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Abstract— In this work, we propose a data-driven approach
for real-time self-collision avoidance in multi-arm systems. The
approach consists of modeling the regions in joint-space that
lead to collisions via a Self-Collision Avoidance (SCA) boundary
and use it as a constraint for a centralized Inverse Kinematics
(IK) solver. This problem is particularly challenging as the
dimensionality of the joint-configurations is in the order of
millions (for a dual-arm system), while the IK solver must
run within a control loop of 2ms. Hence, an extremely sparse
solution is needed for this big data problem. The SCA region
is modeled through a sparse non-linear kernel classification
method that yields a runtime of less than 2ms (on a single
thread CPU process) and has a False Positive Rate (FPR)=1.5%.
Code for generating multi-arm datasets and learning the sparse
SCA boundary are available at: https://github.com/
nbfigueroa/SCA-Boundary-Learning

I. INTRODUCTION

Self-collision avoidance is one of the main challenges
in multi-arm manipulation. It is particularly relevant in the
humanoid robot community and hence, has been extensively
studied. Throughout the years, the approaches for solving
collision avoidance for manipulation or locomotion in hu-
manoids can be categorized into two types: (i) planning
methods which generate feasible collision-free trajectories
of known/quasi-static environments [27], [5], [4] and (ii)
reactive approaches which solve collision-avoidance via the
Inverse Kinematics (IK) problem online [8], [22], [26], [7].
For a comprehensive review on collision avoidance strategies
for bi-manual systems refer to [16]. Most approaches, be it
(i) planning-based or (ii) reactive, have a common method-
ology: they rely on computing minimum distances between
links/joints/segments/objects (represented as sphere/swept-
spheres/polygons) to detect/avoid collisions.

The use of minimum distances for collision avoidance
inherently introduces non-linear and non-convex constraints
to an otherwise convex optimization problem. This, in fact, is
the main reason (i) planning algorithms rely on computation-
ally inefficient global optimization or trajectory optimization
methods and that (ii) reactive methods tend to get stuck
in local minima. To this end, approaches based on signed
distance fields have been successful in encoding proximity of
obstacles as continuous costs in local trajectory optimization
frameworks; by either providing explicit cost gradients [29],
[6] or through derivative-free stochastic optimization meth-
ods [13]. Such approaches, however, require multiple initial-
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Fig. 1: Scenarios where real-time multi-arm Self-Collision Avoidance
(SCA) resolution is necessary. Shaded areas denote workspace of each robot
arm. The main idea in this work is to model the regions in joint-space which
lead to collisions and use them as constraints in a centralized IK Solver.

izations as they fail to recover when solving for optimization
problems that become ill-defined due to particular shapes
of obstacles which might induce many local minima [18].
One solution to this is to exploit the Riemannian geometry
of the workspace to represent costs for obstacle avoidance,
kinematic limits, etc, by warping the workspace via Rie-
mannian metrics and their gradients. While the previously
mentioned trajectory optimization approaches’ computation
times range from 0.3-6s, the approach presented in [18]
reports a computation time of 0.5s for a dual-arm platform.
One of the draw-backs of these methods is the fact that they
generate the collision-free trajectory a priori, hence, they are
not robust to uncertainties in the workspace, the environment
or the measurements that lead to collision detection. To tackle
this issue, probabilistic approaches such as Monte Carlo
Motion Planning (MCMP) [23], [10], have been introduced
to compute low-cost paths that fulfill probabilistic collision
avoidance constraints via importance sampling. In [23] a
computation time of 2s for a 13s trajectory duration was
reported for trajectory estimation under uncertainty of robots
described by linear dynamics with control policies derived
as LQG controllers tracking nominal trajectories. Though
promising, it is hard to predict how this approach scales to
a multi-arm robot configuration with non-linear dynamics.
Needless to say, all of these trajectory optimization methods,
though efficient in their own domain, are not sufficiently
fast for applications that require tracking fast moving targets
or safe compliant manipulation for human-robot-interaction,
which rely on fast adaptive, typically closed-loop, control
strategies requiring control-rates of 1-2ms [20], [21]. Such
is the typical control-loop rate of KUKA 7DOF arms; e.g.,
the LWR and IIWA.

https://github.com/nbfigueroa/SCA-Boundary-Learning
https://github.com/nbfigueroa/SCA-Boundary-Learning
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Fig. 2: Γ(qij) function for a toy 2D example. Assume two robots with
1-DOF each corresponding to each axis; i.e., qij = [q11 , q

1
2 ]. The green

data-points represent “collision-free” robot configurations (y = +1), while
the red data-points represent “collided” robot configurations (y = −1).

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.65

0.7

0.75

0.8

0.85

Γ(.)=6

Γ(.)=5

Γ(.)=4

Γ(.)=3

Γ(.)=2

∇ Γ(.)

∇ Γ(.)

∇ Γ(.)

Fig. 3: Zoomed-in illustration of Fig. 2. The Arrows inside the collision-
free region denote ∇Γ(qij).

In this paper we focus on solving the self-collision
avoidance problem for this particular type of applications
efficiently; i.e., in < 2ms. Rather than explicitly computing
distances or collision probabilities, we propose to learn
a continuous and continuously differentiable function Γ(.)
from a dataset of “collided” and “non-collided” multi-arm
joint configurations. Γ(.) represents the region of feasible
and infeasible robot configurations, implicitly encoding a
distance in feature space, of the current robot configuration
to a “collided” configuration. By formulating Γ(.) as the pre-
diction rule of a kernel Support Vector Machine (SVM) [24]
we can compute a continuous ∇Γ(.) on-line. We propose a
centralized IK solver as a convex QP optimization problem
subject to linear inequality constraints imposed by Γ(.) and
∇Γ(.), avoiding (i) the computation of min(||.||2) pair-wise
distances between joints/links/segments and (ii) the need for
trajectory optimization. The main challenge is thus, to learn
Γ(.) from a simulated dataset of joint configurations in the
order of millions, while predicting at < 2ms. Hence, we
need to solve a big data problem with a sparse solution. By
using a sparse SVM approximation [11] we learn an efficient
representation of Γ(.) that enables us to solve IK problem
in less than 2ms, on a single threaded CPU.

II. PROBLEM STATEMENT

To avoid collisions between the joints of the arms in a
multi-arm system, we propose to use an Inverse Kinematic
(IK) solver that not only considers the kinematic constraints

of each robot, but also self-collision constraints. Assuming
the robots’ bases are fixed wrt. each other, we can explore the
joint workspace of the robots, in order to model the regions
that may lead to collision. Since the space of joint config-
urations is continuous, we must approximate the regions of
collisions by building a continuous map of the feasible (safe)
and infeasible (collided) configurations. Assuming that the
infeasible regions can be bounded through a continuous and
continuously differentiable function Γ(qij) : Rdqi+dqj → R,
where qij = [qi, qj ]T ∈ Rdqi+dqj are the joint angles of the
ith and jth robots, respectively. We define Γ(.) such that:

Collided configurations: Γ(qij) < 1

Boundary configurations: Γ(qij) = 1

Free configurations: Γ(qij) > 1

(1)

(1) provides constraints that must be met when solving the
IK problem, proposed as the following quadratic program):

argmin
q̇

q̇TW q̇
2︸ ︷︷ ︸

Minimize Expenditure

subject to

(a) J(q)q̇ = ξ̇
R︸ ︷︷ ︸

Satisfy the desired end-effector motion

(b) θ̇
−
≤ q̇ ≤ θ̇

+︸ ︷︷ ︸
Satisfy the kinematic constraints

(c) −∇Γij(qij)T q̇ij ≤ log(Γij(qij)− 1)
∀(i, j) ∈ {(1, 2), (1, 3), . . . , (NR − 1, NR)}︸ ︷︷ ︸

Do not penetrate the collision boundary

(2)

Where, q = [q1, . . . , qNR ]T ∈ Rdq , dq =
NR∑
i=1

dqi for NR

robots. W is a block diagonal matrix of positive definite
matrices. J = diag(J1, . . . , JNR) is block diagonal matrix
of the Jacobian matrices. ξ̇

R
=
[
ξ̇R1 . . . ξ̇RNR

]T ∈ Rdn ,
dn = NRdn is the desired velocity given by a task-space
motion generator. θ̇

i
=
[
θ̇i1 . . . θ̇iNR

]
∀i ∈ {−,+} and

θ̇+i ∈ Rm and θ̇−i ∈ Rm are conservative lower and upper
bounds of the joint limits. We follow the approach proposed
in [28] to compute the joint limits at the velocity level.

In Fig. 2, we illustrate a Γ(.) for a toy 2D example
to highlight its role in the quadratic program. While the
robots are far from the boundary configurations, the value
of log(Γij(qij)− 1) is positive which relaxes the inequality
constraints; i.e., the robots accurately follow the desired end-
effector trajectory. When they are near the boundary configu-
rations, the value of log(Γij(qij)−1) is negative. Therefore,
constraint (2)(c) forces the joint angles to move away from
the boundary as they approach it. (2) is a convex quadratic
program (QP) with equality/inequality constraints. This can
be solved via a standard nonlinear programming solver such
as Nlopt [12] or a constrained convex optimization solver
such as CVXGEN [15]. For a comparison, refer to [21].



Fig. 4: Illustration of (left) 3D Cartesian positions (e.g. f(q21) : S1 →
R3) of the individual joint angles in the multi-arm system reference frame
used to learn the SCA Boundary function Γ(f(q2)) (right) the geometric
representation of i-th robot with a set of spheres corresponding to each joint
used to construct the SCA dataset.

III. LEARNING A SELF-COLLISION AVOIDANCE
(SCA) BOUNDARY

As per (1), the SCA boundary function Γ(qij) should be of
class C0 and C1. Interestingly, the problem can be formulated
as a binary classification problem, y ← sgn

(
Γ(qij)

)
for

y ∈ {+1,−1}, where “collided” joint configurations belong
to the negative class (i.e. y = −1) and “non-collided”
configurations belong to the positive class (i.e., y = +1).
When Γ(qij) = 1, qij is at the boundary of the positive
class; i.e., the self-collision boundary (black line in Fig. 2).

To recall, the configuration space of a multi-arm system is
an n-dimensional torus (S1×S1×· · ·×S1(n−times) = T N )
for n DOF [14]. Given two robots with 7DOF each, the
manifold in which the multi-arm joint-angle vector lies in
is qij ∈ T 14. Employing qij as the feature vector for a
classification problem can be problematic for several rea-
sons. Many machine learning algorithms rely on computing
distances/norms in Euclidean space, assuming the features
are i.i.d. from an underlying distribution in RN . Hence, a
Euclidean norm applied on qij ∈ T N , is merely an approxi-
mation of the actual distance in the T N manifold. In fact, a
proper distance metric for joint-angles, i.e., d(qij1 , q

ij
2 ) where

qij ∈ T N , is non-existent. For this reason, most trajectory
optimization planning algorithms rely on mapping joint-
space configurations to task-space via forward kinematics
[9], where distances are well-established.

For such reasons, and in-line with the trajectory optimiza-
tion literature, instead of learning our self-collision avoidance
(SCA) decision boundary function Γ(.) on the joint-angle
data qij , we learn Γ(.) on the 3D Cartesian representation
of the joint-angles f(qij). As illustrated in Fig. 4, f(qij)
is a vector composed of the 3D Cartesian positions of all
joints for the i-th and j-th robot, computed via forward
kinematics. The feature vector for a dual-arm robotic system
is thus f(qij) ∈ R3dqi+3dqj . We posit that, by using f(qij)
instead of qij , we can achieve a better trade-off between
model complexity and error rate. Moreover, since the output
of Γ(.) is expected to be a scalar (1), no extra computation
is necessary, as Γ(qij) ≡ Γ(f(qij)). The linear inequality
constraints in (2) require ∇Γ(.) to be C, this be provided by
either Support Vector Machines (SVM) or Neural Networks
(NN). In this work, we favor the use of SVMs, for two
main reasons: (i) Learning a SVM is a convex optimization

problem; hence, we can always reach a global optimum. (ii)
SVMs yield sparser models for high-dimensional non-linear
classification problems, leading to better runtimes.

A. C0 and C1 Self-Collision Avoidance (SCA) Boundary
via Support Vector Machines

We follow the kernel Support Vector Machine (SVM)
formulation and propose to encode Γ

(
f(qij)

)
as the SVM

decision rule. By omitting the sign function and using the
RBF Kernel k

(
f(qij), f(qijn )

)
= e(−

1
2σ2
||f(qij)−f(qijn )||2),

for a kernel width σ; Γ
(
f(qij)

)
(from herein the superscripts

(ij) of are dropped) has the following form,

Γ
(
f(qij)

)
=

Nsv∑
n=1

αnynk
(
f(qij), f(qijn )

)
+ b

=

Nsv∑
n=1

αnyne
(− 1

2σ2
||f(qij)−f(qijn )||2) + b,

(3)

for Nsv support vectors, where yi ∈ {−1,+1} are the pos-
itive/negative labels corresponding to non-collided/collided
configurations, 0 ≤ αi ≤ C are the weights for the support
vectors which must yield

∑Nsv
n=1 αnyn = 0 and b ∈ R is the

bias for the decision rule. C ∈ R is a penalty factor used
to trade-off between maximizing the margin and minimizing
classification errors. Given C and σ, αi’s and b are estimated
by solving the dual optimization problem for the soft-margin
kernel SVM [24]. (3) naturally yields a continuous gradient,

∇Γ
(
f(qij)

)
=

Nsv∑
n=1

αnyn
∂k
(
f(qij), f(qijn )

)
∂f(qij)

=

Nsv∑
n=1

− 1

σ2
αnyne

(− 1
2σ2
||f(qij)−f(qijn )||2) (f(qij)− f(qijn )

)
.

(4)
Although ∇Γ(f(qij)) already satisfies the constraints im-
posed by (2), it lives in a 3dqi + 3dqj -dimensional space,
∇Γ

(
f(qij)

)
∈ R3dqi+3dqj . We must then project this

gradient onto its corresponding Rdqi+dqj joint-space; i.e.,
∇Γ(qij) ∈ Rdqi+dqj with the following expansion:

∇Γ
(
qij
)

=
∂Γ
(
f(qij)

)
∂f(qij)

· ∂f(qij)

∂qij
, (5)

the first term is equivalent to (4) and the second term is
the Jacobian of each 3D joint position wrt. each joint angle
J(qij) = ∂f(qij)

∂qij for which we have a closed-form solution.
Given the feature vector f(qij), the self-collision avoidance
constraint (2) becomes,

−∇Γij(qij)T q̇ij ≤ log(Γij(f(qij))− 1). (6)

B. Self-Collision Avoidance (SCA) Dataset Construction

In order to learn Γ
(
f(qij)

)
, we must initially generate

a dataset capable of identifying the so-called self-collision
boundary. We begin by describing our simplified geometric
representation of the robot’s kinematic configuration used
to identify “collided” and “non-collided” configurations. For
simplicity, let’s assume a dual-arm setting, with each arm



being a KUKA 7DOF (Fig. 5). Similar to [29], we simplify
the representation of the robot’s structure by fitting spheres
to each joint and its adjoining physical structure. We thus
generate a discrete representation of the multi-arm robotic
system as a set of spheres Sij = {si1, . . . , si7, s

j
1, . . . , s

j
7}.

By using spheres as a geometric representation of a joint,
we simplify the distance computation between joints, as the
distance from any point in a sphere to the nearest obstacle is
lower-bounded by d(c)−r; where c is the center of the sphere
and r its corresponding radius [19]. Further, the lower-bound
between two spheres is the distance between their centers
(cik) minus the sum of their respective radii (rik), for the
k-th spheres of the i-th robot. For example, given s15 and
s27 the lower-bounded distance between them is d(s15, s

2
7) =

d(c15, c
2
7)− (r15 + r27).

To identify collision in the dual-arm system, we compute
the pairwise distances of the centers of the set of spheres
of the i-th robot (Si) wrt. the set of spheres of the j-th
robot (Sj) and find the minimum distance min[d(c1k∗ , c2k∗)],
as shown in Fig. 4. We then define a label for each robot
configuration Sij as,

y(Sij) =

−1 if min[d(c1k∗ , c2k∗)] < (r1k∗ + r2k∗)
+1 if b− ≤ min[d(c1k∗ , c2k∗)] ≤ b+
∅ if min[d(c1k∗ , c2k∗)] > b+

(7)

where rik∗ corresponds to the radius of the k-th sphere,
and b−,b+ correspond to minimum/maximum distances of
the “safe” boundary. Specifically, a joint configuration is
“collided”, i.e. labeled as y = −1, when the min[d(c1k∗ , c2k∗)]
between the centers of the closest spheres is less than the sum
of the radii of the corresponding spheres, i.e., (r1k∗ + r2k∗).
In practice, we set the spheres to a fixed radius of 10cm,
hence (r1k∗ + r2k∗) = 20cm. Given that virtually any robot
configuration where min[d(c1k∗ , c2k∗)] > (r1k∗ + r2k∗) can
be considered “non-collided” configurations, we would end
up with a heavily un-balanced dataset of “collided”/“non-
collided” data-points. We thus, introduce a decomposition
of the “non-collided” robot configurations into “boundary”,
labeled as y = +1, and “safe” configurations, which are
not labeled y = ∅. If min[d(c1k∗ , c2k∗)] lies within a safety
margin, denoted by b− and b+, the robots are very close to
each other but still safe, see Fig. 5. We empirically found
b− = 30cm and b+ = 33cm to be safe boundaries for
our dual-arm setting. Hence, a “non-collided” configuration
is in fact a “boundary” configuration, as all of the “safe”
configurations are filtered out. This has a geometric meaning,
rather than finding the margin between “collided” and “safe”
configurations, our boundary function will model the tighter
margin between “non-collided” and “boundary” configura-
tions. From herein, we consider “boundary” configurations
as the “non-collided” configurations.

To generate the positive (y(Sij) = +1) and negative
samples (y(Sij) = −1) for our SCA dataset, we sample
from all the possible motions of the robots in their respective
workspaces and apply (7) to each configuration. To explore
all possible joint configurations qij , we systematically dis-
place all of the joints of both robots by 20 deg each. Joints

(a) Criteria for “collided”, “boundary” and “safe” configurations.

(b) “boundary configura-
tion”

(c) “collided configura-
tion”

Fig. 5: Examples of the collided/boundary configurations of a dual-arm
setting with an offset of Xoff = [0.0, 1.3, 0.34]m between their bases.

qi1, qi3, qi5, qi7 have a range of ±170 deg, whereas joints qi2, qi4
and qi6 have a range of ±120 deg. Given the 20 deg sampling
resolution, this leads to 18 samples for the former group
and 12 for the latter. Hence, the total number of possible
configurations for one arm is 183 ∗123, which would lead to
≈ 1e14 possible joint configuration for a dual-arm setting.
However, using our systematic sampling of “collided” and
“boundary” robot configurations, we gathered a balanced
dataset of approximately ≈ 5.4 million data-points, ≈ 2.4
million belonging to the “collided” configuration class y =
−1 and the rest to the “non-collided” configurations y = +1.

C. Sparse SVMs for Large Datasets

Training time of a kernel SVM has a complexity of
≈ O(NM

2D), where NM is the number of samples and
D is the dimension of the data-points. Prediction time, on
the other hand, depends on the number of support vectors
Nsv learned through training. In practice, the Nsv tends
to increase linearly with the amount of training data NM

[1]. More specifically, for a kernel SVM Nsv/NM → Bk,
where Bk is the smallest achievable classification error by the
kernel k [25]; i.e. in a non-separable classification scenario,
to achieve 5% error, at least 5% of the training points must
become support vectors. This comes as a nuisance when large
training sets are involved, as is the case for our application. A
Nsv � signifies a dense solution for representing the hyper-
plane of the classifier margin w =

∑Nsv
i=1 αiyiΦ(f(qiji )).

Naturally, the denser the solutions, the more computationally
expensive they are at run-time. This makes dense SVMs
infeasible for real-time robot control. In order to achieve
fast adaptation for both the desired end-effector positions
and self-collisions, the IK solver must run (at most) at a rate
of 2ms. Note that during this cycle, prior to solving (2), both
(3) and (5) must be evaluated.

Given the desired control rate (2ms), the specific hardware
used to control the robots (i.e., 3.4-GHz i7 PC with 8GB
RAM) and the kinematic specifications of each robot, we
can define a computational budget for our Self-Collision
Avoidance (SCA) Boundary function. This budget translates
to, defining a limit of the maximum allowable Nsv for our
SVM representation of Γ(f(qij)). In Fig. 6, we show a plot
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on 540k points we can achieve FPR ≈ 1.45% and TPR ≈ 97.4% kmax = 3000.

of different computation times. We omit computation time
of the IK solver as this is presented in detail in [21].

In order to comply with the 2ms runtime requirement, we
have a computational budget of Nsv ≤ 3k. Given the size
of our dataset, it is not feasible to train SVM models that
typically optimize for the dual through a variant of Sequential
Minimal Optimization (SMO) [17] or SMO-type decomposi-
tion methods [2], [3]. The fact that SVM learning algorithms
tend to produce dense solutions has been recognized as one
of its main weaknesses. To this end, several approaches
have been proposed in order to solve the problem of finding
sparser solutions to w. These can be categorized into: i)
post-processing approximations and ii) objective function or
optimization strategy modification. The former approaches
rely on approximating a sparse solution to an initially dense
SVM (through the exact solution). The latter approaches
either modify the SVM objective function by imposing spar-
sity constraints or propose a modified optimization algorithm
for with sparsity considerations.In this work, we choose one
of the prevailing approaches which reformulates the SVM
optimization problem, namely the Cutting Plane Subspace
Pursuit (CPSP) method introduced by [11]; as it directly
estimates a solution to the hyper-plane with a strict bound
on the number of support vectors kmax. In short, the CPSP
method approximates a sparse hyper-plane by expressing it
in terms of a set B = {b1, . . . ,bkmax} of basis vectors
bi ∈ R3dqi+3dqj (not necessarily training points) as w =∑kmax

i=1 αiyiΦ(bi). The optimization algorithm to estimate
this new w then focuses on pursuing such a subspace through
the fixed-point iteration approach for RBF kernels [24]. The
learned basis vectors B and αi’s can be directly used in (3)
and (4). We direct the interested reader to [11] for theoretical
equivalence proofs and implementation details.

IV. RESULTS

A. Evaluation of Learning Performance

We begin our Γ
(
f(qij)

)
learning performance analysis

by presenting results from learning exact SVMs from small
sub-samples of the 5.4m point dataset. To generate such
comparison, the libSVM library [3] was used for learning
the SVM models, cross-validation routines to find the op-
timal hyper-parameters are provided in the cited code. A
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Refer to Video Link 2 Experiment 1 for execution.

50% split for training+validation/testing datasets was used
to generate such evaluations. We evaluate 5 models with
increasing complexity Nsv = {1.7k, 2.7k, 3.7k, 4.7k, 9.7k}.
These were learned from using {0.5%, 1%, 1.5%, 2%, 5%}
of the training set (i.e., 2.7 million data-points). For each
model, a 10-fold Cross-validation was performed to find
the optimal hyper-parameters C and σ which yield the best
trade-off between Nsv/NM and classification accuracy. The
search space of each hyper-parameter was log-spaced in the
following ranges C = [10−1, 104] and σ = [0.2, 2].

In our application, we care about correctly classifying
the negative class (i.e., “collided” configurations), for this
we have two objectives: (i) Minimize False Positive Rate
(FPR = FP

(FP+TN) ): FPR quantifies the probability of
negative samples (y = −1) being classified as positive
(y = +1). Classifying “collided” configurations (y = −1)
as “non-collided” configurations (y = +1) yields a False
Positive (FP ). This error is critical as it would cause the IK
solver to move the robots into an infeasible region, leading
to collision and possibly permanent damage. (ii) Maximize
True Positive Rate (TPR = TP

(TP+FN) ): TPR quantifies the
probability of positive samples (y = +1) being classified
as positive (y = +1). Classifying “collided” configurations
(y = +1) as “non-collided” (y = −1) yields a False Negative
(FN ). This error is not as critical as the former, but it has
an effect on the performance of the IK solver, as classifying
“non-collided” configuration as “collided” would restrict the
IK solver to move the robots into regions that are feasible.

As can be seen from Fig. 7, we can achieve optimal error
rates on the testing set of FPR ≈ 1.3% and TPR ≈
97.54%, with 5% of the training dataset, albeit surpass-
ing the NSV limit. One might argue that, with such high
performance of models trained on a minuscule amount of

https://youtu.be/T23rlHeFtkc


data (relative to the complete dataset), perhaps such a large
dataset is not necessary. This is related to the SCA dataset
construction procedure (Section III-B), where we set the
joint sampling interval to 20 deg. We can see that with
the 2nd model (i.e., 1% of training data), we achieve error
rates of: FPR ≈ 2.4% and TPR ≈ 96.19% withing the
computational budget. This is quite acceptable performance,
however, due to the delicacy of our application we seek
to achieve the best solution possible, i.e. at least FPR ≈
1%. In Fig. 7, we present the results of using the CPSP
SVM learning approach on different sub-sets of our training
data limited to a support vector budget of kmax = 3000,
specifically {2.5%, 5%, 10%, 20%}. As can be seen, for the
models learned on datasets with the same size as the exact
SVM solutions, the results are marginally lower. However,
as the number of training-points increases the error rates
improve as much as FPR = 1.5% and TPR = 97.4% for a
training set of 540k points. By using this sparse learning
method we have proven that optimal error rates can be
achieved with minimal model complexity.
B. Experimental Validation

The proposed approach has been successfully used to
control multi-arm reach-to-grab motions as reported in [21]
and shown in Video Link 1. We have also evaluated the
approach in tasks where the robots must track fast moving
targets that go inside each other’s workspaces and in tasks
where the robots are perturbed by humans leading to possible
collision as shown in Video Link 2. In Fig. 8 we report
the evolution of Γ(.) and the real min distance between the
robots for Experiment 1 in Video Link 2. As can be seen,
when Γ(.) < 2, the robots are pushed away from each other.

V. DISCUSSION AND FUTURE WORK

In this paper, we proposed an efficient data-driven tech-
nique to successfully solve the self-collision avoidance prob-
lem in a multi-robot arm setting. We report experiments
on the 7DOF KUKA LWR and IIWA platforms, yet the
approach is platform agnostic. An evident limitation is the
fact that each trained SCA boundary is dependent on the
relative distance between the robots. Given a change in the
robot workspace, the boundary must be re-trained with a new
dataset. This can be tackled in a more principled approach via
incremental boundary learning or using ensemble methods.

Furthermore, we focused on the problem of learning a
sparse model with a prediction time of < 2ms, due to
our hardware limitations. Given a GPU with multiple cores,
our computational budget kmax, will surely increase. This
would allow us to use more data to learn the SCA boundary,
potentially reaching better error rates. The implementation
and comparison of such an approach is of interest and is
being planned as the next steps of this work.
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