
Forward-Backward Reinforcement Learning

Ashley D. Edwards1, Laura M. Downs2, and James C. Davidson3

Abstract— Goals for reinforcement learning problems are
typically defined through hand-specified rewards. To design
solutions to such problems, developers of learning algorithms
must inherently be aware of what the task goals are, yet we
often require agents to discover them on their own without any
supervision beyond these sparse rewards. While much of the
power of reinforcement learning derives from the concept that
agents can learn with little guidance, this requirement greatly
burdens the training process. If we relax this one restriction and
endow the agent with knowledge of the reward function, and in
particular of the goal, we can leverage backwards induction to
accelerate training. To achieve this, we propose training a model
to learn to take imagined reversal steps from known goal states.
Rather than training an agent exclusively to determine how to
reach a goal while moving forwards in time, our approach
travels backwards to jointly predict how we got there. We
evaluate our work in Gridworld and Towers of Hanoi and we
empirically demonstrate that it yields better performance than
standard DDQN.

I. INTRODUCTION

Reinforcement Learning (RL) problems are often formu-
lated with the agent blind to the task reward of the environ-
ment. However, for many sparse reward problems, including
goal-directed tasks such as point-to-point navigation, pick-
and-place manipulation, assembly, etc., endowing the agent
with knowledge of the reward function is both feasible
and practical for learning generalizable behavior. In general,
developers of these problems often know what the task goals
are, but not necessarily how to solve them. In this paper, we
will describe how we can leverage our knowledge of goals
to enable learning of behaviors in these regions before the
agent even reaches them. This formulation may be easier to
solve than approaches that initialize learning from the start
alone. For example, if we know the desired location, pose,
or configuration of a task, then we can reverse the actions
that brought us there, rather than forcing the agent to solve
these difficult problems solely through random discovery.

In this paper, we introduce Forward-Backward Reinforce-
ment Learning (FBRL), which introduces backward induc-
tion, to enable our agent to reason backwards in time.
Through an iterative process, we both explore forwards from
the start position and backwards from the target/goal. To
achieve this we introduce a learned backwards dynamics
model to explore in reverse from known goal states and
update values within this local neighborhood. This has the
effect of “spreading out” sparse rewards so that they are
easier to discover, thus accelerating the learning process.

1Georgia Institute of Technology, work done as an intern at Google Brain
aedwards8@gatech.edu

2Google Brain ldowns@google.com
3Google Brain jcdavidson@google.com

Standard model-based approaches aim to reduce the
amount of experience necessary to learn good policies by
imagining steps forward and using these hallucinated events
to augment the training data. However, there is no guarantee
that the projected states will lead to the goal, so these roll-
outs may be inadequate. The ability to predict the result of
an action does not necessarily provide guidance about which
actions lead to the goal. In contrast, FBRL takes a more
guided approach since, given an accurate model, we have
confidence that each state visited in a backwards step has a
path to the goal.

In the rest of the paper, we will describe the relevant
background and related works. We will then formally intro-
duce FBRL, followed by an empirical section in which we
evaluate our approach in Gridworld and Towers of Hanoi,
and show that it yields better results than standard Deep
Double Q-Learning (DDQN) [12]. Finally, we will conclude
with discussions for future work.

II. BACKGROUND

Reinforcement Learning (RL) problems are specified
through a Markov Decision Process (MDP) 〈S,A,R, T 〉[11].
Here, s ∈ S describes the states in the environment,
a ∈ A defines the actions the agent can take, r ∈ R(s)
refers to the rewards an agent receives within state s, and
T (s, a, s′) is a transition model that specifies the probability
of entering state s′ after taking action a in s. A policy π
estimates the probability of taking action a in state s, and
we are typically interested in learning an optimal policy that
maximizes the expected long-term discounted return. Model-
free approaches do not have access to T , and rather learn an
action-value function Q(s, a) that predicts the return after
experiencing samples 〈s, a, s′, r〉 in the environment:

L(θ) = E(s,a,s′,r)∼D[r + γmax
a′

Q(s′, a′)−Q(s, a)] (1)

Here, D is a replay buffer that stores experiences [5]. This
loss aims to minimize the TD-error, or the difference between
the expected return and current prediction.

Learning Q-values often requires a large quantity of
samples. Rather than directly experiencing the states, an
alternative method is to jointly use model-based planning
to predict values. DYNA-Q [10] makes updates to values
by using imagined experiences. In this case, the parameters
〈s, a, r, s′〉 from Equation 1 may also be obtained from
imagined experiences.

III. RELATED WORK

When we have access to the true dynamics model, purely
model-based approaches such as dynamic programming can



be used to compute values over all states [11]. Though when
the state space is large or continuous, it may be intractable to
iterate over the entire state-space. Q-Learning is a model-free
approach and updates values in an online manner by directly
visiting states, and function approximation techniques such
as Deep Q-Learning enable generalizing to unseen ones [5].
Hybrid approaches that combine model-based and model-
free information can also be used. DYNA-Q [10], for exam-
ple, was an early approach that used imagined roll-outs to
update the Q-values as if they had been experienced in the
true environment. There are more recent approaches as well,
for example NAF [4] and I2A [13]. But these approaches
only use forward imagination.

A similar approach to our own does value iteration in
reverse [14], but this is a purely model-based approach,
and it does not learn a reverse model. A related approach
performs bidirectional search from the start and goal [2],
but that work learns values only, whereas we aim to learn
action-values. Another comparable work solves problems by
using a reverse curriculum near goal states [3]. However, that
approach assumes the agent can be initialized near the goal.
We do not make this assumption, as knowing what the goal
state is does not mean that we know how to get to it.

Many works have used domain knowledge to help speed
up learning, for example through reward shaping [7]. Another
approach is to more efficiently use the experiences from the
replay buffer. Prioritized experience replay [9] aims to replay
samples that have high TD-error. Hindsight experience replay
treats each state in an environment as a potential goal so that
the system can learn even when it fails to reach the desired
target.

The concept of using reverse dynamics is similar to inverse
dynamics ([1], [8]). In those approaches, a system predicts
the dynamics that yielded a transition between two states.
In our approach, we use the state and action to predict the
previous state. The purpose of this function is to reverse an
action and use this unraveling to learn values near the goal.

IV. APPROACH

Algorithm 1: Forward-Backward RL

while training do
/* Forward step */
Take step from π and update D
d ∼ D
Train b(·), Q(·) with d
ŝt+1 ∼ G
/* Backward step */
for imagination steps do

at ← random or greedy
rt ← R(ŝt+1)
ŝt ← ŝt+1 − b(ŝt+1, at)
D.append(ŝt, at, rt, ŝt+1)
ŝt+1 ← ŝt

end
end

We now introduce our approach, Forward-Backward Re-
inforcement Learning (FBRL). In this work, we utilize both
imagined and real experiences to learn values. A forward step
uses samples of real experiences originating from the start
state to update Q-values, and a backward step uses imagined
states that are asynchronously predicted in reverse from
known goal states. We hypothesize that this approach will
improve our model of values in the vicinity of the goal, and
thus expedite learning. We now describe the preliminaries
for our approach.

A. Preliminaries

We specify FBRL problems through a modified MDP
〈S,A,R,G〉. As before, s ∈ S corresponds to the states
in the environment, a ∈ A are the actions the agent can
take, and R(s) represents the rewards an agent receives in
s. We assume that R does not distinguish between real and
imagined inputs and can be queried at any time. Finally,
g ∼ G is a distribution of goal states from which we can
sample uniformly.

B. Backwards model

We aim to learn a backward transition model that captures
what happens if we undo an action in a state. We use a
tuple of experience 〈st, at, rt, st+1〉 ∼ D to learn the model.
Rather than predicting the previous state directly, we aim
to learn the difference between the two: ∆ = st+1 − st.
This allows the model to learn how states will change, rather
than absolute positional information. It reduces the expected
range of output values and generally centers them around
zero, resulting in a more stable estimate. This formulation
is appropriate since we are using states from the start of the
problem to learn the backwards model, which is used near
goal states that will initially have little training data.

The backwards model is a neural network that is trained
to predict ∆, where b(st+1, at) → ∆̂. Now, we can predict
the previous state as ŝt = st+1 − b(st+1, at). The loss for
the backward model then is: Lθb = ‖∆−b(st+1, at)‖, where
‖·‖ denotes a Huber loss.

In some environments, it may be impossible to learn an
accurate deterministic backward model, even if the problem
has deterministic actions. For example, if an agent is next to
a wall, we might not know if it previously bumped into the
wall or if it took a step towards it. Additionally, for discrete-
valued problems, it may be difficult to learn a network that
can predict discrete values. These issues are compounded
further in stochastic settings. To address this we formulate
the problem using a variational approach. If we know the
distribution over ∆, then we can predict a distribution over
potential outcomes. In this formulation, ∆̂ will represent a
probability distribution for each state variable that can be
trained using a cross-entropy loss from the true distribution.

C. Action sampling

Another important consideration is how to sample actions
that lead to useful updates. Our approach either randomly
samples actions or uses a more greedy step that aims to direct



the roll-outs towards the start by moving to states with high
Q-values: arg maxat Q(ŝt, at).

D. Backwards Imagination

Algorithm 1 shows the pseudo-code for our approach. In
the forward step, we train the agent using experiences from
the replay buffer, according to whichever learning paradigm
we choose. In this work, we use DDQN. We additionally use
real experiences to update the backward model.

The backward step takes place asynchronously. During this
process, we use backward imagination for a limited amount
of steps. Starting from the goal state, the approach samples
an action, uses the model to imagine backwards, and then
repeats the process from the resulting state. These imagined
experiences are used to augment the replay buffer.

It is important to note that initially the backwards model is
unlikely to accurately predict the true dynamics model. The
model starts by being trained on experience near the starting
region. Often, the portion of the dynamics model exercised
outside of this initial region will vary significantly, especially
near the goal. For example, consider a maze for navigation
task where the maze beyond is unknown or the difference in
dynamics for a humanoid lying down versus standing up.

While the model may start out being inaccurate, it provides
a constantly improving signal that helps formulate the value
function, which is then used to guide exploration. In this
way, it acts like an intrinsic reward to provide a predicted
direction for exploration for the model. Consider again the
navigation problem, where the model in the immediate
region will learn a factored representation for locomotion,
but cannot predict the walls of the maze further away. The
hallucinated experience will likely predict movement through
walls. While this is is inaccurate, it does provide a shape for
the value function that will encourage traveling towards the
goal until a wall is discovered. Once discovered, the model
will update and the value function will shift to anticipate the
presence of the wall. As training progresses, the system will
capture larger regional dynamics and start to predict potential
global dynamics, e.g., presence of walls beyond what has
been directly observed. As the system approaches the goal,
the backward model will converge to the real model.

V. EXPERIMENTS

Fig. 1: Gridworld and Towers of Hanoi environments.

The purpose of our experiments is to demonstrate that
FBRL can significantly speed up learning in environments
with sparse rewards. We evaluate our approach in Gridworld
and Towers of Hanoi, illustrated in Figure 1. For compar-
ison we formulate FBRL by augmented DDQN, which we
compare against a standard DDQN baseline.

Fig. 2: Results for Gridworld where n = 5, 10, 15, 20. We
use a fixed horizon of 50, 100, 150, 200 steps, respectively.
The results are averaged over 10 trials.

A. Gridworld

We first evaluate our approach in an nxn Gridworld. We
use this environment as it allows us to easily show the
benefits of our approach as the reward becomes more sparse.
The agent’s actions are to move up, down, left, and right by a
single unit, and its state consists of its cartesian coordinates.
The agent is initialized in the bottom left corner of the grid,
and receives a reward of 1 when it reaches the top right.
It receives a step cost of −.01 per time-step. The inputs
to the backward model are x, y and it must learn to predict
∆x,∆y . The model architecture is a fully-connected network
with 100 outputs followed by RELU, followed by another
fully-connected network with 2 outputs, one for each state
dimension. For FBRL, we used 10 steps of imagination with
1 asynchronous stream.

Figure 2 shows the results for running different size
gridworlds. The results show that as we increase the size of
the grid, i.e., as the goal gets further away, there is a clear
advantage for using reverse imagination. The gap between
the performance of DDQN compared to FBRL increases as
the size gets larger. This suggests the approach is better
suited for longer horizon sparse reward environments–but
still does not degrade performance for short horizon tasks.

B. Towers of Hanoi

The next environment we evaluate in is n-disc Towers of
Hanoi. In this problem, the agent needs to move n discs from
the first to the third pillar, but it is only able to place a disc on
top of another one if it is smaller than it. The actions are to
move each disc to the first, second, or third pillar. It receives
a reward of 1 when all discs are in the third pillar and a step
cost of −.01 per time-step. The inputs to the backward model
are bit-strings indicating which pillars each disc is on. For



Fig. 3: Results for Towers of Hanoi where n = 2, 3. We use
a fixed horizon of 50, 100 steps, respectively. The results are
averaged over 10 trials.

example, the environment in Figure 1 has a representation
of [1, 0, 0, 1, 0, 0] since the small disc is on the first pillar
and the large disc is on the third pillar. The backward model
predicts a distribution for each bit over possible ∆ values:
P (∆ = −1), P (∆ = 0), P (∆ = 1). The model architecture
is a fully-connected network with 100 outputs followed by
RELU, followed by another fully-connected network with
9n outputs, representing the distribution over each bit. For
FBRL, we used 5 steps of imagination with 3 asynchronous
streams.

Figure 3 shows the results for running Towers of Hanoi
with a different number of discs. We again see an advantage
for using FBRL as the goal gets further away. When we
increase the number of discs, FBRL outperforms DDQN.
We did find though that the performance of FBRL degraded
for 3 discs, which may be due to overfitting.

VI. CONCLUSION

In this paper, we have introduced an approach for speeding
up learning in problems with sparse rewards. We introduced
FBRL, which takes imagined steps in reverse from the goal.
We demonstrated that this approach can perform better than
DDQN in Gridworld and Towers of Hanoi. There are many
directions for extending this work. We were interested in
evaluating a backward planner, but we could also train using
both forward and backward imagination. Another improve-
ment would be to improve the planning policy. We used a
exploratory and greedy approach, but did not evaluate how to
balance the two. We could also use prioritized sweeping [6],
which chooses actions that lead to states with high TD-error.

VII. ACKNOWLEDGEMENTS

We thank Anoop Korattikara, Himanshu Sahni, Sergio
Guadarrama, and Shixiang Gu for useful discussions and
feedback about this work.

REFERENCES

[1] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine. Learning to
poke by poking: Experiential learning of intuitive physics. In Advances
in Neural Information Processing Systems, pages 5074–5082, 2016.

[2] G. Baldassarre. Forward and bidirectional planning based on rein-
forcement learning and neural networks in a simulated robot. In
Anticipatory behavior in adaptive learning systems, pages 179–200.
Springer, 2003.

[3] C. Florensa, D. Held, M. Wulfmeier, and P. Abbeel. Reverse
curriculum generation for reinforcement learning. arXiv preprint
arXiv:1707.05300, 2017.

[4] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous deep q-
learning with model-based acceleration. In International Conference
on Machine Learning, pages 2829–2838, 2016.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

[6] A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement
learning with less data and less time. Machine learning, 13(1):103–
130, 1993.

[7] A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward
transformations: Theory and application to reward shaping. In ICML,
volume 99, pages 278–287, 1999.

[8] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven
exploration by self-supervised prediction. In International Conference
on Machine Learning (ICML), volume 2017, 2017.

[9] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience
replay. arXiv preprint arXiv:1511.05952, 2015.

[10] R. S. Sutton. Integrated architectures for learning, planning, and react-
ing based on approximating dynamic programming. In Proceedings
of the seventh international conference on machine learning, pages
216–224, 1990.

[11] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction,
volume 1. MIT press Cambridge, 1998.

[12] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning
with double q-learning. In AAAI, volume 16, pages 2094–2100, 2016.

[13] T. Weber, S. Racanière, D. P. Reichert, L. Buesing, A. Guez, D. J.
Rezende, A. P. Badia, O. Vinyals, N. Heess, Y. Li, et al. Imagination-
augmented agents for deep reinforcement learning. arXiv preprint
arXiv:1707.06203, 2017.

[14] P. Zang, A. Irani, and C. L. Isbell Jr. Horizon-based value iteration.
Technical report, Georgia Institute of Technology, 2007.

APPENDIX

For each experiment, we used a batch-size of 100. The
discount factor was .99. The exploration parameter ε was
initialized to 1 and decayed to .1. The replay memory had a
size of 10000 and we collected 10000 initial samples before
training DDQN. The architectures for the backwards models
are described in the main text.

A. Gridworld

The learning rate for DDQN was 1e−3. The architecture
for DDQN was a fully-connected network with 32 outputs
followed by RELU, followed by another fully-connected
network with 4 outputs, one for each action. We updated the
target network every 100 steps. FBRL had the same settings
except we increased the learning rate to 5e−3.

B. Towers of Hanoi

The learning rate for DDQN was 5e−4. The architecture
for DDQN was a fully-connected network with 32 outputs
followed by RELU, followed by another fully-connected
network with 9 outputs, one for each action. We updated
the target network every 500 steps. Like with Gridworld,
we had the same architecture as DDQN, but we found we
obtained better results when the learning rate was reduced
to 1e−4.


	INTRODUCTION
	BACKGROUND
	RELATED WORK
	APPROACH
	Preliminaries
	Backwards model
	Action sampling
	Backwards Imagination

	EXPERIMENTS
	Gridworld
	Towers of Hanoi

	CONCLUSION
	ACKNOWLEDGEMENTS
	References
	Appendix
	Gridworld
	Towers of Hanoi


