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Abstract— Prospection, the act of predicting the consequences
of many possible futures, is intrinsic to human planning and ac-
tion, and may even be at the root of consciousness. Surprisingly,
this idea has been explored comparatively little in robotics.
In this work, we propose a neural network architecture and
associated planning algorithm that (1) learns a representation
of the world useful for generating prospective futures after the
application of high-level actions, (2) uses this generative model
to simulate the result of sequences of high-level actions in a
variety of environments, and (3) uses this same representation
to evaluate these actions and perform tree search to find a
sequence of high-level actions in a new environment. Models are
trained via imitation learning on a variety of domains, including
navigation, pick-and-place, and a surgical robotics task. Our
approach allows us to visualize intermediate motion goals and
learn to plan complex activity from visual information.

I. INTRODUCTION

Humans are masters at solving problems they have never
encountered before. When attempting to solve a difficult
problem, we are able to build a good abstract models and
to picture what effects our actions will have. Some say
this act — the act of prospection — is the essence of true
intelligence [1]. If we want robots that can plan and act in
general purpose situations just as humans do, this ability
would appear crucial.

As an example, consider the task of stacking a series
of colored blocks in a particular pattern, as explored in
prior work [2]. A traditional planner would view this as a
sequence of high-level actions, such as pickup(block),
place(block,on block), and so on. The planner will
then decide which object gets picked up and in which order.
Such tasks are often described using a formal language such
as the Planning Domain Description Language (PDDL) [3].
To execute such a task on a robot, specific goal conditions
and cost functions must be defined, and the preconditions
and effects of each action must be specified. This is a time
consuming manual undertaking [4]. Humans, on the other
hand, do not require that all of this information to be given
to them beforehand. We can learn models of task structure
purely from observation or demonstration. We work directly
with high dimensional data gathered by our senses, such as
images and haptic feedback, and can reason over complex
paths without being given an explicit model or structure.

Ideally, we would learn representations that could be used
for all aspects of the planning problem, that also happen to be
human-interpretable. For example, deep generative models
such as conditional generative adverserial networks (cGANs)
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Fig. 1: Example of our algorithm using learned policies to predict
a good sequence of actions. Left: initial observation x0 and current
observation xi, plus corresponding encodings h0 and hi. Right:
predicted results of three sequential high level actions.
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Fig. 2: Predicting the next step during a suturing task based on
labeled surgical data. Predictions clearly show the next position of
the arms.

allow us to generate realistic, interpretable future scenes [5].
In addition, a recent line of work in robotics focuses on
making structured predictions to inform planning [6, 7]: So
far, however, these approaches focus on making relatively
short-term predictions, and do not take into account high-
level variation in how a task can be performed.

We propose a supervised model that learns high-level
task structure from imperfect demonstrations. Our approach
then generates interpretable task plans by predicting and
evaluating a sequence of high-level actions, as shown in
Fig. 1. Our approach learns a pair of functions fenc and fdec
that map into and out of a lower-dimensional hidden space
H, and then learns a set of other functions that operate on
values in this space. Models are learned from labeled training
data containing both successes and failures, are not reliant
on a large number of good expert examples, and work in
a number of domains including navigation, pick-and-place,
and robotic suturing (Fig. 2). We also describe a planning
algorithm that uses these results to simulate a set of possible
futures and choose the best sequence of high-level actions to
execute, resulting in realistic explorations of possible futures.

To summarize, our contributions are:
• A network architecture and training methodology for



learning a deep representation of a planning task.
• An algorithm to employ this planning task to generate

and evaluate sequences of high-level actions.
• Experiments demonstrating the model architecture and

algorithm on multiple datasets.

Datasets and source code will be made available upon
publication.

II. RELATED WORK

Motion Planning: In robotics, effective TAMP approaches
have been developed for solving complex problems involving
spatial reasoning [8]. A subset of planners focused on Par-
tially Observed Markov Decision Process extend this capabil-
ity into uncertain worlds; examples include DeSPOT, which
allows manipulation of objects in cluttered and challenging
scenes [9]. These methods rely on a large amount of built-
in knowledge about the world, however, including object
dynamics and grasp locations.

A growing number of works have explored the integration
of planning and deep neural networks. For example, QMDP-
nets embed learning into a planner using a combination
of a filter network and a value function approximator net-
work [10]. Similarly, value iteration networks embed a differ-
entiable version of a planning algorithm (value iteration) into
a neural network, which can then learn navigation tasks [11].
Vezhnevets proposed to generate plans as sequences of
actions [12]. Other prior work employed Monte Carlo Tree
Search (MCTS) together with a set of learned action and
control policies for task and motion planning [13], but did
not incorporate predictions.

Prediction is intrinsic to planning in a complex world.
While most robotic motion planners assume a simple causal
model of the world, recent work has examined learning
predictive models. Lotter et al. [14] propose PredNet as a
way of predicting sequences of images from sensor data,
with the goal of predicting the future, and Finn et al. [7]
use unsupervised learning of predictive visual models to
push objects around in a plane. However, to the best of our
knowledge, ours is the first work to use prospection for task
planning.

Learning Generative Models.: GANs are widely consid-
ered the state of the art in learned image generation [15, 16],
though they are far from the only option. The Wasserstein
GAN is of particular note as an improvement over other GAN
architectures [16]. Isola et al. proposed the PatchGAN, which
uses an average adversarial loss over “patches” of the image,
together with an L1 loss on the images as a way of training
conditional GANs to produce one image from another [5].

Prior work has examined several ways of generating
multiple realistic predictions [17, 15, 18]. The authors in [19]
demonstrated the advantage of applying adversarial methods
to imitation learning. More recently, [18] proposed to learn
a deep predictive network that uses a stochastic policy
over goals for manipulation tasks, but without the goal of
additionally predicting the future world state.

Learning Representations for Planning: Sung et al. [20]
learn a deep multimodal embedding for a variety of tasks.
This representation allows them to adapt to appliances with
different interfaces while reasoning over trajectories, natural
language descriptions, and point clouds for a given task. Finn
et al. [6] learn a deep autoencoder as a set of convolutional
blocks followed by a spatial softmax; they found that this
representation was useful for reinforcement learning.

III. APPROACH

We define a planning problem with continuous states x ∈
X , where x contains observed information about the world
such as a camera image. We augment this state with high-
level actions a ∈ A that describe the task structure. We also
assume that the hidden world state h ∈ H should encode both
task information (such as goals) and the underlying ground
truth input from the various sensors. For example, in the
block-stacking task in Fig. 1, h encodes the positions of the
four blocks, the obstacle and the configuration of the arm.

Our objective is to learn a set of models representing the
necessary components of this planning problem, but acting in
this latent space H. In other words, given a particular action
a and an observed state x, we want to be able to predict both
an end state x′ and the optimal sequence of actions a ∈ A∗
necessary to take us there. We specifically propose that there
are three components of this prediction function:

1. fenc(x) → h ∈ H, a learned encoder function maps
observations and descriptions to the hidden state.

2. fdec(h) → (x), a decoder function that maps from the
hidden state of the world to the observation space.

3. T (h, a) → h′ ∈ H, the i-th learned world state trans-
formation function, which maps to different positions
in the space of possible hidden world states.

Specifically, we will first learn an action subgoal predic-
tion function, which is a mapping fdec(T (fenc(x), a)) →
(x′). In practice, we include the hidden state of the first
world observation as well in our transform function, in
order to capture any information about the world that may
be occluded. This gives the transform function the form
T (h0, h, a) → h′ ∈ H. We assume that the hidden state
h contains all the necessary information about the world to
make high level decisions as long as this h0 is available to
capture change over time.

A. Model Architecture

Fig. 3 shows the architecture for visual task planning.
Inputs are two images x0 and xi: the initial frame when
the planning problem was first posed, and the current frame.
We include x0 and h0 to capture occluded objects and
changes over time from the beginning of the task. In Fig. 3,
hidden states h0, hi, hj , hk are represented by averaging
across channels.

Encoder and Decoder. The first training step find the
transformations into and out of the learned hidden space
H. Specifically, we train fenc and fdec using the encoder-
decoder architecture shown in Fig. 4. Convolutional blocks
are indicated with Ck, where k is the number of filters.



Fig. 3: Overview of the prediction network for visual task planning. We learn fenc(x), fdec(x), and T (h, a) to be able to predict and
visualize results of high-level actions.

Fig. 4: Encoder-decoder architecture used for learning a transform into and out of the hidden space h.

Most of our layers are 5× 5 convolutions, although we used
a 7 × 7 convolution on the first layer and we use 1 × 1
convolutions to project into and out of the hidden space.
Each convolution is followed by an instance normalization
and a ReLU activation. Stride 2 convolutions and transpose
convolutions are then used to increase or decrease image size
after each block. The final projection into the hidden state
has a sigmoid activation in place of ReLU and is not paired
with a normalization layer. In most of our examples, this
hidden space is scaled down to an 8 × 8 × 8 space. After
every block, we add a 10% dropout layer D.

Transform function. T (h0, h, a) computes the most likely
next hidden state. This function was designed to combine
information about the action and two observed states, and to
compute global information over the entire hidden space. We
use the spatial soft argmax from previous work [21, 6, 18]
Fig. 5 shows the complete transform block as used in the
block stacking case study described below. For the suturing
case study, with a larger input and hidden space, we add
an extra set of size 64 convolutions to each side of the
architecture and a corresponding skip connection, but it is
otherwise the same.

Value functions. V (h) computes the value of a particular
hidden state h as the probability the task will be successful
from that point onwards, and Q(h0, h, a, a

′) predicts the
probability that taking action a′ from the tree search node
(h0, h, a) will be successful. These are trained based on
{0, 1} labels indicating observed task success and observed
failures. We also train the function f(h0, h, a) which predicts
whether or not an action a completed.

Structure prior. Value functions do not necessarily indi-
cate what happens if there are no feasible actions from a

particular state. To handle this, we learn the permissability
function p(a′|h0, h, a), which states that it is possible for a′

to follow a, but does not state whether or not a′ will succeed.
These last four models are trained on supervised data, but

without the instance normalization in femc, fdec, and T , as
we saw this hurt performance. Q, p, and f were trained with
two 1 × 1 convolutions on h and h0, then a concatenated,
followed by C64−C64−FC256−FC128, where FCk is
a fully connected layer with k neurons. The value function
V (h) was a convolutional neural net of the form C32 −
C64− C128− FC128.

B. Learning

We train our predictor directly on supervised pairs contain-
ing the state x′ = fdec(T (fenc(x), a)) resulting from action
a. First, we considered a simple L1 loss on the output images.
However, this might not capture all details of complex
scenes, so we also train with an augmented loss which
encourages correct classification of the resulting image. This
approach is in some ways similar to that used by [15], in
which the authors predict images while minimizing distance
in a feature space trained on a classification problem. Here,
we use a combination of an L1 term and a term maximizing
the cross-entropy loss on classification of the given image,
which we refer to as the L1+λC loss in the following,
where λ is some weight. Finally, we explored using two
different GAN losses: the Wasserstein GAN [16] and the
pix2pix GAN from Isola et al. [5]. First we train the goal
classifier C(x) on labeled training data for use in testing
and in training our augmented loss, then fenc and fdec, and
finally the remaining models.

Transform Training. To encourage the model to make



Fig. 5: Architecture of the transform function T (h0, h, a) for computing transformations to an action subgoal in the learned hidden space.

Algorithm 1 Algorithm for visual task planning with a
learned state representation.

Given: max depth d, initial state x0, current state x, number of
samples Nsamples

h = fenc(x), h0 = h
for i ∈ Nsamples do

EXPLORE(h0,h,∅,0,d)
end for
function EXPLORE(h0,h,a,i,d)

vi = EVALUATE(h0, h, a)
if i ≥ d or vi < vfailed then return vi end if
a′ = SAMPLE(h0, h, a)
h′ = T (h0, h, a

′)
v′ = EXPLORE(h0,h′,a′,i+ 1,d)
UPDATE(a, a′, v′)
return vi · v′

end function

predictions that remain consistent over time, we link two
consecutive transforms with shared weights, and train on the
sum of the L1 loss from both images, with the optional
classifier loss term applied to the second image. The full
training loss given ground truth predictions x̂1, x̂2 is then:

L(x1, x2) = ‖x̂1 − x1‖1 + ‖x̂2 − x2‖1 + λC(x2)

We used learning rate of 1e− 4 and 10% dropout.

C. Visual Planning with Learned Representations

We propose a variant of MCTS as a general way of
exploring the tree over possible actions [13]. The general idea
is that we run a loop where we repeatedly sample a possible
action a′ according to the learned function Q(h0, h, a, a

′)
and use this action to simulate the effects of that high-
level action T (h0, h, a′). We can then execute the sequence
of learned or provided black box policies to complete the
motion on the robot. Each node in the tree is a unique
instance of a high-level action (∅ for the root). The full
algorithm is described in Alg. 1.

The EVALUATE function sets vi = V (h), but also checks
the validity of the chosen action and determines which
actions can be sampled. We also compute f(h0, h, a) to
determine if the robot would succesfuuly complete the action
with some confidence cdone. If not this is considered a failure
(vi = 0). If v′ < vfailed, we will halt exploration.

The SAMPLE function greedily chooses the next action a′

to pursue according to a score v(a, a′):

v(a, a′) =
cQ(h0, h, a, a

′)

N(a, a′)
+ v∗(a, a′)

where Q is the learned action-value function, N(a, a′) is
the number of times a′ was visited from a, and v∗(a, a′)
is the best observed result from taking a′. We set c = 10
to encourage exploration to actions that are expected to be
good. The UPDATE function is responsible for incrementing
N(a, a′). Sampled actions a′ are rejected if we predict a′ is
not reachable from its parent.

IV. EXPERIMENTAL SETUP

We applied the proposed method to a simulated UR5
block-stacking task implemented in PyBullet, where the
robot needed to pick up a colored block and place it on top
of any other colored block. The robot succeeds if it manages
to stack any two blocks on top of one another and failed
immediately if either it touches this obstacle or if at the end
of 30 seconds the task has not been achieved. Training was
performed on a relatively small number of examples: we used
6020 trials, of which 2991 were successful and 3029 were
failures. The state x is a 64 × 64 RGB image of the scene
from a fixed external camera.

We provided a set of non-optimal expert policies and
randomly sampled a set of actions. This task was fairly
complicated, with a total of 36 possible actions divided
between two sub-tasks. Each performance was labeled a
failure if either (a) it took more than 30 seconds, (b) there
was a collision with the obstacle, or (c) the robot moved
out of the workspace for any reason. We include both
positive and negative examples in our dataset. Training was
performed with Keras [22] and Tensorflow 1.5 for 45,000
iterations on an NVidia Titan Xp GPU, with a batch size of
64. Training took roughly 200 ms per batch.

A. Surgical Robot Image Prediction

Next, we explored our ability to predict the goal of the next
motion on a real-world surgical robot problem. Minimally
invasive surgery is a highly skilled task that requires a great
deal of training; our image prediction approach could allow
novice users some insight into what an expert might do
in their situation. There is a growing amount of surgical



Fig. 6: Randomly sampled hidden states projected onto the manifold
of the transform function T (h0, h, a).

robot video available, and a growing body of work seeks
to capitalize on this to improve video prediction [23]. We
used a subset of the JIGSAWS dataset to train a variant of
our Visual Task Planning models on a labeled suturing task
in order to predict the results of certain motions.

The JIGSAWS dateset consists of stereo video frames,
with each pair labeled as belonging to one of 15 possible
gestures. We used only the left frames of the video stream,
and reduced the image dimensions from 640×480 to a more
reasonable 96× 128. For this application, we used a slightly
larger 12× 16× 8 hidden representation.

V. RESULTS

Our models are able to generate realistic predictions of
possible futures for several different tasks, and can use these
predictions to make intelligent decisions about how they
should move to solve planning problems. See Fig. 1 above
for an example: we give the model input images x0 and xi,
and see realistic results as it peforms three actions: lifting
closing the gripper, picking up the green block, and placing
it on top of the blue block. In the real data set, this action
failed because the robot attempted to place the green block
on the red block (next to an obstacle), but here it makes a
different choice and succeeds. We visualize the 8 × 8 × 8
hidden layer by averaging cross the channels.

To visualize the effects of the transform function
T (h0, h, a) on the learned hidden state, we randomly sam-
pled a number of hidden states and repeatedly applied
T (h0, h, a) with random actions. After 200 steps, we see
results similar to those in Fig. 6, with objects and the arm
positioned randomly in the scene. From left to right, these
show (1) the randomly sampled hidden state, (2) a decoding
of this hidden state, (3) a hidden state after 200 random
transform operations, and (4) the decoded version of this
hidden state.

We then performed a set of experiments to verify our
model architecture, particularly in comparing different ver-
sions of the transform block T . We compared three options:
the same T with the skip connection removed, and the same
block with the spatial softmax and dense block replaced by a
stride 2 and a stride 1 convolution to make a more traditional
U-net similar to that used in prior work [5].

To compare model architectures and training strategies,
we propose a simple metric: given a single frame, can we
determine which action just occurred? This is computed

Model x1 label x1 error x2 label x2 error
Naive 89.3% 0.0182 77.3% 0.0276

L1 90.4% 0.0181 86.4% 0.0209
L1+0.01C 90.6% 0.0198 95.6% 0.0239

L1+0.001C 90.9% 0.0181 88.6% 0.0208
No Skips 90.1% 0.0243 89.3% 0.0271
cGAN [5] 86.5% 0.0216 79.9% 0.0260

TABLE I: Comparison of test losses as assessed by image prediction
error (MAE) and image confusion.

given the same pretrained discriminator discussed in Sec. III-
B. We compare versions of the loss function with and without
the classifier loss term, and with this term given one of
two possible weights. Both the classifier loss term and the
conditional GAN discriminator term were applied to the
second of two transforms, to encourage the model to generate
predictions that remained consistent over time.

Table I show the results of this comparison. There were
37453 example frames from successful examples and 54077
total examples in the data set. In general, the pretrained
encoder-decoder structure allowed us to reproduce high-
quality images in all of our tasks. The “Naive” model in-
dicates L1 loss with only one prediction; it performs notably
worse than other models due to errors accumulating over
subsequent applications of T (h0, h, a). Adding the classifier
loss terms (L1+0.01C and L1+0.001C) slightly improved
recognition performance looking forward in time. The cGAN
was able to capture feasible texture, but often missed or
made mistakes on spatial structure, and the Wasserstein GAN
performed extremely poorly.

A. Plan Evaluation

Our approach is able to generate feasible action plans in
unseen environments and to visualize them; see Fig. 7 for an
example. The first two plans are recognized as failures, and
then the algorithm correctly finds that it can pick up the red
block and place it on the blue without any issues. The value
function V (h) correctly identified frames as coming from
successful or failed trials 83.9% of the time after applying
two transforms – good, considering that it is impossible to
differentiate between success and failure from many frames.
It correctly classified possible next actions 96.0% of the time.

We tested our method on 10 new test environments in the
stacking task. On each of these environments, we performed
a search with 10 samples. Our approach found 8 solutions to
planning tasks executing the demonstrated high-level actions,
and in 2 tasks it predicted that all of its actions would result
in failures, due to proximity to the obstacle. This highlights
an advantage of the visual task planning approach: in the
event of a failure, the robot provides a clear explanation for
why (see the second sample in Fig. 7 for an example).

B. Surgical Image Prediction

We trained our network on 36 examples in the JIGSAWS
dataset, leaving out 3 for validation. We were able to generate
predictions that clearly showed the location of the arms
after the next gesture, as shown in Fig. 2. Image prediction
created recognizable gestures, such as pulling the thread after
a suture. While our results are visually impressive, error
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Fig. 7: First three results from a call of the planning algorithm on a random environment.

was higher than in the stacking task: we saw mean absolute
error of 0.039 and 0.062 for generated images x1 and
x2, respectively. This is likely because the surgical images
contain a lot more subtle but functionally irrelevant data that
is not fully reconstructed by our transform. It therefore looks
“good enough” for human perception, but does not compare
as well at a pixel-by-pixel level. In addition, there is high
variability on the performance of each action and a relatively
small amount of avaiable data. Again, the cGAN did not
have a measurable impact: MAE of 0.039 and 0.067 across
the three test examples.

VI. CONCLUSIONS

We described an architecture for visual task planning,
which learns an expressive representation that can be used
to make meaningful predictions forward in time. This can
be used as part of a planning algorithm that explores multi-
ple prospective futures in order to select the best possible
sequence of future actions to execute. In the future we
will apply our method to real robotic examples and expand
experiments on surgical data.
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