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Abstract— Understanding and following directions provided
by humans can enable robots to navigate effectively in unknown
situations. We present FollowNet, an end-to-end differentiable
neural architecture for learning multi-modal navigation poli-
cies. FollowNet maps natural language instructions as well
as visual and depth inputs to locomotion primitives. Fol-
lowNet processes instructions using an attention mechanism
conditioned on its visual and depth input to focus on the
relevant parts of the command while performing the navigation
task. Deep reinforcement learning (RL) a sparse reward learns
simultaneously the state representation, the attention function,
and control policies. We evaluate our agent on a dataset
of complex natural language directions that guide the agent
through a rich and realistic dataset of simulated homes. We
show that the FollowNet agent learns to execute previously
unseen instructions described with a similar vocabulary, and
successfully navigates along paths not encountered during
training. The agent shows 30% improvement over a baseline
model without the attention mechanism, with 52% success rate
at novel instructions.

I. INTRODUCTION

Humans often navigate unknown environments by observ-
ing their surroundings and following directions. These di-
rections consist predominantly of landmarks and directional
instructions and other common words. For example, humans
can find a kitchen in a home they haven’t visited before,
by following directions such as: “Turn right at the dining
table, then take the second left”. This process requires visual
observations, e.g. a dining table in the field of view or
knowledge of a typical hallway, and execute actions present
in the direction: turn left. There are multiple dimensions
of complexity: limited field of view, qualifier words like
“second”, synonyms such as “taking” and “turning”, under-
standing that “take the second left” refers to the door, etc.

In this paper, we apply human-like direction following to
robots navigating in 2-dimensional workspaces (Fig. 1). We
present robots with example directions similar to the one
above, and train a deep reinforcement learning (DRL) agent
to follow the directions. The agent is tested on how well it
follows new directions when starting from different locations.
We accomplish this with a novel deep neural net architecture,
FollowNet (Fig. 2), which is trained with Deep Q-Network
(DQN) [17]. The observation space consists of natural lan-
guage instructions and visual and depth observations from
the robot’s vantage point (Fig. 4b). The policy’s output
is the next motion primitive to perform. The robot moves
along an obstacle-free grid, but the instructions require the
robot to move over a variable number of nodes to reach
the destination. The instructions we use (Table I) contain
implicitly encoded rooms, landmarks, and motion primitives.

1The authors are with Google, Mountain View, CA, USA
{pararth,mfiser,faust,jkew,dilekh}@google.com

(a) House 1 (b) House 2

Fig. 1. 3-dimensional rendering of the houses used for learning navigation
from natural language instructions.

In the example above, “kitchen” is the room that serves as the
goal location. “Dining table” is an example of a landmark, a
point at which the agent might change direction. Both rooms
and landmarks are mapped to groups of grid points without
the agent’s knowledge. We use a sparse reward, given to the
agent only when it reaches a waypoint.

The novel aspect of the FollowNet architecture is a lan-
guage instruction attention mechanism that is conditioned on
the agent’s sensory observations. This allows the agent to do
two things. First, it keeps track of the instruction command
and focuses on different parts as it explores the environment.
Second, it associates motion primitives, sensory observations,
and sections of the instruction with the reward received,
which enables the agent to generalize to new instructions.

We evaluate how well the agent generalizes to new instruc-
tions and new motion plans. First, we evaluate the agent on
how well it follows previously unseen two-step directions in
houses with which it is familiar. The results show that the
agent follows 52% directions completely and 61% partially, a
30% increase over a baseline. Second, the same instructions
are valid for a set of different starting positions. For example,
”Exit the room” is valid for any start location inside the
room, yet the motion plan that the robot needs to execute
to complete the task can be very different. To access how
well the motion plans generalize to new start locations,
we evaluate the agent on the instructions on which it was
trained (up to five-step directions), but from new starting
positions. The agent completes 70% directions partially and
54% fully. To put that in perspective, multi step directions
are challenging for people to perform as well.

II. RELATED WORK

End-to-end navigation methods [21], [6], [30] use deep
reinforcement learning on robots’ sensory observations and



Fig. 2. Neural model for mapping visual and language inputs to a navigation action. Left: An example task, where the robot starts at the position and
orientation specified by the blue triangle, and must reach the goal location specified by the red circle. The robot receives a natural language instruction to
follow the path marked in red, listed below the image. Right: the FollowNet architecture. Semantic segmentation map is fed into a 3-layer convolutional
net with 3, 8, and 16 outputs, [1,1], [4,4], [3,3] kernels, and 1, 2, 1 strides. The depth image is an input to 2-later convolutional network with 8 and 16
outputs, [4, 4] and [3, 3] kernels, and 2 and 1 strides. The command is an input to a bidirectional GRU with 32 outputs. The Feedforward Attention Layer
has soft attention 16 hidden states. Lastly the the Feedforward layers consist of two layers with 16 and 8 hidden units.

relative goal location. In this work, we provide natural
language instructions instead of the explicit goal, and the
agent must learn to interpret the instructions to complete
the task. One challenge in reinforcement learning applied to
robotics is the state space representation. Large state spaces
slow down the learning, so often different approximation
techniques are used. Examples of these are probabilistic
roadmaps (PRMs) [6], [11] and simple discretization of
the space [19], [18]. Here, we discretize the 2-dimensional
workspace and allow the agent to move through the grid
from node to node. Essentially, we assume that the robot can
avoid obstacles and move safely between two grid points by
executing the motion primitive corresponding to the action.

Deep learning has shown great success with learning
natural language [14], [15] and vision [10], [8] and even
combining visual and language learning [24], [26]. Applied
to robot motion planning and navigation, language learning
typically requires some level of parsing with formal descrip-
tions [12], semantic parsing [27], a probabilistic graphical
model [22], encoding and alignment [13], or task grounded
language [3] etc. Learning object labels through natural
language, though, has been addressed mainly by learning
to parse natural language instructions into a hierarchical
structure which can be used during planning and execution of
robot actions [23], [28], [2] and active learning [25]. Here,
similarly to [1], we aim to implicitly learn the labels for
landmarks (objects) and motion primitives (actions) and their
interpretation with respect to visual observations. Unlike [1],
we use DQN [17] over the proposed FollowNet to learn the

navigation policy. Other works [9] have used curriculum to
complete several tasks in an environment.

Another recent work that combines 3D navigation, vision,
and natural language is learning to answer questions [5]. The
questions come from a prescribed set of questions where
certain keywords are replaced. In our work, the language
instructions given to the agent here are independently created
by four people, and presented to the agent without any
processing. Several methods learn from unfiltered language
[16], [29] and visual input. In these methods that visual input
is an image of an entire planning environment. In contrast,
FollowNet only receives partial environment observation.

III. METHODS

A. Problem formulation
We assume the robot to be a point-mass with three degrees

of freedom (x, y, θ), navigating in a 2-dimensional grid
overlaid on a 3-dimensional indoor house environment (Fig.
1). To train a DQN [17] agent, we formulate the task as a
Partially Observable Markov Decision Process (POMDP): a
tuple (O,A,D,R) with observations o = [oNL oV ] ∈ O,
where oNL = [w1w2 . . . wn] is a natural language instruction
sampled from a set of user-provided directions for reaching
a goal. The location of the goal is unknown to the agent. oV
is the visual input available to the agent, which consists of
the image that the robot sees (Fig. 4c) at a time-step i. The
set of actions A = {turnπ2 , go straight, turn

3π
2 } enables

the robot to either turn in place or move forward by a step.
The system dynamics D : O×A→ O are deterministic and



apply the action to the robot. The robot either transitions to
the next grid cell or changes its orientation. Note, that the
agent does not know where it is located in the environment.

The reward R : O → R rewards an agent reaching a
landmark (waypoint) mentioned in the instruction, with a
reward of +1.0 if the waypoint is the final goal location,
and a smaller reward of +0.05 for intermediate waypoints.
The agent is rewarded only once for each waypoint in the
instruction it reaches, and the episode terminates when the
agent reaches the final waypoint, or after a maximum number
of steps. Our aim is to learn an action-value function Q :
O → R‖A‖, approximated with a deep neural network and
trained with DQN.

Fig. 2 provides an example task, where the robot starts at
the position and orientation specified by the blue triangle,
and must reach the goal location specified by the red circle.
The robot receives a natural language instruction (Table I)
to follow the path marked in red.

B. FollowNet

We present FollowNet, a neural architecture for approxi-
mating the action value function directly from the language
and visual inputs (Fig. 2). To simplify the image processing
task, we assume a separate preprocessing step parses the
visual input oV ∈ Rn×m to obtain a semantic segmentation
oS which assigns a one-hot semantic class id to each pixel,
and a depth map oD which assigns a real number to each
pixel corresponding to the distance from the robot. The agent
takes the ground truth oS and oD from its current point
of view and runs each through a stack of convolutional
layers followed by a fully-connected layer. From these it
obtains fixed length embedding vectors vS ∈ RdS and
vD ∈ RdD (where dX = length(vX)) that encode the visual
information available to the agent.

We use a single layer bi-directional GRU network [4] with
state size dL and initial state set to 0, to encode the natural
language instruction using the following equations:

hF , {oi,F } = GRUF ({wi})
hB , {oi,B} = GRUB({wi})

oi = [oi,F oi,B ]

where hF , hB ∈ RdL are the final hidden states of the for-
ward and backward GRU cells, respectively, while oi ∈ R2dL

are the concatenated outputs of the forward and backward
cells, corresponding to the embedded representation of each
token conditioned on the entire utterance. To enable the agent
to focus on different parts of the instruction depending on
the context, we add a feed-forward attention layer over oi:

vC = [vS vD hB hF ]

ei = FFA(vC , oi)

αi = softmax(ei)

ai = αi oi

vA = (1/k)Σki ai

vL = FFL(vA)

Q(o) = FFQ([vS , vD, vL])

(a) House 1 (b) House 2

Fig. 3. Landmarks and grid overlaid over the environments.

(a) Couch in living
room

(b) Table in front (c) Table to left,
couch to the right

Fig. 4. Semantic segmentation map observations for FollowNet agents.
Colors correspond to object types (unknown to the agent), and are consistent
between the houses and vantage points. Couch is green (a and c), dinning
table is yellow (b and c).

We use a feed-forward attention layer FFA conditioned on
vC , which is the concatenated embeddings of the visual
and language inputs, to obtain unnormalized scores ei for
each token wi. ei are normalized using the softmax function
to obtain the attention scores αi, which correspond to the
relative importance of each token of the instruction for the
current time step. We take the attention-weighted mean of the
output vectors oi, and pass it through another feed-forward
layer to obtain vL ∈ RdL , which is the final encoding of the
natural language instruction.

The Q function is then estimated from the concatenated
[vS , vD, vL] passed through a final feed-forward layer. Dur-
ing training, we sample actions from the Q-function using
an epsilon-greedy policy to collect experience, and update
the Q-network to minimize the Bellman error over batches
of transitions using gradient descent. After the Q function
is trained, we used the greedy policy π(o) : O → A, with
respect to learned Q̂, π(o) = πQ̂(o) = argmaxa∈A Q̂(o, a),
to take the robot to the goal presented in the instruction ol.

IV. RESULTS

In this Section we present the training and evaluation
setup, and then evaluate FollowNet against a baseline model
without attentional layer. We also look into the effect of the
attentional layer and task complexity.

Setup and methodology: We chose two houses from the
SUNCG [20] dataset that had many rooms and objects in
common (Fig. 1). The size of the grid for House 1 is 23×18
nodes, for House 2 14× 20 nodes.

For both houses we chose 7 navigation tasks consisting
of starting and ending locations (e.g. “Study to table in
the kitchen”). Three people each independently wrote one



TABLE I
EXAMPLES OF INSTRUCTIONS USED IN TRAINING. HOUSE # IS IDENTITY OF THE HOUSE, START AND GOAL DETERMINE THE VALID REGIONS OF THE

INSTRUCTIONS. THE ROBOT ONLY HAS ACCESS TO THE INSTRUCTION AND VISUAL OBSERVATION, WITHOUT THE CONTEXT OF WHERE IT IS LOCATED

(HOUSE #, START AND GOAL) AND THE VALID REGIONS FOR THE INSTRUCTION. HOUSE #, START AND GOAL ARE USED FOR THE RL REWARD DESIGN.

House # Start Goal Instruction
1 Kids Bedroom Bedroom Exit the room, turn left and walk through the hall and enter the doorway in front of you
2 Study Gym Go out the door and turn left. Go forward until you reach a doorway, then turn left. Go forward and

through the door in front of you. Go straight through the bedroom and through the door on the far side.
2 Gym Kitchen Go out the door, straight through the bedroom and out the door on the far side. Continue straight until

you hit the wall, then turn right. After the corner of the wall, turn left and go through the door ahead.
2 Hallway Gym Go out through the bedroom, straight across and through the far door.
2 Dining Table Bathroom Go out the door and turn right after the corner of the wall. Go straight ahead and through the door.
2 Kitchen Gym Go out the door and straight across the hallway until you reach a doorway, then turn right. Go straight

until you reach another doorway, then turn left. Go straight forward until you reach another doorway and
go through that one. Go straight across the bedroom and through the door on the far side.

instruction for each task in each house forward, and one
instruction for the same task reversed (e.g. “exit the room and
take the door on the opposite wall”). After discarding some
instructions for containing vocabulary not seen elsewhere,
we settled on a set of 58 instructions. Examples of the tasks
and instructions in the Table I. Each instruction contains
implicitly stated waypoints. In the example above, the set
of waypoints might be: study, table, kitchen, and door. The
agent has no knowledge of the waypoints, and they are only
used for reward computation and evaluation. We overlaid a
navigation grid (1 meter edges) onto each house (Fig. 3).
For each instruction, we associated grid nodes with valid
starting points and waypoints that we expect agent to reach
when completing the instruction. For each task, we selected
approximately 5-10 starting nodes, where were randomly
selected during the training.

For the evaluation, we followed the same methodology
to create an additional dataset of 15 instructions which
introduce new combinations of instructions and locations
not present in training. For example: “Go out the door and
straight across the hallway, then through the door in front
of you.” We made sure the evaluation instruction uses the
same landmark and directional vocabulary as the training
set without introducing new words. The evaluation instruc-
tions consists of two-step instructions, while the training set
contains up to five-step instructions. The evaluation dataset
consists of 100 queries, created over the 15 evaluation
instructions and randomly sampled start and goal location
within the start and goal area applicable to the instruction.
For example, for Kids Bedroom anywhere in the room is the
possible location to start an episode.

We trained FollowNet agent with the learning rate α =
1.70974 ∗ 10−4 and discount factor γ = 0.990022, selected
through a hyper-parameter tuning [7]. We stop the training
after 2 500 000 steps. We compare FollowNet to a baseline,
which is an identical network but without the attention layers.
The baseline consists of convolutional layers, RNN, and
FCC layers. The baseline was trained and tuned in the same
manner as the FollowNet. It is a non-trivial and challenging
baseline.

Comparison to baseline with no attention: Fig. 5 shows
the learning curve for the FollowNet and baseline over
the holdout dataset. Early in the training the model with

(a) Performance on training set.

(b) Performance on hold-out set.

Fig. 5. Comparing FollowNet (blue) with a baseline agent with no attention
(red). Top: Average return on the training set plotted against no. of training
steps. Evaluations done every 10,000 steps on the same hold out set. Bottom:
Evaluated trained policies of both agents on a hold-out set for 100 episodes,
and plotted a histogram of fraction of waypoints reached successfully.
Learning to attend over the input instruction shows a 30% relative increase
(52% vs. 40%) in fully successful episodes.

no attention is showing a slightly better learning curve.
With prolonged training, FollowNet outperforms the baseline
agent. This is because encoding the instruction with an RNN
enables the agent to consider the relative ordering of words
in the instruction. The visual inputs and language input are
embedded separately and then fused into a single context
vector which conditions the final action selection policy.
Without attention on the RNN, the agent cannot selectively
focus on parts of the instruction relevant to the visual context.

Fig. 5b depicts the histogram of fraction of waypoints
reached successfully on the evaluation dataset. The Fol-
lowNet agent’s overall success at following instructions is
52% on the evaluation dataset, while the baseline completes



Fig. 6. Language attention heatmap over time steps. Brighter colors indicate
more attention. Agent’s attention over instruction words shifts based on the
agent’s location along the path to the goal.

only 40%. This means that the FollowNet has 30% relative
increase over the baseline. We also see that FollowNet has
fewer fully unsuccessful tasks (39% vs 45% ), that is 13%
relative decrease.

Attention Analysis: Fig. 6 shows a heatmap of the atten-
tion vector over a single episode. Along the y-axis is the
tokenized instruction the agent was given. Each word and
punctuation mark (commas and periods) is a separate token.
Progressing right along the x-axis, at each timestep we see
the weight the agent placed on each token, with lighter colors
representing higher weights. In steps 5 and 6, the agent
increases the attention on the word “left” as it takes a left in
the environment. Towards the end of the episode, the agent
attends to “the hallway” as it reaches the end of the task.

Fig. 7 depicts the fraction of successful (fully completed)
tasks per word. We see that FollowNet is likely to complete
tasks with orientation meanings (ahead, take, down, second,
left, right, across). The agent without attention generally has
the lower success rate across all words, and exhibits slightly
different success probabilities across the words. Both agents
have difficulty with words that do not appear often in the
dataset (past, you), as expected.

Motion plan generalization on complex instructions: We
look now at how well the FollowNet agent generalizes the
motion plans to new start positions on a complex instruction
data set used for the training, up to five-step instructions. Fig.
8 shows statistics relating to number of steps and number of
waypoints in each episode. The training tasks are not trivial,
with the number of steps needed to complete the task ranging
from 7 to 29 steps, with a mean of 17.4. The evaluation tasks
need between 3 and 26 steps, averaging 10.5 (Fig. 8a).

FollowNet agent’s overall success at following instructions
used in training is 54%, just 2% over the the evaluation
dataset. This means that the agent generalizes pretty well to
the new two-step directions. On the other hand, 30% of tasks
make no progress. It is not surprising that the agent fails more
often on the training instructions, because the instructions are
more complex. When the agent does not complete the task
even partially, it simply spins around without knowing what
to do (Fig. 8b).

Fig. 8c breaks down the episodes by number of waypoints,
a proxy for complexity of instructions. The agent is never

fully successful at following four- or five-step directions,
although in some cases it makes partial progress. Two-
and three-step directions are often fully completed. On the
evaluation dataset (Fig. 5b), which contains two-step tasks,
we notice an interesting bimodal distribution: An agent
which reaches the first waypoint is very likely to reach the
second.

V. CONCLUSIONS

This paper presents the FollowNet architecture, which
uses an attention mechanism over natural language instruc-
tions conditioned on multi-modal sensory observations as
an action-value function approximator in DQN. The trained
model learns to follow natural language instructions using
only visual and depth information. The results show promise
that we can simultaneously learn to generalize directional
instructions and recognize landmarks. The agent is successful
in following novel two-step directions most of the time (at
the level of toddler), a 30% improvement over the baseline.
In the future work, we aim to train the agent on a much larger
dataset, do more in-depth analysis and empirical evaluation
across several domains, and explore generalization across
different environments.
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