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Abstract— Motion Planning for high-DOF deformable ob-
jects is a fundamental problem in robotics with countless
applications. We present our recent work on motion planners
for very high-DOF deformable objects, including fluid bodies
and elasticallly deformable robots. Due to their high-DOF
configuration space, direct applications of previous motion
planning algorithm is computationally infeasible. We overcome
this problem by using nonlinear dimension reduction to map the
configuration space to a low-DOF feature space. We show that
both sampling-based and optimization-based motion planning
algorithms can benefit from these low-DOF spaces to achieve
1 − 2 orders of magnitude speedup. The applications of this
technique include robot liquid transfer and navigating high-
DOF elastically deformable robots.

I. INTRODUCTION

Motion planning for high-DOF deformable objects is a
fundamental problem in robotics with countless applications.
For example, an mechanical engineer can create a vivid de-
formable octopus by modelling muscles on its eight-arms and
animate the octopus by controlling the muscle contractions.
As another example, when a robot performs dangerous chem-
ical experiments in a laboratory, the robot arm needs to move
the liquid reagents and mix them together to trigger reactions.
The physical objects in these examples, i.e., the octopus and
the reagents, are non-rigid and have a high number of DOFs.
With the growing computational power of desktop machines,
algorithms to plan motion for these objects are becoming
practical but still challenging for two reasons. First, many
prior planning algorithms for low-DOF dynamic systems
have quadratic or cubic complexity in the number of DOFs.
Such complexity is acceptable for dynamic systems such as
articulated humanoid robots with less than 100 DOFs [15].
However, they becomes impractical for deformable objects
whose configuration space has more than 10000 DOFs [27],
[25], which is typical in our examples. Second, deformable
bodies exhibit a lot of non-smooth behaviors that are difficult
to model in the planning algorithm, such as environmental
contacts, topology changes, and self-intersections. For exam-
ple, to transfer liquid reagents from one container to another,
we require the robot to avoid fast movements that will result
in spilling. However, no mathematical model is available
to predict whether spilling will happen. In summary, our
major challenge is to reduced the computational overhead
and model the non-smooth behaviors of deformable objects
in the planning algorithm.

In this extended abstract, we summarize our two recently
work on motion planners for Newtonian fluid bodies and
elastically deformable robots. A common point of our plan-
ning algorithms is that, in order to make a planning algorithm
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computationally feasible or efficient, a procedure of nonlin-
ear dimension reduction (NDR) is introduced to reduce a
high-DOF configuration space to a low-DOF feature space.
Nonlinear dimension reduction [40] has been one of the main
focuses of recent research on deep learning. General image
classification [37] and image compression [35] can viewed
as a form of NDR. Although these techniques are successful
in computer vision, it is non-trivial to extend them to other
domain such as robot motion planning. In this abstract, we
show that, by using task-specific or dynamic-system-specific
heuristics, efficient NDR techniques can be developed for
these new problems. As a result, sampling-based planning
algorithms become more efficient by requiring less samples,
and optimization-based planning algorithms run faster due to
a reduced problem size.

In Section III, we design a motion planner for a robot to
perform the specific task of liquid transfer. By using task-
specific heuristics, we identify a 1-D feature space. In Sec-
tion IV, we design a motion planner to navigate high-DOF
elastically deformable robots using trajectory optimization.
The optimization is accelerated by two orders of magnitude
by using a dynamic-model-specific NDR procedure that
reduces the dimension of the underlying dynamic system.

II. RELATED WORK

We review related work on high-DOF deformable object
modelling and deformable object planning algorithms.

A. High-DOF Deformable Object Modelling
A large amount of work has been done on the continuous

and computational modelling of both fluid bodies [2] and
elastically deformable objects [12]. The continuous dynamics
of fluid bodies are governed by the Navier-Stokes equation.
Computational models of the Navier-Stokes equation can be
derived using various discretization schemes such as finite
difference [13], [10], finite element [34], [21], smoothed
particle hydrodynamics [20], [22], and hybrid scheme [42].
In robotics, approximate models are developed for specific
tasks such as liquid transfer [24], [29]. The continuous
dynamics of elastically deformable objects are governed
by the Euler-Lagrange equation. The prominent method to
derive the corresponding computational model is by using
the finite element method [12], although alternative methods
[17] can also be used. When a elastically deformable object
undergoes only small deformations, dimension reduction
technique exists for the dynamic system [36]. Later, this
technique of dimension reduction has been extend to large
deformations [4], [1], [23].

B. Planning Algorithms for Fluid Bodies
In robotics, fluid body motion planning problem arises in

various manipulation tasks such as liquid transfer [27], [26],



[30], [31] and spray painting [28], [7]. Since only one spe-
cific task is considered, the planning algorithm can become
more efficient by exploiting simplified fluid models such as
[29], [24]. In computer graphics, the problems are keyframe-
based, where the goal is to deform the shape of the fluid body
into a target shape. Early work [39] formulated the keyframe-
based planning problem as a trajectory optimization solved
using general-purpose gradient-based optimization. Besides
trajectory optimization, we can use the keyframe as a target
shape and adopt a tracker-type controller [11], which is faster
to compute. But tracker-type controller does not provide any
optimality guarantee.

C. Planning Algorithms for Elastically Deformable Objects

In robotics, deformable objects are passive and manipu-
lated by the robot. Deformable object planning finds a lot
of applications such as knot tying [16], cloth folding [19],
and human dressing [8]. Compared with fluid bodies, the
number of DOFs in an elastically deformable object can be
made small by using a low resolution computational model.
Therefore, conventional techniques such as sampling-based
methods [6] and trajectory optimization [19], [14] are still
computationally feasible. In computer graphics, animators
model virtual actuated characters that do not exist in real-life
as elastically deformable objects. Early work [41] uses brute
force trajectory optimization to animate the character, which
has high computational overhead due to the high-DOF. More
recently, the overhead of trajectory optimization is reduced
by using dimension reduction [5], [18], [33], achieving
interactive performance. However, all these algorithms do
not take environmental interactions into account. More recent
work [38], [9] uses model predictive control to optimize
deformable body configurations as well as environmental
contact forces.

III. ROBOT LIQUID TRANSFER

Fig. 1: An illustration of the
liquid transfer task.

In this section, we in-
troduce the application of
NDR to extract features
from a high-DOF config-
uration space of a Newto-
nian fluid body, with the
application to robot liq-
uid transfer. Liquid trans-
fer is a well-known task
in robotics that finds a
lot of applications such as
spray painting, lubricant
replacement, car washing, and chemical experiments. These
tasks are all challenging due to the existence of the high-
DOF fluid body. Our research focuses on the specific task
of liquid transfer, where the goal is to move the fluid body
from a source container to a target container as illustrated in
Figure 1.

To search for the motion trajectory of the source container
(the cylinder in Figure 1), we use optimization-based motion
planning algorithm [32]. However, directly apply trajectory

optimization is not computationally feasible for two reasons.
First, each iteration of optimization, e.g. the computation
of gradient vector when a gradient-based optimizer is used,
requires the simulation of the 3D fluid bodies, for which
even the state-of-the-art algorithm [3] takes hours. Therefore,
the expected computational time for an entire trajectory opti-
mization is on the level of weeks. Second, the shape changes
of fluid body involve a lot of non-smooth procedures, such
as contacts between the fluid body and the containers, as
shown in Figure 1. These procedures cannot be handled by
a gradient-based optimizer.
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Fig. 2: Assuming that both the container and the fluid body
in the simulated domain is modelled as a set of particles, if
we model the fluid body in a brute force manner, we need
to model the movement of all the fluid particles (blue points
in (a)). Instead, for liquid transfer we only need to know
the outflow speed (b). Based on the outflow speed, liquid
outflow is approximated by a quadratic curve (c). Given
the quadratic curve, the objective function (d) for trajectory
optimization can be formulated as the distance between the
quadratic curve and the center of target container opening
(e). To perform NDR, we predict the outflow speed using a
neural-network (f).

To solve this problem, we use two task-specific heuristics
as illustrated in Figure 2. First, we observe that we can
approximate the liquid outflow curve as a quadratic curve
(Figure 2 (c)). Second, we observe that for the specific
task of liquid transfer, we only need to know the liquid
outflow speed (Figure 2 (b)), instead of modelling the entire
shape of fluid (Figure 2 (a)). Based on this observation,
we construct a neural-network (Figure 2 (f)) that takes the
current fluid shape as input and predicts the outflow speed
as a 1-D feature. In other words, the NDR procedure is ac-
complished using a neural-network. After the neural-network
has computed the outflow speed, we can approximate the
liquid outflow as a quadratic curve (Figure 2 (c)), and we
can perform trajectory optimization to minimize the distance
between the quadratic curve and the center of target container



opening (Figure 2 (e)). More importantly, the entire fluid
simulation procedure is approximated using a smooth neural-
network function that can be handled by a gradient-based
trajectory optimizer.

When this neural-network is combined with a trajec-
tory optimization, we can compute a successful trajec-
tory within a couple of minutes. Some examples are
shown in Figure 3. More information about this work
can be found at http://gamma.cs.unc.edu/FluidMotion and
http://gamma.cs.unc.edu/RLFluid.

Fig. 3: Example of computed liquid transfer trajectories.

IV. NAVIGATING ELASTICALLY DEFORMABLE ROBOTS

In this section, we use NDR to accelerate both simulation
and trajectory optimization for an elastically deformable
object. This problem arises due to the recent trend to go
beyond low-DOF articulated robots. For example, if we
consider the 4-legged spider robot that is made of rubber, as
illustrated in Figure 4 (a), it is computationally challenging
to search for its walking gaits because there are infinitely
many ways that the spider can deform.

To accelerate trajectory optimization for this application,
we use a nonlinear dimension reduction method called
rotation-strain (RS) transformation [23]. This method starts
from conventional FEM-based discretization of the governing
Euler-Lagrange equation denoted as xi+1 = f(xi, ui,∆t)
where xi is the high-DOF configuration at timestep i, ui is
the control signal, f(●) is the function representing the FEM
simulator, and ∆t is the timestep size. RS transformation
can be denoted as a function RS(x̄) = x. Under an FEM
discretization with moderate resolution, we usually have
∣x∣ > 1000. However, with ∣x̄∣ < 20, we can model most
dynamic behaviors via the RS transformation. Moreover, we
can further reduce the FEM simulation function into the RS
space by writing:
RS(x̄i+1) = f(RS(x̄i), ui,∆t)⇐⇒ x̄i+1 = f̄(x̄i, ui,∆t),

where f̄ is the RS-space FEM simulation function, which
can be evaluated more than two orders of magnitude faster,
compared with the original f(●). We refer readers to [23]
for more details about this technique.

To apply RS-sapce FEM simulation to trajectory optimiza-
tion, we propose a new framework [25] where we combine
several objective functions including physical correctness,
self-collision freedom, control objectives, etc. For the phys-
ical correctness, the objective function takes the following
form:

E(x̄i+1, x̄i) = ∥x̄i+1 − f̄(x̄i, ui,∆t)∥
2.

With fast RS-space FEM simulation, our trajectory opti-
mization framework can find a variety of movement gaits
as illustrated in Figure 5, such as jumping, walking, and
swimming, within a couple of hours on a desktop machine.
These gaits are used by the deformable robot to move in a
specific direction. After a set of gaits are found allowing
the deformable robot to move in different directions, we
can further train a neural-network-based motion planner that
dynamically select moving directs to navigate the deformable
robot to a distant target while avoiding obstacles, as illus-
trated in Figure 6.

V. CONCLUSION

In this abstract, we demonstrate two applications of mo-
tion planning for high-DOF deformable objects. In both
applications, a key technique is to use NDR that maps the
configuration space of a high-DOF deformable object to a
low-DOF feature space.

In the first application, we use task-specific heuristics to
reduce the configuration space of a fluid body to a low-DOF
feature space. In this case, NDR is achieved by a neural-
network. As a result, the fluid dynamics is approximated
with a smooth neural-network function that can be efficiently
integrated into trajectory optimization.

In the second application, we use a dynamic-system-
specific technique to perform the NDR. In this case, NDR
operator is the rotation-strain transformation, which maps the
high-DOF FEM-discretized dynamic system to a low-DOF
linearized space. As a result, trajectory optimization becomes
two orders of magnitude fast and can be used to search for
movement gaits.
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[3] R. Ando, N. Thürey, and C. Wojtan, “Highly adaptive liquid simulations on tetrahedral

meshes,” ACM Trans. Graph. (Proc. SIGGRAPH 2013), July 2013.
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the deformable body to reach a target (green) while avoiding obstacles (blue) (f), where our method can handle different
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