizing the difference in velocities between the agents

and the prey, F2(s, d f , dr) = ∑dr
i=1 ∑

d f
j=1(ṡij − ṗj)

2 where pi and ṗi are prey’s po-

sition and velocity in the direction i. The last feature is maximizing the distance

between the agents, F3(s, d f , dr) = (1 + ∑dr
i,j=1 ∑

d f
k=1(sik − sjk)

2)−1.

Learning results: To learn the pursuit task, we use 3 holonomic planar agents

(d f = 2, dr = 3). The pursuit team of three robots is the smallest team for

46

Chapter 3. PrEference Appraisal Reinforcement Learning (PEARL)

which all features are non-trivial. The maximum absolute accelerations less than

3 m s−2. We run CAFVI (Algorithm 5.7) as the learning agent in PEARL with Axial

Sum Policy (Equation (5.11)) for 300 iterations to learn the feature vector weights.

The sampling space is inside a six-dimensional hypercube [−0.4 m, 0.4 m]6. The

prey is stationary at the origin during learning. The resulting weights are θ =

[−16.43− 102.89− 0.77]T. Both learning and planning were performed on a sin-

gle core Intel Xeon W3520 running Matlab 2013a. All simulations are done at

50 Hz. The time to learn is 145 s.

Planning results: To plan a task, we assign a trajectory to the prey, and increase

the number of agents. The prey starts at the origin, and the pursuers start at

random locations within 5 m from the origin. We plan a 20 s trajectory.

Figure 3.2 depicts the planning computational time for a 20 s trajectory as the

number of pursuers increase. State and action spaces grow with the team size,

and the planning time stays polynomial. This is because the feature vector scales

polynomially with the state size. The method plans the problems with continuous

state spaces up to R100 and continuous actions up to R50 in real-time (below the

green line in Figure 3.2), as trajectory computation takes less time than its execu-

tion.

The next evaluation looks at 25-agent pursuit of a prey that tracks either a

spiral (Figs. 3.3a - 3.3c) or lemniscate de Gerono curve (Figs. 3.3d- 3.3f). The

agents start at random locations uniformly drawn within 5 m from the leader’s

initial position (origin). Figs. 3.3a and 3.3d show the movement of the agents in

the xy-plane. Although the pursuers do not know the future leader’s positions,

they start tracking in increasingly close formation. Figs. 3.3b and 3.3e show the

x-axis, and Figs. 3.3c and 3.3f show the y-axis trajectory over time. Note that the

initial positions are uniformly distributed, and after 7 s all agents are close to the

leader, and remain in phase with it. The only exception is the y-coordinate of the

47

Chapter 3. PrEference Appraisal Reinforcement Learning (PEARL)

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

400

450

State space dimensions

t (
s)

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

450

Planning time
Real−time boundary

Figure 3.2: Time to plan a 20 s Multi-Agent Pursuit trajectory per state and action space
dimensionality averaged over 10 trials. The problem sizes below the solid green line can
be solved in real-time.

lemniscate (Figure 3.3f). Here, the agents never catch up with the leader. The

higher frequency oscillations in the y-direction make the prey hard to follow, but

the agents maintain a constant distance from it.

Figs. 3.3g - 3.3i depict a 20 s trajectory of a 1000-pursuer task. The state space

in this case is R4000 and the action space is R2000. Axial Sum Policy successfully

plans a trajectory in this large-scale space. The leader’s trajectory has Brownian

velocity (its acceleration is randomly drawn from a normal distribution). Follow-

ing this trajectory, the prey travels further from the origin, than the previous two

examples, the spiral and the lemniscate.

Table 3.1 shows the summary of ending trajectory characteristics averaged

over 100 trials. The leader follows one of the three trajectories: straight line, spi-

ral, and lemniscate. For each trajectory we plan the pursuit task with a varying

number of pursuers. For all tasks the 20 s pursuit takes less than 20 s to com-

48

Chapter 3. PrEference Appraisal Reinforcement Learning (PEARL)

pute even in the 100-dimensional state spaces (Table 3.1), confirming the timing

benchmark in Figure 3.2. The next column, Leader distance, shows that the aver-

age pursuer-prey distance remains below 30 cm. The minimal standard deviation

suggests consistent results, in agreement with the trajectory plots (Figure 3.3). The

last column shows the average distance between the agents that was to be maxi-

mized. The distance ranges between 11 cm and 46 cm. It decreases as the pursuer

team grows, reflecting higher agent density around the prey and a tighter forma-

tion. The motion animation1 shows that while approaching the leader, the agents

maintain the same formation and relative positioning, thus avoiding collisions.

The pursuit task case study empirically demonstrates PEARL for the high-

dimensional multi-robot problems outlined in Section 3.1.2. The RL with problem-

specific hand-crafted features are evaluated and compared to other methods such

as dynamic programming and control-laws (Section 4.3.2 and 5.2.2) and outper-

form the other methods both in speed and precision. In the instance of UAV

with the supsended load, the experiments on physical robots perform within cen-

timeters from simulation predictions verifying the fidelity of the simulation re-

sults (Section 4.3.2). For these reasons, we focused here on the demonstration of

the feature creation method rather than comparison with other methods. Note

that the intensity-reducing feature that maximizes the space between the agents

does not conform to the distance-reducing features considered in Sections 4.3.2 and

5.2.2. The value function approximation for this problem, does not have a single

maximum, instead it has a cleft between two ridges. This extension and condi-

tion relaxation, expands the applicability of the continuous action value approx-

imate value iteration with Axial Sum Policy to a wider class of problems. We

also demonstrated that the method produces the same qualitative results in very

high-dimensional spaces as well as lower dimensional spaces.

1Available at https://cs.unm.edu/amprg/People/afaust/afaustCh3.mp4

49

Chapter 3. PrEference Appraisal Reinforcement Learning (PEARL)

Table 3.1: Trajectory characteristics after 20 s of simulation as a function of the leader’s
trajectory and the number of concurrent agents. State (# State Dim.) and action (# Action
Dim.) space dimensionality, computational time (Comp. Time), average distance from the
leader (Leader Dist.), and distance between the agents (Dist. Agents) are shown. All re-
sults are averaged over 100 trajectories starting from randomly drawn initial states within
5 m from the origin.

Leader # #
State

Ac-
tion

Comp.
Time (s)

Leader
Dist. (m)

Dist. Agents
(m)

Trajectory Agents Dim. Dim. µ σ µ σ µ σ

Line

5 20 10 4.18 0.09 0.29 0.01 0.46 0.00
10 40 20 7.26 0.10 0.16 0.00 0.23 0.00
15 60 30 10.62 0.14 0.11 0.00 0.16 0.00
20 80 40 13.62 0.16 0.09 0.00 0.12 0.00
25 100 50 17.21 0.03 0.08 0.00 0.11 0.00

Spiral

5 20 10 4.05 0.07 0.34 0.01 0.46 0.00
10 40 20 7.22 0.13 0.24 0.01 0.23 0.00
15 60 30 10.21 0.13 0.22 0.01 0.15 0.00
20 80 40 13.31 0.05 0.22 0.01 0.12 0.00
25 100 50 16.98 0.04 0.22 0.01 0.10 0.00

Lemniscate

5 20 10 4.08 0.05 0.36 0.01 0.46 0.00
10 40 20 7.18 0.09 0.29 0.01 0.22 0.00
15 60 30 10.21 0.07 0.27 0.01 0.15 0.00
20 80 40 13.33 0.14 0.26 0.00 0.11 0.00
25 100 50 16.90 0.09 0.26 0.00 0.09 0.00

3.3 Conclusion

This chapter presented PEARL framework, a solution for high-dimensional

preference-balancing motion problems. The method uses features that work in

continuous domains, scale polynomially with the problem’s dimensionality, and

are polymorphic with respect to the domain dimensionality.

50

Chapter 3. PrEference Appraisal Reinforcement Learning (PEARL)

−5 0 5
−5

0

5

x (m)

y
(m

)

(a) Spiral - xy view

0 5 10 15 20 25
−5

0

5

t(s)

x(
m

)

(b) Spiral - x view

0 5 10 15 20 25
−5

0

5

t(s)

y(
m

)

(c) Spiral - y view

−6 −4 −2 0 2 4
−5

0

5

x (m)

y
(m

)

(d) Lemniscate - xy view

0 5 10 15 20
−10

−5

0

5

t(s)

x(
m

)

(e) Lemniscate - x view

0 5 10 15 20
−5

0

5

t(s)
y(

m
)

(f) Lemniscate - y view

(g) Brownian vel. - xy view (h) Brownian vel. - x view (i) Brownian vel. - y view

Figure 3.3: Multi-Agent Pursuit Task learning transfer. Three different pursuit tasks
planned with the same learning. The prey following a spiral (a-c) and a lemniscate curve
(d-f) chased by 25 agents. 1000-agent pursuit task of a prey that follows a random accel-
eration trajectory (g-i). The prey’s trajectory is a dotted black line.

51

Chapter 4

PEARL for Deterministic Discrete

Action MDPs

This chapter uses PEARL in discrete action spaces to create a fully automated soft-

ware system that plans and generates trajectories in obstacle-laden environments

for Cargo Delivery Task. The chapter’s content is based on [39, 40]. The contribu-

tions of this chapter are:

• RL agent that creates trajectories with minimal residual oscillations for a sus-

pended load bearing UAV in obstacle-free spaces (Sections 4.2.1 and 4.2.2).

• RL path following agent that reduces the load displacement (Section 4.2.3),

• A framework for trajectory generation with constraints that avoids obstacles

(Section 4.2.5),

• RL agent’s integration with sampling-based path planning (Section 4.2.5),

and

• Development of an efficient rigid body model to represent a quadrotor car-

rying a suspended load (Section 4.2.4).

52

Chapter 4. PEARL for Deterministic Discrete Action MDPs

To learn control policy for minimizing the load displacement, we use PEARL

with AVI as a learning agent with a specifically designed feature vector for state-

value function approximation. There are two challenges we face. First, the AVI re-

quires a state-space sampling domain to learn the policy. The learning must have

sufficient sample-density to be successful. To provide sufficient sample-density

while learning, we sample in the small state subspace around the goal but choose

a feature vector that is defined beyond the sampling subspace. The second chal-

lenge we face, is that the planning for minimal residual oscillations motion con-

sists of a large action space (over 106 actions). Such a large action space is imprac-

tical for learning, thus we learn in an action subspace, and plan with the larger

action space. Relying on Lyapunov stability theory, the chapter contributes suf-

ficient conditions that the MDP formulation (system dynamics, action space, and

state-value function approximation) must meet to ensure the cargo delivery with

minimal residual oscillations. Within the conditions we are free to change MDP

properties as it suits our needs and to transfer learning to compatible MDPs. For

example, for practicality we learn in a 2-dimensional action subspace and trans-

fer the state-value function approximation to MDP with a 3-dimensional action

space to plan altitude changing trajectories. As another example, we develop a

novel path-following agent that minimizes the load displacement by action-space

adaptation at every planning step. In the context of related work in the obstacle-

free case, we transfer to MDPs with state and action supersets and noisy dynamics

using a behavior transfer function that transfers directly the learned value func-

tion approximation to the new domain with no further learning.

In contrast to value function transfer with behavior transfer functions we

transfer the learned value function approximation to tasks with state and action

space supersets and changed dynamics. We find sufficient characteristics of the

target tasks for learning transfer to occur successfully. The direct transfer of the

value function is sufficient and requires no further learning. In contrast to trans-

53

Chapter 4. PEARL for Deterministic Discrete Action MDPs

ferring only the most relevant actions, in obstacle-free spaces, we take the oppo-

site approach; to save computational time, we learn a sub-optimal policy on a

subset of actions, and transfer it to the expanded action space to produce a more

refined plan. When planning a path-following trajectory, we work with a most

relevant subset of the expanded action space. Unlike the partial policies that fo-

cus on the states are most likely to be encountered, described in Section 2.3.6, we

are interested in finding Minimal Residual Oscillations Trajectories from different

start states, but we do have a single goal state. Thus, all trajectories will pass near

the goal state, and we learn the partial policy only in the vicinity of the goal state.

Then, we may apply it to any start state.

For the problem of suspended load swing reduction, we apply RL to auto-

matically generate, test, and follow swing-free trajectories for a quadrotor. RL is

integrated into both the motion planning and trajectory generation for a rotorcraft

equipped with a suspended load and in an environment with static obstacles. In

Section 4.3.2 we show that RL could be used to reduce load displacement at the

arrival to the goal state. In Section 4.3.4, the agent is placed in a larger context

o f time-sensitive cargo delivery tasks. In this class of applications, the payload

should be delivered free of collision as soon as possible, possibly following a ref-

erence path, while bounded load displacement is maintained throughout the tra-

jectory. Beyond aerial robotics, the methods presented here are applicable to any

PBT posed on a dynamical system, because aerial cargo delivery problem is such

a task. We test the proposed methodology in Section 5.2 both in simulation and

experimentally on a physical system (Figure 4.1a).

54

Chapter 4. PEARL for Deterministic Discrete Action MDPs

(a) Experimental system (b) Position definition (c) Geometric
model

Figure 4.1: Quadrotor carrying a suspended load.

4.1 Preliminaries

This chapter is concerned with joint UAV-suspended load systems. The load is

suspended from the UAV’s center of mass with an inelastic cable. A ball joint

models the connection between the UAV’s body and the suspension cable. We

now define several terms that are used in this paper extensively.

Definition 4.1.1. (Load Displacement or Load Swing): is the position of the load, at time

t, expressed in coordinates η(t) = [φ(t) ω(t)]T with the origin in quadrotor’s center of

the mass (see Figure 4.1b).

Definition 4.1.2. (Minimal Residual Oscillations trajectory): A trajectory of duration

T is a minimal residual oscillations trajectory if for a given constant ε > 0 there is a

time 0 ≤ t1 ≤ T, such that for all t ≥ t1, the load displacement is bounded with ε, i. e.

‖η(t)‖ < ε.

Definition 4.1.3. (Bounded Load Displacement or Swing-free trajectory): A trajectory is

a swing-free trajectory if it is the minimal residual oscillation trajectory for time t1 = 0,

55

Chapter 4. PEARL for Deterministic Discrete Action MDPs

in other words if the load displacement is bounded by a given constant throughout the

entire trajectory, i. e. ‖η(t)‖ < ε, t ≥ 0.

Now, we present problem formulations for two aerial cargo delivery tasks,

which specify the trajectory characteristic, task completion criteria, and dynamical

constraints on the system.

Definition 4.1.4. (Minimal Residual Oscillations Task): Given start and goal positional

states ss, sg ∈ C-free, and a swing-constraint ε, find a minimal residual oscillations tra-

jectory s = τ (t), (0 ≤ t ≤ T) from ss to sg for a holonomic UAV carrying a suspended

load. The task is completed when the system comes to rest at the goal state: for some small

constants εd, εv, at time tg ≤ T ‖τ (tg)− sg‖ ≤ εd and ‖τ̇ (tg)‖ ≤ εv. The dynamical

constraints of the system are the bounds on the acceleration vector.

In the above definition, the system completes the task if it reaches and remains

inside a small interval around origin in the system’s position-velocity space. The

small constants εd, and εv define the interval size. In contrast, the swing-constraint

can be met at a different time during the trajectory. Aerial cargo delivery, de-

scribed next, requires the load displacement, ε, to be bounded throughout the

trajectory, while the position and velocity constants, εd, εv, must be reached at the

end of the trajectory at some time tg.

Definition 4.1.5. (Cargo Delivery Task): Given start and goal positional states ss, sg ∈
C-free, and a swing-constraint ε, find a swing-free trajectory s = τ (t) from ss to sg for a

holonomic UAV carrying a suspended load. The task is completed when the system comes

to rest at the goal state: for some εd, εv, at time tg ‖τ (tg)− sg‖ ≤ εd and ‖τ̇ (tg)‖ ≤ εv.

The dynamical constraints of the system are the bounds on the acceleration vector.

56

Chapter 4. PEARL for Deterministic Discrete Action MDPs

4.2 Methods

Our goal is to develop a fully automated agent that calculates aerial cargo de-

livery (Problem 4.1.5) trajectories in environments with static obstacles. The tra-

jectory must be collision-free, the load displacement must be bounded, and the

UAV must arrive at the given goal coordinates. Within these constraints, the task

needs to complete in the shortest time given the physical limitations of the system

combined with the task constraints.

Figure 7.1a presents the proposed architecture. We learn the policy that re-

duces load displacement separately from the space geometry, and then combine

them to generate trajectories with both characteristics. The minimal residual os-

cillations policy, described in Section 4.2.1, performs minimal residual oscillations

task (Problem 4.1.4). Once the policy is learned, it can be used with varying state

and action spaces to refine system performance according to the task specifica-

tions. Based on Lyapunov theory Section 4.2.2 discusses the sufficient conditions

for these modifications. In Section 4.2.3, we adapt the policy to follow a path, by

modifying the action space at every step. To enable obstacle-avoidance, we use

a planner to generate a collision-free path. Section 4.2.4 describes the geometric

model of the cargo-bearing UAV that we use for efficient collision detection. After

the policy is learned and a roadmap constructed, we generate trajectories that are

both collision-free, and guarantee load displacement below a given upper bound.

For given start and goal coordinates, the planner calculates a collision-free path

between them. A path-following trajectory that maintains the acceptable load dis-

placement is calculated using the method described in Section 4.2.5.

The architecture has two clear phases: learning and planning. The learning for a

particular payload is performed once, and used many times in any environment.

The problem geometry is learned, and PRMs are constructed once, for a given

57

Chapter 4. PEARL for Deterministic Discrete Action MDPs

Figure 4.2: Automated aerial cargo delivery software architecture.

environment and a maximum allowed load displacement. When constructed,

roadmaps can be used for multiple queries in the environment for tasks requir-

ing the same or smaller load displacement. The distinct learning phases and the

ability to reuse both, the policy and the roadmap, are desirable and of practical

use, because the policy learning and roadmap construction are time consuming.

4.2.1 Learning Minimal Residual Oscillations Policy

In this section1, our goal is to find fast trajectories with minimal residual oscilla-

tions for rotorcraft aerial robots carrying suspended loads in obstacle-free envi-

ronments. We assume that we know the goal state of the vehicle; the initial state

may be arbitrary. Furthermore, we assume that we have a black box system’s sim-

ulator (or a generative model) available, but our algorithm makes no assumptions

1© 2013 IEEE. This section is reprinted, with permission, from Aleksandra Faust, Ivana
Palunko, Patricio Cruz, Rafael Fierro, and Lydia Tapia, ”Learning Swing-free Trajectories
for UAVs with a Suspended Load,” IEEE International Conference on Robotics and Au-
tomation (ICRA), May 2013

58

Chapter 4. PEARL for Deterministic Discrete Action MDPs

about the system’s dynamics.

In our implementation, we use a deterministic MDP. The state space S is set

of all vectors s ∈ S, such that s = [x y z ẋ ẏ ż φL ωL φ̇L ω̇L]
T (Figure 4.1b). Vector

p = [x y z]T is the position of the vehicle’s center of mass, relative to the goal state.

The vehicle’s linear velocity is vector v = [ẋ ẏ ż]T. Vector η = [φL ωL]
T represents

the angles that the suspension cable projections onto xz and yz planes form with

the z-axis (see Figure 4.1b). The vector of the load’s angular velocities is η̇L =

[φ̇L ω̇L]
T. L is the length of the suspension cable. Since L is constant in this work,

it will be omitted. To simplify, we also refer to the state as s = [pT vT ηT η̇T]T

when we do not need to differentiate between particular dimensions in s. The

action space, A is a set of linear acceleration vectors a = [ẍ ÿ z̈]T discretized

using equidistant steps centered around zero acceleration.

The reward function, R, penalizes the distance from the goal state, and the

load displacement angle. It also penalizes the negative z coordinate to provide a

bounding box and enforce that the vehicle must stay above the ground. Lastly, the

agent is rewarded when it reaches the goal. The reward function R(s) = cTr(s) is

a linear combination of basis rewards r(s) = [r1(s) r2(s) r3(s)]T, weighted with

vector c = [c1 c2 c3]
T, for some constants a1 and a2, where:

r1(s) = −‖p‖2,

r2(s) =

a1 ‖F (s)‖ < ε

−‖η‖2 otherwise
, and

r3(s) =

−a2 z < 0

0 z ≥ 0

59

Chapter 4. PEARL for Deterministic Discrete Action MDPs

To obtain the state transition function samples D(s0, a) = s, we rely on a sim-

plified model of the quadrotor-load system, where the quadrotor is represented by

a holonomic model of a UAV [64, 40, 89]. The simulator returns the next system

state s = [pT vT ηT η̇]T when an action a is applied to a state s0 = [pT
0 v

T
0 η

T
0 η̇0

T].

Equations

v = v0 + ∆ta;

p = p0 + ∆tv0 +
∆t2

2
a

η̇ = η0 + ∆tη̈; (4.1)

η = η0 + ∆tη̇0 +
∆t2

2
η̈, where

η̈ =

 sin ω0 sin φ0 − cos φ0 L−1 cos ω0 sin φ0

− cos ω0 cos φ0 0 L−1 cos φ0 sin ω0

 (a− g′)

describe the simulator. A vector g′ = [0 0 g]T represents the gravity force vector,

and ∆t is the duration of the time step. L is the length of the suspension cable

measured as distance between the cargo’s and joint quadrotor-load system’s cen-

ters of mass. Because the cargo’s mass determines the center of the mass of the

joint system, it influences the load’s motion indirectly, through the effective cable

length L.

The state value function V is approximated with a weighted feature vector

F (s). The feature vector chosen for this problem consists of four basis functions,

corresponding to features we wish to minimize for task completion. In our case,

it consists of squares of the vehicles distance to the goal, its velocity magnitude,

and load’s angular displacement and velocity magnitude:

V(s) = θTF (s), F (s) = [‖p‖2 ‖v‖2 ‖η‖2 ‖η̇‖2]T (4.2)

where θ ∈ R4.

60

Chapter 4. PEARL for Deterministic Discrete Action MDPs

4.2.2 Minimal Residual Oscillations Trajectory Generation

After learning the parametrization θ of value function approximation, we can plan

trajectories using greedy policy π : S → A induced by the approximated value

function, V,

π(s) = argmin
a∈A

(θTF ◦D(s, a)), (4.3)

where D(s, a) is the sampled state resulting from applying action a to a state s2.

When applied to the system, the resulting action moves the system to the state

associated with the highest estimated value. The algorithm starts with an arbi-

trary initial state. Then it finds an action according to the greedy policy defined

in Equation (4.3). The action is used to transition to the next state. The process

repeats until the goal is reached or the trajectory exceeds a maximum number of

steps.

The Proposition 4.2.1 gives sufficient conditions that the state-value function

approximation, action state space and system dynamics need to meet to guarantee

a plan that leads to the goal state.

Proposition 4.2.1. Let sg be the goal state. If:

1. All components of vector θ are negative, θi < 0, for ∀i ∈ {1, 2, 3, 4},

2. Action space, A, allows transitions to a higher-valued state, ∀s ∈ S \ {sg}, ∃a ∈ A

that V(πA(s)) > V(s), and

3. sg is global maximum of function V,

2© 2013 IEEE. This section is reprinted, with permission, from Aleksandra Faust, Ivana
Palunko, Patricio Cruz, Rafael Fierro, and Lydia Tapia, ”Learning Swing-free Trajectories
for UAVs with a Suspended Load,” IEEE International Conference on Robotics and Au-
tomation (ICRA), May 2013

61

Chapter 4. PEARL for Deterministic Discrete Action MDPs

then the sg is an asymptotically stable point. Coincidentally, for an arbitrary start state

s ∈ S, greedy policy, Equation (4.3), with respect to Vdefined in Equation (4.2) and A,

leads to the goal state sg. In other words, ∀s ∈ S, ∃n, πn(s) = sg.

Proof. To show that sq is an asymptotically stable point, we need to find a discrete

time control Lyapunov function W(s), such that

1. W(s(k)) > 0, for ∀s(k) 6= 0

2. W(sg) = 0,

3. 4W(s(k)) = W(s(k + 1))−W(s(k)) < 0, ∀k ≥ 0

4. 4W(sg) = 0, where sg = [0 0 0 0 0 0 0 0 0 0]T

Let W(s) = −V(s) = −θT[‖p‖2 ‖(v)‖2 ‖η‖2 ‖η̇‖2]. Then W(0) = 0, and for

all s 6= sg, W(s) > 0, since θi < 0.

4W(s(k)) = −(V(s(k + 1)) − V(s(k))) < 0 because of the assumption that

for each state there is an action that takes the system to a state with a higher value.

Lastly, since V(sg) is global maxima, W(sg) is global minima, and 4W(sg) =

−(V(sg)−V(sg)) = 0

Thus, W is a control Lyapunov function with no constraints on s, and is glob-

ally asymptotically stable. Therefore, any policy-following function W (or V) will

lead the system to the unique equilibrium point.

Proposition 4.2.1 connects the MDP problem formulation (states, actions, and

transition function) and state-value approximation with Lyapunov stability anal-

ysis theory. If MDP and V satisfy the conditions, the system is globally uniformly

stable, i.e. a policy generated under these conditions will drive the quadrotor-

load system from any initial state s to the goal state sg = 0. We empirically show

62

Chapter 4. PEARL for Deterministic Discrete Action MDPs

that the conditions are met. Proposition 4.2.1 requires all components of vector θ

to be negative. As we will see in the 4.3.2, the empirical results show that is the

case. These observations lead to several practical properties of the induced greedy

policy that we will verify empirically:

• The policy is agnostic to the simulator used; the simulator defines the tran-

sition function, and along with the action space, defines the set of reachable

states. Thus, as long as the conditions of Proposition 4.2.1 are met, we can

switch the simulators we use. This means that we can train on a simple sim-

ulator and generate a trajectory on a more sophisticated model that would

predict the system better.

• The policy can be learned on a state space subset that contains the goal state,

and the resulting policy will work on the whole domain where the condi-

tions above hold, i.e., where the value function doesn’t have other maxima.

We show this property in Section 4.3.2.

• The induced greedy policy is robust to noise; as long as there is a transition

to a state with a higher value, the action will be taken and the goal will be

attained. Section 4.3.2 presents the empirical evidence for this property.

• The action space between learning and the trajectory generation can change,

and the algorithm will still produce a trajectory to the goal state. For ex-

ample, to save computational time, we can learn on a smaller, more coarse

discretization of the action space to obtain the value function parameters,

and generate a trajectory on a more refined action space which produces

a smoother trajectory. We demonstrate this property during the altitude

changing flight experiment in Section 4.3.2. This property also allows us

to create a path-following algorithm in Section 4.2.3 by restricting the action

space only to actions that maintain proximity to the reference trajectory.

63

Chapter 4. PEARL for Deterministic Discrete Action MDPs

Since we use an approximation to represent a value function and obtain an es-

timate iteratively, the question of algorithm convergence is twofold. First, the

parameters that determine the value function must converge to a fixed point. Sec-

ond, the fixed point of the approximator must be close to the true value function.

Convergence of the algorithm is not guaranteed in the general case. Thus, we

show empirically that the approximator parameters stabilize. To show that the

policy derived from a stabilized approximator is sound, we examine the result-

ing trajectory. The trajectory needs to be with minimal residual oscillations at the

arrival at the goal state, and be suitable for the system.

Thus far, we used RL to learn the minimal residual oscillations task (Problem

4.1.4). The learning requires a feature vector, and a generative model of system dy-

namics, to come up with the feature vector parametrization. Then, in the distinct

trajectory generation phase, using the same feature vector, and possibly different

simulators, states, and action spaces, we create trajectories. The learning is done

once for a particular payload, and the learned policy is used for any number of

trajectories. Once the trajectory is created, it is passed to the lower-level vehicle

controller.

4.2.3 Swing-free Path-following

To plan a path-following trajectory that reduces load’s oscillations, we develop a

novel approach that takes advantage of findings from Section 4.2.2 by applying

constraints on the system. In particular, we rely on the ability to change the action

space and still complete the task.

Let P = [r1, .., rn]T be a reference path, given as the list of quadrotor’s center

of mass Cartesian coordinates in 3D space, and let dP (s) be shortest Euclidean

64

Chapter 4. PEARL for Deterministic Discrete Action MDPs

distance between the reference path and the system’s state s = [pT vT ηT η̇T]T:

dP (s) = min
i
‖p− ri‖. (4.4)

Then we can formulate the Swing-free Path-following Task, as:

Problem 4.2.1. (Swing-free Path-following Task): Given a reference path P , and a start

and a goal positional states ss, sg ∈ P , find a minimum residual oscillations trajectory

from ss to sg that minimizes the accumulated squared error
∫ ∞

0 (dP (s))2 dt.

To keep the system in the proximity of the reference path, we restrict the action

space As ⊂ A to only the actions that transition the system in the proximity of the

reference path, using proximity constant δ > 0

As = {a ∈ A|dP (D(s, a)) < δ}. (4.5)

In the case As = ∅, we use an alternative action subset that transitions the system

to the k closest position to the reference trajectory,

As = argmink

a∈A
(dP (D(s, a))), (4.6)

where argmink denotes k smallest elements. We call k the candidate action set size

constant. Admissible action set As ⊂ A represents constraints on the system.

The action selection step, or the policy, becomes the search for action that tran-

sitions the system to the highest valued state chosen from the As subset,

π(s) = argmin
a∈As

(θTF ◦D(s, a)). (4.7)

65

Chapter 4. PEARL for Deterministic Discrete Action MDPs

The policy given in Equation (4.7) ensures state transitions in the vicinity of the

reference path P . If it is not possible to transition the system within given ideal

proximity δ, the algorithm selects k closest positions and selects an action that

produces the best minimal residual oscillations characteristics upon transition (see

Algorithm 4.5). Varying δ, which is the desired error margin, controls how close

we desire the system to be to the reference path. Parameter k gives the weight to

whether we prefer the proximity to the reference trajectory, or load displacement

reduction. Choosing very small k and δ results in trajectories that are as close to

the reference trajectory as the system dynamics allows, at the expense of the load

swing. Larger values of the parameters allow more deviation from the reference

trajectory, and better load displacement results.

Algorithm 4.5 Swing-free Path-following.

Input: s0 start state, MDP (S, A, D, R) state space,

Input: θ, F (s),max steps

Input: P , δ, k

Output: trajectory

1: s← s0

2: trajectory← empty

3: while not(goal reached or max steps reached) do

4: As ← {a|d(s′,P) < δ, s′ = D(s, a), a ∈ A}
5: if As == ∅ then

6: As ← argmink
a∈A(d(D(s, a), P))

7: end if

8: a← argmina∈As
θTF ◦D(s, a))

9: add (s, a) to trajectory

10: s← D(s, a)

11: end while

12: return trajectory

66

Chapter 4. PEARL for Deterministic Discrete Action MDPs

4.2.4 UAV Geometric Model

We use PRMs to obtain a collision-free path. The PRMs require a geometric model

of the physical space, and of a robot, to construct an approximate model of Cspace.

In order to simplify the robot model, we use its bounding volume. The selection

of the robot model has implications for the computational cost of the collision

detection [69]. The bounding volume can be represented with fewer degrees of

freedom by omitting certain joints, and to address local uncertainty of the config-

uration space [66].

For the Cargo Delivery Task that bounds the load displacement with a given

fixed limit, we consider the quadrotor-load system to be two rigid bodies joined

with a ball joint and an inelastic suspension cable. This system is geometrically

contained in a joint cylinder-cone volume. Modeling the quadrotor’s body with a

cylinder that encompasses it, allows us to ignore yaw for the path planning pur-

poses. Similarly, Cargo Delivery Task is a non-aggressive maneuver, and quadro-

tor’s pitch and roll are negligible, and are contained in a cylinder. For the load,

we need only to consider the set of its possible positions, which is contained in

a right circular cone with an apex that connects to the quadrotor’s body, and

with its axis perpendicular to quadrotor’s body. The relationship between the

cone’s aperture, ρ, and load displacement η = [φ ω]T that need to be satisfied

for collision-free trajectories is cos(ρ/2) > (1 + tan2 φ + tan2 ω)−0.5. Connecting

the cylindrical model of the quadrotor body with the cone model of its load gives

us the geometrical model of the quadrotor carrying a suspended load. Since the

quadrotor’s body stays orthogonal to the z-axis, the cylinder-cone model can be

treated as a single rigid body with 3 degrees of freedom. Figure 4.1c shows the

fit of the AscTec Hummingbird quadrotor carrying a suspended load fitting into

the cylinder-cone bounding volume. The clearance surrounding the quadrotor’s

body area needs greater than the maximal path-following error, maxt dP (s(t)).

67

Chapter 4. PEARL for Deterministic Discrete Action MDPs

(a) 1◦ task (b) 10◦ task (c) 20◦ task

Figure 4.3: Orthographic wireframe of the quadrotor carrying a suspended load geomet-
ric model for three different tasks.

The model, will produce paths that leave enough clearance between the obstacles

to accommodate for the maximum allowable load displacement.

Approaching the problem in this manner, allows PRM to perform fast

collision-checking without burdening path planning with the knowledge of com-

plicated system dynamics. Because the bounding volumes for tasks with smaller

bounds on the load displacement are contained within volumes for tasks that al-

low greater swing, a more conservative model can be used for multitude of tasks

having lesser upper bounds (see Figure 4.3). The limitation of the reduced model

is that it does not take a direction of the load displacement into account. This

could be easily remedied with replacing a circular cone with elliptic one for ex-

ample, and then pairing with a compatible RL agent that ensures the trajectory

adheres to the geometric model.

4.2.5 Path Planning and Trajectory Generation Integration

Figure 7.1a shows the flowchart of the trajectory generation process. This method

learns the dynamics of the system through AVI, as outlined in Section 4.2.1. Monte

Carlo selection picks the best policy out of the multiple learning trials. Indepen-

68

Chapter 4. PEARL for Deterministic Discrete Action MDPs

dently and concurrently, a planner learns the space geometry. When the system

is queried with particular start and stop goals, the planner returns a collision-free

path. The PRM egdes are reference paths, and the nodes are waypoints. AVI pro-

vides the policy. The trajectory generation module generates a Minimal Residual

Oscillations trajectory along each edge in the path, using Algorithm 4.5 and the

modified AVI policy. If the trajectory exceeds the maximum allowed load dis-

placement, the edge is bisected, and the midpoint is inserted in the waypoint list

(see Algorithm 4.6). The system comes to a stop at each waypoint and starts the

next trajectory from the stopped state. All swing-free trajectories are translated

and concatenated to produce the final multi-waypoint, collision-free trajectory.

This trajectory is sent to the low-level quadrotor controller [99] that performs tra-

jectory tracking. The result is fully automated method that solves Cargo Delivery

Task (Problem 4.1.5).

Line 12 in Algorithm 4.6 creates a trajectory segment that follows the PRM

calculated path between adjacent nodes (wi, wi+1). The local planer determines

the path geometry. Although any local planner can be used with PRMs, in this

setup we choose a straight line local planner to construct the roadmap. Thus, the

collision-free paths are line segments. Prior to creating a segment, we translate

the coordinate system such that the goal state is in the origin. Upon trajectory

segment calculation, the segment is translated so that it ends in wi+1. The Swing-

free Path-following corresponds to Algorithm 4.5. When the reference path is

a line segment with start in s0 and end in the origin, such as in this setup, the

distance d calculation defined in Equation (4.4), and needed to calculate the action

space subsets defined in Equations (4.5) and (4.6), can be simplified and depends

only the start state s0:

ds0(s) =

√
‖s‖2‖s0‖2 − (sTs0)2

‖s0‖
.

69

Chapter 4. PEARL for Deterministic Discrete Action MDPs

Algorithm 4.6 leads the system to the goal state. This is an implication of the

asymptotic stability of the AVI algorithm. It means that the policy produces tra-

jectories that, starting in any initial state s0, come to rest at the origin. Because

Algorithm 4.6 translates the coordinate system such that the next waypoint is al-

ways in the origin, the system passes through all waypoints until it reaches the

end of the path.

4.3 Results

Table 4.1: Approximate value iteration hyper-parameters.
Parameter 3D Configuration 2D Configuration
γ 0.9
Min action (m s−2) (-3, -3, -3)m s−2 (-3, -3, 0)
Action step (m s−2) 0.5 0.05

Min sampling space
p = (−1,−1,−1)m,

v = (−3 m s−1,−3 m s−1,−3 m s−1)
η = (−10°,−10°), η̇ = (−10,−10)

Max sampling space
p = (1 m, 1 m, 1 m)

v = (3 m s−1, 3 m s−1, 3 m s−1)
η = (10°, 10°), η̇ = (10, 10)

Sampling Linear Constant (200)
Simulator Deterministic
Frequency 50 Hz
Number of iterations 1000 800
Number of trials 100 40

Reward function
c1 = 10000, c2 = 750, c3 = 1
a1 = 14, a2 = 10000, ε = 0.05

To evaluate the Aerial Cargo Delivery software architecture, we first check

each of the components separately, and then evaluate the architecture as a whole.

Section 4.3.1 validates the learning and its convergence to a single policy. Section

4.3.2 evaluates policy for minimal residual oscillation trajectory generation and its

performance under varying state spaces, action spaces, and system simulators, as

70

Chapter 4. PEARL for Deterministic Discrete Action MDPs

Proposition 4.2.1 predicts. In Section 4.3.3, we address the quality of the Swing-

free Path-following algorithm. After results for all components are evaluated, we

verify the end-to-end process in Section 4.3.4.

All of the computations were performed on a single core of an Intel i7 system

with 8 GB of RAM, running Linux operating system. AVI and trajectory calcula-

tions were obtained with Matlab 2011. The experiments are performed using an

AscTec quadrotor UAV carrying a small ball or a paper cup filled with water in

a MARHES multi-aerial vehicle testbed [82]. This testbed and its real-time con-

troller are described in detail in [99]. The testbed’s real-time controller tracks the

planned trajectory and controls the quadrotor. The testbed is equipped with a

Vicon high-precision motion capture system to collect the results of the vehicle

and the load positioning during the experiments with the resolution of 1 mm at

minimum 100 Hz. The quadrotor is 36.5 cm in diameter, weighs 353 g without a

battery, and its payload is up to 350 g [15]. Meanwhile, the ball payload used in

the experiments weighs 47 g and its suspension link length is 0.62 m. The sus-

pended load is attached to the quadrotor at all times during the experiments. In

experiments where the coffee cup is used, the weight of the payload is 100 g.

4.3.1 Learning Minimal Residual Oscillations Policy

To empirically verify the learning convergence,3 we run AVI in two configura-

tions: 2D and 3D (see Table 4.1). Both configurations use the same discount pa-

rameter γ < 1 to ensure that the value function is finite and are learning in the

sampling box 1 m around the goal state with the load displacements under 10°.

3© 2013 IEEE. This section is reprinted, with permission, from Aleksandra Faust, Ivana
Palunko, Patricio Cruz, Rafael Fierro, and Lydia Tapia, ”Learning Swing-free Trajectories
for UAVs with a Suspended Load,” IEEE International Conference on Robotics and Au-
tomation (ICRA), May 2013

71

Chapter 4. PEARL for Deterministic Discrete Action MDPs

The configurations also share the deterministic simulator, Equation (4.1). The 3D

configuration trains the agent with a coarse three-dimensional action vector. Each

direction of the linear acceleration is discretized in 13 steps, resulting in over 2000

total actions. In this phase of the algorithm, we are shaping the value function,

and this level of coarseness is sufficient and practical. The most computationally

intensive part of the learning is greedy policy, Equation (4.3). Performed for each

sample in all iterations, the greedy policy evaluation scales with the number of

actions. The learning transfer that learns with a coarse and plans with fine-grain

action space, speeds up learning 1000 times, thus making it practically feasible.

AVI’s approximation error decays exponentially with the number of iterations. A

gradual increase in the sampling over iterations yields less error as the number of

iterations increases [37]. Thus, we increase sampling linearly with the number of

iterations in the 3D configuration.

To assess the stability of the approximate value iteration, we ran the AVI 100

times, for 1000 iterations in the 3D configuration. Figure 4.4a shows the trend of

the norm of value parameter vector θ with respect to L2 norm. We can see that the

‖θ‖ stabilizes after about 200 iterations with the mean of 361170. The empirical

results show that the algorithm is stable and produces a consistent policy over

different trials. The mean value of θ = [−86290 − 350350 − 1430 − 1160]T has

all negative components, which means that the assumption for Proposition 4.2.1

holds. To evaluate learning progress, a trajectory generation episode was run after

every learning iteration. Figure 5.4 depicts the accumulated reward per episode,

averaged over 100 trials. The accumulated reward converges after 200 iterations

as well. Figure 4.5 depicts trajectories with the quadrotor’s starting position at

(−2,−2, 1)m over 100 trials after 1000 learning iterations. The trajectories are cre-

ated as described in Section 4.2.2 with Equation (4.1) simulating the movement at

50 Hz. Although there are slight variations in duration (see Figure 4.5a), all the

trajectories are similar in shape and are consistent, giving us confidence that the

72

Chapter 4. PEARL for Deterministic Discrete Action MDPs

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

1.5
x 10

6

Iterations

|θ
|

θ
θ + σ(θ)

θ − σ(θ)

θ + 2σ(θ)

θ − 2*σ(θ)

(a) θ convergence

0 200 400 600 800 1000
0

2

4

6
x 10

6

Episode

A
c
c
u
m

u
la

te
d
 r

e
w

a
rd

(b) Learning curve

Figure 4.4: Convergence of feature parameter vector θ’s norm (a) and corresponding
learning curve (b) over 1000 iterations. The results are averaged over 100 trials. One
and two standard deviations are shown. After initial learning phase, ‖θ‖ stabilizes to a
constant value.

AVI converges. The load initially lags behind as the vehicle accelerates (see Figure

4.5b), but then stabilizes to end in minimal swing. We can also see that the swing

is bounded throughout the trajectory, maintaining the displacement under 10° for

the duration of the entire flight (see Figure 4.5b).

4.3.2 Minimal Residual Oscillations Trajectory Generation

In this section4 we evaluate effectiveness of the learned policy. We show the pol-

icy’s viability in the expanded state and action spaces in simulation in Section

4.3.2. Section 4.3.2 assesses the discrepancy between the load displacement pre-

dictions in simulation and encountered experimentally during the flight. The sec-

tion also compares experimentally the trajectory created using the learned policy

to two other methods: a cubic spline trajectory, which is a minimum time C3-class

trajectory without any pre-assumptions about the load swing, and, to a dynamic

4© 2013 IEEE. This section is reprinted, with permission, from Aleksandra Faust, Ivana
Palunko, Patricio Cruz, Rafael Fierro, and Lydia Tapia, ”Learning Swing-free Trajectories
for UAVs with a Suspended Load,” IEEE International Conference on Robotics and Au-
tomation (ICRA), May 2013

73

Chapter 4. PEARL for Deterministic Discrete Action MDPs

0 2 4 6 8
−2

0

2
Position

t (s)

x
 (

m
)

0 2 4 6 8
−2

0

2

t (s)

y
 (

m
)

0 2 4 6 8
−0.5

0

0.5

1

t (s)

z
 (

m
)

0 2 4 6 8
−2

0

2
Linear Velocity

t (s)

v
x
 (

m
/s

)
0 2 4 6 8

−2

0

2

t (s)
v

y
 (

m
/s

)

0 2 4 6 8
−2

0

2

t (s)

v
z
 (

m
/s

)

(a) Quadrotor position and velocity

0 2 4 6 8
−15

−10

−5

0

5

10

t (s)

ω
 (

°)

Angular position over time

0 2 4 6 8
−15

−10

−5

0

5

10

φ
(°

)

0 2 4 6 8
−40

−30

−20

−10

0

10

20

30

t (s)

ω
’ (

°/
s)

Angular speed over time

0 2 4 6 8
−40

−30

−20

−10

0

10

20

30

φ’
 (°

/s
)

(b) Load position and velocity

Figure 4.5: Resulting trajectories from 100 policy trials. Trajectories starting at (-2, -2, 1)
m for each of the 100 trials of the vehicle (a), and its load (b) using 3D configuration for
training and deterministic simulator with fine-grain action space for trajectory generation.

programming trajectory [99], an optimal trajectory for a fixed start position with

respect to its MDP setup.

State and action space expansion We evaluate the quality and robustness of a

trained agent in simulation by generating trajectories from different distances

for two different simulators. The first simulator is a deterministic simulator de-

scribed in Equation (4.1) and used in the learning phase. The second simula-

tor is a stochastic simulator that adds up to 5 % uniform noise to the state pre-

dicted with the deterministic simulator. Its intent is to simulate the inaccuracies

and uncertainties of the physical hardware motion between two time steps. We

compare the performance of our learned, generated trajectories with model-based

dynamic programming and cubic trajectories. The cubic and dynamic program-

ming trajectories are generated using methods described in [99], but instead of

relying on the full quadrotor-load system, we use the simplified model given by

Equation (4.1). The cubic and dynamic programming trajectories are of the same

74

Chapter 4. PEARL for Deterministic Discrete Action MDPs

duration as corresponding learned trajectories. The agent is trained in 3D con-

figuration. For trajectory generation, we use a fine-grain, discretized 3D action

space A = (−3 : 0.05 : 3)3. This action space is ten times per dimension finer,

and contains over 106 different actions. The trajectories are generated at 50 Hz

with a maximum trajectory duration of 15 s. All trajectories were generated and

averaged over 100 trials. To assess how well a policy adapts to different starting

positions, we choose two different fixed positions, (-2,-2, 1) m and (-20,-20,15) m,

and two variable positions. The variable positions are randomly drawn from be-

tween 4 m and 5 m, and within 1 m from the goal state. The last position measures

how well the agent performs within the sampling box. The rest of the positions

are well outside of the sampling space used to learn the policy, and evaluate gen-

eralization to an extended state space.

Table 4.2 presents the averaged results with their standard deviations. We mea-

sure the end state and the time when the agent reaches the goal, the percentage of

trajectories that reach the goal state within 15 s, and the average maximum swing

experienced among all 100 trials. With the exception of the stochastic simula-

tor at the starting position (-20,-20,15) m, all experiments complete the trajectory

within 4 cm of the goal, and with a swing of less than 0.6°, as Proposition 4.2.1

predicts. The trajectories using the stochastic simulator from a distance of 32 m

(-20,-20,15) don’t reach within 5 cm because 11 % of the trajectories exceed the 15 s

time limit before the agent reaches its destination. However, we still see that the

swing is reduced and minimal at the destination approach, even in that case. The

results show that trajectories generated with stochastic simulator on average take

5 % longer to reach the goal state, and the standard deviations associated with the

results is larger. This is expected, given the random nature of the noise. However,

all of the stochastic trajectories approach the goal with about the same accuracy

as the deterministic trajectories. This finding matches our prediction from Section

4.2.2.

75

Chapter 4. PEARL for Deterministic Discrete Action MDPs

The maximum angle of the load during its entire trajectory for all 100 trials

depends on the inverse distance from the initial state to the goal state. For short

trajectories within the learning sampling box, the swing always remains within 4°,

while for very long trajectories it could go up to 46°. As seen in Figure 4.5, the peak

angle is reached at the beginning of the trajectory during the initial acceleration,

and as the trajectory proceeds, the swing reduces. This makes sense, given that

the agent is minimizing the combination of the swing and distance. When very far

away from the goal, the agent moves quickly toward the goal state and produces

increased swing. Once the agent is closer to the goal state, the swing component

becomes dominant in the value function, and the swing reduces.

Figure 4.6 shows the comparison of the trajectories with the same starting

position (-2, -2, 1) m and the same θ parameter, generated using the models

above (AVI trajectories) compared to cubic and dynamic programming trajecto-

ries. First, we see that the AVI trajectories share a similar velocity profile (Figure

4.6a) with two velocity peaks, both occurring in the first half of the flight. Ve-

locities in dynamic programming and cubic trajectories have a single maximum

in the second half of the trajectory. The resulting swing predictions (Figure 4.6b)

shows that in the last 0.3 s of the trajectory, the cubic trajectory exhibits a swing

of 10°, while the dynamic programming trajectory ends with a swing of less than

5°. The AVI generated trajectories produce load displacement within 2° in the

same time period. To assess energy of the load’s motion and compare differ-

ent trajectories in that way, Figure 4.3.2 shows one-sided power spectral density

(PSD) of the load displacement angles. PSD, a signal processing tool, calculates

amount of energy per frequency in a time series. Smaller energy per frequency

value and narrower frequency range correspond to less load displacement. The

area below the curve is total energy needed to produce the motion of the load.

We calculated the PSD over the entire load trajectory signal, using Matlab’s peri-

odogram method from the Signal Processing Toolbox. We see that the energy per

76

Chapter 4. PEARL for Deterministic Discrete Action MDPs

frequency of the cubic trajectory is above the other three trajectories. Inspecting

the average energy of AVI deterministic (E([φ ω]) = [0.0074 0.0073]), stochas-

tic AVI (E([φ ω]) = [0.0050 0.0050]), and dynamic programming trajectories

(E([φ ω]) = [0.0081 0.0081) load position signals, we find that AVI determinis-

tic trajectory requires the least energy over the entire trajectory.

Experimental results As another approach to addressing the learning practical-

ity, we first train the agent in fine-grain 2D configuration. The configuration uses

a 0.05 m s−2 action tile size, although only in the x and y directions. There are 121

actions in each direction, totaling to 1212 actions in the discretized space. Note that

this action space, although it has over 104 actions, is still two orders of magnitude

smaller that the fine-grain 3D action space used for the planning with over 106 ac-

tions. This configuration uses a fixed sampling methodology. The approximation

error stabilizes to a roughly constant level after the parameters stabilize [37]. Once

the agent is trained, we generate trajectories with the same planning parameters

as in Section 4.3.2, for two experiments: constant altitude flight and flight with

changing altitude. The planned trajectories are sent the physical quadrotor in the

testbed.

In the constant altitude flight, the quadrotor flew from (-1,-1,1) m to (1,1,1)

m. Figure 4.7 compares the vehicle and load trajectories for the learned trajectory

as flown and in simulation, with cubic and dynamic programming trajectories of

the same length and duration. The vehicle trajectories in Figure 4.7a suggest a

difference in the velocity profile, with the learned trajectory producing a slightly

steeper acceleration between 1 s and 2.5 s. The learned trajectory also contains

a 10 cm vertical move up toward the end of the flight. To compare the flown

trajectory with the simulated trajectory, we look at the load trajectories in Figure

4.7b. We notice the reduced swing, especially in the second half of the load’s φ

coordinate. The trajectory in simulation never exceeds 10°, and the actual flown

77

Chapter 4. PEARL for Deterministic Discrete Action MDPs

trajectory reaches its maximum at 12°. Both learned load trajectories follow the

same profile with three distinct peaks around 0.5 s, 2.2 s and 2.2 s into the flight,

followed by rapid swing control and reduction to under 5°. The actual flown

trajectory naturally contains more oscillations that the simulator didn’t model.

Despite that, the limits, boundaries, and profiles of the load trajectories are close

between the simulation and flown trajectories. This verifies the validity of the

simulation results: the load trajectory predictions in the simulator are reasonably

accurate. Comparing the flown learned trajectory with a cubic trajectory, we see

a different swing profile. The cubic load trajectory has higher oscillation, four

peaks within 3.5 s of flight, compared to three peaks for the learned trajectory.

The maximum peak of the cubic trajectory is 14° at the beginning of the flight. The

most notable difference happens after the destination is reached during the hover

(after 3.5 s in Figure 4.7b). In this part of the trajectory, the cubic trajectory shows

a load swing of 5°-12°, while the learned trajectory controls the swing to under

4°. Figure 4.7b shows that the load of the trajectory learned with RL stays within

the load trajectory generated using dynamic programming at all times: during

the flight (the first 3.4 s) and the residual oscillation after the flight. PSD in Figure

4.7c shows that, during experiments, the learned trajectory uses less energy per

frequency than cubic and dynamic programming trajectories.

In the second set of experiments, the same agent was used to generate chang-

ing altitude trajectories that demonstrate ability to expand action space between.

Note that the trajectories generated for this experiment used value approximator

parameters learned on a 2D action space, in the xy-plane, and produced a viable

trajectory that changes altitude because the trajectory generation phase used 3D

action space. This property was predicted by Proposition 4.2.1 since the extended

3D action space allows transitions to the higher value states. The experiment was

performed three times and the resulting quadrotor and load trajectories are de-

picted in Figure 4.8. The trajectories are consistent between three trials and follow

78

Chapter 4. PEARL for Deterministic Discrete Action MDPs

closely simulated trajectory (Figure 4.8a). The load displacement (Figure 4.8b) re-

mains under 10° and exhibits minimal residual oscillations. Figure 4.8c shows that

the energy profile between the trials remains consistent.

This section evaluated in detail AVI trajectories both in simulation and exper-

imentally. The evaluations show that the method is robust to motion noise, can

learn in small and plan in large spaces, and the simulation predictions are within

5° from the experimental observations.

79

Chapter 4. PEARL for Deterministic Discrete Action MDPs

Algorithm 4.6 Collision-free Cargo Delivery Trajectory Generation.
Input: start, goal,

Input: space geometry, robot model,

Input: dynamics generative model, max swing

Output: trajectory

1: if prm not created then

2: prm.create(space geometry, robot model)

3: end if

4: if policy not created then

5: policy← avi.learn(dynamics generative model)

6: end if

7: trajectory← []

8: path← prm.query(start, goal)

9: currentStart← path.pop()

10: while not path.empty() do

11: distance← currentStart− currentGoal

12: tSegmeent← avi.executeTrack(distance, policy)

13: if tSegmeent.maxSwing > max swing then

14: midpoint← currentStart+currentGoal
2

15: path.push(midpoint)

16: currentGoal ← midpoint

17: else

18: tSegment← translate(tSegment, currentGoal)

19: trajectory← trajectory + tSegment

20: currentStart← currentGoal

21: currentGoal ← path.pop()

22: end if

23: end while

24: return trajectory

80

Chapter 4. PEARL for Deterministic Discrete Action MDPs

0 1 2 3
−2

−1

0
Position

t (s)

x
 (

m
)

0 1 2 3
−2

−1

0

t (s)

y
 (

m
)

0 1 2 3
0

0.5

1

1.5

t (s)

z
 (

m
)

0 1 2 3
−1

0

1

Linear Velocity

t (s)

v
x
 (

m
/s

)

0 1 2 3
−1

0

1

t (s)

v
y
 (

m
/s

)

0 1 2 3
−1

0

1

t (s)

v
z
 (

m
/s

)

AVI deterministic
AVI stohastic
DP
Cubic

(a) Quadrotor position and velocity

0 1 2 3
−10

−5

0

5

10
Angular Position over Time

t (s)

θ
 (

°)

0 1 2 3
−10

−5

0

5

10

t (s)

ω
 (

°)

0 1 2 3
−40

−20

0

20

40
Angular Speed over Time

t (s)

θ
 (

°/
s
)

0 1 2 3
−40

−20

0

20

40

t (s)

ω
 (

°/
s
)

Linear Velocity

AVI deterministic
AVI stohastic
DP
Cubic

(b) Load position and velocity

0 2 4 6 8 10 12
−90

−80

−70

−60

−50

−40

−30

−20

−10

Frequency (Hz)

φ
 P

ow
er

/fr
eq

ue
nc

y
(d

B
/H

z)

AVI holonomic
AVI noisy
Dynamic programming
Cubic

0 2 4 6 8 10 12
−100

−80

−60

−40

−20

0

Frequency (Hz)

ω
P

ow
er

/fr
eq

ue
nc

y
(d

B
/H

z)

AVI holonomic
AVI noisy
Dynamic programming
Cubic

(c) Power spectral density

Figure 4.6: AVI trajectory comparison to DP and cubic trajectories in simulation. Trajec-
tories of the (a) vehicle, (b) its load , and (c) load displacement’s power spectral density
where the training was performed in 3D configuration, and the trajectories were gener-
ated using generic and stochastic simulators compared to the cubic and dynamic pro-
gramming trajectories of the same duration.

81

Chapter 4. PEARL for Deterministic Discrete Action MDPs

Ta
bl

e
4.

2:
Su

m
m

ar
y

of
A

V
I

tr
aj

ec
to

ry
re

su
lt

s
fo

r
di

ff
er

en
t

st
ar

ti
ng

po
si

ti
on

av
er

ag
ed

ov
er

10
0

tr
ia

ls
:

pe
rc

en
t

co
m

pl
et

ed

tr
aj

ec
to

ri
es

w
it

hi
n

15
s,

ti
m

e
to

re
ac

h
th

e
go

al
,fi

na
ld

is
ta

nc
e

to
go

al
,fi

na
ls

w
in

g,
an

d
m

ax
im

um
sw

in
g.

St
at

e
G

oa
lr

ea
ch

ed
t(

s)
‖
p
‖
(m

)
‖
η
‖
(◦
)

m
ax
‖
η
‖
(◦
)

Lo
ca

ti
on

Si
m

ul
at

or
(%

)
µ

σ
µ

σ
µ

σ
µ

σ

(-
2,

-2
,1

)
D

et
er

m
in

is
ti

c
10

0
6.

13
0.

82
0.

03
0.

01
0.

54
0.

28
12

.1
9

1.
16

St
oc

ha
st

ic
10

0
6.

39
0.

98
0.

04
0.

01
0.

55
0.

30
12

.6
6

1.
89

(-
20

,-2
0,

15
)

D
et

er
m

in
is

ti
c

99
10

.9
4

1.
15

0.
04

0.
01

0.
49

0.
33

46
.2

8
3.

90

St
oc

ha
st

ic
89

12
.0

4
1.

91
0.

08
0.

22
0.

47
0.

45
44

.3
9

7.
22

((
4,

5)
,(4

,5
),(

4,
5)

)
D

et
er

m
in

is
ti

c
10

0
7.

89
0.

87
0.

04
0.

01
0.

36
0.

31
26

.5
1

2.
84

St
oc

ha
st

ic
10

0
7.

96
1.

11
0.

04
0.

01
0.

44
0.

29
27

.7
0

3.
94

((
-1

,1
),(

-1
,1

),(
-1

,1
))

D
et

er
m

in
is

ti
c

10
0

4.
55

0.
89

0.
04

0.
01

0.
33

0.
30

3.
36

1.
39

St
oc

ha
st

ic
10

0
4.

55
1.

03
0.

04
0.

01
0.

38
0.

29
3.

46
1.

52

82

Chapter 4. PEARL for Deterministic Discrete Action MDPs

0 1 2 3 4 5

−1

0

1

Position

t (s)

x
 (

m
)

0 1 2 3 4 5

−1

0

1

t (s)

y
 (

m
)

0 1 2 3 4 5
0.5

1

1.5

t (s)

z
 (

m
)

Learned
Cubic
DP
Simulation

(a) Quadrotor position

0 1 2 3 4 5
−15

−10

−5

0

5

10

15
Angular position of the load

t(s)

θ
(°

)

0 1 2 3 4 5
−15

−10

−5

0

5

10

15

t (s)

ω
 (

°)

Learned
Cubic
DP
Simulation

(b) Load position

0 10 20 30 40 50
−120

−100

−80

−60

−40

−20

0

Frequency (Hz)

ω
P

ow
er

/fr
eq

ue
nc

y
(d

B
/H

z)

Learned
Cubic
DP
Simulation

0 10 20 30 40 50
−120

−100

−80

−60

−40

−20

0

Frequency (Hz)

φ
P

ow
er

/fr
eq

ue
nc

y
(d

B
/H

z)

Learned
Cubic
DP
Simulation

(c) Power spectral density

Figure 4.7: AVI experimental trajectories. Quadrotor (a), load (b) trajectories, and power
spectral density (c) as flown, created through learning compared to an experimental cubic,
experimental DP, and simulated AVI trajectories.

83

Chapter 4. PEARL for Deterministic Discrete Action MDPs

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−1

0

1
Quadrotor Position

t (s)

x
 (

m
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−1

0

1

t (s)

y
 (

m
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

t (s)

z
 (

m
)

Trail 1
Trail 2
Trail 3
Simulation

(a) Quadrotor position

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−10

−5

0

5

10

t (s)

ω
 (

°)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−10

−5

0

5

10

t (s)

φ
(°)

Trial 1
Trail 2
Trail 3
Simulation

(b) Load position

0 5 10 15 20 25
−100

−80

−60

−40

−20

0

Frequency (Hz)

ω
 P

ow
er

/fr
eq

ue
nc

y
(d

B
/H

z)

Trial 1
Trail 2
Trial 3
Simulation

0 5 10 15 20 25
−100

−80

−60

−40

−20

0

Frequency (Hz)

φ
P

ow
er

/fr
eq

ue
nc

y
(d

B
/H

z)

Trial 1
Trail 2
Trial 3
Simulation

(c) Power spectral density

Figure 4.8: AVI experimental results of altitude changing flight. Quadrotor (a), load (b)
trajectories, and power spectral density (c) as flown and in simulation, over three trials in
the altitude changing test trained in planar action space.

84

Chapter 4. PEARL for Deterministic Discrete Action MDPs

4.3.3 Swing-free Path-following

Path-following with reduced load displacement evaluation compares the load dis-

placement and path-following errors of the Algorithm 4.5 with two other meth-

ods: a minimal residual oscillations method described in Section 4.2.2, and path-

following with no load displacement reduction. The path-following only method

creates minimum time path-following trajectories, by choosing actions that tran-

sition the system as close as possible to the reference path in the direction of the

goal state with no consideration to the load swing. We use three reference trajec-

tories: a straight line, a two-line segment, and a helix. To generate a trajectory,

we use action space discretized in 0.1 m s−2 equidistant steps, and the same value

function parametrization, θ, used in the evaluations in Section 4.3.2 and learned

in Section 4.2.1.

Table 4.3 examines the role of the proximity parameter δ, and candidate actions

set size parameter k. Recall that the Algorithm 4.5 uses δ as a distance from the ref-

erence trajectory where all actions that transition the system within δ distance are

be considered for load swing reduction. If there were no such actions, then the al-

gorithm selects k actions that transition the system the closest to the reference tra-

jectory, regardless of the actual physical distance. We look at two proximity factors

and two action set size parameters. In all cases, the proposed method, Swing-free

Path-following, exhibits smaller path-following error than minimal residual oscil-

lations method, and smaller load displacement results than path-following only

method. Also for each reference path, there is a set of parameters that provides

good balance between path-following error and load displacement reduction.

General trend is that the load displacement decreases and tracking error in-

creases with the increase of k and δ. This is expected because the larger the two

parameters are, the larger is the action set from which to choose action for load

85

Chapter 4. PEARL for Deterministic Discrete Action MDPs

Table 4.3: Summary of path-following results for different trajectory geometries: ref-
erence path, k, proximity factor δ, trajectory duration, maximum swing, and maximum
deviation from the reference path (error). Best results for reference path are highlighted.

Ref. path k δ (m) t (s) ‖η‖ (◦) Error (m)

Line

100 0.01 11.02 21.94 0.02
500 0.01 11.02 20.30 0.03
100 0.05 6.64 23.21 0.08
500 0.05 7.06 23.22 0.11

Path-following only 100 0.01 11.02 73.54 0.01
Minimal residual oscillations - - 6.74 18.20 0.49

Multi-segment line

100 0.01 7.52 20.17 0.04
500 0.01 7.52 23.11 0.50
100 0.05 7.52 28.24 0.10
500 0.05 7.52 26.70 0.88

Path-following only 100 0.01 11.02 44.76 0.04
Minimal residual oscillations - - 6.74 16.15 2.19

Helix

100 0.01 5.72 29.86 0.39
500 0.01 5.72 26.11 0.44
100 0.05 5.76 32.13 0.17
500 0.05 5.72 22.20 0.11

Path-following only 100 0.01 11.02 46.01 0.02
Minimal residual oscillations - - 7.68 4.30 1.80

control, thus the system is more likely to select an action that transitions system

further from the reference trajectory, in order to either move closer to the goal and

control the load displacement. However, there are several exceptions to the gen-

eral trend. For helix trajectory, k = 500 and δ = 0.05 yield best results across all

other parameter values. This is because of the constant curvature of helix requires

to take into consideration states are a bit farther from the reference trajectory. The

second exception is the line trajectory with δ = 0.01 and k = 500; it has better load

displacement control than when k. The difference happens at the beginning of the

trajectory where value function, defined in Equation (4.2), favors arriving to the

goal over controlling the load displacement. With the broader action set to choose

from, the case when k is larger arrives to destination faster (6.94 s versus 11.02 s),

with a bit more load displacement and deviation from the reference trajectory.

86

Chapter 4. PEARL for Deterministic Discrete Action MDPs

The last exceptions occur during the multi-segment test; when k = 500 the sys-

tem experiences significant tracking error and slightly worse load displacement

compared to larger k. This is because of the sudden turn in direction. With m suf-

ficiently small (100) the system never veers far off the trajectory, thus the tracking

error remains small. Last, in all cases the tracking with load displacement dis-

plays better tracking error than load displacement only method, and better load

displacement results that tracking only method.

Figure 4.9 presents results of the path-following and load displacement errors

for the line and helix reference paths. We compare them to path-following only

and minimal residual oscillations AVI algorithms. Figure 4.9a displays the trajec-

tories. In all three cases, the minimal residual oscillations algorithm took a signif-

icantly different path from the other two. Its goal was to minimize the distance

to the goal state as soon as possible while reducing the swing, and it does not

follow the reference path. Figure 4.9b quantifies the accumulated path-following

error. Path-following error for Algorithm 4.5 remains close to the path-following

only trajectory. For both trajectories, the accumulated path-following error is one

to two orders of magnitude smaller than for the minimal residual oscillations

method. Examining the load displacement characteristics though power spectral

analysis of the vector η = [φ ω]T time series, we notice that frequency profile of

the trajectory generated with Algorithm 4.5 resembles closely that of the minimal

residual oscillations trajectory (Figure 4.9c). In contrast, power spectral density of

path-following only trajectories contain high frequencies absent in the trajectories

created with the other two methods. Thus, the proposed method for Swing-free

Path-following, with its path-following error characteristics similar to the path-

following only method, and its load displacement characteristics similar to the

minimal residual oscillations method, offers a solid compromise between the two

extremes.

87

Chapter 4. PEARL for Deterministic Discrete Action MDPs

−5

0

5

−101234

0

0.5

1

1.5

2

yx

z

Path−following only
Min. res. oscillations only
Swing−free path−following

−5

0

5

−101234

−2

0

2

4

6

yx

z

Path−following only

Min. res. oscillations only

Swing−free path−following

−2

0

2

−2−1.5−1−0.500.5

−5

0

5

yx

z

Path−following only
Min. res. oscillations only
Swing−free path−following

(a) Trajectory

0 1 2 3 4 5
10

−8

10
−6

10
−4

10
−2

10
0

Trajectory (m)

A
c
c
u

m
u

la
te

d
 S

q
u

a
re

d
 E

rr
o

r
(m

2
)

Path−following only
Min. res. oscillations only
Swing−free path−following

0 2 4 6 8
10

−10

10
−5

10
0

10
5

Trajectory (m)

A
c
c
u

m
u

la
te

d
 S

q
u

a
re

d
 E

rr
o

r
(m

2
)

Path−following only
Min. res. oscillations only
Swing−free path−following

0 1 2 3 4 5 6 7
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Trajectory (m)

A
c
c
u

m
u

la
te

d
 S

q
u

a
re

d
 E

rr
o

r
(m

2
)

Path−following only
Min. res. oscillations only
Swing−free path−following

(b) Line path-
following error

0 10 20 30 40 50
−100

−80

−60

−40

−20

0

20

Frequency (Hz)

ω
 P

o
w

e
r
/f
r
e

q
u

e
n

c
y
 (

d
B

/H
z
)

Path−following only
Min. res. oscillations only
Swing−free path−following

0 10 20 30 40 50
−100

−80

−60

−40

−20

0

20

Frequency (Hz)

φ
 P

o
w

e
r
/f
r
e

q
u

e
n

c
y
 (

d
B

/H
z
)

Path−following only
Min. res. oscillations only
Swing−free path−following

0 10 20 30 40 50
−120

−100

−80

−60

−40

−20

0

Frequency (Hz)

ω
 P

o
w

e
r
/f
r
e

q
u

e
n

c
y
 (

d
B

/H
z
)

Path−following only
Min. res. oscillations only
Swing−free path−following

0 10 20 30 40 50
−120

−100

−80

−60

−40

−20

0

Frequency (Hz)

φ
 P

o
w

e
r
/f
r
e

q
u

e
n

c
y
 (

d
B

/H
z
)

Path−following only
Min. res. oscillations only
Swing−free path−following

0 10 20 30 40 50
−150

−100

−50

0

50

Frequency (Hz)

ω
 P

o
w

e
r
/f
r
e

q
u

e
n

c
y
 (

d
B

/H
z
)

Path−following only
Min. res. oscillations only
Swing−free path−following

0 10 20 30 40 50
−120

−100

−80

−60

−40

−20

0

Frequency (Hz)

φ
 P

o
w

e
r/

fr
e

q
u

e
n

c
y
 (

d
B

/H
z
)

Path−following only
Min. res. oscillations only
Swing−free path−following

(c) Power spectral density

Figure 4.9: Swing-free Path-following for line, multi-segment, and helix reference tra-
jectories, compared to path-following only, and to load displacement control only (a).
Path-following error (b) is in logarithmic scale, and power spectral density (c).

4.3.4 Automated Aerial Cargo Delivery

In this section we evaluate the methods for an Cargo Delivery Task developed in

Section 4.2.5. Our goal is to verify that the method finds collision-free paths and

creates trajectories that closely follow the paths while not exceeding the given

maximal load displacement. The method’s performance in simulation is dis-

cussed in Section 4.3.4, and its experimental evaluation, in Section 4.3.4.

The simulations and experiments were performed using the same setup as

for minimal residual oscillations tasks in obstacle-free environments, described

in Section 4.3.2. PRMs work by first sampling configurations (nodes), connect-

ing those samples with local transitions (edges), thus creating a roadmap of valid

88

Chapter 4. PEARL for Deterministic Discrete Action MDPs

(a) Cafe

(b) Testbed Environment 1 (c) Testbed Environment 2

Figure 4.10: Benchmark environments studied in simulation (a) and experimentally (b-
c).

paths. In our PRMs set up, we use uniform random sampling of configurations for

node generation, identify the 10 nearest neighbors to each configuration using Eu-

clidean distance, and attempt connections between neighbors using a straight line

planner with a resolution of 5 cm for edge creation. The path planning was done

using the Parasol Motion Planning Library from Texas A&M University [102].

Trajectory planning in Cafe To explore conceptual applications of the quadrotors

to domestic and assistive robotics and to test the method in a more challenging en-

vironment, we choose a virtual coffee shop setting for our simulation testing. In

89

Chapter 4. PEARL for Deterministic Discrete Action MDPs

this setting, the Cargo Delivery Tasks (Problem 4.1.5) include: delivering coffee,

delivering checks to the counter, and fetching items from high shelves (see Figure

4.10a). The UAV needs to pass a doorway, change altitude, and navigate between

the tables, shelves, and counters. In all these tasks, both speed and load displace-

ment are important factors. We want the service to be in a timely manner, but it

is important that the swing of the coffee cup, which represents the load, is mini-

mized so that the drink is not spilled. The Cafe is 30 m long, 10 m wide, and 5 m

tall.

We generate the paths, and create trajectories for three different maximal load

displacements (1°, 10°, and 25°). Since the path planning is the most complex

for the largest bounding volume, and the same path can be reused for smaller

maximal load displacements, we create the path once using the bounding volume

with a 25° cone half aperture, and create path-following trajectories requiring the

same or lower maximal load displacement. The proximity factor is δ = 5 cm

and the candidate action sets size is k = 500. We evaluate the number of added

waypoints to meet the load displacement requirement, the trajectory duration, the

maximum swing, and the maximum path-following error.

Table 4.4 summarizes the results of the trajectory characteristics for the three

tasks in the coffee shop for different maximal load displacement. It demonstrates

that we can follow the path with an arbitrary small load displacement. The maxi-

mum swing along a trajectory always stays under the required load displacement

bound. The path-following error stays within 10 cm, regardless of the path and

decreases as the maximal load displacement bound decreases. Therefore, by de-

signing the bounding volume with 10 cm of clearance, the quadrotor-load system

will not collide with the environment. The delivery time and number of added

waypoints increase with the decrease of the required load displacement bound,

as expected. Although, it is common sense that slower trajectories produce less

90

Chapter 4. PEARL for Deterministic Discrete Action MDPs

Table 4.4: Summary of path and trajectory results for different tasks in the Cafe setting:
task name and maximum allowed load displacement (‖η‖), collision-free path length,
and number of waypoints, trajectory waypoints after bisection, trajectory durations (t),
maximum swing (‖η‖), and maximum deviation from the path (error).

Task Path Trajectory
Name ‖η‖ (°) Length (m) Pts. Pts. t (°) ‖η‖ (°) Error (m)

45 23.20 3 5 33.16 27.73 0.09
25 23.20 3 7 43.02 24.60 0.08

Coffee Delivery 10 23.20 3 17 67.18 9.34 0.06
5 23.20 3 23 85.58 4.47 0.05
1 23.20 3 97 258.62 0.86 0.03

45 15.21 1 3 25.98 18.23 0.06
25 15.21 1 3 25.98 18.23 0.06

Pay 10 15.21 1 7 28.64 8.94 0.05
5 15.21 1 15 53.72 3.73 0.03
1 15.21 1 63 172.28 0.92 0.01

45 32.57 1 7 52.54 24.11 0.07
Special 25 32.57 1 7 52.54 24.11 0.07
request 10 32.57 1 22 82.76 9.58 0.05

5 32.57 1 31 108.12 4.79 0.03
1 32.57 1 128 349.86 0.92 0.01

swing, the agent automatically chooses waypoints so not to needlessly slow down

the trajectories.

Figure 4.11 depicts the trajectory of the quadrotor and the load during the

Coffee Delivery Task for required maximal load displacements of 1°, 5°, 10°, 15°,

25°, and 45°. The trajectories are smooth, and the load’s residual oscillations are

minimal in all of them. The trajectory and path overlay is presented in Figures

4.12b-4.12e. The number of inserted waypoints increases for the smaller angles.

The path-following error over the trajectory length is displayed in Figure 4.12f.

The accumulated squared error profiles differ based on the load displacement an-

gle bound, with the 1° trajectory having accumulated error significantly smaller

than other two trajectories.

To analyze how the roadmap size influences the trajectory, we generated 100

91

Chapter 4. PEARL for Deterministic Discrete Action MDPs

random queries in the Cafe environment. We also created four roadmaps each

with 10, 50, 100, and 500 nodes and 56, 532, 1272, and 8060 edges, respectively.

Then we tested to see which of the random queries could be solved in each

roadmap. Figure 4.13 (a) shows that the probability of finding a path grows ex-

ponentially with the roadmap size. The roadmap with 10 nodes was sufficient

to solve only 66 % of queries, the roadmap with 50 nodes was sufficient for 96 %

queries, while the roadmap with 100 nodes, solved 99 % of queries. Lastly, the

roadmap with 500 nodes was able to produce a path for all the queries.

Figure 4.13 depicts the trajectory characteristics for different roadmap sizes.

As the roadmap grows, the number of waypoints in a path grows as well (b).

The variance in the number of waypoints increases with the roadmap size as ex-

pected. Since on average the path segments are shorter with the larger roadmap

size, the maximal load displacement and its standard deviation decreases (c), and

the trajectories take a longer time (d). This gives us experimental confirmation

that we can use roadmap size to control the amount of swing in trajectories and

to fine-tune the balance between the load-displacement and the time of delivery.

For example, consider the case of the example query shown with dashed lines in

Figure 4.13 (b-d). If we needed the swing to be less than 25◦, a 100-node roadmap

would have been sufficient. If however, we required the load displacement to be

15°, we would need a roadmap with 500 nodes.

We can see that with the increased (Figure 4.13) roadmap size, the maximum

load displacement decreases while the duration of the trajectory increases, al-

though not as fast. This is interesting, because the time it takes to generate the

trajectory does not depend on its length. It depends linearly on its duration. So,

trajectories generated with larger roadmaps will have more waypoints (and be

smoother, more direct), but will take slightly longer to compute than less direct,

longer trajectories with fewer waypoints.

92

Chapter 4. PEARL for Deterministic Discrete Action MDPs

Experimental evaluation The goal of the experiment is to show the discrepancy

between the simulation results and the observed experimental trajectories, and

to demonstrate the safety and feasibility of the method by using a quadrotor to

deliver a cup of water. To check the discrepancy between the simulation predic-

tions of the maximum load displacement in simulation and experimentally, we

run queries in two testbed environments to generate trajectories in simulation.

The testbed environments are all 2.5 m by 3 m, with the ceiling height varying

from 1.5 m to 2.5 m. The obstacles are uniform triangular prisms with 60 cm sides.

Shorter obstacles are 60 cm tall, while the tall ones are 1.2 m tall. They differ in

number of obstacles, their sizes, and locations. The first testbed environment con-

tains three obstacles positioned diagonally across the room and the same landing

platform (see Figure 4.10b). Two obstacles are 0.6 m tall, while the third one is

1.2 m tall. The second testbed environment is filled with five 1.2 m tall obstacles.

They are in the corners and in the middle of a 2.5 m by 2 m meters rectangle cen-

tered in the room (Figure 4.10c). This is a challenging, cluttered space that allows

us to experimentally test an urban environment setting.

Table 4.5 summarizes the difference in observed versus predicted maximum

load displacements for these tasks over three trials. The observed maximum dis-

placement is between 4° and 5° higher experimentally than in simulation. This

is expected and due to unmodeled system dynamics, noise, wind influence and

other factors, and it matches load displacement observed during hover.

Figure 4.14 shows three trials of the experimentally flown trajectory in Envi-

ronment 2 (Figure 4.10c), with the predicted simulation. The vehicle trajectory

(Figure 4.14a) matches very closely between trials and the simulation. The load’s

trajectories (Figure 4.14b) show higher uncertainty over the position of the load

at any given time. However, the load displacement is bounded and stays within

10°. The accumulated path-following error (Figure 4.15) is slightly larger in ex-

93

Chapter 4. PEARL for Deterministic Discrete Action MDPs

Table 4.5: Summary of experimental results in different obstacle configurations. Path
and simulated and experimental trajectory characteristics for different obstacle configura-
tions:task name and maximum allowed load displacement (η); obstacle-free path length
(l), and its number of waypoints (#); simulated trajectory: waypoints after bisection (#),
planned trajectory durations (t), maximum swing (η), and maximum deviation from the
path (error); experimental trajectory: maximum swing (η) and maximum deviation from
the path (error). The experimental results are average over three trials.

Task Path Simulation Experiment
Test. ‖η‖ (◦) l (m) # # t (s) ‖η‖ (◦) Error (m) ‖η‖ (◦) Error (m)
Env. 1 10 3.86 3 3 12.64 7.25 0.05 11.32 0.16

5 3.86 3 4 15.68 3.63 0.03 7.99 0.11
1 3.86 3 16 44.98 0.98 0.04 5.05 0.07

Env. 2 10 3.23 2 2 10.18 5.51 0.05 9.94 0.16
5 3.23 2 4 15.80 2.66 0.05 6.72 0.11
1 3.23 2 16 42.24 0.69 0.02 4.98 0.07

periments than in simulation, but follows the similar profile. The power spectral

density (Figure 4.14c) is consistent between the three trials, and the simulated tra-

jectory lacks higher frequencies, which is expected.

The demonstration of the practical feasibility and safety of this method was

demonstrated by using the system to deliver a cup of water to a static human sub-

ject. In this demonstration, the quadrotor’s load is a 250 mL paper cup filled with

100 mL of water. In Environment 1 (see Figure 4.10b), a quadrotor needs to fly

diagonally through the room, avoiding a set of three obstacles. The path and tra-

jectory used for this demonstration are the same referenced in Table 4.5. A human

subject was seated at the table. As the quadrotor completed the flight, it set the

cup of water in front of the human, who detached it from the quadrotor 5. As the

experiment demonstrated, the small amount of the liquid does not negatively im-

pact the trajectory. The dynamics depends on the load’s center of the mass. Given

that the liquid is confined to a small container, its center of the mass does not move

significantly. Moreover, since we are ensuring swing-free trajectory tracking we

5A video of the human-quadrotor interaction and other experiments can be found at
https://www.cs.unm.edu/amprg/Research/Quadrotor/

94

https://www.cs.unm.edu/amprg/Research/Quadrotor/

Chapter 4. PEARL for Deterministic Discrete Action MDPs

are minimizing the movement of the fluid inside of the container as well. For a

larger container, it would be beneficial to thoroughly analyze the effect of liquid

transport in comparison with solid objects.

4.4 Conclusion

In this chapter we proposed an autonomous Aerial Cargo Delivery agent that

works in environments with static obstacles to plan and create trajectories with

bounded load displacements. At the heart of the method is the RL policy for

minimal residual oscillations trajectories. Planning Minimal Residual Oscillations

Trajectories consists of a large action space (over 106 actions) that deems learning

impractical. For that reason, we find conditions that allow us to learn the mini-

mal residual oscillations policy in an action subspace several orders of magnitude

smaller. In addition, the learning generalizes to an extended state space. Then, we

show how a RL policy learned through a single training can be adapted to per-

form different tasks leveraging different discretized action spaces. We modified

the policy by restricting the domain’s action space to plan a path-following tra-

jectory with a bounded load displacement. Finally, we integrated the Swing-free

Path-following and sampling-based path planning to solve the Cargo Delivery

Task. We evaluated each of the modules separately, and showed that learning con-

verges to a single policy, and that performs minimal residual oscillation delivery

task, that the policy is viable with expending state and action spaces. The sim-

ulations quality is assessed through the comparison with experimental load dis-

placement on a physical robot. Then we evaluated the Swing-free Path-following

on three reference paths for varying values of the path-following parameters. The

results demonstrated that the proposed method attains both good path-following

and good load displacement characteristics. Lastly, results of the integration with

95

Chapter 4. PEARL for Deterministic Discrete Action MDPs

sampling-based motion planning show that the method creates collision-free tra-

jectories with bounded load displacement for arbitrarily small bounds. We ex-

perimentally demonstrated the feasibility and safety of the method by having a

quadrotor deliver a cup of water to a human subject. This chapter lays a foun-

dation for Aerial Cargo Delivery in environments with static obstacles. In further

work, trajectory smoothing can be applied to the generated trajectories to acceler-

ate them by not stopping in the waypoints while at the same time ensuring that

the trajectories remain collision-free. Moving obstacles can be handled through

an on-line trajectory tracking that adapts to dynamical changes in environment.

Beyond Aerial Cargo Delivery, this chapter address three important question

relevant to AI. First, it applies reinforcement learning to a problem with very large

action space. To address the curse of dimensionality, it proposes learning in rel-

evant subspaces several orders of magnitude smaller, and planning in the full

action space. The chapter contributes methods for finding the suitable subspaces.

Second, it shows that using the feature vectors defined on a larger domain, the

learned policy generalizes well outside of the training domain. Lastly, the chap-

ter proposes learning PBTs on systems with non-linear dynamics by designing

feature vectors that are linear maps over the constraints.

96

Chapter 4. PEARL for Deterministic Discrete Action MDPs

0 100 200
−10

0

10

t (s)

x
 (

m
)

0 100 200
−10

0

10

t (s)

y
 (

m
)

0 100 200
0

2

4

t (s)

z
 (

m
)

0 100 200
−2

0

2

t (s)

v
x
 (

m
/s

)
0 100 200

−2

0

2

t (s)
v

y
 (

m
/s

)

0 100 200
−2

0

2

t (s)

v
z
 (

m
/s

)

0 100 200
−20

0

20

t (s)

ω
 (

°
)

0 100 200
−20

0

20

t (s)

φ
 (

°
)

0 100 200
−100

0

100

t (s)

v
ω
°
/s

0 100 200
−100

0

100

t (s)

v
φ
 (

°
/s

)

(a) σ = 1°

0 20 40 60
−10

0

10

t (s)

x
 (

m
)

0 20 40 60
−10

0

10

t (s)

y
 (

m
)

0 20 40 60
0

2

4

t (s)

z
 (

m
)

0 20 40 60
−2

0

2

t (s)

v
x
 (

m
/s

)

0 20 40 60
−2

0

2

t (s)

v
y
 (

m
/s

)

0 20 40 60
−2

0

2

t (s)

v
z
 (

m
/s

)

0 20 40 60
−20

0

20

t (s)

ω
 (

°
)

0 20 40 60
−20

0

20

t (s)

φ
 (

°
)

0 20 40 60
−100

0

100

t (s)

v
ω
°
/s

0 20 40 60
−100

0

100

t (s)

v
φ
 (

°
/s

)

(b) σ = 10°

0 20 40
−10

0

10

t (s)

x
 (

m
)

0 20 40
−10

0

10

t (s)

y
 (

m
)

0 20 40
0

2

4

t (s)

z
 (

m
)

0 20 40
−2

0

2

t (s)

v
x
 (

m
/s

)

0 20 40
−2

0

2

t (s)

v
y
 (

m
/s

)

0 20 40
−2

0

2

t (s)

v
z
 (

m
/s

)

0 20 40
−20

0

20

s

ω
 (

°)

0 20 40
−20

0

20

s

φ
(°

)

0 20 40
−100

0

100

s

v
ω
 (

°/
s
)

0 20 40
−50

0

50

v
φ
 (

°/
s
)

(c) σ = 25°

Figure 4.11: Quadrotor and load trajectories in Coffee Delivery Task in the Cafe for max-
imal allowed load displacement of 1°, 10°, and 25°. Zero altitude is the lowest point that
a cargo equipped quadrotor can fly without the load touching the ground.

97

Chapter 4. PEARL for Deterministic Discrete Action MDPs

−5
0

5
10

−5

0

5

10
0

1

2

3

xy

z

Trajectory
Reference

(a) 45°

−5
0

5
10

−5

0

5

10
0

1

2

3

xy

z

Trajectory
Reference

(b) 25°

−5
0

5
10

−5

0

5

10
0

1

2

3

xy

z

Trajectory
Reference

(c) 10°

−4
−2

0
2

4
6

8
10

−6

−4

−2

0

2

4

6
0

0.5

1

1.5

2

2.5

xy

z

Trajectory
Reference

(d) 5°

−5
0

5
10

−5
0

5
10

0

1

2

3

xy

z

Trajectory
Reference

(e) 1°

0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Trajectory (m)

A
cc

um
ul

at
ed

 S
qu

ar
ed

 E
rr

or
 (

m
2)

25°

10°

1°

(f) Path-following error

Figure 4.12: Path bisecting for Coffee Delivery Task based on the maximum allowed
load displacement (a-e). Accumulated squared path-following error along the trajectory
for different maximum allowed load displacements (f).

98

Chapter 4. PEARL for Deterministic Discrete Action MDPs

0 100 200 300 400 500 600
0

20

40

60

80

100

Mapsize (# nodes)

%
 s

ol
ve

d
qu

er
ie

s

(a) Percentage of solved queries

0 100 200 300 400 500 600
0

2

4

6

8

Roadmap size

w

ay
−

po
in

ts

Average over 100 trials
Example query

(b) number of waypoints

0 100 200 300 400 500 600
5

10

15

20

25

30

35

Roadmap size

S
w

in
g

(°)

Average over 100 trials
Example query

(c) Maximum load displacement

0 100 200 300 400 500 600
0

10

20

30

40

50

Roadmap size

D
ur

at
io

n
(s

)

Average over 100 trials
Example query

(d) Trajectory duration

Figure 4.13: Roadmap size analysis results. Probability of solving a query (a), number of
waypoints (b) maximum load displacement (c), and trajectory duration (d) as a function
of roadmap size.

99

Chapter 4. PEARL for Deterministic Discrete Action MDPs

0 2 4 6 8 10
−2

0

2

t (s)

x
 (

m
)

0 2 4 6 8 10
−2

0

2

t (s)

y
 (

m
)

0 2 4 6 8 10
0.5

1

1.5

t (s)

z
 (

m
)

Trial 1
Trial 2
Trail 3
Simulation

(a) Quadrotor position

0 2 4 6 8 10
−10

−5
0
5

10

t(s)

ω
 (

°
)

0 2 4 6 8 10
−10

−5
0
5

10

t (s)

φ
 (

°
)

Trial 1
Trial 2
Trial 3
Simulation

(b) Load position

0 10 20 30 40 50
−120

−100

−80

−60

−40

−20

0

Frequency (Hz)

ω
P

ow
er

/fr
eq

ue
nc

y
(d

B
/H

z)

Trail 1
Trial 2
Trail 3
Simulation

0 10 20 30 40 50
−140

−120

−100

−80

−60

−40

−20

Frequency (Hz)

φ
P

o
w

e
r/

fr
e

q
u

e
n

cy
 (

d
B

/H
z)

Trail 1
Trail 2
Trail 3
Simulation

(c) Power spectral density

Figure 4.14: Experimental quadrotor (a) and load (b) trajectories, and power spectral
density (c) in the second testbed configuration.

0 2 4 6 8 10
0

0.05

0.1

t (s)

A
c
c
u
m

u
la

te
d
 e

rr
o
r

(m
2
)

Trial 1
Trial 2
Trial 3
Simulation

Figure 4.15: Accumulated path-following error in the second testbed configuration.

100

Chapter 5

PEARL for Deterministic Continuous

Action MDPs

This chapter extends PEARL with distance-reducing preferences to continuous

actions spaces. The chapter is based on [41] and sections of [42]. The specific

contributions are:

1. Admissible family of policy approximations in Section 5.1.2,

2. Conditions for task goal’s stability for control-affine systems (Section 5.1.2),

3. Continuous Action Fitted Value Iteration (CAFVI) in Section 5.1.3

4. Solution to a multi-agent Rendezvous Task (Section 5.2.3), and

5. Solution to Flying Inverted Pendulum (Section 5.2.4).

We extend AVI, a discrete action learning agent in PEARL to continuous ac-

tion space to develop CAFVI. The novelty of CAFVI is a joint work with both

value functions, state-value and action-value, to learn how to control the system.

101

Chapter 5. PEARL for Deterministic Continuous Action MDPs

CAFVI learns, globally to the state space, state-value function, which is negative

of the Lyapunov. On the other hand, in the estimation step, it learns an state-

value function locally around a state to estimate its maximum. CAFVI is critic-

only and because the system dynamics is unknown, the value-function gradient

is unavailable [44]. Thus, we develop a gradient-free method that divides-and-

conquers the problem by finding the optimal input in each direction, and then

combines them. Although problem decomposition via individual dimensions is

a common technique for dimensionality reduction [124], this chapter shows that

single-component policies lead to a stable system, offers three examples of such

policies to turn the equilibrium into an asymptotically stable point, and charac-

terizes systems for which the technique is applicable. The policies we develop are

not only computationally efficient, scaling linearly with the action space dimen-

sionality, but they produce consistent near-optimal actions; their outcome does not

depend on the action samples used for calculation. The reinforcement learning

agent is evaluated on a Minimal Residual Oscillations Task [41], a heterogeneous

robot Rendezvous Task [41], and Flying Inverted Pendulum [42].

This chapter gives methods to implement an AVI with linear map approxi-

mation for a PBT, on control-affine systems [69] with unknown dynamics and in

presence of a bounded drift. These tasks require the system to reach a goal state,

while minimizing opposing preferences along the trajectory. While this approx-

imation will not provide a solution for all learning tests, the method is fast and

easy to implement, thus rendering an inexpensive tool to attempt before more

heavy-handed approaches are attempted.

This chapter addresses the same optimal control problem as the related work

described in Section 2.4.1. However, we use linearly parametrized state-value

functions with linear regression rather than neural networks for parameter learn-

ing. Our method also learns the value function, which corresponds to the gener-

102

Chapter 5. PEARL for Deterministic Continuous Action MDPs

alized HBJ equation solution, through iterative minimization of the least squares

error. However, we learn from samples and linear regression rather than neural

networks. We are concerned with AVI methods in the RL setting - without know-

ing the system dynamics.

Discrete actions AVI has solved the Minimal Residual Oscillations Task for a

quadrotor with a suspended load and has developed the stability conditions with

a discrete action MDP (Chapter 4). Empirical validation in Chapter 4 shows that

the conditions hold. This chapter characterizes basis vector forms for control-

affine systems, defines admissible policies resulting in an asymptotically stable

equilibrium, and analytically shows the system stability. The empirical compari-

son with discrete action AVI in Section 5.2.2 shows that CAFVI is both faster and

performs the task with higher precision. This is because the decision-making qual-

ity presented here is not limited to the finite action space and is independent of the

available samples. We also show wider applicability of the methods developed

here by applying them to a multi-agent Rendezvous Task and a Flying Inverted

Pendulum.

5.1 Methods

This section consists of four parts. First, Section 5.1.1 specifies the problem for-

mulation for a task on a control-affine system suitable for approximate value iter-

ation with linear basis vectors. Based on the task, the system and the preferences,

we develop basis functions and write state-value function in control Lyapunov

quadratic function form. Second, Section 5.1.2 develops sample-efficient policies

that take the system to the goal and can be used for both planning and learning.

Third, Section 5.1.3 places the policies into AVI setting to present a learning al-

gorithm for the goal-oriented tasks. Together they give practical implementation

103

Chapter 5. PEARL for Deterministic Continuous Action MDPs

tools for solving PBTs through reinforcement learning on control-affine systems

with unknown dynamics. We discuss these tools in Section 5.1.4.

5.1.1 Problem Formulation

Consider a discrete time, control-affine system with no disturbances as described

in Equation (2.8) in Section 2.4. We assume that states are s(k) ∈ S ⊆ Rds , ac-

tions are defined on a closed interval around origin, a(k) ∈ A ⊆ Rda , da ≤ ds,

0 ∈ A, and g : S → Rds × Rν, g(s(k))T = [g1(s(k)) ... gda
(s(k))] is regular

for s(k) ∈ S \ {0}, nonlinear, and Lipschitz continuous. Drift f : S → Rda , is

nonlinear, and Lipschitz. Assume that the system is controllable [59]. We are

interested in autonomously finding actions a(k) that take the system to its ori-

gin in a timely manner while reducing ‖Cs‖ along the trajectory, where CT =

[c1, ..., cno] ∈ Rno ×Rds , no ≤ ds is nonsigular. A discrete time, deterministic MDP

with continuous state and action spaces

M : (X, U,D, ρ) (5.1)

describes the problem as outlined in Section 3.1.1.

We learn state-value function, V, because its approximation can be constructed

to define a control Lyapunov candidate function, and in tandem with the right

policy it can help assess system stability. For discrete action MDPs, greedy policy,

Equation (4.3), is a brute force search over the available samples. When action

space is continuous, Equation (4.3) becomes an optimization problem over un-

known function D. We consider analytical properties of Q(s, a) for a fixed state

s and knowing V, but having only knowledge of the structure of the transition

function D. The key insight we exploit is that existence of a maximum of the

action-value function Q(s, a), as a function of input a, depends only on the learned

parametrization of the state-value function V.

104

Chapter 5. PEARL for Deterministic Continuous Action MDPs

AVI algorithms with linear map approximators require basis vectors. Given

the state preference minimization, we choose quadratic basis functions

F i(s) = ‖cT
i s‖2, i = 1, ..., no. (5.2)

so that state-value function approximation, V, is a control Lyapunov candidate

function. Consequently, V is,

V(s) =
dg

∑
i=1

θiFi(s) = (Cs)TΘ(Cs) = sTΛs (5.3)

for a diagonal matrix Θ = diag(θ1, θ2, ..., θno), and a symmetric matrix Λ. Let’s

assume that Λ has full rank. AVI learns the parametrization Θ using a linear

regression. Let Γ = −Λ. Note, that if Θ is negative definite, Λ is as well, while Γ is

positive definite, and vice versa. Let also assume that when Γ > 0 the system drift

is bounded with s with respect to Γ-norm, f (s)TΓf (s) ≤ sTΓs. This characterizes

system drift, conductive to the task. We empirically demonstrate its sufficiency in

the robotic systems we consider.

To summarize the system assumptions used in the reminder of the chapter:

1. The system is controllable and the equilibrium is reachable. In particular, we

use,

∃i, 1 ≤ i ≤ du, such that f (s)Γgi(s) 6= 0, (5.4)

and that g(s) is regular outside of the origin,

g(s)TΓg(s) > 0, s ∈ S \ {0} (5.5)

2. action is defined on a closed interval around origin,

0 ∈ A (5.6)

105

Chapter 5. PEARL for Deterministic Continuous Action MDPs

Table 5.1: Summary of chapter-specific key symbols and notation.
Symbol Description
V : X → R, V(s) = sTΛs state-value function
Cs preferences to minimize
Λ = CTΘC Combination of task preferences and

value function parametrization
Γ = −Λ Task-learning matrix
∆Q(s, â) Policy π̂Q in state s
en nth axis unit vector
a ∈ U action vector
a ∈ R Univariate action variable
an ∈ R Set of vectors in direction of nth axis
ân ∈ R Estimate in direction of the nth axis
ân = ∑n

i=1 ânei Estimate over first n axes
â Estimate of Q’s maximum with a policy
Q(p)

s,n (a) = Q(s,p+ uen) Univariate function in the direction
of axis en, passing through point p

3. The drift is bounded,

f (s)TΓf (s) ≤ sTΓs, when Γ > 0 (5.7)

Table 5.1 presents a summary of the key symbols.

5.1.2 Policy Approximation

This section looks into an efficient and a consistent policy approximation for Equa-

tion (4.3) that leads the system, Equation (2.8), to a goal state in the origin. Here,

we learn the action-value function Q on the axes, and assume a known estimate

of the state-value function approximation V. For the policy to lead the system to

the origin from an arbitrary state, the origin must be asymptotically stable. Neg-

ative of the state-value function V can be a control Lyapunov function, and the V

106

Chapter 5. PEARL for Deterministic Continuous Action MDPs

Figure 5.1: Example of two dimensional action and a quadratic value function. a∗ is the
optimal action, a is the one selected.

function needs to be increasing in time. That only holds true when the policy ap-

proximation makes an improvement, i.e., the policy needs to transition the system

to a state of a higher value (V(sn+1) > V(sn)). To ensure the temporal increase of

V, the idea is to formulate conditions on the system dynamics and value function

V, for which Q, considered as a function only of the action, is concave and has

a maximum. In this work, we limit the conditions to a quadratic form Q. When

we establish maximum’s existence, we approximate it by finding a maximum on

the axes and combining them together. Figure 5.1 illustrates this idea. To reduce

the dimensionality of the optimization problem, we propose a divide and conquer

approach. Instead of solving one multivariate optimization, we solve da univari-

ate optimizations on the axes to find a highest valued point on each axis, ui. The

composition of the axes’ action selections is the selection vector u = [u1 .. uda
]T.

This section develops the policy approximation following these steps:

1. show that Q is a quadratic form and has a maximum (Proposition 5.1.1)

2. define admissible policies that ensure the equilibrium’s asymptotic stability

107

Chapter 5. PEARL for Deterministic Continuous Action MDPs

(Theorem 5.1.2), and

3. find a sampling-based method for calculating consistent, admissible policies

in O(du) time with no knowledge of the dynamics (Theorem 5.1.4).

Since the greedy policy, Equation (4.3), depends on action-value Q, Proposi-

tion 5.1.1 gives the connection between value function, Equation (4.2), and corre-

sponding action-value function Q.

Proposition 5.1.1. Action-value function Q(s, a), Equation (2.6), is a quadratic function

of action a for all states s ∈ X for a MDP, Equation (5.1), with state-value function V

Equation (4.2). When Θ is negative definite, the action-value function Q is concave and

has a maximum.

Proof. Evaluating Q(s, a) for an arbitrary state s, we get

Q(s, a) = V(D(s, a)) = V(f (s) + g(s)a), from Equation (2.8)

= (f (s) + g(s)a))TΛ(f (s) + g(s)a)

Thus, Q is a quadratic function of action a at any state s. To show that Q has a

maximum, we inspect Q’s Hessian,

HQ(s, a) =


∂2Q(s,a)
∂u1∂u1

... ∂2Q(s,a)
∂u1∂udu

...
∂2Q(s,a)
∂udu ∂u1

... ∂2Q(s,a)
∂udu ∂udu

 = 2g(s)TΛg(s).

The Hessian is negative definite because g(s) is regular for all states s and Θ <

0, which means that Λ < 0 as well. Therefore, the function is concave, with a

maximum.

108

Chapter 5. PEARL for Deterministic Continuous Action MDPs

The state-value parametrization Θ is fixed for the entire state space. Thus,

Proposition 5.1.1 guarantees that when the parametrization Θ is negative definite,

the action-value function Q has a single maximum. Next, we show that the right

policy can ensure the progression to the goal, but we first define the acceptable

policies.

Definition 5.1.1. Policy approximation â = π̂Q(s) is admissible, if it transitions the

system to a state with a higher value when one exists, i.e., when the following holds for

policy’s gain at state s, ∆Q(s, â) = Q(s, â)−V(s):

1. ∆Q(s, â) > 0, for s ∈ X \ {0}, and

2. ∆Q(s, â) = 0, for s = 0.

Theorem 5.1.2 shows that an admissible policy is sufficient for the system to

reach the goal.

Theorem 5.1.2. Let â = π̂Q(s) be an admissible policy approximation. When Λ <

0, and the drift is bounded with Equation (5.7), the system, Equation (2.8), with value

function, Equation (4.2), progresses to an asymptotically stable equilibrium under policy

π̂Q.

Proof. Consider W(s) = −V(s) = sTΓs. W is a candidate for control Lyapunov

function because Γ > 0.

To show the asymptotic stability, a W needs to be monotonically decreasing

in time W(sn+1) ≤ W(sn) with equality holding only when the system is in the

equilibrium, sn = 0. Directly from the definition of the admissible policy, for the

state sn 6= 0,

W(sn+1)−W(sn) = −Q(sn), π̂Q(sn) + V(sn)

= V(sn)−Q(sn, â) < 0.

109

Chapter 5. PEARL for Deterministic Continuous Action MDPs

When

xn = 0, =⇒ xn+1 = f (0) = 0, because of Equation (5.7)

=⇒ W(sn+1) = 0.

Theorem 5.1.2 gives the problem formulation conditions for the system to tran-

sition to the goal state. Now, we move to finding sample-based admissible policies

by finding maximums of Q in the direction parallel to an axis and passing through

a point. Because Q has quadratic form, its restriction to a line is a quadratic func-

tion of one variable. We use Lagrange interpolation to find the coefficients of Q on

a line, and find the maximum in the closed form. We first introduce the notation

for Q’s restriction in an axial direction, and its samples along the direction.

Definition 5.1.2. Axial restriction of Q passing through point p, is a univariate function

Q(p)
s,i (a) = Q(s,p+ aei).

If qi = [Qps,1(ai1) Qps,2(ai2) Qps,3(ai3)]
T, are three samples of Q(p)

s,i (a) obtained at

points [ai1 ai2 ai3], then Q(s,p+ aei), is maximized at

âi = min(max(â∗i, al
i), au

i), where (5.8)

â∗i =
qT
i · ([a2

i2 a2
i3 a2

i1]− [a2
i3 a2

i1 a2
i2])

T

2qT
i · ([ai2 ai3 ai1]− [ai3 ai1 ai2])T ,

on the interval, al
i ≤ a ≤ au

i . Equation (5.8) comes directly from Lagrange in-

terpolation of a univariate second order polynomial to find the coefficients of the

quadratic function, and then equating the derivative to zero to find its maximum.

In the stochastic case, instead of Lagrange interpolation, linear regression yields

the coefficients.

110

Chapter 5. PEARL for Deterministic Continuous Action MDPs

A motivation for this approach is that maximum finding in a single direction is

computationally efficient and consistent. A single-component policy is calculated

in constant time. In addition, the action selection on an axis calculated with Equa-

tion (5.8) is consistent, i.e. it does not depend on the sample points aij available

to calculate it. This is direct consequence of quadratic function being uniquely

determined with arbitrary three points. It means that a policy based on Equa-

tion (5.8) produces the same result regardless of the action samples used, which is

important in practice where samples are often hard to obtain.

We now give a lemma that shows a single-component policy characteristics.

Later we integrate them together into admissible policies. The lemma shows that

the single component policy is stable on an interval around zero.

Lemma 5.1.3. A single action policy approximation, Equation (5.8), for an action com-

ponent i, 1 ≤ i ≤ da has the following characteristics:

1. There is an action around zero that does not decrease system’s state value upon

transition, i.e., ∃a0 ∈ [ai
l, ai

u] such that Q(p)
s,i (a) ≥ Q(s,p).

2. Q(0)
s,i (âi)−V(s) ≥ 0, when s 6= 0

3. Q(0, âiei)−V(0) = 0

The proof for Lemma 5.1.3 is in Appendix A.

We give three consistent and admissible policies as examples. First, the

Manhattan Policy finds a point that maximizes Q’s restriction on the first axis,

then iteratively finds maximums in the direction parallel to the subsequent axes,

passing through points that maximize the previous axis. The second policy ap-

proximation, Convex Sum Policy, is a convex combination of the maximums

found independently on each axis. Unlike the Manhattan Policy that works se-

rially, the Convex Sum Policy parallelizes well. Third, Axial Sum Policy is the

111

Chapter 5. PEARL for Deterministic Continuous Action MDPs

maximum of the Convex Sum Policy approximation and nonconvex axial combi-

nations. This policy is also parallelizable. All three policies scale linearly with the

dimensions of the action O(du). Next, we show that they are admissible.

Theorem 5.1.4. The MDP Equation (5.1), with value function, Equation (4.2), bounded

drift, Equation (5.7), and a negative definite θ, starting at an arbitrary state s ∈ S, and

on a set A, Equation (5.6), progresses to an equilibrium in the origin under any of the

following policies:

1. Manhattan Policy:

πQ
m :



â1 = argmax
a1

l≤u≤a1
u

Q(0)
s,1 (a)

ân = argmax
an

l ≤a≤an
u

Q(ân−1)
s,n (a), n ∈ [2, .., da], ân−1 =

n−1
∑

i=1
âiei.

(5.9)

2. Convex Sum Policy:

πQ
c : â =

du

∑
i=1

λiei argmax
ai

l≤a≤ai
u

Q(0)
s,i (a),

da

∑
i=1

λi = 1 (5.10)

3. Axial Sum Policy:

πQ
s : â =


πQ
c (s), Q(s,πQ

c (s)) ≥ Q(s,πQ
n (s))

πQ
n (s), otherwise

(5.11)

where

πQ
n (s) =

da

∑
i=1
ei argmax

ai
l≤a≤ai

u

Q(0)
s,i (a)

The proof for the Theorem 5.1.4 is in Appendix B.

112

Chapter 5. PEARL for Deterministic Continuous Action MDPs

A consideration in reinforcement learning, applied to robotics and other phys-

ical systems, is balancing exploitation and exportation [120]. Exploitation ensures

the safety of the system, when the policy is sufficiently good and yields no learn-

ing. Exploration forces the agent to perform suboptimal steps, and the most of-

ten used ε-greedy policy performs a random action with probability ε. Although

the random action can lead to knowledge discovery and policy improvement, it

also poses a risk to the system. The policies presented here fit well in on-line RL

paradigm, because they allow safe exploration. Given that they are not optimal,

they produce new knowledge, but because of their admissibility and consistency,

their action of choice is safe to the physical system. For systems with independent

actions, Axial Sum Policy is optimal (see Appendix C).

5.1.3 Continuous Action Fitted Value Iteration (CAFVI)

We introduced an admissible, consistent, and efficient decision-making method

for learning action-value function Q locally, at fixed state s, and fixed learning

iteration (when θ is fixed) without knowing the system dynamics. Now, the

decision-making policies are integrated into a AVI framework [36, 27] to produce

a RL agent for continuous state and action MDPs tailored for control-affine nonlin-

ear systems. The algorithm learns the parameterization θ, and works much like

approximate value iteration [36] to learn state-value function approximation θ,

but the action selection uses sampling-based policy approximation on the action-

value function Q. Algorithm 5.7 shows an outline of the proposed continuous

action fitted value iteration, CAFVI. It first initializes θ with a zero vector. Then,

it iteratively estimates Q function values and uses them make a new estimate of

θ. First, we randomly select a state ss and observe its reward. Line 6 collects the

samples. It uniformly samples the state space for sls . Because we need three data

points for Lagrangian interpolation of a quadratic function, three action samples

113

Chapter 5. PEARL for Deterministic Continuous Action MDPs

per action dimensions are selected. We also obtain, either through a simulator or

an observation, the resulting state s′ij when aij is applied to sls . Line 7 estimates

the action-value function locally, for sls and aij using the current θl value. Next,

the recommended action is calculated, â. Looking up the available samples or

using a simulator, the system makes the transition from sls using action â. The

algorithm makes a new estimate of V(sls). After ns states are processed, Line 10

finds new θ that minimizes the least squares error for the new state-value function

estimates vls . The process repeats until either θ converges, or a maximum number

of iterations is reached.

Algorithm 5.7 Continuous Action Fitted Value Iteration (CAFVI).
Input: S, A, discount factor γ

Input: basis function vector F

Output: θ

1: θ0,θ1 ← zero vector

2: l ← 1

3: while (l ≤ max iterations) and ‖θl − θl−1‖ ≥ ε do

4: for ls = 1, .., ns do

5: sample state sls and observe its reward Rls

6: {sls , aij, s′ij|i = 1, .., da, j = 1, 2, 3} {obtain system dynamics samples}

7: for all i,j, qij ← θT
l F (s′ij) {estimate action-value function}

8: â ← calculated with Equation (5.8)

9: obtain {sls , â,s′ls , Rls}
10: vls = Rls + γθT

l F (s′ls) {state-value function new estimate}

11: end for

12: θl+1 ← argminθ ∑ns
ls=1(vls − θTF (sls))

2

13: l ← l + 1

14: end while

15: return θl

114

Chapter 5. PEARL for Deterministic Continuous Action MDPs

The novelties of the Algorithm 5.7 are continuous action spaces, and the joint

work with both state and action-value functions (Lines 6 - 8), while AVI works

with discrete, finite action sets and with one of the two functions [27], but not

both. Although the outcome of the action-value function learning (Line 8) is inde-

pendent of the action samples, the state-value function learning (Line 10) depends

on the state-samples collected in Line 5, just like discrete action AVI [36].

5.1.4 Discussion

Considering a PBT, we proposed quadratic features vectors, and determined suffi-

cient conditions for which admissible policies presented in Section 5.1.2 transition

the system to the goal state obeying the task requirements. Finally, we presented

a learning algorithm that learns the parametrization. There are several points that

need to be discussed, convergence of the CAFVI algorithm, usage of the quadratic

basis functions, and determination of the conditions from Section 5.1.1.

Full conditions under which AVI with discrete actions converges is still an ac-

tive research topic [27]. It is known that it converges when the system dynamics is

a contraction [27]. A detailed analysis of the error bounds for AVI algorithms with

finite [93] and continuous [12] actions, finds that the AVI error bounds scale with

the difference between the basis functional space and the inherent dynamics of the

MDP. The system’s dynamics and reward functions determine the MDP’s dynam-

ics. We choose quadratic basis functions, because of the nature of the problem we

need to solve and for stability. But, basis functions must fit reasonably well into

the true objective function, Equation (2.1), determined by the system dynamics

and the reward, otherwise CAFVI diverges.

The goal of this chapter is to present an efficient toolset for solving PBTs on a

control-affine system with unknown dynamics. Using quadratic basis functions,

115

Chapter 5. PEARL for Deterministic Continuous Action MDPs

Algorithm 5.7 learns the parametrization θ. Successful learning that converges

to a θ with all negative components, produces a controller based on Section 5.1.2

policies that is safe for a physical system and completes the task.

In Section 5.1.1, we introduced sufficient conditions for successful learning.

The conditions are sufficient but not necessary, so the learning could succeed un-

der laxer conditions. Done in simulation prior to a physical system control, the

learning can be applied when we are uncertain if the system satisfies the criterion.

When the learning fails to succeed, the controller is not viable. Thus, a viable con-

troller is possible under laxer conditions verifiable through learning. CAFVI is

time efficient so the toolset can be safely and easily attempted first, before more

computationally intensive methods are applied. It can be also used to quickly

develop an initial value function, to be refined later with another method.

5.2 Results

This section evaluates the CAFVI. We first verify the policy approximations’ qual-

ity and computational efficiency on a known function in Section 5.2.1, and then

we showcase the method’s learning capabilities in two case studies: a quadrotor

with suspended payload (Section 5.2.2), a multi-agent Rendezvous Task (Section

5.2.3), and a Flying Inverted Pendulum (Section 5.2.4).

In all evaluations, the Convex Sum Policy was calculated using equal convex

coefficients λi = da
−1. Discrete and HOOT [81] policies are used for comparison.

The discrete policy uses an equidistant grid with 13 values per dimension. HOOT

uses three hierarchical levels, each covering one tenth of the action size per dimen-

sion and maintaining the same number of actions at each level. All computation

was performed using Matlab on a single core Intel Core i7 system with 8GB of

116

Chapter 5. PEARL for Deterministic Continuous Action MDPs

RAM, running the Linux operating system.

5.2.1 Policy Approximation Evaluation

(a) Eccentricity (b) Manhattan

(c) Axial Sum (d) Convex Sum

Figure 5.2: Eccentricity of the quadratic functions (a) related to policy approximation
gain ratio (b-d) as a function of quadratic coefficient (C) and rotation of the semi-axes.

In Section 5.1.2 we proposed three policy approximations and showed their

admissibility. To empirically verify the findings, we examine their behavior on

known quadratic functions of two variables, elliptical paraboloids with a max-

imum. Table 5.2 depicts maximum and minimum values for ∆Q(s,πQ(s)) as Q

ranges over the class of concave elliptical paraboloids. Since the ∆Q is always pos-

itive for all three policies, the empirical results confirm our findings from Propo-

sition 5.1.4 that the policies are admissible. We also see from min ∆a that in some

cases Manhattan and Axial Sum Policy make optimal choices, which is expected

117

Chapter 5. PEARL for Deterministic Continuous Action MDPs

Table 5.2: Summary of policy approximation performance. Minimum and maximum of
the value gain and the distance from the optimal action.

Method min ∆Q max ∆Q min ∆u max ∆u
Manhattan 5.00 168.74 0.00 4.32
Axial Sum 3.40 163.76 0.00 4.37
Convex Sum 3.40 103.42 0.10 4.37

as well. The maximum distance from the optimal action column shows that the

distance from the optimal action is bounded.

To further evaluate the policies’ quality we measure the gain ratio between

the policy’s gain and maximum gain on the action-value function (a∗ is optimal

action):

gπQ(s) =
Q(s,πQ(s))−Q(s,0)

Q(s, a∗)−Q(s,0)
.

Non-admissible policies have negative or zero gain ratio for some states, while

the gain ratio for admissible policies is strictly positive. The gain ratio of one sig-

nifies that policy πQ is optimal, while a gain ratio of zero means that the selected

action transitions the system to an equivalent state from the value function per-

spective. The elliptic paraboloids’, Q(s, [a1a2]
T) = c1a2

1 + c2a1u2 + c3a2
2 + c4a1 +

c5u2 + c6, isolines are ellipses, and the approximation error depends on the rota-

tional angle of the ellipse’s axes, and its eccentricity. Thus, a policy’s quality is

assessed as a function of these two parameters: the rotational angle α and range

of the parameter c, while parameters c1, c4, c5, and c6 are fixed. Parameter c2 is cal-

culated such that c2 = (c1 − c3) tan 2α. The eccentricity is depicted in Figure 5.2a,

with zero eccentricity representing a circle, and an eccentricity of one represent-

ing the ellipse degenerating into a parabola. The white areas in the heat maps are

areas where the function is either a hyperbolic paraboloid or a plane, rather than

an elliptic paraboloid and has no maximum. Figure 5.2 displays the heat maps

of the gain ratios for the Manhattan (Figure 5.2b), Axial Sum (Figure 5.2c), and

118

Chapter 5. PEARL for Deterministic Continuous Action MDPs

1 2 3 4 5 6
10

−4

10
−2

10
0

10
2

t (
s)

Input dimensionality d
a

Discrete
HOOT
Manhattan
Axial Sum
Convex Sum

Figure 5.3: Policy approximation computational time per action dimensionality averaged
over 10 trials. Vertical bars on (a) represent standard deviation. Comparison of discrete,
HOOT, Manhattan, Axial Sum, and Convex Sum policies. The y-axis is logarithmic.

Convex Sum (Figure 5.2d) policies. All policies have strictly positive gain ratio,

which gives additional empirical evidence to support the finding in Proposition

5.1.4. Manhattan and Axial Sum perform similarly, with the best results for near-

circular paraboloids, and degrading as the eccentricity increases. In contrast, the

Convex Sum policy performs best for highly elongated elliptical paraboloids.

Lastly, we consider the computational efficiency of the three policies, and com-

pare the running time of a single decision-making with discrete and HOOT [81]

policies. Figure 5.3 depicts the computational time for each of the policies as a

function of the action dimensionality. Both discrete and HOOT policies’ computa-

tional time grows exponentially with the dimensionality, while the three policies

that are based on the axial maximums: Manhattan, Axial Sum, and Convex Sum

are linear in the action dimensionality, although Manhattan is slightly slower.

119

Chapter 5. PEARL for Deterministic Continuous Action MDPs

5.2.2 Minimal Residual Oscillations Task

This section applies the proposed methods to the aerial Minimal Residual Oscilla-

tions Task (Definition 4.1.4). This task is defined for a UAV carrying a suspended

load, and seeks acceleration on the UAV’s body, that transports the joint UAV-load

system to a goal state with Minimal Residual Oscillations trajectory. We show that

the system and its MDP satisfy conditions for Theorem 5.1.2, and will assess the

methods though examining the learning quality, the resulting trajectory character-

istics, and implementation on the physical system. We compare it to the discrete

AVI (Chapter 4) and HOOT (see Chapter 2.3.5), and show that methods presented

here solve the task with more precision. Here we use the same problem formu-

lation, MDP setup, and feature vector, Equation (4.2), presented in Section 4.2.1.

The only difference is that in this chapter we keep the action space continuous,

rather than discretized.

The satisfies the form of Equation (4.2), and because the learning produces

θ with all negative components, all conditions for Theorem 5.1.2 are satisfied in-

cluding the drift, Equation (5.7).

The time-to-learn is presented in Figure 5.4a. The standard deviation is be-

tween 1% and 10% of the mean. The time to learn increases polynomially with the

iterations because the number of samples in each iteration grows linearly. The ax-

ial maximum policies perform an order of magnitude faster than the discrete and

HOOT policies. To assess learning with Algorithm 5.7 using Manhattan, Axial

Sum, and Convex Sum policies, we compare to learning using the greedy discrete

policy and HOOT. Figure 5.4b shows the learning curve, over number of itera-

tions. After 300 iterations all policies converge to a stable value. All converge to

the same value, but discrete learning that converges to a lower value.

Finally, inspection of the learned parametrization vectors confirms that all the

120

Chapter 5. PEARL for Deterministic Continuous Action MDPs

0 50 100 150 200 250 300 350 400 450 500
−50

0

50

100

150

200

250

300

Episode

T
im

e
 (

s
)

Discrete
HOOT
Manhattan
Axial Sum
Convex Sum

(a) Time to learn

0 100 200 300 400 500

−10
10

−10
8

−10
6

Episode

A
c
c
u

m
u

la
te

d
 r

e
w

a
rd

Discrete
Hoot
Convex Sum

(b) Learning curve (logarithmic)

Figure 5.4: Learning results for Manhattan, and Axial Sum, and Convex Sum, compared
to discrete greedy, and HOOT policies averaged over 10 trials. Vertical bars on (a) rep-
resent standard deviation. Learning curves for Manhattan and Axial Sum are similar to
Convex Sum and are omitted from (b) for better visibility.

components are negative, meeting all needed criteria for Theorem 5.1.2. This

means that the equilibrium is asymptotically stable, for admissible policies, and

we can generate trajectories of an arbitrary length.

Next, we plan trajectories using the learned parametrization over the 100 tri-

als for the three proposed policies and compare them to the discrete and HOOT

policies. We consider Minimal Residual Oscillations Task complete when ‖p‖ ≤
0.010 m, ‖v‖ ≤ 0.025 m s−1, ‖η‖ ≤ 1°, and ‖η̇‖ ≤ 5 ◦/s. This is a stricter

terminal set than the one previously used in Chapter 4. The action limits are

−3 m s−2 ≤ ui ≤ 3 m s−2, for i ∈ 1, 2, 3. The discrete and HOOT policies use

the same setup described in Section 5.2. The planning occurs at 50 Hz. We com-

pare the performance and trajectory characteristics of trajectories originating 3 m

from the goal state. Table 5.3 presents results of the comparison. Manhattan, Axial

Sum, and HOOT produce very similar trajectories, while Convex Sum generates

slightly longer trajectories, but with the best load displacement characteristics.

This is because the Convex Sum takes a different approach and selects smaller

121

Chapter 5. PEARL for Deterministic Continuous Action MDPs

actions, resulting in smoother trajectories. The Convex Sum method plans the

9 s second trajectory in 0.14 s, over 5 times faster than the discrete planning, and

over 3 times faster than HOOT. Finally, 30% of the discrete trajectories are never

able to complete the task. This is because the terminal set is too small for the dis-

cretization. In other words, the discretized policy is not admissible. Examining

the simulated trajectories in Figure 5.5 reveals that Convex Sum indeed selects

a smaller action, resulting in a smoother trajectory (Figure 5.5a) and less swing

(Figure 5.5b). HOOT, Manhattan, and Axial Sum, produce virtually identical tra-

jectories, while the discrete trajectory has considerable jerk, absent from the other

trajectories.

Lastly, we experimentally compare the learned policies using the same set up

described in Section 4.3.2. HOOT and Axial Sum resulted in similar trajectories,

while Manhattan’s trajectory exhibited the most deviation from the planned tra-

jectory (Figure 5.6). The Convex Sum trajectory is the smoothest. Table 5.4 quan-

tifies the maximum load swing and the power required to produce the load’s

motion from the experimental data. Convex Sum policy generates experimen-

tal trajectories with the best load swing performance, and with load motion that

requires close to three times less energy to generate1.

5.2.3 Rendezvous Task

The Rendezvous Cargo Delivery Task, or simply Rendezvous Task (Figure 5.7a), is

a multi-agent variant of the time-sensitive Minimal Residual Oscillations Task. It

requires an UAV carrying a suspended load to rendezvous with a ground-bound

robot to hand over the cargo. The cargo might be a patient airlifted to a hospital

and then taken by a moving ground robot for delivery to an operating room for

1A video of the experiments can be found at: https://cs.unm.edu/amprg/People/

afaust/afaustActa.mp4.

122

https://cs.unm.edu/amprg/People/afaust/afaustActa.mp4
https://cs.unm.edu/amprg/People/afaust/afaustActa.mp4

Chapter 5. PEARL for Deterministic Continuous Action MDPs

0 1 2 3 4
−2

−1

0

x
 (

m
)

0 1 2 3 4
−2

−1

0

1

y
 (

m
)

0 1 2 3 4
0

0.5

1

t (s)

z
 (

m
)

0 1 2 3 4

0

0.5

1

v
x
 (

m
/s

)

0 1 2 3 4

0

0.5

1

v
y
 (

m
/s

)

0 1 2 3 4
−1

−0.5

0

t (s)

v
z
 (

m
/s

)

0 1 2 3 4

−1
0
1
2
3

a
x
 (

m
/s

2
)

0 1 2 3 4

−1

0

1

2

3

a
y
 (

m
/s

)

0 1 2 3 4
−3
−2
−1

0
1

t (s)

a
z
 (

m
/s

)

Discrete HOOT Convex Sum

(a) Quadrotor trajectory

0 1 2 3 4
−10

−5

0

5

ω
 (

°)

0 1 2 3 4
−10

−5

0

5

t (s)

φ
 (

°)

0 1 2 3 4

−30

−20

−10

0

10

20

v
ω
 (

°/
s
)

0 1 2 3 4

−30

−20

−10

0

10

20

t (s)

v
φ
 (

°/
s
)

 Discrete HOOT Convex sum

(b) Load trajectory

Figure 5.5: Comparison of simulated Minimal Residual Oscillations Trajectories created
with Convex Sum versus trajectories created with discrete greedy and HOOT policies.
(Trajectories for Manhattan and Axial Sum are similar to Convex Sum and are omitted for
better visibility.)

surgery. Thus, the UAV trajectory must be with Minimum Residual Oscillations.

The rendezvous location and time are not known a priori, and the two heteroge-

neous agents must plan jointly to coordinate their speeds and positions. The two

123

Chapter 5. PEARL for Deterministic Continuous Action MDPs

0 1 2 3 4 5 6 7 8
−1

0

1
x
 (

m
)

0 1 2 3 4 5 6 7 8
−1

0

1

y
 (

m
)

0 1 2 3 4 5 6 7 8
1.1

1.2

1.3

t (s)

z
 (

m
)

Discrete HOOT Convex Sum

(a) Quadrotor trajectory

0 1 2 3 4 5 6 7 8

−10

−5

0

5

10

ω
 (

°)

0 1 2 3 4 5 6 7 8

−10

−5

0

5

10

t (s)

φ
 (

°)

Discrete HOOT Convex Sum

(b) Load trajectory

Figure 5.6: Comparison of experimental Minimal Residual Oscillations Task trajecto-
ries created with Convex Sum versus trajectories created with discrete greedy and HOOT
policies. (Trajectories for Manhattan and Axial Sum are similar to Convex Sum and are
omitted for better visibility.)

robots have no knowledge of the dynamics and each others’ constraints. The task

requires minimization of the distance between the load’s and the ground robot’s

location, the load swing minimization, and minimization for the agents’ velocities,

while completing the task as fast as possible.

124

Chapter 5. PEARL for Deterministic Continuous Action MDPs

Ta
bl

e
5.

3:
Su

m
m

ar
y

of
tr

aj
ec

to
ry

ch
ar

ac
te

ri
st

ic
s

ov
er

10
0

tr
ia

ls
.M

ea
ns

(µ
)a

nd
st

an
da

rd
de

vi
at

io
ns

(σ
)o

ft
im

e
to

re
ac

h
th

e

go
al

,fi
na

ld
is

ta
nc

e
to

go
al

,fi
na

ls
w

in
g,

m
ax

im
um

sw
in

g,
an

d
ti

m
e

to
co

m
pu

te
th

e
tr

aj
ec

to
ry

.B
es

tr
es

ul
ts

ar
e

hi
gh

lig
ht

ed
.

M
et

ho
d

Pe
rc

en
t

t(
s)

‖
p
‖

(c
m

)
‖

η
‖
(◦
)

m
ax
‖

η
‖
(◦
)

C
om

p.
ti

m
e

(s
)

co
m

pl
et

ed
µ

σ
µ

σ
µ

σ
µ

σ
µ

σ

D
is

cr
et

e
70

.0
0

10
.8

1
3.

12
0.

98
0.

33
0.

16
0.

14
11

.9
6

1.
63

0.
81

0.
23

H
O

O
T

10
0.

00
8.

49
1.

33
0.

83
0.

27
0.

18
0.

20
12

.9
3

1.
49

0.
48

0.
07

M
an

ha
tt

an
10

0.
00

8.
66

1.
68

0.
89

0.
19

0.
15

0.
16

12
.2

4
1.

58
0.

24
0.

05

A
xi

al
Su

m
10

0.
00

8.
55

1.
56

0.
85

0.
22

0.
20

0.
18

12
.6

1
1.

55
0.

17
0.

03

C
on

ve
x

Su
m

10
0.

00
9.

61
1.

62
0.

97
0.

07
0.

03
0.

06
9.

52
1.

29
0.

14
0.

02

125

Chapter 5. PEARL for Deterministic Continuous Action MDPs

Table 5.4: Summary of experimental trajectory characteristics. Maximum swing and en-
ergy needed to produce load oscillations. Best results are highlighted.

Method max ‖ η ‖ (◦) Energy (J)
Discrete 15.21 0.0070
HOOT 15.61 0.0087
Manhattan 15.95 0.0105
Axial Sum 14.20 0.0086
Convex Sum 12.36 0.0031

The quadrotor with the suspended load is modeled as in Section 5.2.2, while a

rigid body constrained to two DOF in a plane models the ground-based robot. The

joint state space is a 16-dimensional vector: the 10-dimensional state space of the

quadrotor (Section 5.2.2), and the position-velocity space of the ground robot. The

action is 5-dimensional acceleration to the quadrotor’s and ground robot’s center

of masses. The ground robot’s acceleration constraints are lower than quadrotors.

Applying Algorithm 5.7 with Convex Sum Policy, the system learns the state-

value function parametrization θ that is negative definite. Figure 5.8 shows both

(a) Rendezvous Task (b) Flying Inverted
Pendulum

Figure 5.7: PBT examples.

126

Chapter 5. PEARL for Deterministic Continuous Action MDPs

robots two seconds in the trajectory. The comparison of simulated trajectories cre-

ated with the Convex Sum and HOOT policies is depicted in Figure 5.9. In 0.12 s

Convex Sum Policy finds a 8.54 s trajectory that solves the task. HOOT policy

fails to find a suitable trajectory before reaching the maximum trajectory dura-

tion, destabilizes the system, and terminates after 101.44 seconds. The discrete

policy yields similar results as HOOT. This is because the action needed to solve

the task is smaller than the HOOT’s setup, and the system begins to oscillate.

The rendezvous point produced with Convex Sum Policy is between the robots’

initial positions, closer to the slower robot, as expected (Figure 5.9a). The quadro-

tor’s load swing is minimal (Figure 5.9b). The absolute accumulated reward col-

lected while performing the task is smooth and steadily making progress, while

the accumulated reward along HOOT trajectory remains significantly lower (Fig-

ure 5.9c)2. The Rendezvous Task simulation shows that the proposed methods are

able to solve tasks that previous methods are unable to because the Convex Sum

Policy is admissible.

−4
−3

−2
−1

0 −4
−3

−2
−1

0

0

0.5

1

1.5

y (m)x (m)

z
(m

)

UAV
Ground

Start

Start

Figure 5.8: Cargo-bearing UAV and a ground-based robot rendezvous at 2 s.

2A video of the simulation can be found at: https://cs.unm.edu/amprg/People/

afaust/afaustActa.mp4.

127

https://cs.unm.edu/amprg/People/afaust/afaustActa.mp4
https://cs.unm.edu/amprg/People/afaust/afaustActa.mp4

Chapter 5. PEARL for Deterministic Continuous Action MDPs

5.2.4 Flying Inverted Pendulum

The third task we consider is Flying Inverted Pendulum. It consists of a quadrotor-

inverted pendulum system in a plane (see Figure 5.7b). The goal is to stabilize the

pendulum and keep it balanced as the quadrotor hovers. The section 3 is based

on portions of [42]. We decompose the Flying Inverted Pendulum task in two

subtasks, Initial Balance and Balanced Hover. Initial Balance, developed by Faust,

places pendulum very close to upright position. Balanced Hover, developed by

Figueroa, slows down the quadrotor to a hover while maintaining the upright

inverted pendulum position. We learn both tasks with CAFVI (Algorithm 5.7),

and generate trajectories with the Convex Sum Policy. The joint controller, Flying

Inverted Pendulum, developed by Faust, sequentially combines the two subtasks

to solve the flying inverted pendulum. It produces a trajectory that starting for an

arbitrary initial inverted pendulum displacement of up to 20° ends with the UAV

hovering and maintaining the inverted pendulum minimally displaced from the

upright position.

3© 2014 IEEE. Portions of this section are reprinted, with permission, from Rafael
Figueroa, Aleksandra Faust, Patricio Cruz, Lydia Tapia, and Rafael Fierro, ”Reinforce-
ment Learning for Balancing a Flying Inverted Pendulum,” The 11th World Congress on
Intelligent Control and Automation, July 2014.

128

Chapter 5. PEARL for Deterministic Continuous Action MDPs

0 5 10 15
−4

−2

0

x (
m)

0 5 10 15
−4

−2

0

y (
m)

0 5 10 15

0

0.5

1

t (s)

z (
m)

0 5 10 15
−2

−1

0

1

v x (m
/s)

0 5 10 15
−2

−1

0

1

v y (m
/s)

0 5 10 15
−1

0

1

t (s)

v z (m
/s)

0 5 10 15

−2

0

2

t (s)

a x (m
/s2)

0 5 10 15

−2

0

2

t (s)

a y (m
/s)

0 5 10 15

−2

0

2

t (s)

a z (m
/s)

Completed

(a) Robot trajectories

0 5 10 15

−50

0

50

ω
(°)

0 5 10 15

−50

0

50

t (s)

φ (
°)

0 5 10 15
−200

0

200

v ω (°
/s

)

0 5 10 15
−200

0

200

t (s)

v φ (°
/s

)

(b) Load trajectory

0 5 10 15
0

0.5

1

1.5

2

2.5
x 10

7

t (s)

Ac
cu

m
ul

at
ed

 re
wa

rd

HOOT
Convex Sum

(c) Accumulated reward

Figure 5.9: Comparison of simulated Rendezvous Task trajectories created with Convex
Sum Policy to trajectories created with discrete greedy and HOOT policies. Green solid -
Convex Sum ground; Purple solid - Convex Sum aerial; Green dashed - HOOT ground;
Purple dashed - HOOT aerial.

129

Chapter 5. PEARL for Deterministic Continuous Action MDPs

The MDP’s state space S is a eight-dimensional vector of Cartesian coordi-

nates with the origin in the quadrotor’s center of the mass belonging to the plane

orthogonal to the gravity force, s = [x y a b ẋ ẏ ȧ ḃ]T; x and y, also combined

into r = [a b]T, are the quadrotor’s position in x and y directions, while ẋ and ẏ

are its linear velocity. a and b, combined into p = [a b]T, are the projections of

the pendulum’s center of the mass onto the xy-plane. The action space is a two

dimensional acceleration vector a =
[

ẍd ÿd

]T
. on the quadrotor’s center of the

mass in a plane horizontal to the ground, ẍd, ÿd ∈ R. The maximum acceleration

is 5 m s−2. The reward is one when the target zone is reached, and zero otherwise.

The simulator used is a linearized model of a full dynamics of a planar flying

inverted pendulum and can be found in [42]. This system is control-affine.

Given an initial displacement of the pendulum center of mass p0 = [a0 b0]
T,

our goal is to find an optimal action a such that the pendulum is balanced on top

of the quadrotor, i.e., p and ṗ tends to zero, and the quadrotor reaches a hovering

state, i.e., ṙ also tends to zero. Thus, the Flying Inverted Pendulum is complete

when the system comes to rest. This is when p = ṗ = ṙ = 0. From the practical

perspective, we consider the task done when the state norm is sufficiently small.

Initial Balance Task raises the pendulum to an upright position without regard to

the quadrotor state. The task is completed when

p < εp, ṗ < εṗ, (5.12)

for small positive constants εp and εṗ. The second subtask, Task assumes that

Initial Balance was completed and the initial conditions satisfy Equation (5.12).

The task requires quadrotor to reduce speed to hover while it maintains the mini-

mal inverted pendulum displacement. It is completed when

p < εp, ṗ < εṗ, ṙ < εṙ, (5.13)

for small positive constants εp, εṗ, and εṙ. Note although, that the completion

130

Chapter 5. PEARL for Deterministic Continuous Action MDPs

criteria for the Balanced Hover Task is the same as for Flying Inverted Pendulum

Task, the latter has less restrictive initial conditions.

The features for the Initial Balance Task are squares of the pendulum’s posi-

tion and velocity relative to the goal upright position, FB(s) = [‖p‖2 ‖ṗ‖2]T. The

Balanced Hover Task has an additional feature of a square of the quadrotor’s ve-

locity, FBH(s) = [‖p‖2 ‖ṗ‖2 ‖ṙ‖2]T. Here the subscript B, BH denote that just the

Initial Balance amd Balanced Hover tasks are under consideration respectively.

Algorithm 5.8 depicts learning flying inverted pendulum task. We generate θB

and θBH with Algorithm 5.7. We learn using Monte Carlo simulation for a fixed

number of trials. Upon generating family of policies, the fittest one is selected for

the inverted pendulum controller. The fittest policy reaches the completion state

fastest. Algorithm 5.7 provides a satisfactory answer for a high initial displace-

ment when no consideration is given to the condition that ṙ reaches zero. When

the initial displacement is small, the requirement of ṙ → 0 can be added. For this

reason, we used both θB and θBH to implement control for Flying Inverted Pendu-

lum. Algorithm 5.9 summarizes the proposed control technique. The controller

is initially configured for Initial Balance task. It selects a control action according

to the Convex Sum Policy, Equation (5.10). When the completion condition for

Initial Balance task is met, the controller switches to the parameters for Balanced

Hover task. On the other hand, if the controller state is set to ‘Balanced Hover’,

the controller invokes Convex Sum Policy with the parameters for the ’Balanced

Hover’ task. The output is the state of the controller and the action to perform.

To evaluate the Flying Inverted Pendulum we examine each of the subtasks,

Initial Balance and Balanced Hover separately, as well as the joint Flying Inverted

Pendulum controller from Algorithm 5.9. The evaluation goals are to determine

the computational speed, region of attraction, and noise tolerance. All simulations

131

Chapter 5. PEARL for Deterministic Continuous Action MDPs

Algorithm 5.8 Learning to fly inverted pendulum.
Input: γ, features FB, FBH, RB, RBH,action space dimensionality da = 2, number

of Monte Carlo simulations mc

1: {Learning Initial balance with Monte Carlo simulation}

2: for i=1:mc do

3: θB,i ← CAFVI(FB, RB, γ, da)

4: end for

5: θB,i ←select fittest θB,i

6: {Learning Balanced Hover with Monte Carlo simulation}

7: for i=1:mc do

8: θBH,i ← CAFVI(FBH, RBH, γ, da)

9: end for

10: θBH,i ←select fittest θBH,i

Output: Vectors θB,θBH

are performed in Matlab 2012a running Windows 7 with Pentium Dual-Core CPU

and 4Gbs of RAM. The pendulum point mass is located at L = 0.5 m from the

center of mass of the quadrotor. The pendulum has a mass mp = 0.1 kg. An

offset of the pendulum mass with respect to the quadrator equal to a = 0.2 m

represents an angular displacement of approximately 20° with respect to the up-

right equilibrium position. The terminating condition for Initial Balance con-

troller is ‖p‖ ≤ 0.01 m and ‖ṗ‖ ≤ 0.01 m s−1, while the terminating condition

for the Balanced Hover and Flying Inverted Pendulum polices is ‖p‖ ≤ 0.05 m,

‖ṗ‖ ≤ 0.05 m s−1, and ‖ṙ‖ ≤ 0.05 m s−1.

Algorithm 5.8 results in parametrization vectors θB = [−86.6809− 0.3345]T and

θBH = 106[−1.6692,−0.0069, 0.0007]T. Both approximated V-functions, calculated

with Equation (4.2), are much more sensitive to changes in pendulum’s position

than changes in velocity. The similar preference is seen in the Balanced Hover

132

Chapter 5. PEARL for Deterministic Continuous Action MDPs

Algorithm 5.9 Flying inverted pendulum controller.
Input: θB, θBH, features F B, F BH, small positive constants εp, εṗ, dimension of

the action space da = 2, controller state

1: observe initial state s0

2: if controller state is ‘Initial Balance’ then

3: {Initial balance}

4: a← convexSumPolicy(FB,θB, s0) Equation (5.10)

5: if ‖p0‖ ≤ εp ∧ ‖ṗ0‖ ≤ εṗ then

6: {switch controller state}

7: controller state← ’Balanced Hover’

8: end if

9: else

10: {Balanced Hover}

11: a← convexSumPolicy(F BH,θBH, s0) Equation (5.10)

12: end if

Output: a, controller state

with θBH. Here, only when the position and velocity of the inverted pendulum

are close to the upright position, the controlled reduces the quadrotor’s speed.

To examine the policies’ characteristics, we randomly selected 100 initial sys-

tem state conditions, s, for each policy: Initial Balance with no noise, Initial Bal-

ance with 5% of randomly added noise, Balanced Hover with no noise, Balanced

Hover with 2% of noise, Flying Inverted Pendulum with no noise, and Flying In-

verted Pendulum with 5% of noise. The ranges for initial conditions per policy

are presented in Table 5.5. For all policies, and all the initial conditions resulted

in reaching the task terminal conditions. That means that the initial conditions in

Table 5.5 are within the policies regions of attraction.

Table 5.6 shows the results trajectory characteristics upon completion. t f is the

133

Chapter 5. PEARL for Deterministic Continuous Action MDPs

Table 5.5: Initial conditions for Flying Inverted Pendulum Task for the 100 sample selec-
tion.

Controller ṙ = [ẋ ẏ]T (m s−1) p = [a b]T (m)
Initial Balance ẋ = ẏ = 0 a, b ∈ [−0.2, 0.2]
Balanced Hover ẋ, ẏ ∈ [−5, 5] a, b ∈ [−0.01, 0.01]
Flying Inverted Pendulum ẋ = ẏ = 0 a, b ∈ [−0.2, 0.2]

time to achieve the task measured in system time, tc is the computation time, p f

is the final displacement of the pendulum, ṗ f is the final velocity of the pendu-

lum, and ṙ f is the final velocity of the quadrotor. We note that the system time

t f is order of the magnitude higher than the computational time tc, rendering our

method real-time capable. Initial Balance policy brings the inverted pendulum to

upright position efficiently for initial displacement of up to 20°, but the quadro-

tor’s velocity remains constant at the completion (Table 5.6). This is expected due

to the policy design. Balanced Hover, on the other hand, reduces quadrotor speed

to zero, while maintaining the upright pole position and its small velocities. The

downside is that it is capable in doing so only for the small initial pole displace-

ments. Finally, the Flying Inverted Pendulum policy handles large initial pole

displacements, and brings the pole to the upright position with small (less than

0.05 m s−1) velocities, and reduces the quadrotor speed to less than 0.45 m s−1.

Lastly, the Table 5.6 shows that all three policies are capable of handling some

level of random noise. This is important because it shows that the controllers

have some tolerance to random disturbances and unmodeled system dynamics

without impacting their performance significantly.

To visualize the trajectories Figures 5.10 and 5.11 show the trajectories created

with Initial Balance and Flying Inverted Pendulum policies. Pendulum positions

and velocity, and quadrotor speed are depicted. Figure 5.10c depicts the trajectory

created with Initial Balance controller, starting at p = [0.2 − 0.2]T m. Figure 5.10

134

Chapter 5. PEARL for Deterministic Continuous Action MDPs

0 2 4 6
−0.2

−0.1

0

0.1

0.2

Time [s]

P
os

iti
on

 [m
]

a
b

(a) Pendulum position

0 2 4 6
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time [s]

V
el

oc
ity

 [m
/s

]

ȧ

ḃ

(b) Pendulum velocity

0 2 4 6
−5

0

5

Time [s]

V
el

oc
ity

 [m
/s

]

ẋ

ẏ

(c) Quadrotor velocity sum

Figure 5.10: Trajectory created with Initial Balance policy.

0 2 4 6
−0.2

−0.1

0

0.1

0.2

Time [s]

P
os

iti
on

 [m
]

a
b

(a) Pendulum position

0 2 4 6
−0.4

−0.2

0

0.2

0.4

Time [s]

V
el

oc
ity

 [m
/s

]

ȧ

ḃ

(b) Pendulum velocity

0 2 4 6
−5

0

5

Time [s]

V
el

oc
ity

 [m
/s

]

ẋ
ẏ

(c) Quadrotor velocity sum

Figure 5.11: Trajectory created with Flying Inverted Pendulum policy..

shows that the Initial Balance policy brings the pole to the upright position with

minimal velocity (Figures 5.10a and 5.10b), while the quadrotor velocity becomes

0 5 10 15
−0.2

−0.1

0

0.1

0.2

Time [s]

P
os

iti
on

 [m
]

a
b

(a) Pendulum position

0 5 10 15
−0.4

−0.2

0

0.2

0.4

Time [s]

V
el

oc
ity

 [m
/s

]

ȧ

ḃ

(b) Pendulum velocity

0 5 10 15
−5

0

5

Time [s]

V
el

oc
ity

 [m
/s

]

ẋ
ẏ

(c) Quadrotor velocity

Figure 5.12: Trajectory created with Flying Inverted Pendulum policy with 5% of noise.

135

Chapter 5. PEARL for Deterministic Continuous Action MDPs

constant (Figure 5.10c). The quadrotor’s residual velocity is considered in the

Flying Inverted Pendulum policy (Figure 5.11b). The Flying Inverted Pendulum

starts with Initial Balance and reduces the position and velocity of the pendulum,

once its terminal conditions are achieved, the Balanced Hover policy reduces the

quadrotor velocity rapidly to zero while returning the pendulum to the upright

position with minimal velocity. Figure 5.12 shows the results obtained using the

policy Flying Inverted Pendulum while 5% of random noise is being added. We

see that despite noise in the pendulum’s velocity in Figure 5.12b, the pendulum

stays upright and the quadrotor’s velocity tends around zero (Figure 5.12c). An-

other view of the trajectory created with Flying Inverted Pendulum controller is

shown in Figure 5.13. The lighter snapshots occur further in time. The quadro-

tor starts moving fast to perform initial balance, and then starts to slow down, as

evidenced by more dense snapshots4.

5.3 Conclusions

In this chapter we extended PEARL by developing a method for learning con-

trol of continuous non-linear motion systems through combined learning of state-

value and action-value functions. Negative definite quadratic state-value func-

tions imply quadratic, concave action-value functions. That allowed us to approx-

imate policy as a combination of its action-value function maximums on the axes,

which we found through interpolation between observed samples. These poli-

cies are admissible, consistent, and efficient. Lastly, we showed that a quadratic,

negative definite state-value function, in conjunction with admissible policies, are

sufficient conditions for the system to progress to the goal while minimizing given

preferences.

4The simulation movie is available at http://marhes.ece.unm.edu/index.php/

Quadip-cafvi

136

http://marhes.ece.unm.edu/index.php/Quadip-cafvi
http://marhes.ece.unm.edu/index.php/Quadip-cafvi

Chapter 5. PEARL for Deterministic Continuous Action MDPs

Figure 5.13: Flying Inverted Pendulum trajectory snapshots © 2014 IEEE. Less saturated
snapshots occur further in time. The relative position of the planar position of the quadro-
tor and pendulum are tracked in the environment as a circle (◦) and asterisk (∗) respec-
tively.

control-affine systems for PBTs with RL.

137

Chapter 5. PEARL for Deterministic Continuous Action MDPs

Ta
bl

e
5.

6:
Fl

yi
ng

in
ve

rt
ed

pe
nd

ul
um

si
m

ul
at

io
n

re
su

lt
s

fo
r

10
0

ra
nd

om
in

it
ia

lc
on

di
ti

on
s

fo
r

th
e

th
re

e
co

nt
ro

lle
rs

w
it

h
an

d

w
it

ho
ut

no
is

e.
Po

lic
y

na
m

e,
no

is
e

le
ve

l,
co

m
pl

et
io

n
av

er
ag

es
,m

in
im

um
s,

an
d

m
ax

im
um

s
fo

r
sy

st
em

ti
m

e
(t

f)
,c

om
pu

ta
-

ti
on

al
ti

m
e

(t
c)

,p
en

du
lu

m
di

sp
la

ce
m

en
t(
‖p

f‖
),

pe
nd

ul
um

ve
lo

ci
ty

m
ag

ni
tu

de
(‖

ṗ
f‖

),
an

d
qu

ad
ro

to
r

ve
lo

ci
ty

m
ag

ni
tu

de

(‖
ṙ f
‖)

C
on

tr
ol

le
r

N
oi

se
t f

[s
]

t c
(s

)
‖p

f‖
(m

m
)

‖ṗ
f‖

(m
m

s−
1)

‖ṙ
f‖

(m
m

s−
1)

%
A

vg
M

in
M

ax
A

vg
M

in
M

ax
A

vg
M

in
M

ax
A

vg
M

in
M

ax
A

vg
M

in
M

ax

In
it

ia
l

0
0.

67
0.

04
1.

32
0.

03
0.

00
0.

06
54

26
98

82
15

96
16

22
25

41
21

Ba
la

nc
in

g
5

0.
68

0.
04

1.
54

0.
03

0.
00

0.
09

53
27

99
85

15
10

5
15

93
24

55
45

Ba
la

nc
ed

0
5.

55
5.

48
5.

60
0.

19
0.

18
0.

22
0

0
0

2
1

4
24

10
40

H
ov

er
2

2.
86

0.
22

5.
16

0.
10

0.
01

0.
17

2
1

2
32

7
49

29
3

33
49

5

Fl
yi

ng
0

4.
50

1.
06

5.
38

0.
17

0.
05

0.
28

2
1

2
20

7
42

16
5

35
43

8

In
v.

Pe
nd

.
5

4.
51

0.
76

5.
50

0.
17

0.
04

0.
32

2
1

2
21

4
46

17
3

25
44

6

138

Chapter 6

PEARL for Stochastic Dynamical

Systems with Continuous Actions

Real-world conditions pose many challenges to physical robots. One such chal-

lenge is the introduction of stochastic disturbances that can cause robotic drift.

For example, wind, imperfect models, or measurement inaccuracies are all pos-

sible disturbances [16]. These disturbances pose a particular challenge to mod-

ern robotics due to the expectation that robots automatically learn and perform

challenging tasks. The disturbances, along with complicated, nonlinear system

dynamics, make traditional solutions, e.g., adaptive and robust control modeling,

which solves this problem using full knowledge of the system dynamics, difficult

if not intractable [59].

This chapter presents a PEARL’s extension for control-affine systems with

stochastic disturbances based on [38]. The contributions are:

• LSAPA, an adaptive policy approximation that modifies of the Axial Sum

Policy to adapt to variable disturbances (Section 6.1.2), and

139

Chapter 6. PEARL for Stochastic Dynamical Systems with Continuous Actions

• SCAFVI, an extension of the CAFVI algorithm to use adaptive policy ap-

proximation (Section 6.1.3).

The methods are verified on:

• Minimal Residual Oscillations Task (Section 6.2.2),

• Rendezvous Task (Section 6.2.3), and

• Flying Inverted Pendulum task (Section 6.2.4)

Recall from Section 2.3.7 that batch reinforcement learning used in PEARL sep-

arates learning and planning into two distinct phases. During the learning phase,

the agent interacts with a simulator and learns feature vector weights that deter-

mine the policy. In the motion planning phase, the learning stops and the learned

weights are used to generate trajectories for a physical system. The lack of learn-

ing in the planning phase guarantees the stability. The downside is that there is

no adaptation during the planning. The methods presented in this chapter allow

for adaptive MP.

The key extension from Chapter 5 is the use of least squares linear regression

in lieu of interpolation, Equation (5.8), to estimate near-optimal action on an axis.

This extension allows us to apply the method to non-zero mean disturbances with

the only limit being imposed by the system’s physical limits, and demonstrate it

on three different problems.

6.1 Methods

Our goal is to learn to a perform and plan execution of a PBT on a kinematic

(control-affine) system within PEARLframework (Figure 3.1) in the presence of an

140

Chapter 6. PEARL for Stochastic Dynamical Systems with Continuous Actions

external bias (stochastic disturbance), such as wind. A common stochastic noise

model, a Gaussian process defined by mean and variance, is used [16]. We present

the problem formulation in Section 6.1.1, develop LSAPA in Section 6.1.2. Finally,

the policy is used for the task learning in Section 6.1.3.

6.1.1 Problem Formulation

The problem formulation is similar to the one used in Section 3.1.1, but instead

uses a stochastic control-affine system. Thus, we model a robot as a discrete time,

control-affine system with stochastic disturbance, D : S× A→ S,

Ds : sk+1 = f (sk) + g(sk)(ak + ηk). (6.1)

States sk ∈ S ⊆ Rds belong to the position-velocity space and the control action is

acceleration, ak ∈ A ⊆ Rda . The action space is a compact set containing origin,

0 ∈ A. Lipschitz continuous function g : S → Rds ×Rda is regular outside the

origin, sk ∈ S \ {0}. The drift f : S → Rds , is bounded and Lipschitz continuous.

The non-deterministic term, ηk, is a white Gaussian noise with a known distribu-

tion N (µηk , σηk); it acts as an additional and unpredictable external force on the

system. Time step k is omitted from the notation when possible. We use the sys-

tem and task assumptions from Chapter 5; the system is controllable [59] and our

goal is to learn PBT that takes the system to its origin in a timely-manner while

balancing, along the trajectory, constraints given by Cs = {a1(s), ...,adg(s)}.

To formulate the problem in RL terms, we define a discrete time, stochastic,

first-order MDP with continuous state and action spaces,

M : (S, A, Ds, R) (6.2)

Observed state reward is R : X → R; Ds is a an unknown system transition

function with form given in Equation (6.1). Solution to a MDP is a policy π : S→

141

Chapter 6. PEARL for Stochastic Dynamical Systems with Continuous Actions

Table 6.1: Summary of chapter-specific key symbols and notation.
Symbol Description
Cs Preferences to minimize
ηk N (µηk , σηk) External force excreted onto the
pi = [p2,i p1,i p0,i]

T ∈ R3. Coefficients of Q’s axial restriction
an ∈ R Set of vectors in direction of nth axis
ân ∈ R Estimate in direction of the nth axis
ân = ∑n

i=1 ânei Estimate over first n axes
â Q’s maximum estimate with a policy
Q(0)

s,n (a) = Q(s,p+ uen) Univariate function in the direction
of axis en, passing through point p

A that maximizes expected state-value function V,

V(s) = E(R(s) + γ max
a∈A

V(Ds(s, a))).

We use linear map approximation and represent V with Equation (4.2) with the

feature vector given in Equation (5.2). We find the approximation to Equation

(4.3).

6.1.2 Least Squares Axial Policy Approximation (LSAPA)

The Least squares axial policy approximation (LSAPA) policy extends Axial Sum Pol-

icy to handle larger disturbances. Axial Sum Policy is applicable to near zero mean

disturbances due to the use of Lagrangian interpolation to find an approximation

to the maximal Q value. The Lagrangian interpolation uses only three points to

interpolate the underlying quadratic function and this compounds the error from

the disturbances. In contrast, our new method, LSAPA, uses least squares regres-

sion with many sample points to compensate for the induced error.

Consider a fixed arbitrary state s, in a control-affine system, Equation (2.8),

with state-value approximation, Equation (4.2), action-value function, Q, is a

142

Chapter 6. PEARL for Stochastic Dynamical Systems with Continuous Actions

quadratic function of the action a Axial Sum Policy approximation finds an ap-

proximation for the Q function maximum locally for a fixed state s. It works in

two steps, finding maximums on each axis independently, and then combining

them together. To find a maximum on an axis, the method uses Lagrangian in-

terpolation to find the coefficients of the quadratic polynomial representing the

Q function Then, an action that maximizes the Q function on each axis is found

by zeroing the derivative. The final policy is a piecewise maximum of a Convex

and Non-Convex Sums of the action maximums found on the axes. The method

is computationally-efficient, scaling linearly with the action space dimensional-

ity O(da). It is also consistent, as the maximum selections do not depend on the

selected samples.

Because deterministic axial policies are sample independent, they do not adapt

to the changing conditions and influence of the external force. We extend the de-

terministic axial policies for the presence of disturbances. The LSAPA uses least

squares regression, rather than Lagrangian interpolation, to select the maximum

on a single axis. This change, allows the LSAPA method to compensate for the

error induced by non-zero mean disturbances. We now present finding the maxi-

mum on ith axis using the least squares linear regression with polynomial features.

Q-axial restriction, Q(0)
s,i (a) = Q(s, aei) on ith axis is a quadratic function,

Q(0)
s,i (a) = pT

i [a
2 a 1]T,

for some vector pi = [p2,i p1,i p0,i]
T ∈ R3 based on Proposition 5.1.1. Our goal is

to find pi by sampling the action space A at fixed state.

Suppose, we collect dn action samples in the ith axis,

Ai = [a1,i ... adn,i]
T.

The simulator returns state outcomes when the action samples are applied to the

143

Chapter 6. PEARL for Stochastic Dynamical Systems with Continuous Actions

fixed state s,

Si = [s′1,i ... s′
dn,i

]T,

where

s′j,i ← D(s, aj,i), j = 1, ..., dn.

Next, Q-estimates are calculated with Equation (2.6),

Qi = [Qs,i(aii) ... Qs,i(aii)]
T,

where Qs,j(aij) = θTF (s′j,i), j = 1, ..., dn. Using the supervised learning terminol-

ogy the Q estimates,Qi, are the labels that match the training samples Ai. Matrix,

Gi =


(a1,i)

2 a1,i 1

(a2,i)
2 a2,i 1

...

(adn,i)
2 adn,i 1

 ,

contains the training data projected onto the quadratic polynomial space. The

solution to the supervised machine learning problem,

Gipi = Qi (6.3)

fits pi into the training data Gi and labelsQi. The solution to Equation (6.3),

p̂i = argmin
pi

dn

∑
j=1

(Gj,ipi −Qs,j(aij))
2 (6.4)

are the coefficient estimates of the Q-axial restriction. Because Q is quadratic, we

obtain its critical point by zeroing the first derivative,

â∗i = − p1,i

2p2,i
.

144

Chapter 6. PEARL for Stochastic Dynamical Systems with Continuous Actions

Lastly, we ensure that the selection action falls within the allowed action limits,

âi = min(max(â∗i , al
i), au

i). (6.5)

Repeating the process of estimating the maximums on all axes and obtaining

âi = [â1, ..., âdu], we calculate the final policy with

π̂(s) =


πQ
c (s), Q(s,πQ

c (s)) ≥ Q(s,πQ
n (s))

πQ
n (s), otherwise

(6.6)

where

πQ
n (s) =

du

∑
i=1

âiei, (Stohastic Non-Convex Policy)

πQ
c (s) = d−1

u πQ
n , (s) (Stohastic Convex Policy)

The policy approximation, Equation (6.6), combines the simple vector sum

of the Stochastic Non-Convex Policy with Stochastic Convex Sum Policy using

Equation (6.5). The Convex Sum Policy guarantees the system’s monotonic pro-

gression towards the goal, but the Non-Convex Sum does not. If, however, the

Non-Convex Sum performs better than the Convex Sum policy, then Equation

(6.6) allows us to use the better result.

Algorithm 6.10 summarizes the process of calculating the policy approxima-

tion. With no external disturbances Algorithm 6.10 results in the Axial Sum Pol-

icy, Equation (5.11). On the other hand, in the presence of the disturbances, the

regression fits Q into the observed data, and the algorithm adapts to the changes

in the disturbance.

145

Chapter 6. PEARL for Stochastic Dynamical Systems with Continuous Actions

Algorithm 6.10 Least squares axial policy approximation (LSAPA)
Input: current state s, parametrization estimate θ

Input: basis function vector F , simulator Ds

Output: â

1: for i = 1, .., du do

2: sample action Ai = [a1,i ... adn,i]
T

3: for j = 1, ..., dn do

4: s′j,i ← D(s, aj,i)

5: Qs,j(aij)← θTF (s′j,i)

6: end for

7: p̂i ← argminpi
∑dn

j=1(Gj,ipi −Qs,j(aij))
2

8: â∗i ← −
p1,i

2p2,i

9: âi = min(max(â∗i , al
i), au

i)

10: end for

11: â ← calculated with Equation (6.6)

12: return â

6.1.3 Stochastic Continuous Action Fitted Value Iteration

Algorithm 6.11 is applied during the learning phase. It leverages Algorithm 6.10

to derive a policy and iteratively updates the expected state-value function. To

adapt the CAFVI to systems with disturbances, we use LSAPA rather than a deter-

ministic admissible policy. The algorithm learns state-value function, V, globally,

like the standard approximate value iteration [36]. It uniformly randomly samples

the state space, and using the provided feature vectors and its current weight θ,

calculates the new estimate of the state-values. Instead of using the greedy policy

for estimating state-values, it uses policy approximation in Line 6 to locally learn

action-value function Q, and find near-optimal action. After all state samples are

processed, the algorithm updates the feature weights θ with least squares linear

146

Chapter 6. PEARL for Stochastic Dynamical Systems with Continuous Actions

regression. Policy approximation, LSAPA in Line 6 uses least squares minimiza-

tion, and thus requires the stochastic disturbance data points to be independent

and identically distributed (i.i.d.). However, the same distribution does not need

to hold between different runs of the LSAPA, thus both learning and planning

independently adapt to the changes in the disturbance.

Algorithm 6.11 Stochastic continuous action fitted value iteration (SCAFVI)
Input: S, A, discount factor γ

Input: basis function vector F , simulator D

Input: max iterations, ε

Output: θ

1: θ0 ← zero vector

2: k← 0

3: while (k ≤ max iterations) or ‖θk−1 − θk‖ ≥ ε do

4: for ks = 1, .., ns do

5: select a random state and observe its reward (sks , Rks)

6: âks ← LSAPA(sks ,θk+1,F ,D)

7: obtain {sks , âks , s′ks
}

8: vks = Rks + γθT
k F (s′ks

) {estimate state-value}

9: end for

10: θk+1 ← argminθ ∑ns
ls=1(vks − θTF (sks))

2 {least-squares regression}

11: k← k + 1

12: end while

13: return θk

We showed in Theorem 5.1.4, that when the deterministic CAFVI returns neg-

ative weights, the task goal is asymptotically stable and the agent progresses to

the goal. In the stochastic case, we do not have this guarantee. Instead, the prob-

ability of reaching the goal depends on the combination of the maximum action

147

Chapter 6. PEARL for Stochastic Dynamical Systems with Continuous Actions

magnitude and probability distribution of the disturbances. The convergence of

general AVI depends on the nature of the feature vectors and the underlying sys-

tem dynamics [27, 12]. Also, because of the sampling nature of the algorithm, it

is susceptible to a possibility of divergence. For that reason, we learn in Monte

Carlo fashion, repeating the learning for several trials and testing fitness of result-

ing policies.

6.2 Results

To evaluate SCAFVI (Section 6.1.3) and motion planning using LSAPA (Section

6.1.2), we use three tasks: Minimal Residual Oscillations Task, Rendezvous Task,

and Flying Inverted Pendulum. For all tasks we show their definition and the fea-

ture derivation from the definition. Learning evaluation is done on the Minimal

Residual Oscillations Task in Section 6.2.2, the planning performance for varying

initial conditions is evaluated on the Rendezvous Task in Section 6.2.3. Flying

Inverted Pendulum in Section 6.2.4 explores the number of needed samples.

6.2.1 Setup

To evaluate the stochastic continuous action selection described in Algorithm 5.7,

we compare it to the baseline deterministic Axial Sum Policy. All learning and

planning occurs at 50 Hz. All trajectory planning was performed on a single core

of Intel Core i7 system with 8GB of RAM, running the Linux operating system

using Matlab 2011.

148

Chapter 6. PEARL for Stochastic Dynamical Systems with Continuous Actions

6.2.2 Minimal Residual Oscillations Task

We first consider a Minimal Residual Oscillations Task. We use the same MDP

setup as in Section 5.2.2 with the only difference that here we rely on a stochastic

simulator Ds.

We ran Algorithm 6.11 for 100 trials with 300 iterations with varying distur-

bance noise parameters. During the learning phase, we generated a 15 s trajectory

starting at (-2 , 2, 1)m from the origin. Table 6.2 shows the trajectory character-

istic ot the learning trials. Due to the constant presence of the disturbance, we

consider the average position of the quadrotor and the load over the last second,

rather than simply expecting to reach the goal region. The results in Table 6.2

show that both learning and planning using stochastic policy are slower than us-

ing the deterministic policy. This is expected because the deterministic policy uses

3 samples per action dimension, while the stochastic policy in this case uses 300

samples. Nevertheless, the planning time is still an order of magnitude smaller

than the 15 s trajectory duration, allowing ample time to plan the trajectory in a

real-time closed feed-back loop. Next in Table 6.2, we see that the stochastic policy

produces consistent residual distance to the goal. The larger the variance of the

disturbance, the larger the error. When the mean is 2 m s−2 and the standard devi-

ation is 1, the stochastic policy results start degrading. This is because the upper

limit on the action space is 3 m s−2, and the noisy conditions start overwhelming

the system. The deterministic policy, learning and acting on the same data, fails

to bring the system near the goal. The two policies show similar behavior only for

the zero-mean noise with small (0.5) variance.

For LSAPA and deterministic Axial Sum Policy, Figure 6.1a shows the learning

rate in logarithmic scale. Both policies converge to their peak performance around

200 iterations, but the LSAPA policy collects more reward. Figure 6.1 shows the

149

Chapter 6. PEARL for Stochastic Dynamical Systems with Continuous Actions

trajectories planned with LSAPA and a deterministic axial sum in an environment

with N (2, 0.5) noise. Although both quadrotor’s and the load’s speeds are noisy

(Figures 6.1b and 6.1c), the position moves smoothly and arrives near the goal

position where it remains. This is in contrast to trajectories planned with a deter-

ministic axial sum that never reaches the origin.

6.2.3 Rendezvous Task

The Rendezvous Task involves two heterogeneous robots, an aerial vehicle with

the suspended load, and a ground robot. The two robots work together for the

cargo to be delivered on top of the ground robot (Figure 5.7), thus the load must

have minimum oscillations when they meet. We use the same setup as in Section

5.2.3. Supplying this information to the Algorithm 6.11, we get the parametriza-

tion for the state-value approximation.

To evaluate how the resulting policy behaves for different initial conditions

starting from 5 m apart, we run it for 100 different initial positions of the aerial

and ground robots for a disturbance with aN (1, 1) distribution. Table 6.3 presents

the results. Rendezvous Task policy reaches a rendezvous less that 1 cm apart on

average, while deterministic Axial Sum Policy diverges from the goal. LSAPA

spends 4.36 s on average to plan the 15 s trajectory.

Figure 6.2 shows a trajectory of the Rendezvous Task learned with Algorithm

6.11 and created with the LSAPA (Algorithm 6.10). The two robots rendezvoused

in 4 s, after the initial failed coordinated slow down at 1 s. Note, that the targeted

position for the quadrotor is 0.6 s in order for the load to be positioned above the

ground robot.

150

Chapter 6. PEARL for Stochastic Dynamical Systems with Continuous Actions

6.2.4 Flying Inverted Pendulum

The last task we consider is Flying Inverted Pendulum. With the exception of the

maximum acceleration, which is 5 m s−2 here, the we use the same setup as in

Section 5.2.4. To access the adaptive planning, we learn the policy with the deter-

ministic CAFVI. In the planning phase, we use a disturbance probability density

function N (1, 1) and a pole initial displacement of 23°. While the deterministic

sum solves this problem and balances the inverted pendulum in the absence of the

disturbances and small zero-mean disturbances (N (0, 0.5) in Table 5.6), it fails to

balance the inverted pendulum for non-zero mean noise. In contrast, LSAPA pol-

icy solves the task (Figure 6.3). Figure 6.3a shows the quadrotor’s trajectory and

Figure 6.3b displays pendulum position in Cartesian coordinates relative to the

target position above the quadrotor. During the first 5 s, the first subtask brings

the pole upright, followed by the second task that slows down the quadrotor.

The pole is slightly disturbed during the initial slowdown but returns to upright

shortly.

Figure 6.4 depicts the results of the trajectory characteristics as the number

of samples dn in Algorithm 6.10 increases. The smallest number of samples is

three. The accumulated reward (Figure 6.4a) increases exponentially below 10

samples. Between 10 and 20 samples the gain decreases, and the peak perfor-

mance is reached after 20 samples. Increased sampling beyond that point brings

no gain. We see the same trend with the pole displacement (Figure 6.4b) and speed

magnitude (Figure 6.4c).

151

Chapter 6. PEARL for Stochastic Dynamical Systems with Continuous Actions

6.3 Conclusion

This chapter presented a method for policy approximation and RL for robots

learning PBTs in environments with external stochastic disturbances. The method

uses least squares linear regression to find an optimal action on each axis. The re-

sulting action is a combination of the axial maximums. Placed in the AVI setting,

we presented a learning algorithm that learns to perform the task. The work is

a stochastic extension of methods in Chapter 5, where we showed that in deter-

ministic kinematic systems with a bounded drift learning a PBTs with quadratic

features with negative weights, the goal state becomes asymptotically stable and

the policy is safe for the physical system. This paper takes an empirical approach

to access the safety of the policy. We showed that the method is applicable for a

range of practical problems, and offered a discussion on feature vector selection

from a task description.

152

Chapter 6. PEARL for Stochastic Dynamical Systems with Continuous Actions

Ta
bl

e
6.

2:
Su

m
m

ar
y

of
le

ar
ni

ng
re

su
lt

s
fo

r
M

in
im

al
R

es
id

ua
l

O
sc

ill
at

io
ns

Ta
sk

ta
sk

av
er

ag
ed

ov
er

10
0

tr
ia

ls
.

Po
lic

y,
in

-

je
ct

ed
no

is
e

di
st

ri
bu

ti
on

,t
im

e
ne

ed
ed

to
le

ar
n

th
e

po
lic

y,
ti

m
e

to
pl

an
a

tr
aj

ec
to

ry
,a

ve
ra

ge
di

st
an

ce
fr

om
th

e
go

al
an

d
lo

ad

di
sp

la
ce

m
en

td
ur

in
g

th
e

la
st

1
s

of
th

e
fli

gh
t,

an
d

m
ax

im
um

lo
ad

di
sp

la
ce

m
en

t.

Po
lic

y
N

oi
se

C
om

pu
ta

ti
on

al
Ti

m
e

(s
)

D
is

ta
nc

e
(c

m
)

Sw
in

g
(◦

)
M

ax
.S

w
in

g
(◦

)

µ
σ

2
Le

ar
ni

ng
Pl

an
ni

ng
µ

σ
µ

σ
µ

σ

0.
00

0.
50

56
.1

3
0.

87
2.

20
10

.7
2

0.
21

0.
51

12
.4

7
2.

09

1.
00

0.
50

55
.5

9
0.

86
1.

58
3.

94
0.

18
0.

29
12

.1
6

1.
84

LS
C

A
V

FI
2.

00
0.

50
56

.0
2

0.
87

1.
68

8.
68

0.
18

0.
50

12
.6

0
2.

02

(S
to

ch
as

ti
c)

0.
00

1.
00

55
.7

4
0.

87
1.

42
1.

43
0.

30
0.

29
12

.5
1

2.
30

1.
00

1.
00

55
.7

1
0.

86
3.

84
2.

46
0.

31
0.

19
11

.8
5

1.
91

2.
00

1.
00

55
.6

1
0.

86
15

.0
6

25
.0

8
0.

56
0.

52
12

.5
6

2.
06

0.
00

0.
50

21
.4

1
0.

30
0.

69
1.

06
0.

13
0.

15
13

.0
3

1.
94

1.
00

0.
50

18
.4

7
0.

30
15

.5
9

2.
57

0.
12

0.
08

12
.8

7
2.

00

C
A

FV
I

2.
00

0.
50

19
.2

0
0.

30
30

.9
5

6.
83

0.
19

0.
58

13
.6

5
1.

91

(D
et

er
m

in
is

ti
c)

0.
00

1.
00

18
.9

2
0.

30
2.

28
7.

22
0.

30
0.

48
12

.4
9

2.
05

1.
00

1.
00

18
.7

6
0.

30
15

.9
1

3.
45

0.
27

0.
29

12
.8

9
2.

11

2.
00

1.
00

18
.7

0
0.

30
32

.9
5

6.
03

0.
35

0.
30

13
.6

0
2.

10

153

Chapter 6. PEARL for Stochastic Dynamical Systems with Continuous Actions

50 100 150 200 250 300
−10

11

−10
10

−10
9

−10
8

−10
7

−10
6

Episode

A
cc

u
m

u
la

te
d

 r
e

w
a

rd

LSCAFVI
Deterministic CAFVI

(a) Learning rate

0 1 2 3 4 5 6 7
−2

−1

0

x
 (

m
)

0 1 2 3 4 5 6 7
−2

−1

0

y
 (

m
)

0 1 2 3 4 5 6 7
0

0.5

1

t (s)

z
 (

m
)

0 1 2 3 4 5 6 7

0

0.5

1

v
x
 (

m
/s

)

0 1 2 3 4 5 6 7

0

0.5

1

v
y
 (

m
/s

)

0 1 2 3 4 5 6 7
−0.8
−0.6
−0.4
−0.2

0

t (s)

v
z
 (

m
/s

)

LSCAFVI Deterministic CAFVI

(b) Quadrotor trajectory

0 2 4 6

−5

0

5

ω
 (

°
)

0 2 4 6

−5

0

5

t (s)

φ
 (

°
)

0 2 4 6
−40

−20

0

20

v
ω
 (

°
/s

)

0 2 4 6
−40

−20

0

20

t (s)

v
φ
 (

°
/s

)

LSCAFVI Deterministic CAFVI

(c) Load trajectory

Figure 6.1: Stochastic Minimal Residual Oscillations Task - learning curve and trajec-
tory created with SCAFVI compared to a trajectory created with deterministic Axial Sum
Policy with disturbance of N (2, 0.5)

154

Chapter 6. PEARL for Stochastic Dynamical Systems with Continuous Actions

Table 6.3: Summary of planning results created with LSAPA (Algorithm 6.10) and deter-
ministic Axial Sum Policy for Rendezvous Task averaged over 100 different inital condi-
tions. Disturbance: N (1, 1) Policy, injected noise distribution, time needed to learn the
policy, time to plan a trajectory, average distance from the goal and load displacement
during the last 1 second of the flight, and maximum load displacement.

Policy
Deterministic

LSAPA Axial Sum
Computational Learning 91.99 23.37
Time (s) Planning 4.36 1.21
Distance µ 0.75 4459.46
(cm) σ2 0.29 317.69
Swing µ 0.34 17.21
(◦) σ2 0.14 2.22
Max. Swing µ 33.14 22.46
(◦) σ2 11.94 3.19

0 1 2 3 4 5 6 7
−4

−2

0

2

x
 (

m
)

0 1 2 3 4 5 6 7
−4

−2

0

2

y
 (

m
)

0 1 2 3 4 5 6 7
0

0.5

1

t (s)

z
 (

m
)

0 1 2 3 4 5 6 7
−2

0

2

4

v
x
 (

m
/s

)

0 1 2 3 4 5 6 7
−2

0

2

4

v
y
 (

m
/s

)

0 1 2 3 4 5 6 7

−1

0

1

t (s)

v
z
 (

m
/s

)

Aerial Ground

(a) Quadrotor trajectory

0 2 4 6
−50

0

50

ω
 (

°)

0 2 4 6
−50

0

50

t (s)

φ
 (

°)

0 2 4 6
−100

0

100

v
ω
(°

/s
)

0 2 4 6
−100

0

100

t (s)

v
φ
 (

°/
s
)

Aerial

(b) Load trajectory

Figure 6.2: Rendezvous Task trajectories with N (1, 1).

155

Chapter 6. PEARL for Stochastic Dynamical Systems with Continuous Actions

0 5 10 15
−2

0

2

4

6

t (s)

x
(m

)

0 5 10 15
−30

−20

−10

0

t (s)

y
(m

)

0 5 10 15
−1

0

1

2

t (s)

v x (
m

/s
)

0 5 10 15
−6

−4

−2

0

t (s)

v y (
m

/s
)

(a) Quadrotor trajectory

0 5 10 15
−0.05

0

0.05

0.1

0.15

t (s)

a
 (

m
)

0 5 10 15
−0.2

−0.1

0

0.1

0.2

t (s)

b
 (

m
)

0 5 10 15
−0.4

−0.2

0

0.2

0.4

t (s)

v a
 (

m
/s

)

0 5 10 15
−0.2

0

0.2

0.4

0.6

t (s)

v b
 (

m
/s

)

(b) Inverted trajectory

Figure 6.3: Flying inverted pendulum trajectory created with stochastic Axial Sum Policy
with disturbance of N (1, 1).

0 10 20 30 40 50
−10

−8

−6

−4

−2

0

x 10
29

A
c
c
u

m
u

la
te

d
 r

e
w

a
rd

Number of sampels

(a) Accumulated reward

0 10 20 30 40 50
10

−3

10
−2

10
−1

10
0

10
1

D
is

p
la

c
e

m
e

n
t

Number of sampels

(b) Displacement (logarith-
mic)

0 10 20 30 40 50
−10

0

10

20

30

40

50

60

70

S
p

e
e

d

Number of sampels

(c) Speed

Figure 6.4: Trajectory characteristics per number of samples in stochastic flying pendu-
lum with disturbance N (1, 1), calculated stochastic sum and averaged over 100 trials.

156

Chapter 7

PEARL as a Local Planner

This chapter places CAFVI in the context of a local planner to offer another

method for solving Cargo Delivery Task (Definition 4.1.5). This solution integrates

path planning with the control of the system.

Decoupled motion planning for dynamical systemswith static

obstacles

Environment learningDynamics Learning Trajectory planning

Monte Carlo

selection

Value function

approximation

Policy

PRM Trajectory

(a) Decoupled (b) Integrated

Figure 7.1: Decoupled (a) and integrated (b) architecture frameworks.

157

Chapter 7. PEARL as a Local Planner

7.1 Integrated Path and Trajectory Planning

In Chapter 4, we developed a motion planning method for creating trajectories for

holonomic UAVs that constrain the load displacement while avoiding obstacles in

a static environment. At the heart of the method was decoupling of learning the

physical environment and learning the system dynamics constraints. This method

combined the advantages of being highly concurrent and flexible with the abil-

ity to change among a wide-variety of algorithms. Although this method solves

Minimal Residual Oscillations Task, it required path bisecting to solve the Cargo

Delivery Task, which slows down the task (Chapter 4). Here we integrate the tra-

jectory generation with path planning. We propose an integrated framework (see

Figure 7.1b), where an efficient motion planner is used as a local planner to reject

paths that violate task-constraints, i.e., predicted load displacement.

The motion planner is an agent that executes Axial Sum Policy. We assume

start and goal states in C-space. Without loss of generality, we can also assume

that they are valid (C-free) states: free of collision, and with both task and dynam-

ics constraints satisfied at zero velocities. Otherwise, we can make a quick check

and return without further processing. The algorithm takes a swing-constant ε

(task constant), task preferences, and dynamical constraints as inputs. The dy-

namical constraints put limits on the actuators, i.e., acceleration. When either of

the limits is violated the system’s safety cannot be guaranteed, and the task cannot

be performed.

Algorithm 7.12 describes the motion planner. It works simultaneously in both

the C-space and MDP space. It starts with the initial state and repeatedly finds the

best action to perform, validates that the action and resulting state satisfy both

dynamical and task-mandated constraints, and that it is free of collision. If all the

conditions are met, the algorithm continues on to the next state. It stops when the

158

Chapter 7. PEARL as a Local Planner

resulting state is the goal state, when a maximum number of steps is reached, or

if any of the constraints are violated.

Algorithm 7.12 Task-based motion planner.
Input: ss, sg: start and goal

Input: V: approximation of MDP value function

Input: W: workspace generative model

Input: Vol robot’s geometric bounding volume,

Input: D generative model of system dynamics

Input: dynLimits, taskLimits, maxSteps

Output: success

1: s′ ← toMDPSpace(ss)

2: success← true, steps← 0

3: while success ∧ steps < maxSteps ∧ ‖s′ − sg‖ > ε do

4: s← s′

5: a← selectAction(s, dynLimits, D, V) per Equation (5.11)

6: s′ ← D.predictState(s, a)

7: taskOK ← checkTaskConstraints(s′, taskLimits)

8: cs′ ← toCSpace(s′)

9: con f igOK ← checkCon f ig(cs′, W, Vol)

10: success← taskOK ∧ con f igOK, step← step + 1

11: end while

12: success← success ∧ ‖s′ − sg‖ < ε

13: return success

To allow the agent to navigate in environments with static obstacles, we in-

tegrate the motion planner described in Algorithm 7.12 with PRMs. Under this

setup the motion planner acts as a local planner, and only edges that conform to

task and dynamics limits are added to the roadmap. Since the planner ensures that

the constraints are met, we can set the weights on the edges to a metric related to a

159

Chapter 7. PEARL as a Local Planner

quality of a trajectory. For example, instead of using the shortest distance metric,

we might be looking for the fastest trajectories, and setting the edge weight to the

trajectory duration. PRMs then find a path through the roadmap that minimizes

the edge weight.

Figure 7.1b shows the overview of the integration of the RL-based planner

with PRMs. The key to this framework is that we learn the system dynamics and

environment separately. First, we use RL to learn the dynamics of the system.

We learn using a Monte Carlo selection: multiple policies are learned simultane-

ously and the fittest one is selected. The fitness metric can be the duration of the

trajectory. Then the value function is passed to the PRMs, which learn a particu-

lar environment using the RL-based motion planner as a local planner. Once the

roadmap is constructed it can be used for any number of queries in the environ-

ment. The value function is robot and task dependent, and the same function can

be used for a multitude of environments, as we will show in the results.

The computational efficiency of the motion planner allows it to be used in this

manner. A roadmap with n nodes requires O(n2) edge calculations, thus the time

required to compute the roadmap still scales linearly with with product of state

and action space dimensionality. We use the geometric robot model developed in

Section 4.2.4 and depicted in Figure 4.1c. The quadrotor with the suspended load

is modeled as a combination of two rigid bodies: a cylinder for the quadrotor,

and a cone for the suspended load. The cone’s aperture corresponds to the maxi-

mum allowed swing, and ensures that the load does not come in contact with the

environment.

160

Chapter 7. PEARL as a Local Planner

7.2 Results

We evaluate the local planner integrated with PRMs in obstacle-laden environ-

ments. A model of a city, our simulation environment, allows us to test the al-

gorithm over longer distances; while two experimental environments allow us

to compare to previous methods and to experimentally verify the algorithm on a

Hummingbird quadrotor UAV equipped with a suspended load. We use the same

set described in Section 4.3.4.

Figure 7.2: City simulation envrionment.

7.2.1 Simulations

To verify our planner in large spaces we use the city model depicted in Figure 7.2.

This virtual benchmark represents an urban environment. In cities, UAVs perform

Cargo Delivery Tasks such as carrying injured people to hospitals and delivering

packages. Both need to be done in the timely manner, avoiding obstacles, and

controlling the load displacement. There are numerous obstacles in this environ-

161

Chapter 7. PEARL as a Local Planner

ment, and this benchmark tests the methodology in a cluttered environment. The

city block is 450 m, 700 m long, and 200 m tall. Its bounding box is 250 million

times larger than the quadotor’s model shown in Figure 4.1c.

We randomly select 100 locations in C-free within the city. Then we generate

trajectories from a fixed origin to all 100 destinations. The Axial Sum planner tra-

jectories are compared to the discrete greedy trajectories. To generate the discrete

trajectories, we first created a collision-free path using PRMs with a straight line

planner and the simplified robot model from Figure 4.1c. Recall that the geometry

of the model ensured that if the load displacement during the trajectory was be-

low 45◦, the trajectory will be free of collision. Then, in the second step, we used

the nodes from the path and generated the Minimal Residual Oscillations Trajec-

tories with discrete actions between the nodes in the path. To generate trajectories

in the continuous case, the planner was used as described in Section 7.1, requir-

ing the load displacement to be under 45°. We measure the load displacement,

trajectory duration, and number of waypoints.

Figure 7.3 shows the load displacement and trajectory duration results. The

xy-plane contains the city projection. The red area marks the origin location. The

data points’ x and y coordinates are the queries’ goal location in the city projected

onto the xy-plane. The data points’ z-coordinates in Figure 7.3a are the maximum

load displacement throughout the trajectory, and in Figure 7.3b the time it takes to

complete the trajectory. Points represented as squares (green) are the result of the

discrete planner, and the triangle points (blue) are generated with the continuous

action planner.

Figure 7.3a shows that the maximum load displacement in the continuous case

is consistently below the load displacement exhibited with the discrete planner.

Table 7.1 shows that the load displacement in the continuous case stays under the

required 45°, while in the discrete case the load’s suspension cable almost gets

162

Chapter 7. PEARL as a Local Planner

(a) Load displacement

(b) Duration

Figure 7.3: Trajectory statistics in the City Environment. Load displacement (a) and tra-
jectory duration (b) for continuous action planner (triangle), compared to discrete planner
(square) in the city environment. City image is projected on the xy-plane.

parallel to the UAV’s body for some trajectories.

To offset the load displacement control, the trajectories with the continuous

action planner take a longer time to complete the task (see Figure 7.3b and Table

7.1). They generally take twice as long to complete and contain on average 5

163

Chapter 7. PEARL as a Local Planner

Table 7.1: Summary of trajectory characteristics for continuous and discrete action plan-
ners over 100 queries in the city environment. Mean (µ), standard deviation (σ), minimum
and maximum are shown. Best results are highlighted.

Method Continuous Discrete

Load displacement(◦)

µ 41.44 62.58
σ 1.77 10.36

min 36.22 36.31
max 44.76 89.86

Duration (s)

µ 252.76 116.35
σ 171.34 56.72

min 33.36 48.16
max 565.84 262.84

Waypoints

µ 12.88 1.74
σ 9.74 1.00

min 1.00 1.00
max 31.00 6.00

times more waypoints. Figure 7.3b shows that in the vicinity of the origin, both

continuous and discrete trajectories have similar durations. As the goal’s distance

from the origin increases, the discrepancy becomes more significant. And even

when the trajectories are over 1 km in length, the flights complete within 10 min.

7.2.2 Experiments

The goal of the experiments is to evaluate the motion planner and its integration

with PRMs for a physical robot and validate the simulation results. Using the

setup described in Section 4.3.4, we compare simulation and experimental trajec-

tories and look for discrepancies in the length, duration, and load displacement

over the entire trajectory.

In Environment 1 from Figure 4.10b, we created a roadmap using the contin-

uous action local planner. We require that load displacement not exceed 10° with

respect to L∞ norm. The resulting planned trajectory is flown in the testbed. Fig-

ure 7.4 depicts the resulting vehicle and load trajectories. We can see that the vehi-

164

Chapter 7. PEARL as a Local Planner

cle trajectories match closely between simulation and experiment. The results also

suggest that the load displacement stays under 10°, even in experiments. Further,

the discrepancy between simulation and experiments of 10° remains consistent

with our previous results from Section 4.3.2. This is due to the unmodeled load

turbulence caused by the propellers’ wind.

In the next set of experiments, we create a trajectory in the same environment

using the discrete action trajectory generation with PRMs method described in

7.2.1. The resulting trajectory was flown in the testbed and its results are in Fig-

ure 7.4. Note that the vehicle trajectory differs in this case. This is because the

roadmaps in the two cases differ. The roadmap with straight line planner does

not directly control the load displacement, while the roadmap created with the

continuous action planner rejects edges that exceed the maximum allowed load

displacement. The load trajectory (Figure 7.4 (b)) indicates that the load displace-

ment exceeds the 10° limit 2.5 s into the flight.

7.3 Conclusion

This chapter presented another method for applying the policy approximation de-

veloped in Chapter 5. The two solutions for Cargo Delivery Task, one presented

here and the other one developed in Chapter 4 have different strengths. The in-

tegrated path and trajectory planning solution develops faster trajectories, while

the decoupled solution (Chapter 4) offers more flexibility in the choice of the local

planner and trajectory generation algorithms.

165

Chapter 7. PEARL as a Local Planner

0 2 4 6 8 10
−1

0
1

x
 (

m
)

0 2 4 6 8 10
−1

0
1

y
 (

m
)

0 2 4 6 8 10
0

0.5
1

1.5

t (s)

z
 (

m
)

Exp. cont
Exp. disc.
Sim. cont.

(a)

0 2 4 6 8 10
−15
−10

−5
0
5

10
15

ω
 (

°
)

0 2 4 6 8 10
−15
−10
−5

0
5

10
15

t (s)

φ
 (

°
)

Exp. cont.
Exp. Discr.
Sim. cont.

(b)

Figure 7.4: Results of experimental quadrotor (a) and load (b) trajectories planned with
continuous actions compared to the experimental trajectory with discrete actions and sim-
ulated trajectory with continuous actions.

166

Chapter 8

PEARL for Non-Motion Tasks

To evaluate PEARL’s generality, we apply it to software development. This chap-

ter contributes:

• A controlled dynamical system formulation for algorithmic computing (Sec-

tion 8.1), and

• A PEARL sorting agent (Section 8.2).

Software development is time consuming and error prone [46]. Often the soft-

ware is intended to run under unforeseen conditions. Nowadays, software in-

teracts with other software components that may be unreliable due to malware

or bugs [3]. Yet, unlike robotics, software engineering handles reliability through

development process best practices such as code reviews, pair-programming [46],

and design patterns [19]. In high consequence applications where human life is

at risk, the correctness of specific routines is proven mathematically, a difficult

method requiring highly specialized knowledge [46]. Given the similarities in the

operating uncertainties of the software and robots, we apply PEARL to software

engineering for developing RL computing agents. This method takes require-

167

Chapter 8. PEARL for Non-Motion Tasks

ments as input, and produces an agent that performs the desired computation.

We consider the computation to be trajectory planning in the program’s variable

space [91]. After establishing a dynamical system for computing, a case study

applies PEARL to array sorting in the presence of the unreliable comparison com-

ponents.

8.1 PEARL for Computing Agents

To develop computing agents with PEARL framework, we need to formulate its

MDP M (S, A, D, R), and define task-preference features. The control problem

definition, (S,A,D) part of MDP, requires determination of the state space, control

input (action space), rules for state transformations, and the time interval at what

the changes occur. We consider deterministic programs, where a program’s out-

come is determined by two factors: initial state of its variables, and the sequence

of steps (algorithm) that solves the program. We do not consider global variables

that can change without program’s knowledge.

At run-time the program’s in-scope variables and the location of the instruc-

tion counter uniquely determine the program’s state (configuration) [91]. Regard-

less of how a program got into a certain configuration, the computation unfolds

the same from that point. Thus, a program’s state space is the space of all variable

values. Without loss of generality, we assume all variables to be real numbers.

Thus, a state space for a program with ds variables is S = Rds , and a state is sim-

ply an ds-dimensional vector. Operations that change the variables are the action

space. These are programming constructs such as assignment, arithmetic operations,

and changing instruction pointer, etc.The control-flow constructs, if-then-else, and

loops, are controller switches. Instructions are performed at discrete time steps

per internal clock tick. The state transitions are determined by executing instruc-

168

Chapter 8. PEARL for Non-Motion Tasks

tions in the instruction register. A program seen this way is a controlled dynamical

system that changes the state vector over time until the computation stops. Under

this paradigm, a computation is a trajectory in the variable space starting with

an initial state of variables (initial vector) and terminating at the goal state (goal

vector). We now show that a program with assignment, addition (subtraction),

and swap operations is a nonlinear dynamical system. Because the states are vec-

tors, the operations are vector transformations and can be represented with the

transformation matrices. Proposition 8.1.1 formalizes that.

Proposition 8.1.1. A program P with da local variables and assignment, summation, and

swap operations is a nonlinear discrete time and input system.

Proof. The proof is by construction. The variable manipulations are changes in the

vector space, transforming one vector to another. Finding a transformation matrix

between the vectors proves the proposition.

Let s = [x1, ..., xm]T ∈ Rna be a vector representing the current state of vari-

ables, and the assignment operation xi ← xj assigns the value of the jth vari-

able to the ith variable. Consider a square da-by-da matrix Ta
i,j, where its elements

tk,l, 1 ≤ k, l ≤ da are defined as follows:

tk,l =


1 k = i, l = j,

1 k 6= i, k = l

0 otherwise

.

This matrix differs from the identity matrix only in the ith row, where the ith ele-

ment is zeroed out, and jth element is set to one. Then, vector s′ = Ta
i,js, is a vector

with ith component equal to xj, and other components unchanged from s. Simi-

larly, matrix Tc
i , where ti,i = c, tk,k = 1, k 6= i and zero otherwise, assigns constant

c to the ith variable.

169

Chapter 8. PEARL for Non-Motion Tasks

We show construction of the two-variable summation action matrix, although

the general case can be shown with induction. Consider action matrix Ta
i,j1,j2

de-

fined with

tk,l =


1 k = l, k 6= i,

1 k = i, l ∈ {j1, j2}
0 otherwise

.

As previously, this matrix differs from the identity matrix only in the ith row,

where only elements j1 and j2 are non zero.

Lastly, we construct a transformation matrix Ts
i,j that swaps xi and xj. Consider

tk,l =



1 k = i, l = j

1 k = j, l = i

1 k = l, k 6= i, j

0 otherwise

.

Finally, when the action space is set of transformation matrices,

Ta
i,j, Tc

i , Ta
i,j1,j2 , Ts

i,j, i, j = 1, . . . , ds,

the variable space manipulation with an action T is a nonlinaer dynamical system

f (s) = Ts.

All programs are nonlinear control systems per Proposition 8.1.1, thus the con-

trol theory tools can be applied for program analysis.

Having formulated the control problem (S, A,D), we need the reward for the

MDP formulation. The reward is a scalar feedback on state quality. Typically, the

reward is given only when the goal is reached [120], or using a simple metric of

a state when available. Lastly, preference-features are the often opposing algo-

rithm’s properties that the software architect requires of the system. For example,

170

Chapter 8. PEARL for Non-Motion Tasks

we desire both a fast algorithm and high-precision computation. We are looking

for the right combination of the trade-offs that express themselves as some com-

bination of features. Once the learning is set up, applying PEARL to the problem

results in a computing agent. During planning, given an initial state, the agent

transitions to the reachable state with the highest value, thus progressing the sys-

tem to the solution.

8.2 Case Study in Software: PEARL Sorting

After demonstrating the PEARL’s use on a robotic tasks, we use the same toolset

to solve array sorting, a primitive computer science problem. Specifically, we

develop a sorting agent that uniformly progresses to produce a sorted array.

The array sorting state space is the ds-element array itself; S = Rds . The action

space is the discrete set of possible element repositions, A = {(i, j)|i, j = 1..ds}.
Action (i, j), acts as a list insert, it removes array’s ith element and inserts it into

the jth position. Considering the arrays as vectors, the actions are permutations

of the vector’s coordinates, and are reversible. Indeed, transformation matrix Ti,j,

repositions ith element to the jth position when i < j, when its elements are defined

as

ak,l =



1 k = l, k < i

1 k = l, k > j

1 k = j, l = i

1 i ≤ k < j, l = k− 1

0 otherwise

, i ≤ j and

171

Chapter 8. PEARL for Non-Motion Tasks

ak,l =



1 k = l, k < j

1 k = l, k > i

1 k = j, l = i

1 j < k ≤ i, l = k + 1

0 otherwise

, i ≥ j.

The reward is binary: positive when the array is sorted, and zero otherwise.

The PEARL sort uses the number and the sum of adjacent out-of-order ele-

ments as distance-preferences. The second preference ranks arrays with similar

elements close together as more sorted than arrays with large variations between

adjacent elements. The first feature is defined as F 1(s, ds) = ∑ds
i=2(id(s(i)− s(i−

1) < 0)), and the second is F 2(s, ds) = ∑ds
i=2((s(i)−s(i− 1))2id(s(i)− s(i− 1) <

0)), where id(cond) is an identity function, equal to one when the condition is

true, and zero otherwise. Value function approximation, V(s) = θTF (s, ds), for

F (s, ds) = [F 1(s, ds) F 2(s, ds)]T, has a global maximum if both elements of the

θ are negative per Proposition 4.2.1. Note, that we use the discrete PEARL variant

here because array element swap actions is a finite set, and the dynamics has no

smoothness guaranties.

To learn the parametrization θ we run the AVI with discrete actions. The sam-

ples are drawn uniformly from the space of 6-element arrays with values between

zero and one, ss ∈ (0, 1)6. The 6-element arrays provide a good balance of sorted

and unsorted examples for the learning, determined empirically. We train the

agent for 15 iterations. The resulting parametrization, θ = [−1.4298− 0.4216]T,

has all negative components and meets the progression-to-goal condition in

Proposition 4.2.1. The learning curve (Figure 8.1a) shows the averaged cumu-

lative reward when sorting a 25-element array, over the learning iterations. The

cumulative reward increases with the iterations. After 7 iterations, the accumu-

172

Chapter 8. PEARL for Non-Motion Tasks

0 5 10 15
−1.65

−1.6

−1.55

−1.5

−1.45

−1.4

−1.35
x 10

4

Learning iteration

C
um

ul
at

iv
e

re
w

ar
d

(a) Learning curve

10
0

10
1

10
2

10
3

−3

−2

−1

0
x 10

5

V
al

ue

t (# swaps)

RL Bubble Quick

(b) Reliable

10
0

10
1

10
2

10
3

−3

−2

−1

0
x 10

5

V
al

ue

t (# swaps)

RL Bubble Quick

(c) 5% unreliable

Figure 8.1: Learning curve (a) and value progression over time for an array sorted with
RL, bubble, and quick sorts with a reliable (b) and 5% unreliable (c). x-axis is logarithmic
in (b) and (c).

lated reward converges, and the agent reaches optimum performance.

We compare the PEARL sort performance to bubblesort, and quicksort meth-

ods. The bubblesort repeatedly scans the list and swaps adjacent out-of-order

elements. Quicksort selects a pivot element, and creates three sublists that are

smaller, equal, and larger then the pivot. It then performs a recursive sort on

the lesser and greater elements and merges the three lists together. The two al-

gorithms represent two sorting extremes [3]. Quicksort is a single-pass algorithm

making large changes in element placement. On the other hand, bubblesort makes

small changes repeatedly until it completes. The dataset consists of 100 arrays

with 10, 50, and 100 uniformly randomly drawn elements. We consider sorted,

173

Chapter 8. PEARL for Non-Motion Tasks

sorted in reverse, and unsorted elements. In addition, we consider reliable and

unreliable comparison routines because modern software increasingly depends

on potentially unreliable components [3]. While the reliable routine always com-

pares two numbers correctly, the unreliable one returns an arbitrary answer with

a 5% probability.

Table 8.1 summarizes the sorting performance. PEARL sort finds a solution

with the least changes to the array. This is because the PEARL sort does not make

the comparisons in the same way traditional sorting algorithms do. Most of its

time is spent calculating features that are quadratic. PEARL sort performs the

best on the sorted, and worst on unsorted lists. Bubblesort, on the other hand,

performs worst for arrays in reversed order. In contrast, quicksort changes the

array a consistent number of times regardless of the array’s order.

In the presence of an unreliable comparison (Table 8.1), the number of changes

to the array that PEARL sort and quicksort perform do not change significantly

(less than two standard deviations). The bubblesort, however, changes the array

twice as much. Next, we look into the array error. The error is a Euclidean dis-

tance, d(so, ss) = ‖so − ss‖, between an outcome of sorting with an unreliable

component, so ∈ Rds , and the reliably sorted array, ss ∈ Rds . No error means that

the algorithm returned a sorted array, while high error indicates big discrepancies

from the sorted array. Note that this similarity metric would have been an ideal

feature vector, but it is impossible to calculate it without knowing the sorted ar-

ray. With 5% noise, the PEARL sort’s error remains consistent and small across

the datasets and array sizes, although with a relatively high standard deviation.

Bubblesort has a comparable error level but makes an order of magnitude more

array changes. The quicksort completes with an order of magnitude higher error,

for all datasets and array sizes. It is clear that PEARL sort is robust to noise and

changes the array the least.

174

Chapter 8. PEARL for Non-Motion Tasks

Figure 8.2 visualizes sorting progression of the same array with the three

methods, with a reliable component. Runs end at 111, 433, and 608 steps for

PEARL sort, quicksort, and bubblesort respectively. Bubblesort makes small, local

changes and quicksort’s movements around pivot make large steps movement.

The PEARL sort (Figure 8.2a) makes a hybrid approach: the array is sorted into

progressively larger sorted subgroups. This is because the agent reduces the num-

ber of adjacent out-of-order elements at each step. Figures 8.2d-8.2c depict the

same array sorted with a faulty comparison. Although PEARL sort takes a dif-

ferent trajectory as the result of the faulty information, it arrives at the goal state,

sorted array. The inaccurate information affects bubblesort locally, because its de-

cisions are local, and it too produces a sorted array. On the other hand, quicksort,

does not revisit sections of the array it previously sorted. Without the redundancy,

it fails to sort the array, explaining the high error rates in Table 8.1. Visualizing the

intermediate array values, V(s) = θTF (s), Figs. 8.1b and 8.1c offer another view

into the algorithms’ progression. The PEARL sort with the reliable comparison

monotonously progresses to the sorted array, empirically showing asymptotic sta-

bility based on findings in [41]. Bubblesort and quicksort have setbacks and do not

progress monotonically. When the comparison is unreliable, (Figure 8.1c) quick-

sort fails to reach the same value level as PEARL sort because it stops computation

after the first pass. Bubblesort, revisits decisions and corrects the faulty decisions,

so it eventually reaches the same value level as the PEARL sort.

8.3 Conclusion

This chapter used the same framework as previously used for robotic tasks to

solve array sorting with unreliable comparison components. This required formu-

lation of computing as a nonlinear control problem. The PEARL sorting agent was

175

Chapter 8. PEARL for Non-Motion Tasks

(a) Reliable RL sort (b) Reliable Bubble sort (c) Reliable Quicksort

(d) Unreliable RL sort (e) Unreliable Bubble sort (f) Unreliable Quicksort

Figure 8.2: Sorting progression. A 50-element random array sorted with PEARL, bub-
blesort and quicksort with a reliable comparison (a-c) and 5% unreliable (d-f) comparison
components. Time steps are on x-axis, and the array element heatmap is on y-axis. Blue
colored are the smallest, and red colored are the largest array elements. Runs end when
the array is fully sorted.

compared to two traditional sorting algorithms. The results showed that PEARL

sorting agent completes the task with less array element swaps even than the two

traditional algorithms.

176

Chapter 8. PEARL for Non-Motion Tasks

Table 8.1: Sorting characteristics demonstrating the impact of random initial distance,
the array length, and noise in the comparison routine. Measures the number of swaps
between the elements and computational time. The results are averaged over 100 trials.

Reliable com-
parison

5% Unreliable comparison

Algorithm Dataset Array # Swaps # Swaps Error
length µ σ µ σ µ σ

Sorted
10 1.00 0.00 1.00 0.00 2.12 15.20
50 1.00 0.00 1.00 0.00 6.22 26.57

100 1.00 0.00 1.00 0.00 4.82 23.27

Reversed
10 10.00 0.00 10.83 1.33 4.99 20.70

PEARL 50 50.00 0.00 55.88 3.46 0.36 3.57
sort 100 100.00 0.00 110.31 7.00 3.62 25.32

Random
10 10.66 2.69 11.34 3.05 5.31 23.16
50 112.79 7.33 123.59 9.21 6.11 26.02

100 284.02 9.42 311.38 13.00 0.57 3.97

Bubble

Sorted
10 0.00 0.00 1.96 3.40 0.50 3.53
50 0.00 0.00 714.94 824.94 0.66 2.68

100 0.00 0.00 9331.80 2369.31 8.03 4.39

Reversed
10 45.00 0.00 50.93 4.85 3.42 14.57
50 1225.00 0.00 2058.29 605.55 1.06 4.03

100 4950.00 0.00 9980.28 195.54 9.97 4.71

Random
10 23.19 4.95 28.08 6.73 3.13 19.21
50 609.82 58.48 1517.21 815.87 0.91 3.34

100 2466.44 153.20 9836.22 992.49 8.96 4.84

Quicksort

Sorted
10 42.05 4.67 43.19 5.29 53.83 60.25
50 358.57 25.43 343.96 21.16 176.65 61.70

100 843.57 63.64 810.67 44.09 245.37 78.74

Reversed
10 42.45 4.83 43.11 5.44 60.17 53.58
50 356.89 25.17 350.91 23.44 173.83 66.61

100 846.15 50.54 826.82 42.72 261.82 77.31

Random
10 43.83 5.32 42.77 4.92 50.13 52.02
50 358.22 25.25 348.83 19.99 181.51 60.64

100 846.99 63.46 816.34 42.29 255.82 74.84

177

Chapter 9

Conclusions

The research presents a solution to solving the motion-based PBTs for robotic sys-

tems with unknown dynamics. The solution, PEARL framework, is founded on

RL and MP. The framework works under two-phase batch RL paradigm. Unlike

traditional batch RL solutions, the PEARL offers a method for automated fea-

ture selection, learning generalization (learning transfer) between its training and

acting phases, and computationally efficient policy approximations. The frame-

work takes a PBT problem, and extracts features. It learns to perform a task using

Monte Carlo AVI-based learning on small problems. Once the fittest policy is se-

lected PEARL uses it in the acting phase. The acting phase is an on-line or off-line

decision maker that plans the tasks execution. The planner is capable of solving

problems of the larger scale than used in learning. The method is appropriate

for systems with continuous state-space and either discrete or continuous action

spaces with unknown system dynamics.

PEARL addresses three major challenges of MP, efficiency, safety, and adapt-

ability. First, the framework addresses efficiency though the feature creation

method, learning generalization, and policy approximations. The selected fea-

178

Chapter 9. Conclusions

tures are metric based and project the high-dimensional problems state space

into low-dimensional task space. Because they are metric-based, the same fea-

tures work in spaces of variable dimensions and physical sizes. That allows the

framework to learn on small problems, and generalize the learned policies to

larger problems during the acting phase. The policy approximations solve a high-

dimensional optimization problem efficiently with sampling, enabling tractable

decision-making. Second, PEARL addresses safety by selecting a batch RL set-

ting, and performing a formal analysis. The batch setting ensures that there is

no exploration in the acting phase. The formal analysis derives conditions on the

system dynamics in relation to the task that guarantee an agent’s progression to-

wards a goal. Lastly, the polymorphic nature of the features and adaptable policy

approximations make the PEARL adaptable to unpredictable disturbances.

To evaluate the PEARL we placed it several different contexts, both with dis-

crete and continuous actions, as a basis planning including for path following

and local planning, and even, outside of robotics, to array sorting. PEARL was

also shown successful in solving several difficult robotic problems such as Aerial

Cargo Delivery, Multi-Agent Pursuit, Rendezvous, and Flying Inverted Pendu-

lum tasks. The method was successful both in simulation and experimentally.

Together, the presented research proposed, analyzed, and evaluated PEARL

framework for solving high-dimensional motion-based PBT tasks with theoret-

ical convergence guarantees and when the system dynamic is unknown. The

method’s limitations are cases when the system dynamics and tasks are incom-

patible with each other. Namely, there are two conditions when the method is

not appropriate. First, PEARL will not produce the policy that solves the task

when the combined system task-dynamics landsape is too corrugated. We have

seen that on the example of the Flying Inverted Pendulum Task, which we had to

solve with two tasks. Second, PEARL is not appropriate when the system does not

179

Chapter 9. Conclusions

contain enough power to accomplish the task, e.g., the acceleration is too weak.

Examples are large non-zero mean disturbances such as wind, and tasks such as

pendulum swing up that require strong power. Lastly, the method’s convergence

to the goal criteria for tasks with multiple intensity-reducing features is not well-

understood, and should be a topic of further study. Despite the applied method’s

somewhat restrictive conditions, the results demonstrated high accuracy and fast

learning times on the practical applications. The future research can address task

classes and formalization of the success conditions for stochastic systems. To ex-

tend PEARL to a class of related tasks, the agent would learn several examples

and adapt its behavior to any tasks within the class. Another extension would be

developing formal analysis of the probability of convergence in for the stochastic

systems in order to give an estimate of likelihood of achieving the goal given the

relationship between the system dynamics and external disturbances.

180

Appendix A

Proof for Lemma 5.1.3

Proof. First, to show that there is ∃a0 ∈ [ai
l, ai

u] such that Q(p)
s,i (a) ≥ Q(s,p), we

pick a = 0, and directly from the definition, we get Q(p)
s,i (0) = Q(s,p). As a

consequence

Q(p)
s,i (0) ≤ Q(p)

s,i (âi) (A.1)

Second, to show that Q(0)
s,i (âi)−V(s) ≥ 0,

Q(0)
s,i (âi) ≥ Q(0)

s,i (0), from Equation (A.1)

= f (s)TΛf (s) ≥ sΛs, due to Equation (5.7)

= V(s)

Third, we show Q(0, âiei) − V(0) = 0. Since, the origin is equilibrium, the dy-

namics is D(0, âiei) = 0. Thus, Q(0, âiei)−V(0) = 0.

181

Appendix B

Proof for Theorem 5.1.4

Proof. In all three cases, it is sufficient to show that the policy approximations are

admissible.

Manhattan Policy: To show that the policy approximation in Equation (5.9) is

admissible, for s 6= 0 we use induction by n, 1 ≤ n ≤ da, with induction hypothe-

sis,

∆Q(s, ân) ≥ 0, where ân =
n

∑
i=1

âiei, and

∆Q(s, ân) = 0⇔

f (s)TΛgi(s)

= 0, ∀i ≤ n,f (s)TΛf (s) = sTΛs

(B.1)

First note that at iteration 1 < n ≤ da,

D(s, ân−1 + aen) = f (s) + g(s) (ân−1 + aen)

= f (s) + g(s)ân−1 + g(s)aen

= fn(s) + gn(s)a

182

Appendix B. Proof for Theorem 5.1.4

and

Q(s,an) = (fn(s) + gn(s)a)TΛ(fn(s) + gn(s)a)

= gn(s)TΛgn(s)a2 + 2fn(s)TΛgn(s)a + fn(s)TΛfn(s)

= pna2 + qna + rn, pn, qn, rn ∈ R. (B.2)

Because Λ < 0, Q(s,an) is a quadratic function of one variable with a maximum

in

â∗n = −gn(s)TΛfn(s)
gn(s)TΛgn(s)

(B.3)

Applying the induction for n = 1, and using Lemma 5.1.3,

∆Q(s, â1) = Q(s, â1e1)−V(s)

≥ Q(s,0)−V(s)

= f (s)TΛf (s)− sTΛs

> 0, when f (s)TΛf (s) > sTΛs. (B.4)

Given that, â1 6= 0 ⇔ ∆Q(s, ân) > ∆Q(s,0), and assuming f (s)TΛf (s) = sTΛs,

we evaluate â1 = 0. From Equation (B.3),

â1 = − g1(s)TΛf (s)
g1(s)TΛg1(s)

= 0⇔ g1(s)TΛf (s) = 0 (B.5)

So, the induction hypothesis, Equation (B.1), for n = 1 holds. Assuming that

Equation (B.1) holds for 1, .., n− 1, and using Lemma 5.1.3,

∆Q(s, ân) = Q(s, ân−1 + ânen)−V(s)

≥ Q(s, ân−1 + 0)−V(s)

= ∆Q(s, ân−1) from ind. hyp. Equation (B.1)

> 0 when f (s)TΛf (s) > sTΛs.

183

Appendix B. Proof for Theorem 5.1.4

Similarly, assuming f (s)TΛf (s) = sTΛs,

∆Q(s, ân) = 0⇔

ân = −gn(s)TΛfn(s)
gn(s)TΛgn(s)

= 0, and ∆Q(s, ân−1) = 0

Since ∆Q(s, ân−1) = 0⇔ ân−1 = 0, means that fn(s) = f (s)+g(s)ân−1 = f (s),

∆Q(s, ân) = 0⇔

gn(s)TΛf (s) = 0, and ∆Q(s, ân−1) = 0⇔

gi(s)TΛf (s) = 0, for 1 ≤ i ≤ n

For n = da, the policy gain ∆Q(s, âda
) = 0 ⇔ f (s)TΛf (s) = sTΛs, and

gi(s)TΛf (s) = 0, for 1 ≤ i ≤ du. But, that is contradiction with the controllability

assumption Equation (5.4), thus ∆Q(s, âdu) > 0, when s 6= 0.

When s = 0, we get directly from Lemma 5.1.3, ∆Q(0, âda
) = 0. This com-

pletes the proof that Manhattan Policy Equation (5.9) is admissible, and therefore

the equilibrium is asymptotically stable.

Convex Sum Policy, Equation (5.10): Following the same reasoning as for the

first step of the Manhattan Policy, Equations (B.4) and (B.5), we get that for all 1 ≤
n ≤ da, ∆Q(s, ânen) ≥ 0, where ânen = argmaxan

l ≤a≤an
u

Q(0)
s,n (a) and the equality

holds only when

∆Q(s, ânen) = 0⇔ f (s)TΛgn(s) = 0,f (s)TΛf (s) = sTΛs (B.6)

To simplify the notation, let Qi = ∆Q(s, ânen), and Q0 = 0. Without loss of

generality, assume that

Q0 ≤ Q1 ≤ ... ≤ Qdu , n = 1, ..., du.

184

Appendix B. Proof for Theorem 5.1.4

The equality only holds when Equation (B.6) holds for all n = 1, ..., da which is

contradiction with the Equation (5.4). Thus, there must be at least one 1 ≤ n0 ≤ da,

such that Qn0−1 < Qn0 , and consequently 0 < Qdu .

Lastly, we need to show that the combined action â calculated with Equation

(5.10) is admissible, i.e., ∆Q(s, â) > 0. It suffices to show that â is inside the

ellipsoid Q̌0 = {a|Q(s, a) ≥ Q0}. Similarly, Q1, ..., Qdu define a set of concentric

ellipsoids

Q̌i = {a|Q(s, a) ≥ Qi}, i = 1, ..., du.

Since, Q̌0 ⊇ Q̌1 ⊇ ... ⊇ Q̌du , and ∀i, ûi ∈ Q̌i =⇒ ûi ∈ Q̌0. Because ellipsoid Q̌0

is convex, the convex combination of points inside it, Equation (5.10) belongs to it

as well. Since, at least one ellipsoid must be a true subset of Q̌0, which completes

the asymptotic stability proof.

Axial Sum Policy approximation, Equation (5.11): is admissible because

Convex Sum Policy, Equation (5.10), is admissible. Formally, ∆Q(s,πQ
s (s)) ≥

∆Q(s,πQ
c (s)) ≥ 0.

185

Appendix C

Axial Sum Policy Optimality

Proposition C.0.1. When g(s) is an independent input matrix, C = I , and state-value

function parameterization Θ is negative definite, then Axial Sum Policy, Equation (5.11),

is optimal with respect to the state-value function, Equation (4.2).

Proof. The optimal input u∗ is a solution to ∂Q(s,ui)
∂ui

= 0, and â is a solution to
dQ(0)

s,i (a)
da at state s with respect to the state-value function, Equation (4.2). To show

that the Axial Sum Policy is optimal, u∗ = â, it is enough to show that

dQ(s, ui)

dui
=

dQ(0)
s,i (a)
da

. This is the case when Q has the form of

Q(s, a) =
dx

∑
i=1

(pxi u
2
i + qxi ui + rxi),

for some pxi , qxi , rxi ∈ R that depend on the current state s. In the Proposition

186

Appendix C. Axial Sum Policy Optimality

5.1.1 we showed that

Q(s, a) = (f (s) + g(s)a))TΘ(f (s) + g(s)a)

=
dx

∑
i=1

θi

(
du

∑
j=1

gij(s)uj + fi(s)

)2

.

Since there is a single nonzero element ji in row i of matrix g,

Q(s, a) =
dx

∑
i=1

(
θi(gji(s)uji + f ji(s)

)2

=
dx

∑
i=1

(θig2
ji(s)u

2
ji + 2θi f ji(s)gji(s)uji + f 2

ji (s))

After rearranging, Q(s, a) = ∑dx
i=1(pxi u

2
i + qxi ui + rxi).

187

Acronyms

AVI Approximate Value Iteration

CAFVI Continuous Action Fitted Value Iteration

DOF Degrees Of Freedom

HOOT Hierarchical Optimistic Optimization Applied To Trees

LSAPA Least Squares Axial Policy Approximation

MDP Markov Decision Process

MP Motion Planning

PBT Preference Balancing Task

PEARL PrEference Appraisal Reinforcement Learning

PRM Probabilistic Roadmap

PSD Power Spectral Density

RL Reinforcement Learning

RRT Rapidly Exploring Random Trees

SCAFVI Stochastic Continuous Action Fitted Value Iteration

UAV Unmanned Aerial Vehicle

188

Glossary

action A signal that changes state of the system

action-value function Value of performing an action from a

given state, Q(s, a) = V(s′), s′ is the

resulting state of applying action a to

state s

Array Sorting Task A taks requiring an arbitrary array to be

sorted in ascending order

AVI Reinforcement learning algorithm for

MDPs with continuous states and dis-

crete actions. The algorithm works with

state-value function V

Axial Sum Policy A policy approximation that selects

a better action between Convex Sum

Policy and standard vector sum

Balanced Hover A task brings a quadrotor to a hover

while balancing the inverted pendulum

189

Appendix C. Axial Sum Policy Optimality

bootstrapping A method for estimating new values

using old estimates

Bounded Load Displacement A trajectory, or a flight, in which the

swing is bounded for the duration of the

entire trajectory

CAFVI Adaptation of Fitted Value Iteration al-

gorithm for MDPs with continuous both

states and actions. The algorithm works

with both state-value and action-value

functions

Cargo Delivery Task A task that requires Bounded load

displacement trajectory

C-free Collision-free portion of a configuration

space

Coffee Delivery Task A Coffee Shop variant of the Aerail

Cargo Delivery Task

continuous set Set with continuum (c) cardinality

control-affine Nonlinear system, linear in input

control Lyapunov function A positive definite function of state

that is sufficient for showing Lyapunov

stability of origin

190

Appendix C. Axial Sum Policy Optimality

Convex Sum Policy A policy approximation that selects ac-

tions on each axis concurrently, and then

takes a convex sum of the axes selections

C-space Configuration space, space of all poses a

robot can take

decision-making Determining an action to perform

deterministic process Process where action’s effect on a state

is uniquely determined

dynamic programming A method for solving finite, completely

known discrete-time Markov decision

processes

Flying Inverted Pendulum A task that balances the inverted pen-

dulum on a flying hovering quadrotor

greedy Greedy policy w.r.t. a state-value func-

tion V, πV(S) = argmaxa∈A V(s′),

where s′ = T(s, a)

Initial Balance A task that balances the inverted pen-

dulum on a flying quadrotor without

slowing down the quadrotor

Load Swing Same as Load Displacement

Load Displacement Displacement of the suspended load

from a vertical axis

191

Appendix C. Axial Sum Policy Optimality

LSAPA An adaptive policy approximation for

stochastic MDPs with continuous both

states and actions.

Manhattan Policy A policy approximation that selects

actions sequentially on each axis

Markov property Effect of an action depends only on

current state

Minimal Residual Oscillations Task A task that requires Minimal Residual

Oscillations trajectory

Minimal Residual Oscillations trajectory A trajectory, or a flight, with minimal

swing at the end

MP A method for discovering a feasible

collision-free sequence of robot’s posi-

tions

Multi-Agent Pursuit Task A taks requiring multi-agent system to

pursure a prey

Package Delivery Task in Cities Aerail Cargo Delivery Task applied for

package delivery in cities

path Sequence of robot’s positions without

regard to time

PRM A sampling-based motion planning

method

192

Appendix C. Axial Sum Policy Optimality

probability transition function Probability distribution over states

when one action is applied to state

Rendezvous Task A task requiring a quadrotor and a

ground robot to meet as soon as possible

without distrubign the quadrotor’s

suspended load

return Cumulative reward over agent’s life-

time
reward Immediate obervable, numeric feedback

RRT A sampling-based motion planning

method

SCAFVI Adaptation of Continuous Action Fitted

Value Iteration algorithm for problems

in presence of stochastic noise

state Information that describes the system

state-value function Cummulative, discounted reward,

V(s) = ∑∞
t=0 γtR(t)

Swing-free Path-following A task that requires minimal residual

oscillations while the trajectory closely

follows a path

Swing-free trajectory Same as Bounded load displacement

time step Time between two state observations

193

Appendix C. Axial Sum Policy Optimality

trajectory Sequence of time and robot’s position

pairs

Value Iteration A dynamic programming method

that iterates over state-value functions

to solve a finite, completely known

discrete-time Markov Decision Pro-

cesses

194

Symbols

a Univariate action variable

A Action set

α Learning constant 0 < α ≤ 1

a Action a ∈ A

D System dynamics

da Dimensionality of action space i.e., A ⊂ Rda

δ Proximity constant

∆t Time step

d f Number of features

dn Number of action samples on an axis

dr Number of agents

ds Dimensionality of state space i.e., S ⊂ Rds

ei Unit vector of ith axes

ε Swing constant

η η(t) = [φ(t) ω(t)]T position of the suspended load in polar coordi-

nates

η̇ η̇(t) = [˙φ(t) ˙ω(t)]T velocity of the suspended load in polar coordi-

nates

f Controlled dynamics

195

Appendix C. Axial Sum Policy Optimality

F Feature vector

g System drift

γ Discount constant 0 < γ ≤ 1

k Number of actions to select

M Markov decision process

(S, A, D, R) Markov decision process tuple

no Number of objectives

o Task objective point

p projection - poi
j (s) is a projection of jth robot’s state onto minimal

subspace that contains oi

π Policy π : S→ A

π∗ Optimal policy π∗ = max π

Q Action-value function V : S× A→ R

R Reward R : S→ R

s State s ∈ S

S State set

ṡ State ṡ ∈ S

s̈ State s̈ ∈ S

sg Goal state s ∈ S

ss Start state s ∈ S

T Trajectory duration

θ Feature weights

V State-value function V : S→ R

V∗ Optimal state-value function V∗ = max V

V̂ Approximate state-value function

196

References

[1] Pieter Abbeel. Apprenticeship learning and reinforcement learning with applica-
tion to robotic control. PhD thesis, Stanford University, Stanford, CA, USA,
2008.

[2] Pieter Abbeel, Adam Coates, and Andrew Y. Ng. Autonomous helicopter
aerobatics through apprenticeship learning. International Journal of Robotics
Research (IJRR), 29(13):1608–1639, November 2010.

[3] David H. Ackley. Beyond efficiency. Commun. ACM, 56(10):38–40, October
2013.

[4] A. Agha-mohammadi, Suman Chakravorty, and Nancy Amato. FIRM:
Sampling-based feedback motion planning under motion uncertainty and
imperfect measurements. Int. J. Robot. Res., 33(2):268–304, 2014.

[5] M.J. Agostini, G.G. Parker, H. Schaub, K. Groom, and III Robinett, R.D.
Generating swing-suppressed maneuvers for crane systems with rate sat-
uration. Control Systems Technology, IEEE Transactions on, 11(4):471 – 481,
July 2003.

[6] Ibrahim Al-Bluwi, Thierry Simon, and Juan Corts. Motion planning al-
gorithms for molecular simulations: A survey. Computer Science Review,
6(4):125 – 143, 2012.

[7] A. Al-Tamimi, F.L. Lewis, and M. Abu-Khalaf. Discrete-time nonlinear hjb
solution using approximate dynamic programming: Convergence proof.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
38(4):943–949, 2008.

[8] Kostas Alexis, George Nikolakopoulos, and Anthony Tzes. Constrained-
control of a quadrotor helicopter for trajectory tracking under wind-gust

197

References

disturbances. In MELECON 2010-2010 15th IEEE Mediterranean Electrotech-
nical Conference, pages 1411–1416. IEEE, 2010.

[9] R. Alterovitz, T. Simeon, and K. Goldberg. The stochastic motion roadmap:
A sampling framework for planning with markov motion uncertainty. In
Proc. Robotics: Sci. Sys. (RSS), page 246 253, Atlanta, GA, USA, June 2007.

[10] Nancy M. Amato, O. Burchan Bayazit, Lucia K. Dale, Christopher Jones,
and Daniel Vallejo. Obprm: An obstacle-based prm for 3d workspaces. In
Proc. Int. Wkshp. on Alg. Found. of Rob. (WAFR), pages 155–168, March 1998.

[11] C.W. Anderson, P.M. Young, M.R. Buehner, J.N. Knight, K.A. Bush, and D.C.
Hittle. Robust reinforcement learning control using integral quadratic con-
straints for recurrent neural networks. Neural Networks, IEEE Transactions
on, 18(4):993–1002, 2007.

[12] A. Antos, Cs. Szepesvari, and R. Munos. Fitted Q-iteration in continuous
action-space MDPs. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors,
Advances in Neural Information Processing Systems 20, pages 9–16, Cambridge,
MA, 2007. MIT Press.

[13] Brenna D. Argall, Brett Browning, and Manuela M. Veloso. Teacher feed-
back to scaffold and refine demonstrated motion primitives on a mobile
robot. Robotics and Autonomous Systems, 59(34):243 – 255, 2011.

[14] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning.
A survey of robot learning from demonstration. Robotics and Autonomous
Systems, 57(5):469–483, 2009.

[15] AscTec. Ascending Technologies GmbH, 2013. http://www.asctec.de/.

[16] Karl J. Astrom. Introduction to Stochastic Control Theory (Dover Books on Elec-
trical Engineering). Dover Publications, 2006.

[17] Karl J. Astrom and Richard M. Murray. Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, April 2008.

[18] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuron-
like adaptive elements that can solve difficult learning control problems. In
James A. Anderson and Edward Rosenfeld, editors, Neurocomputing: foun-
dations of research, chapter Neuronlike adaptive elements that can solve diffi-
cult learning control problems, pages 535–549. MIT Press, Cambridge, MA,
USA, 1988.

198

References

[19] Len Bass, Paul Clements, and Rick Kazman. Software Architecure in Practice,
2nd ed. Addison Wesley, 2003.

[20] Richard Ernest Bellman. Dynamic Programming. Dover Publications, Incor-
porated, 1957.

[21] M. Bernard and K. Kondak. Generic slung load transportation system using
small size helicopters. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages
3258 –3264, may 2009.

[22] D. P. Bertsekas. Dynamic Programming and Optimal Control, Vol. II, 3rd Ed.
Athena Scientific, Belmont, MA, 2007.

[23] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming.
Athena Scientific, 1st edition, 1996.

[24] Shubhendu Bhasin, Nitin Sharma, Parag Patre, and Warren Dixon. Asymp-
totic tracking by a reinforcement learning-based adaptive critic controller. J
of Control Theory and Appl, 9(3):400–409, 2011.

[25] Adam Bry and Nicholas Roy. Rapidly-exploring random belief trees for
motion planning under uncertainty. In Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages 723–730. IEEE, 2011.

[26] Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X-
armed bandits. J. Mach. Learn. Res., 12:1655–1695, July 2011.

[27] L. Buşoniu, R. Babuška, B. De Schutter, and D. Ernst. Reinforcement Learning
and Dynamic Programming Using Function Approximators. CRC Press, Boca
Raton, Florida, 2010.

[28] L. Busoniu, A. Daniels, R. Munos, and R. Babuska. Optimistic planning for
continuous-action deterministic systems. In Adaptive Dynamic Programming
And Reinforcement Learning (ADPRL), 2013 IEEE Symposium on, pages 69–76,
April 2013.

[29] Zheng Chen and Sarangapani Jagannathan. Generalized hamilton–jacobi–
bellman formulation-based neural network control of affine nonlinear
discrete-time systems. Neural Networks, IEEE Transactions on, 19(1):90–106,
2008.

[30] Tao Cheng, Frank L. Lewis, and Murad Abu-Khalaf. A neural network so-
lution for fixed-final time optimal control of nonlinear systems. Automatica,
43(3):482–490, 2007.

199

References

[31] Jean claude Latombe. Motion planning: A journey of robots, molecules,
digital actors, and other artifacts. International Journal of Robotics Research,
18:1119–1128, 1999.

[32] P. Corke. Robotics, Vision and Control: Fundamental Algorithms in MATLAB.
Springer Tracts in Advanced Robotics. Springer, 2011.

[33] Jonathan A DeCastro and Hadas Kress-Gazit. Guaranteeing reactive high-
level behaviors for robots with complex dynamics. In Intelligent Robots and
Systems (IROS), 2013 IEEE/RSJ International Conference on, pages 749–756.
IEEE, 2013.

[34] Vishnu R Desaraju and Jonathan P How. Decentralized path planning for
multi-agent teams in complex environments using rapidly-exploring ran-
dom trees. In Robotics and Automation (ICRA), 2011 IEEE International Con-
ference on, pages 4956–4961. IEEE, 2011.

[35] T. Dierks and S. Jagannathan. Online optimal control of affine nonlin-
ear discrete-time systems with unknown internal dynamics by using time-
based policy update. IEEE Transactions on Neural Networks and Learning Sys-
tems, 23(7):1118–1129, 2012.

[36] Damien Ernst, Mevludin Glavic, Pierre Geurts, and Louis Wehenkel. Ap-
proximate value iteration in the reinforcement learning context. application
to electrical power system control. International Journal of Emerging Electric
Power Systems, 3(1):1066.1–1066.37, 2005.

[37] A. M. Farahmand, R. Munos, and Cs. Szepesvári. Error propagation for
approximate policy and value iteration. In Advances in Neural Information
Processing Systems, pages 568–576, Dec. 2010.

[38] Aleksandra Faust, Nicolas Malone, and Lydia Tapia. Planning constraint-
balancing motions with stochastic disturbances. In under submission.

[39] Aleksandra Faust, Ivana Palunko, Patricio Cruz, Rafael Fierro, and Lydia
Tapia. Automated aerial suspended cargo delivery through reinforcement
learning. Adaptive Motion Planning Research Group Technical Report TR13-001,
2013. under submission.

[40] Aleksandra Faust, Ivana Palunko, Patricio Cruz, Rafael Fierro, and Lydia
Tapia. Learning swing-free trajectories for UAVs with a suspended load. In
IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe,
Germany, pages 4887–4894, May 2013.

200

References

[41] Aleksandra Faust, Peter Ruymgaart, Molly Salman, Rafael Fierro, and Lydia
Tapia. Continuous action reinforcement learning for control-affine systems
with unknown dynamics. Acta Automatica Sinica, in press, 2014.

[42] Rafael Figueroa, Aleksandra Faust, Patricio Cruz, Lydia Tapia, and Rafael
Fierro. Reinforcement learning for balancing a flying inverted pendulum.
In Proc. The 11th World Congress on Intelligent Control and Automation, July
2014.

[43] M. Glavic, D. Ernst, and L. Wehenkel. Combining a stability and a
performance-oriented control in power systems. Power Systems, IEEE Trans-
actions on, 20(1):525–526, 2005.

[44] I. Grondman, L. Busoniu, G. A D Lopes, and R. Babuska. A survey of actor-
critic reinforcement learning: Standard and natural policy gradients. Sys-
tems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions
on, 42(6):1291–1307, Nov 2012.

[45] Wassim M. Haddad and VijaySekhar Chellaboina. Nonlinear Dynamical Sys-
tems and Control. Princeton University Press, 2008.

[46] Dick Hamlet and Joe Maybee. The Engineering of Software. Addison Wesley,
2001.

[47] Hado Hasselt. Reinforcement learning in continuous state and action
spaces. In Marco Wiering and Martijn Otterlo, editors, Reinforcement Learn-
ing, volume 12 of Adaptation, Learning, and Optimization, pages 207–251.
Springer Berlin Heidelberg, 2012.

[48] Kris Hauser, Timothy Bretl, Jean Claude Latombe, and Brian Wilcox. Motion
planning for a sixlegged lunar robot. In The Seventh International Workshop
on the Algorithmic Foundations of Robotics, pages 16–18, 2006.

[49] M. Hehn and R. D’Andrea. A flying inverted pendulum. In Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), pages 763–770. IEEE, 2011.

[50] Todd Hester and Peter Stone. Learning and using models. In Marco Wier-
ing and Martijn van Otterlo, editors, Reinforcement Learning: State of the Art.
Springer Verlag, Berlin, Germany, 2011.

[51] Todd Hester and Peter Stone. TEXPLORE: real-time sample-efficient rein-
forcement learning for robots. Machine Learning, 90(3):385–429, 2013.

201

References

[52] David Hsu, Robert Kindel, Jean-Claude Latombe, and Stephen M. Rock.
Randomized kinodynamic motion planning with moving obstacles. Int. J.
Robot. Res., 21(3):233–256, 2002.

[53] A. Isidori. Nonlinear Control Systems, 2nd Ed. Springer-Verlag, Berlin, 1989.

[54] Yu Jiang and Zhong-Ping Jiang. Computational adaptive optimal control for
continuous-time linear systems with completely unknown dynamics. Auto-
matica, 48(10):2699–2704, October 2012.

[55] Jeff Johnson and Kris Hauser. Optimal acceleration-bounded trajectory
planning in dynamic environments along a specified path. In ICRA, pages
2035–2041, 2012.

[56] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars. Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces.
IEEE Trans. Robot. Automat., 12(4):566–580, August 1996.

[57] H. Kawano. Study of path planning method for under-actuated blimp-type
uav in stochastic wind disturbance via augmented-mdp. In Advanced Intelli-
gent Mechatronics (AIM), 2011 IEEE/ASME International Conference on, pages
180–185, July 2011.

[58] Hiroshi Kawano. Three dimensional obstacle avoidance of autonomous
blimp flying in unknown disturbance. In Proc. IEEE Int. Conf. Intel. Rob.
Syst. (IROS), pages 123–130. IEEE, 2006.

[59] H.K. Khalil. Nonlinear Systems. Prentice Hall, 1996.

[60] H. Kimura. Reinforcement learning in multi-dimensional state-action space
using random rectangular coarse coding and gibbs sampling. In Proc. IEEE
Int. Conf. Intel. Rob. Syst. (IROS), pages 88–95, 2007.

[61] J Kober, D. Bagnell, and J. Peters. Reinforcement learning in robotics: A
survey. International Journal of Robotics Research, 32(11):1236–1272, 2013.

[62] Mangal Kothari and Ian Postlethwaite. A probabilistically robust path plan-
ning algorithm for UAVs using rapidly-exploring random trees. Journal of
Intelligent & Robotic Systems, pages 1–23, 2012.

[63] J.J. Kuffner and S.M. LaValle. RRT-connect: An efficient approach to single-
query path planning. In IEEE International Conference on Robotics and Au-
tomation, volume 2, pages 995 –1001 vol.2, 2000.

202

References

[64] Vijay Kumar and Nathan Michael. Opportunities and challenges with au-
tonomous micro aerial vehicles. The International Journal of Robotics Research,
31(11):1279–1291, September 2012.

[65] Tobias Kunz and Mike Stilman. Manipulation planning with soft task con-
straints. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1937–1942, October 2012.

[66] A. Lambert and D. Gruyer. Safe path planning in an uncertain-configuration
space. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), volume 3, pages 4185–
4190 vol.3, 2003.

[67] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement
learning. In Marco Wiering and Martijn van Otterlo, editors, Reinforcement
Learning: State of the Art. Springer Verlag, Berlin, Germany, 2011.

[68] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Norwell, MA, USA, 1991.

[69] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cam-
bridge, U.K., 2006.

[70] Steven M. Lavalle and James J. Kuffner. Rapidly-exploring random trees:
Progress and prospects. In Algorithmic and Computational Robotics: New Di-
rections, pages 293–308, 2000.

[71] Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. Reinforcement
learning in continuous action spaces through sequential monte carlo meth-
ods. Advances in neural information processing systems, 20:833–840, 2008.

[72] J. Levine. Analysis and Control of Nonlinear Systems: A Flatness-based Approach.
Mathematical Engineering. Springer, 2010.

[73] S. Lupashin and R. DAndrea. Adaptive open-loop aerobatic maneuvers for
quadrocopters. In World Congress, volume 18, pages 2600–2606, 2011.

[74] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea. A simple learn-
ing strategy for high-speed quadrocopter multi-flips. In IEEE International
Conference on Robotics and Automation, pages 1642–1648, May 2010.

[75] Anirudha Majumdar and Russ Tedrake. Robust online motion planning
with regions of finite time invariance. In Algorithmic Foundations of Robotics
X, pages 543–558. Springer, 2013.

203

References

[76] Nicholas Malone, Kasra Manavi, John Wood, and Lydia Tapia. Construction
and use of roadmaps that incoroporate worksapce modeling errors. In Proc.
IEEE Int. Conf. Intel. Rob. Syst. (IROS), pages 1264–1271, Nov 2013.

[77] Nicholas Malone, Brandon Rohrer, Lydia Tapia, Ron Lumia, and John
Wood. Implementation of an embodied general reinforcement learner on a
serial link manipulator. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages
862–869, May 2012.

[78] Nick Malone, Aleksandra Faust, Brandon Rohrer, Ron Lumia, John Wood,
and Lydia Tapia. Efficient motion-based task learning for a serial link ma-
nipulator. Transactions on Control and Mechanical Systems, 3(1), 2014.

[79] Nick Malone, Aleksandra Faust, Brandon Rohrer, John Wood, and Lydia
Tapia. Efficient motion-based task learning. In Robot Motion Planning Work-
shop, IEEE/RSJ International Conference on Intelligent Robots and Systems, Oc-
tober 2012.

[80] Nick Malone, Kendra Lesser, Meeko Oishi, and Lydia Tapia. Stochastic
reachability based motion planning for multiple moving obstacle avoid-
ance. In International Conference on Hybrid Systems: Computation and Control,
pages 51–60, apr 2014.

[81] Chris Mansley, Ari Weinstein, and Michael Littman. Sample-based planning
for continuous action markov decision processes. In Proc. of Int. Conference
on Automated Planning and Scheduling, 2011.

[82] MARHES. Multi-Agent, Robotics, Hybrid, and Embedded Systems Labo-
ratory, Department of Computer and Electrical Engineering, University of
New Mexico. http://marhes.ece.unm.edu, February 2013.

[83] Ahmad A. Masoud. A harmonic potential field approach for planning mo-
tion of a uav in a cluttered environment with a drift field, Orlando, FL, USA.
In 50th IEEE Conference on Decision and Control and European Control Confer-
ence, pages 7665–7671, dec 2011.

[84] H. Brendan McMahan, Maxim Likhachev, and Geoffrey J. Gordon. Bounded
real-time dynamic programming: Rtdp with monotone upper bounds and
performance guarantees. In ICML05, pages 569–576, 2005.

[85] S. Mehraeen and S. Jagannathan. Decentralized nearly optimal control of
a class of interconnected nonlinear discrete-time systems by using online
Hamilton-Bellman-Jacobi formulation. In International Joint Conference on
Neural Networks (IJCNN), pages 1–8, 2010.

204

References

[86] S. Mehraeen and S. Jagannathan. Decentralized optimal control of a
class of interconnected nonlinear discrete-time systems by using online
Hamilton-Jacobi-Bellman formulation. IEEE Transactions on Neural Net-
works, 22(11):1757–1769, 2011.

[87] Daniel Mellinger, Quentin Lindsey, Michael Shomin, and Vijay Kumar. De-
sign, modeling, estimation and control for aerial grasping and manipula-
tion. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 2668 –2673, sept. 2011.

[88] Daniel Mellinger, Nathan Michael, and Vijay Kumar. Trajectory generation
and control for precise aggressive maneuvers with quadrotors. The Interna-
tional Journal of Robotics Research, 31(5):664–674, 2012.

[89] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar. The grasp multiple
micro-UAV testbed. Robotics Automation Magazine, IEEE, 17(3):56 –65, sept.
2010.

[90] Hamidreza Modares, Mohammad-Bagher Naghibi Sistani, and Frank L.
Lewis. A policy iteration approach to online optimal control of continuous-
time constrained-input systems. ISA Transactions, 52(5):611–621, 2013.

[91] Cristopher Moore and Stephan Mertens. The Nature of Computation. Oxford
University Press, 2011.

[92] K. Mülling, J. Kober, and J. Peters. A biomimetic approach to robot table
tennis. Adaptive Behavior, 19(5):359–376, 2011.

[93] R. Munos and Cs. Szepesvári. Finite time bounds for sampling based fitted
value iteration. Journal of Machine Learning Research, 9:815–857, 2008.

[94] R. M. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robotic
Manipulation. CRC Press, Boca Raton, FL, 1994.

[95] Chikatoyo Nagata, Eri Sakamoto, Masato Suzuki, and Seiji Aoyagi. Path
generation and collision avoidance of robot manipulator for unknown mov-
ing obstacle using real-time rapidly-exploring random trees (RRT) method.
In Service Robotics and Mechatronics, pages 335–340. Springer, 2010.

[96] Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement
learning. In Proceedings of the Seventeenth International Conference on Machine
Learning, ICML ’00, pages 663–670, San Francisco, CA, USA, 2000. Morgan
Kaufmann Publishers Inc.

205

References

[97] Ann Now, Peter Vrancx, and Yann-Michal Hauwere. Game theory and
multi-agent reinforcement learning. In Marco Wiering and Martijn Otterlo,
editors, Reinforcement Learning, volume 12 of Adaptation, Learning, and Opti-
mization, pages 441–470. Springer Berlin Heidelberg, 2012.

[98] P. Ogren, M. Egerstedt, and X. Hu. A control Lyapunov function approach
to multi-agent coordination. IEEE Transactions on Robotics and Automation,
pages 847–852, Oct 2002.

[99] I. Palunko, P. Cruz, and R. Fierro. Agile load transportation : Safe and effi-
cient load manipulation with aerial robots. IEEE Robotics Automation Maga-
zine, 19(3):69 –79, sept. 2012.

[100] I. Palunko, R. Fierro, and P. Cruz. Trajectory generation for swing-free ma-
neuvers of a quadrotor with suspended payload: A dynamic programming
approach. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 2691 –2697,
May 2012.

[101] Ivana Palunko, Aleksandra Faust, Patricio Cruz, Lydia Tapia, and Rafael
Fierro. A reinforcement learning approach towards autonomous suspended
load manipulation using aerial robots. In Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), pages 4881–4886, May 2013.

[102] Parasol. Parasol Lab, Department of Computer Science and Engineering,
Texas A&M University. https://parasol.tamu.edu/, December 2012.

[103] Jung-Jun Park, Ji-Hun Kim, and Jae-Bok Song. Path planning for a robot
manipulator based on probabilistic roadmap and reinforcement learning.
In International Journal of Control, Automation, and Systems, pages 674–680,
2008.

[104] Theodore J. Perkins and Andrew G. Barto. Lyapunov design for safe rein-
forcement learning. Journal of Machine Learning Research, 3:803–832, 2002.

[105] Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing,
71(79):1180 – 1190, 2008.

[106] P.E.I. Pounds, D.R. Bersak, and A.M. Dollar. Grasping from the air: Hov-
ering capture and load stability. In 2011 IEEE International Conference on
Robotics and Automation (ICRA), pages 2491 –2498, may 2011.

[107] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral
model. SIGGRAPH Comput. Graph., 21(4):25–34, August 1987.

206

References

[108] R. Ritz, M.W. Muller, M. Hehn, and R. D’Andrea. Cooperative quadrocopter
ball throwing and catching. In Proc. IEEE/RSJ Intl Conf. on Intelligent Robots
and Systems (IROS), pages 4972 –4978, oct. 2012.

[109] Samuel Rodrı́guez, Jyh-Ming Lien, and Nancy M. Amato. A framework for
planning motion in environments with moving obstacles. In Proc. IEEE Int.
Conf. Intel. Rob. Syst. (IROS), pages 3309–3314, 2007.

[110] B. Rohrer. Biologically inspired feature creation for multi-sensory percep-
tion. In BICA, 2011.

[111] B. Rohrer. A developmental agent for learning features, environment mod-
els, and general robotics tasks. In ICDL, 2011.

[112] G. A. Rummery and M. Niranjan. On-line q-learning using connectionist
systems, a lyapunov-based approach. Technical report, 1994.

[113] Angela P. Schoellig, Fabian L. Mueller, and Raffaello D’Andrea.
Optimization-based iterative learning for precise quadrocopter trajectory
tracking. Autonomous Robots, 33:103–127, 2012.

[114] J. Schultz and T. Murphey. Trajectory generation for underactuated control
of a suspended mass. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages
123 –129, may 2012.

[115] Alexander A. Sherstov and Peter Stone. Improving action selection in
MDP’s via knowledge transfer. In AAAI Conference on Artificial Intelligence,
pages 1024–1030, July 2005.

[116] Alexander C. Shkolnik and Russ Tedrake. Path planning in 1000+ dimen-
sions using a task-space voronoi bias. In Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), pages 2061–2067. IEEE, may 2010.

[117] Koushil Sreenath, Nathan Michael, and Vijay Kumar. Trajectory generation
and control of a quadrotor with a cable-suspended load – a differentially-flat
hybrid system. In IEEE International Conference on Robotics and Automation
(ICRA), pages 4873–4880, 2013.

[118] G. Starr, J. Wood, and R. Lumia. Rapid transport of suspended payloads.
In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference on, pages 1394 – 1399, april 2005.

[119] Mike Stilman. Global manipulation planing in robot joint space with task
constraints. IEEE/RAS Transactions on Robotics, 26(3):576–584, 2010.

207

References

[120] R. Sutton and A. Barto. A Reinforcement Learning: an Introduction. MIT Press,
MIT, 1998.

[121] Richard S. Sutton. Learning to predict by the methods of temporal differ-
ences. Machine Learning, 3:9–44, 1988.

[122] Csaba Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan & Claypool Pub-
lishers, 2010.

[123] Lydia Tapia, Shawna Thomas, and Nancy M. Amato. A motion planning
approach to studying molecular motions. Communications in Information and
Systems, 10(1):53–68, 2010.

[124] Camillo Taylor and Anthony Cowley. Parsing indoor scenes using rgb-d
imagery. In Proc. Robotics: Sci. Sys. (RSS), Sydney, Australia, July 2012.

[125] Matthew E. Taylor and Peter Stone. Behavior transfer for value-function-
based reinforcement learning. In The Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 53–59, New York, NY, July
2005. ACM Press.

[126] Matthew E. Taylor, Peter Stone, and Yaxin Liu. Transfer learning via inter-
task mappings for temporal difference learning. Journal of Machine Learning
Research, 8:2125–2167, 2007.

[127] Kyriakos G. Vamvoudakis, Draguna Vrabie, and Frank L. Lewis. Online
adaptive algorithm for optimal control with integral reinforcement learning.
International Journal of Robust and Nonlinear Control, 2013.

[128] Thomas J. Walsh, Sergiu Goschin, and Michael L. Littman. Integrating
sample-based planning and model-based reinforcement learning. In Maria
Fox and David Poole, editors, Proceedings of the Twenty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15,
2010, pages 612–617. AAAI Press, 2010.

[129] C. Watkins. Learning from Delayed Rewards. PhD thesis, University of Cam-
bridge, England, 1989.

[130] C.J.C.H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279–292,
1992.

[131] Spencer White, Tony Martinez, and George Rudolph. Automatic algorithm
development using new reinforcement programming techniques. Computa-
tional Intelligence, 28(2):176–208, 2012.

208

References

[132] Marco Wiering and Martijn Otterlo, editors. Reinforcement Learning, vol-
ume 12 of Adaptation, Learning, and Optimization. Springer Berlin Heidel-
berg, 2012.

[133] Jan Willmann, Federico Augugliaro, Thomas Cadalbert, Raffaello
D’Andrea, Fabio Gramazio, and Matthias Kohler. Aerial robotic con-
struction towards a new field of architectural research. International Journal
of Architectural Computing, 10(3):439 – 460, 2012.

[134] Steven A. Wilmarth, Nancy M. Amato, and Peter F. Stiller. Maprm: A proba-
bilistic roadmap planner with sampling on the medial axis of the free space.
In In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),, pages 1024–1031, May 1999.

[135] Cheng Wu. Novel function approximation techniques for large-scale reinforcement
learning. PhD thesis, Northeastern University, Apr 2010.

[136] Jung Yang and Shih Shen. Novel approach for adaptive tracking control
of a 3-d overhead crane system. Journal of Intelligent and Robotic Systems,
62:59–80, 2011.

[137] Tansel Yucelen, Bong-Jun Yang, and Anthony J. Calise. Derivative-free
decentralized adaptive control of large-scale interconnected uncertain sys-
tems. In IEEE Conference on Decision and Control and European Control Confer-
ence (CDC-ECC), pages 1104–1109, 2011.

[138] D. Zameroski, G. Starr, J. Wood, and R. Lumia. Rapid swing-free transport
of nonlinear payloads using dynamic programming. ASME Journal of Dy-
namic Systems, Measurement, and Control, 130(4), July 2008.

[139] Yajia Zhang, Jingru Luo, and Kris Hauser. Sampling-based motion planning
with dynamic intermediate state objectives: Application to throwing. In
ICRA, pages 2551–2556, 2012.

209

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Research Objective
	Contributions

	Related Work
	Motion Planing (MP)
	Decision-making
	Markov Decision Process (MDP)

	Reinforcement Learning (RL)
	Exploration vs. Exploitation
	Task Representation
	Value Iteration RL
	Policy Search Methods
	RL in Continuous Domains
	RL Paradigms
	RL and Planning

	Optimal Control and Lyapunov Stability Theory
	Optimal Control and RL
	Stochastic Control and RL

	Applications

	PrEference Appraisal Reinforcement Learning (PEARL)
	PEARL for Robotic Problems
	MDP Setup
	Feature Selection

	Case Study: Large-scale Pursuit Task
	Conclusion

	pearl for Deterministic Discrete Action MDPs
	Preliminaries
	Methods
	Learning Minimal Residual Oscillations Policy
	Minimal Residual Oscillations Trajectory Generation
	Swing-free Path-following
	UAV Geometric Model
	Path Planning and Trajectory Generation Integration

	Results
	Learning Minimal Residual Oscillations Policy
	Minimal Residual Oscillations Trajectory Generation
	Swing-free Path-following
	Automated Aerial Cargo Delivery

	Conclusion

	PEARL for Deterministic Continuous Action MDPs
	Methods
	Problem Formulation
	Policy Approximation
	Continuous Action Fitted Value Iteration (CAFVI)
	Discussion

	Results
	Policy Approximation Evaluation
	Minimal Residual Oscillations Task
	Rendezvous Task
	Flying Inverted Pendulum

	Conclusions

	PEARL for Stochastic Dynamical Systems with Continuous Actions
	Methods
	Problem Formulation
	Least Squares Axial Policy Approximation (LSAPA)
	Stochastic Continuous Action Fitted Value Iteration

	Results
	Setup
	Minimal Residual Oscillations Task
	Rendezvous Task
	fip

	Conclusion

	PEARL as a Local Planner
	Integrated Path and Trajectory Planning
	Results
	Simulations
	Experiments

	Conclusion

	PEARL for Non-Motion Tasks
	PEARL for Computing Agents
	Case Study in Software: PEARL Sorting
	Conclusion

	Conclusions
	Proof for Lemma 5.1.3
	Proof for Theorem 5.1.4
	Axial Sum Policy Optimality
	Acronyms
	Glossary
	Symbols
	References

