
Unsupervised Learning of Growing Roadmap in Multi-Goal Motion
Planning Problem
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Abstract— In this paper, we address the multi-goal motion
planning problem in which it is required to determine an
order of visits of a pre-specified set of goals together with
the shortest trajectories connecting the goals. The considered
problem is inspired by inspection planning missions, where
multiple goals must be visited with a required precision. The
problem combines challenges of the combinatorial traveling
salesman problem with difficulties of the motion planning.
The presented approach is based on unsupervised learning of
the self-organizing map technique for the traveling salesman
problem applied in the configuration space. This learning
technique takes an advantage of acquiring information about
exploring the configuration space into a topology of the map
that is simultaneously exploited in determination of the multi-
goal trajectory and further directions of motion planning
roadmap expansion. Presented results indicate that the pro-
posed approach is feasible and it is able to provide a solution
of the multi-goal motion planning problem without a priori
known sequence of the goals visits.

I. INTRODUCTION

Multi-goal motion planning (MGMP) is a problem that
can be found in many robotic scenarios where a mobile
robot is requested to visit a set of locations to collect data
or take sensor measurements. Examples of such robotic
missions are data gathering tasks [1], inspection of complex
marine structures [2], industrial applications including spot
welding, spray painting and drilling [3], [4] and surveillance
missions [5]. The task can be formulated as a variant of
the Traveling Salesman Problem (TSP), which is known
to be NP-hard [6]. If particular trajectories between the
locations are known in advance, a solution of the problem
can be found by existing combinatoric techniques for a
graph based TSP, e.g., using CONCORDE [7]. However,
determination of all trajectories between each pair of the
locations is a challenging problem itself, as determination
of each individual trajectory is a motion planning problem,
which can be computationally demanding, i.e., PSPACE-
hard [8] for a polyhedral problem representation.

On the other hand, the sequencing part of the MGMP
problem can be determined as a solution of the TSP in
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Grant Agency of the Czech Technical University in Prague, grant No.
SGS14/203/OHK3/3T/13.

Fig. 1. PhantomX hexapod executing multi goal trajectory

the Euclidean space. Such an approach can provide a
straightforward way to obtain a sequence of the goal visits;
however, without considering obstacles and using only direct
Euclidean distance between the goals, it does not take into
account kinematic constraints of complex robots (e.g., a
hexapod walking robot from Fig. 1) and thus it does not
provide a direct solution how to control the robot motion
to fulfill the mission objective efficiently. Therefore motion
planning approaches should be directly considered in the
context of the multi-goal motion planning.

Probably the most successful and also computationally ef-
ficient motion planners are randomized sampling based tech-
niques such as the Probabilistic Roadmap Method (PRM) [9]
and Rapidly-exploring Random Tree (RRT) [10]. They can
be used to find the required trajectories between the sequence
of the goals. However, it means that for n goals up to n2

trajectories have to be determined, which can be computa-
tionally demanding. Notice, these techniques provide feasible
trajectories and using relatively recent the Rapidly-exploring
Random Graph (RRG) technique [11] to find asymptotically
optimal solutions can be even more demanding.

The computational difficulty motivates researchers to
study techniques how to avoid computation of all trajectories
between the goals. For example in [12], authors consider
approximation of the distance cost between the goals as the
Euclidean distance that is used for solution of the TSP as
a minimum spanning tree. Then, such costs are iteratively
updated using a motion planner and the TSP is repeatably
solved until all trajectories in the solution are determined
by the motion planner. Authors reported computational re-
duction in the selected scenarios, but all trajectories between
each goal-goal pair may need to be determined in the worst
case.

In this paper, we do not assume a planner providing
goal-goal trajectories like in [12] and we rather focus on
a different approach to the MGMP that is motivated by a



simultaneous solution of the TSP together with determination
of trajectories between the goals. The approach is based on
self-organizing map (SOM) for the TSP that is a two layered
neural network originally developed as a visualization tech-
nique by T. Kohonen [13]. SOM provides a transformation
of a high dimensional input space into a lower dimensional
discrete output space, usually a 2D grid. For the TSP, the
output layer is a uni-dimensional array of nodes, which
represents a path in the input space (called ring) and thus
it represents a solution of the TSP, see Fig. 2.
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Fig. 2. Structure of the network and projection of the neuron weights into
the input space representing the multi-goal path

The unsupervised learning is performed in learning epochs
in which all goals are presented to the network in a random
order, and neurons compete to become a winner based on its
distance to the presented goal. Then, the winner is adapted
together with its neighbouring nodes to the presented goal,
which can be imagined as a movement of the node to
the goal. This procedure is repeated until the network is
stabilized and the winners fit the goals. A visualization of
the learning is shown in Fig. 3.

(a) learning epoch 27 (b) learning epoch 36

(c) learning epoch 45 (d) learning epoch 63

Fig. 3. Visualization of the unsupervised learning of SOM for the TSP

For the multi-goal motion planning problem, we consider
SOM adaptation on a graph proposed in [14]. The graph is a
robot roadmap and this approach has been successfully used
in our previous work [15], where PRM serves as a graph
and SOM determines a multi-goal trajectory from which
a set of desired areas are covered by an unmanned aerial
vehicle considering sensing with a limited range. The main
draw back of this solution is that the roadmap has to be
created prior the planning and it should be sufficiently dense.

In this paper, we present results of our ongoing effort on
simultaneous creation of the motion planning roadmap using
the RRG technique and a solution of the underlying TSP on
this roadmap; thus, the process of solving the TSP is used to
stimulate the roadmap expansion in promising parts of the
environment regarding the solution of the TSP. The proposed
unsupervised learning exploits the information acquired from
the environment and use it for steering the RRG motion
planning technique.

The RRG technique builds the roadmap incrementally,
therefore it can be used for such an exploitation, whereas
PRM technique constructs the roadmap in advance and it is
then used for the afterwards path planning queries. Our early
achieved results indicate the proposed approach grows the
roadmap in desired parts of the environment with respect to
the actual goal configuration and the unsupervised learning
provides a solution of the multi-goal trajectory problem with
increasing quality of solution.

II. PROBLEM STATEMENT

The problem is studied in 3D environment W ∈ R3

represented by a set of triangles forming a set of obsta-
cles O. Motion planning is realized in configuration space
C of all possible configurations of the robot. The motion
planning problem is considered as a problem to find a
single trajectory κ : [0, 1] → Cfree from the initial robot
configuration κ(0) = qinit to a goal configuration defined
as d(κ(1), qgoal) < ε, where Cfree denotes the obstacle free
part of C as Cfree = cl(C\Cobst), ε is a tolerance for visiting
the desired goal location, cl is the closure of a set, and d(., .)
is a distance between two configurations. Cobst represents all
configurations for which the robot is in collision with O.

The motivational scenario in this work is a robotic visual
inspection, where the task is to cover n given areas of
interest from particular goal locations, which are represented
as desired configurations of the robot G = {g1, . . . , gn}. We
assume that each goal configuration is represented by a 6D
vector R3×SO(3) consisted of position (x, y, z) and rotation
(α, β, γ). The robot reaches the goal if it is within the goal
in an admissible tolerance ε.

The sequence of visits is defined as (v1, v2, . . . , vn), where
vi ∈ G and ∪1<i≤nvi = G. The multi-goal trajectory in
the multi-goal motion planning problem is defined similarly
as for the single trajectory as τ : [0, 1] → Cfree such
that τ(0) = τ(1) = qinit ∈ G and for which there exist
0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ 1 and d (τ(ti), vi) < ε. In
other words, there exists n configurations of the multi-goal
trajectory from which the robot covers requested objects, i.e.,
they are at least in ε distance from the goals. The MGMP
problem can be formulated as follows: For the given set of
goals G, configuration space C and admissible distance ε,
find trajectory τ∗ such that τ∗ = arg minτ∈T c(τ), where T
is the set of all admissible multi-goal trajectories and c(.) is
a strictly positive cost function.

The proposed approach is based on the RRG algorithm
[11] used for an incremental construction of the roadmap
(graph) GRRG = (VRRG,ERRG). The set of vertices VRRG



(a) E = 1;L = ∞ (b) E = 20;L = 94.18 m (c) E = 40;L = 70.03 m (d) E = 60;L = 57.84 m

Fig. 4. Examples of solution of the MGMP problem with 10 goals in the potholes at the learning epoch E and length of the found multi-goal path L

(a) E = 1;L = ∞ (b) E = 20;L = 135.36 m (c) E = 40;L = 105.99 m (d) E = 60;L = 97.14 m

Fig. 5. Examples of solution of the MGMP problem with 13 goals in the potholes at the learning epoch E and length of the found multi-goal path L

are configurations of the robot in Cfree that are connected by
edges ei ∈ ERRG, which represent a feasible motion between
two configurations. The graph is a result of the roadmap
expansion by applying a selected robot control command.

III. PROPOSED MULTI-GOAL TRAJECTORY PLANNING

The output layer of the used neural network forms a ring
of m nodes N = ν1, . . . , νm representing a solution of the
TSP, where m is selected according to the number of the
n goal locations (m = 2.5n nodes are used for all results
presented this paper). The adaptation of the network is based
on evaluation of the closest neuron to the goal for which
we need a distance cost from a node ν to the goal g. In
a planar case, we can simply compute the distance using
the Euclidean distance, while for the SOM on a graph [14]
we can use a length of the shortest paths between the
vertices in the graph as nodes and goals are vertices of
the graph. However, we do not have such a graph that will
connects the nodes (their closest vertices in the graph) with
the presented goals, because the graph GRRG is actually
being constructed during solving the TSP. Therefore, we need
a suitable approximation of the distance that will use the
current knowledge about Cfree stored in GRRG as much as
possible.

To maximize such an exploitation of the information
stored in the roadmap GRRG, we propose to consider an
intermediate vertex w∗ of the graph GRRG that lies on a
trajectory from the node ν to the goal g. Because a complete
trajectory from ν to g is not known, such a vertex should

also respect Euclidean approximation of the distance to the
goal. We propose to determine such a vertex w with respect
to ν and g as

w∗ = arg min
w∈VRRG

(
c(κν,w) + |(w, g)|2

)
(1)

where c(κν,w) is the trajectory cost from ν to the interme-
diate node w determined using the current graph GRRG and
|(w, g)| is the Euclidean distance from w to g. The estimated
path P (ν, g) from ν to g is then composed from the trajectory
κν,w∗ in the graph GRRG and the straight line segment from
w∗ to g as

P (ν, g) = κν,w∗ ⊕ (w∗, g). (2)

This proposed estimation P (ν, g) is used for determining the
winner neuron in the unsupervised learning, and the length
of the estimated path is computed as

|P (ν, g)| = c(κν,w∗) + |(w∗, g)| , (3)

where the cost of the trajectory c(.) is extended by the length
of the straight line segment (w∗, g).

In a single learning epoch, the unsupervised learning of
SOM for the TSP sequentially propagates a random permu-
tation of the goals Π(G) to the network and the presented
goal is used to select the winner node ν∗ from the ring of
nodes. Then, ν∗ is adapted with its neighbors in the direction
towards the goal g. The power of the adaptation of the winner
and its neighbors is controlled by the fractional learning rate
µ and neighboring function exp(−l

2

σ2 ), where l is a distance
of the node from the winner (in the number of nodes) and



(a) E = 1;L = ∞ (b) E = 20;L = 174.03 m (c) E = 40;L = 117.16 m (d) E = 60;L = 98.45 m

Fig. 6. Examples of solution of the MGMP problem with 17 goals in the potholes at the learning epoch E and length of the found multi-goal path L

(a) E = 1;L = ∞ (b) E = 20;L = 160.71 m (c) E = 40;L = 102.76 m (d) E = 60;L = 91.97 m

Fig. 7. Examples of solution of the MGMP problem with 20 goals in the potholes at the learning epoch E and length of the found multi-goal path L

σ is the learning gain decreased after each learning epoch.
The expected traveled distance of the neuron ν towards g is

|P (ν, g)| − |P (ν′, g)| = |P (ν, g)|µe−
l2

σ2 , (4)

where ν′ is a new expected location of the neuron ν. Notice,
that such a location of the neuron ν′ can be out of the current
roadmap. This situation is used for steering the expansion of
GRRG towards the direction of P (ν, g). But afterwards, the
location of the neuron ν′ is restricted to an existing vertex
of GRRG when the roadmap was expanded. The proposed
adaptation to steer the sampling of Cfree in the multi-goal
trajectory planning can be summarized as follows:
• Let the presented goal to the network be g and its winner

found by (3) be ν∗;
• Then, for each νi from the set defined by ν∗ and its

neighbouring nodes:
1) Find w∗ ∈ VRRG using (1);
2) Determine the expected position ν′i using (4);
3) Expand the motion roadmap GRRG towards ν′i

using goal biasing;
4) Find w∗ ∈ VRRG using (1) in the expanded

GRRG and determine new expected position ν′i;
5) Restrict ν′i to w∗ if ν′i would be out of the graph

GRRG;
6) Set the weights of νi to ν′i;

The important part of the proposed algorithm is the third
step, where the roadmap is expanded. Here, the configuration
space is explored if the expected node position ν′i would be

out of the graph; otherwise the roadmap is enhanced.

IV. CASE STUDY

The proposed approach has been studied in 20×20 meters
large environment called potholes and for the PhantomX
hexapod walking robot (see Fig. 1) with an omnidirectional
motion capability. We studied behavior in different types of
complexity of the underlying TSP with n randomly generated
goals n ∈ {5, 7, 10, 13, 17, 20}.

Selected results are visualized in Figures 4, 5, 6, and 7.
Each sub-figure represents the current state of the solution at
the end of the learning epoch E. The cost of the best found
multi-goal trajectory is denoted as L, where ∞ represents
a situation an admissible solution has not yet been found
till the current epoch. The colors in the figures represents:
obstacles of the environment (black), the current roadmap
(red), the actual best found trajectory (blue), the desired goals
to be visited (blue stars), straight line segments connecting
the nodes of the SOM ring (green), and SOM nodes (black
squares). Notice, the first admissible solution is found in
few epochs while in the rest of the learning the solution
is improved as the roadmap becomes denser.

Due to stochastic nature of the proposed SOM-based
planning approach, 10 trials have been performed for each
problem and average values of the studied parameters of the
created roadmap are presented in Table I. The column de-
noted as CPU Time indicates the required computational time
using a single core CPU running at 2.6 GHz, which follows
the theoretical complexity O(n3 log(n)) of the unsupervised



learning. The most computationally demanding part of the
algorithm is equation (1) that is solved twice per a single
adaption of each winner in one learning epoch.

TABLE I
AVERAGE VALUES OF THE STUDIED ROADMAP PARAMETERS IN E=100

No. of No. of No. of CPU Time Path
Goals Vertices Edges [s] length [m]

5 3137 (85) 24494 (1404) 4.7 (0.3) 51.6 (0.3)
7 4820 (60) 42113 (771) 15.8 (0.6) 42.8 (0.5)

10 6947 (58) 62076 (1546) 59.2 (1.7) 46.8 (1.1)
13 11259 (97) 96305 (1180) 200.4 (4.2) 65.0 (1.7)
17 16326 (69) 146305 (1204) 600.3 (13.8) 69.5 (2.4)
20 19889 (77) 173934 (1576) 1054.1 (74.9) 86.3 (1.4)

V. CONCLUSION

We present a new unsupervised learning strategy for grow-
ing motion planning roadmap in the randomized sampling-
based RRG motion planner to find a solution of the multi-
goal trajectory problem. The proposed technique is based on
self-organizing map for the TSP that allows to simultane-
ously solve the combinatorial part of the MGMP problem
together with determination of the trajectories between the
goals. Despite of the relatively simple problems considered,
the presented results support feasibility of the proposed
approach for the multi-goal motion planning. These first
results also motivates us for our future work on the proposed
unsupervised learning of the configuration space during the
motion planning to further improve the multi-goal planning
performance by finding a suitable trade-off between explor-
ing the space and exploiting the current roadmap.

REFERENCES

[1] G. A. Hollinger, U. Mitra, and G. S. Sukhatme, “Autonomous data
collection from underwater sensor networks using acoustic communi-
cation,” in IROS, 2011, pp. 3564–3570.

[2] B. Englot and F. S. Hover, “Three-dimensional coverage planning for
an underwater inspection robot,” Int. J. Rob. Res., vol. 32, no. 9-10,
pp. 1048–1073, 2013.

[3] M. Saha, G. Sánchez-Ante, and J.-C. Latombe, “Planning multigoal
tours for robot arms,” in ICRA, vol. 3, 2003, pp. 3797–3803.

[4] E. Kolakowska, S. F. Smith, and M. Kristiansen, “Constraint optimiza-
tion model of a scheduling problem for a robotic arm in automatic
systems,” Robotics and Autonomous Systems, vol. 62, no. 2, pp. 267–
280, 2014.

[5] N. Michael, E. Stump, and K. Mohta, “Persistent surveillance with a
team of mavs,” in IROS, Sept 2011, pp. 2708–2714.

[6] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The Trav-
eling Salesman Problem: A Computational Study (Princeton Series in
Applied Mathematics). Princeton University Press, 2007.

[7] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, “CONCORDE
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[15] P. Janoušek and J. Faigl, “Speeding up coverage queries in 3d multi-
goal path planning,” in ICRA, 2013, pp. 5067–5072.


