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Abstract— We present an Autonomous Grasping Pipeline
that uses object segmentation and grasp calculation to make
grasping more robust in robots programmed by demonstration.
The object segmentation was performed as a pre-processing step
before grasping. We leveraged a model-free approach which
enables segmenting unknown objects in a scene without prior
knowledge. We applied the existing work of Richtsfeld [1], [2]
by dividing the point cloud into small surface patches and
using Support Vector Machines to evaluate the relationships
between patches and form objects. The segmented 3D data
can then be passed to an autonomous grasping algorithm. We
use a novel hybrid of model-based and model-free approaches
to generate grasps. We learn a model for grasp preferences
over context provided by object features, formulated using
pairwise ranking. We show that this pairwise grasp preference
model yields statistically significant grasp rate improvements
over contemporary methods for autonomous grasp selection.
We then incorporate the object segmentation and autonomous
grasping into a Programming by Demonstration system.

I. INTRODUCTION & RELATED WORK

One challenge of robot Programming by Demonstration
(PbD) is ensuring that the programs are flexible enough to
succeed in new situations. Programming robot manipulation
by demonstration is difficult since grasping objects requires
very precise movements. Small changes in gripper position
during a grasp can mean the difference between a successful
and a failed grasping attempt. If a user demonstrates a grasp
on an object in a certain pose, and then in the future the
object’s pose changes, even slightly, the grasp pose must
be transformed to match. This requires precise object pose
detection, as the grasp transformation must be calculated very
accurately to avoid grasping failures. Clearly, the method of
detecting the object pose and transforming the grasp pose is
not the most effective way to program grasps. Rather than
attempting to very accurately estimate the pose of objects
over time, we propose an Autonomous Grasping Pipeline
that leverages autonomous object segmentation and grasp
calculation systems to make grasping in PbD programs more
robust.

A. Object Segmentation

Object segmentation methodologies can be classified into
two categories: model-based approaches and model-free ap-
proaches [3]. Model-based approaches have a priori knowl-
edge of objects, which match extracted features from existing
object databases [3]–[11]. These approaches are limited
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due to the lack of reliable feature correspondences when
introduced to highly cluttered scenes. Moreover, this method
is restricted to a number of objects learned from a database.
On the other hand, model-free approaches apply rules or
heuristics to segment a scene into distinct regions [4], [11].
Compared to model-based approach, these methods are not
restricted to an object dataset, thus segmentation can be
generalize to various unknown objects.

B. Autonomous Grasping

As with object segmentation, autonomous grasping ap-
proaches can be divided into model-based and model-free
approaches. Typical model-based approaches leverage object
model databases, constructed from 3D sensor data [12]–
[15], shape databases [16], [17], or from CAD models
[18], as prior information for grasping. Given an object
model, grasps can be precomputed with simulators [19], [20],
learned autonomously from trial-and-error [21], or learned
from human demonstrators [15], [17]. With an appropriate
database of models and associated grasps, grasp planning
is reduced to either object recognition with 6-DoF pose
estimation or shape matching. These approaches work well
at performing specific grasping approaches for individual
objects, but they cannot generalize to new objects, for which
adding new models can be cumbersome.

Autonomous grasp calculators represent the model-free
approaches. Methods vary from sampling over depth data
to locate hand-engineered grasp features [22]–[25], ranking
sampled grasp poses with human-inspired heuristics [26],
[27], discovering grasp features through physical trial-and-
error [28], or learning reliable grasp features on adversarial
synthetic data [29]. These approaches can generalize to
novel objects, and as such can be easily deployed in new
environments, but they fail to grasp outlier objects for which
the predefined grasp features, heuristics, or learned features
fail. In this work we use a novel hybrid of model-based
and model-free approaches, by learning a model for grasp
preferences over context provided by object features. We
formulate this preference model using pairwise ranking.
Incorporating object context allows our approach to adapt
its ranking strategy for outlier objects that cause failures
in model-free approaches, while the underlying pairwise
ranking model provides generalization to objects on which
the approach was not trained.

C. Ranking

Ranking problems found in information retrieval provide
a useful analogy for grasp ranking. We focus on the object



ranking problem, a class of preference learning [30], in which
given a search query, we seek to determine an ordering of
returned items, learned from a few exemplary pairwise pref-
erences provided as training data. Common object ranking
problems include web page ranking [31], [32], document
retrieval [33]–[35], image retrieval [36], and recommender
systems [34], [37]. Beyond information retrieval, object
ranking has been applied to scheduling [38], where the query
is a set of observations over current tasks, and the items are
the set of scheduling decisions at a current time step. We
take a similar approach to grasp ranking, with the object
itself as the query, and the items are a set of candidate
grasps produced by antipodal grasp sampling. This model
has advantages in reducing the amount of demonstrations
required to obtain adequate training data, while also reducing
the demonstration process to simply choosing a good grasp
from a set of grasp candidates.

D. Programming by Demonstration

Programming by Demonstration (PbD) is a method of
robot programming where the user demonstrates a behavior
and the robot uses the demonstration to create a program.
Elliott et al. developed a system called Programming by
Demonstration and Adaptation (PbD+A) that allows the user
to adapt their demonstration with input given through a GUI
[39]. This system used a very simple perception system,
and interaction with objects (including grasping) had to be
generated by hand through demonstrations and complex GUI
manipulation. We improve the PbD+A system by incorporat-
ing the perception and grasp calculation systems described
in this work.

II. APPROACH

Our pipeline begins with model-free object segmentation
that is specifically robust to handling cluttered environments
with novel objects. The segmented point clouds then serve as
input to our novel autonomous grasp calculator, which can
generate and select grasps based on grasp preferences learned
from the user. We incorporate the segmentation and grasp
calculation pipeline into the demonstration, adaptation, and
reproduction modalities of the PbD+A GUI. Further, any data
collection required to train or finetune the autonomous grasp
calculator can be performed using the interface, resulting
in an end-to-end PbD system that incorporates autonomous
grasping to increase manipulation robustness.

A. Segmentation

Access to accurate sensing devices (e.g. Microsoft Kinect)
has advanced the state of the art in robot perception. Despite
the recent progress, grasping unknown objects has been a
challenging problem in robot grasping tasks. In particular,
the problem becomes arduous in real-world scenarios where
a large number of objects are cluttered and occluded. Thus,
object segmentation is a key step in enabling autonomous
grasping and manipulation.

For the perception section of our Autonomous Grasping
Pipeline, we used a method developed by A. Richtsfeld

Fig. 1: Cluttered object segmentation. (Top) RGB image
of objects in color. (Bottom) segmented point cloud data.
Different colors represent individual segmented objects.

[1], which segments unknown objects in RGB-D images.
With this method, the point cloud data is pre-segmented into
patches using surface normals. The patch is represented ei-
ther by a plane or non-uniform rational B-splines depending
on the shape of the patch. The next step is to determine
which patches belong to the same objects by calculating
relations between patches. These relations are represented by
feature vectors that include features such as mean curvature,
color, and distance between patches. A graph is constructed
with the surface patches as nodes and the relations between
patches as edges. The edges have weights learned from the
relation feature vectors by Support Vector Machines (SVM).
Then a graph cut algorithm is used to decide globally which
sets of surface patches should be grouped together to form
objects. For a detailed description, refer to [1].

This approach was chosen because it performs general-
izable scene segmentation in cluttered environments, which
are similar to our target environments for robot grasping.
It generalizes segmentation by using the shape properties
of objects instead of using model information, and as such
it generalizes to novel objects. However, this approach has
limitations when occlusions are introduced in the scene.



Thus, we extended this approach by training on the Modified
Object Segmentation Database (MOSD) [40] which accounts
for occlusion. MOSD is a revised version of the Object
Segmentation Database (OSD) [2]. It differs from OSD in
a way such that when an object is severely occluded, it
considers the object as separate disjoint segments, since
model-free algorithms cannot be expected to know when
significantly disjoint segments belong to the same object
[40]. LIBSVM [41] is used to train a SVM.

Figure 1 shows a segmentation result using the above
approach in a cluttered scene. Different colors represent
different objects as classified by the segmenter.

The segmenter was developed using the Robot Operating
System (ROS) [42] and connected with the grasping system
of our Autonomous Grasping Pipeline described below. Test-
ing as part of that pipeline demonstrated that the segmenter
can seamlessly work with existing grasping systems. The
segmenter also includes functionality for training the SVM
using an arbitrary data set.

B. Grasp Calculation

In keeping with autonomous grasp calculation, the goal of
our grasp calculation algorithm is to calculate and rank a set
of grasps by their likely success rate from input depth data.
Our implementation extends the point-and-click approach
from [27] for pick-and-place, and ranks grasps with a novel
pairwise ranking formulation. The algorithm has three steps:
candidate grasp sampling, grasp metric calculation, and pair-
wise grasp ranking under context derived from the object-of-
interest. With the addition of the pairwise ranking approach,
the algorithm adapts its ranking strategy to different types of
objects given a small amount of grasp preference training
data. As input, the algorithm takes two point clouds: an
object point cloud pco provided by our segmentation model,
and an environment point cloud pce constructed by cropping
the full scene to a padded bounding box containing pco.

1) Candidate Grasp Sampling: Our system is designed
for use with any algorithm that can analyze a point cloud
to produce a set of candidate grasps. In this work, we use
the antipodal grasp sampler included in the open source
agile grasp [23] package. Candidate grasp poses are
sampled over pce to eliminate grasps in collision with the
environment.

2) Grasp Metric Calculation: Extending methods from
the point-and-click approach, we developed a broad set of
metrics to describe the relationship of a candidate grasp to
an object-of-interest and the surrounding environment. The
metrics are as follows:

• m1: difference in orientation between the grasp ap-
proach vector and the normal vector to the dominant
plane, fit over pce. This metric represents grasps per-
pendicular to large planes in the environment, such as
table surfaces or shelf walls.

• m2: difference in orientation between the grasp ap-
proach vector and the normal to a plane fit over a local
region of pco centered at the grasp point. This represents
grasps perpendicular to the object-of-interest.

Fig. 2: (Left) Trained object set for classifier evaluation,
model training, and grasp rate evaluation. (Right) Novel
object set for generalization experiment.

• m3: difference in orientation between the grasp orien-
tation and the principal directions of pco computed by
principal component analysis, i.e. grasps aligned with
the object-of-interest.

• m4: distance from the grasp point to the center of pco,
approximating grasps near the object center of mass.

• m5: distance from the grasp point to the nearest point
in pco. This mainly serves to deter grasps erroneously
sampled from the environment rather than the object,
but also differentiates grasps centered on an object point
from grasps that are offset from the object.

3) Pairwise Grasp Ranking: Taking the analogous rank-
ing problem of information retrieval, we formulated a pair-
wise ranking problem by equating the search query to the
object-of-interest, and the returned items to the calculated
grasps. For a pair of grasps gi and gj , represented by
grasp feature vectors xi = [m1
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vector as the difference of the individual grasp feature
vectors:

x̂ij = xi − xj . (1)

We append the result to a vector of object features
[f0, f1, . . . , fn] calculated from the object point cloud pco,
resulting in an object context-enhanced pairwise feature
vector

xij = [f0, f1, . . . , fn, x̂ij ] . (3)

In this work, we use xij = [l, a, b, x, y, z, x̂ij ] as our
context-enhanced pairwise feature vector, where [l, a, b] is
the average color of pco in the CIELAB color space, and
[x, y, z] are the dimensions of the minimum-area bounding
box containing pco. We chose these features as a simple
feature vector that can differentiate the set of objects used
in our experiments, but we note that more specific features,
such as color histograms, point feature histograms, etc., or
even object labels, could be used instead.

We create a binary classification problem by adding a label
yij that denotes the ordering of gi and gj :

(xij , yij) where yij =

{
1 if gi ≺ gj

0 if gj ≺ gi
, (4)



Algorithm 1 Pairwise Ranking Algorithm

Require: pco, pce
1: grasps← sampleAntipodalGrasps(pce)
2: x← calculateMetrics(grasps, pco, pce)
3: f ← calculateFeatures(pco)
4: for all gi, gj in grasps | i 6= j do
5: if classify([f ,xi − xj ]) = 1 then
6: incrementRank(gi)
7: else
8: incrementRank(gj)
9: end if

10: end for
11: return sort(grasps)

Algorithm 2 Pairwise Training Data Generation

Require: grasps, pco, pce
1: s← userSelectedGraspIndex(grasps)
2: x← calculateMetrics(grasps, pco, pce)
3: f ← calculateFeatures(pco)
4: for i = 0 : size(grasps) | i 6= s do
5: saveTrainingInstance([f ,xs − xi], 1)
6: saveTrainingInstance([f ,xi − xs], 0)
7: end for

i.e. a label of 1 denotes gi should be preferred over gj , and
a label of 0 denotes gj should be preferred over gi. Given
training pairs (xij , yij) we train a binary classifier to predict
yij , thus predicting a grasp ordering.

We collected a set of training data over the training object
set shown in Figure 2, by having an expert user select four
grasps per object using the interface, as described in the next
section. We trained a random forest binary classifier over the
training data set using scikit-learn1, which we used for
all of our evaluation. Given predictions from the model, the
final grasp ranking is determined by voting. The complete
algorithm is shown in Algorithm 1.

4) Data Collection: Training data collection does not
require any grasp demonstration, as users instead perform
selection over a list of autonomously calculated grasps. Since
pairwise training data requires only relative differences in
grasp quality, training examples can be collected by having
the user simply click on the best grasp from the poses, with-
out providing a score or any additional ranking information.
Further, a single grasp selection generates 2(n− 1) pairwise
instances from a single click, where n is the total number of
grasps, shown in Algorithm 2.

We implemented training data collection within our Pro-
gramming by Demonstration interface described below and
shown in Figure 3.

C. Programming by Demonstration Interface

We improve the PbD+A system from [39] by incorporat-
ing the perception and grasp calculation systems described

1http://scikit-learn.org

above. The original perception system used by PbD+A was
very simple. It used Euclidean Cluster Extraction from the
Point Cloud Library2 for segmentation and required
that the objects not be touching. The new perception system
allows the robot to interact with objects in cluttered envi-
ronments like the one shown in Figures 1 and 3. Grasping
objects is one of the more difficult tasks to program by
demonstration. If you demonstrate a grasp on an object
and then the object’s pose changes, the PbD+A system
will try to transform the grasp pose accordingly. This relies
on being able to very accurately detect the object’s new
pose, which potentially requires detailed object modeling
or large amounts of training data, and can be difficult due
to occlusions. Small changes in gripper position can mean
the difference between successful and failed grasps, so this
system relies very heavily on the object pose estimation. As
such it is not a practical solution for effectively programming
grasps.

To address this issue, we incorporate our model-free object
segmentation method and our autonomous grasp calculation
method. To grasp an object, the user right-clicks the object in
the GUI and selects the option to Generate Grasps, 3 (Top).
This uses our method to generate a selection of possible
grasps for the object. These are displayed as green arrows
in the Grasp Selection Window in the UI, 3 (Bottom). The
Grasp Selection Window is a window in the corner of the
regular PbD+A GUI that zooms in on the selected object
and displays the grasp suggestions as arrows. The shaft of the
arrow shows the direction of the axis of rotation the gripper’s
wrist. The arrowhead points to the part of the object that will
be grasped. The user can click on an arrow to select a grasp
and a gripper marker will appear in the main GUI window
to show the position of the gripper during that grasp. This
allows the user to quickly view all of the generated grasps
and select an appropriate grasp from many options. Most
importantly, the suggestions are based on the geometry of the
object, so they do not rely on accurately detecting the actual
pose of the object. Each time a user executes a selected grasp,
the data is collected by the grasp ranking algorithm described
in II-B.4 and used to learn improved grasp rankings, which
are used autonomously when reproducing the learned skills.

III. INITIAL RESULTS

We initially tested the grasp ranking algorithm against
baseline and state-of-the-art grasp calculation and ranking
methods, to test both its performance on the training set
objects, and its generalization to novel objects. Our methods
for comparison include:

• Random: Select a random antipodal grasp from the list
of candidates

• AGILE: Select a grasp returned by the full AGILE
pipeline [23], which involves grasp quality classification
by SVM of HOG feature grasp image encodings

• Pointwise: Select the highest-ranked grasp using a linear
combination of our grasp metrics, similar to the point-

2http://pointclouds.org
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Fig. 3: Grasp calculation and preference data selection. (Top)
Selecting a segmented object to grasp in the GUI. (Bottom)
Grasp Selection Window with green arrows shown in the
corner of the main window. The main window shows the
currently selected grasp.

and-click method of [27]
• Pairwise: Select the highest-ranked grasp using our

novel pairwise ranking algorithm
Each method uses the same antipodal grasp calculator to
populate the initial set of grasp candidates, so that our
comparison can focus solely on the grasp ranking algorithm.
For each object, we had a fetch robot perform a controlled
grasping experiment by grasping the object at 16 preselected
positions and orientations, for a total of 1600 grasps (16
poses * 25 objects).

Grasp success rates for each method over the trained object
set, the novel object set, and a difficult object set3 are shown
in Figure 4. We analyzed the results with a one-way repeated
measures Analysis of Variance (ANOVA) for each object set,
where grasp rates measured on the same object with different
methods were correlated. ANOVA showed significant effects
of grasp ranking method on grasp success rate in all three

3We defined the difficult object set as all objects for which random
antipodal grasp selection had a failure rate of 50% or greater, which included
the mug, food can, game controller, tongs, squirt bottle, hammer, laundry
detergent bottle, scrub brush, and cooking utensil box.

Fig. 4: Grasp rates showing statistically significant differ-
ences for the Pairwise method shown (* denotes p < 0.05,
** denotes p < 0.01). Error bars denote ±1 standard
error. Not shown for readability: the Pointwise method is
a statistically significant improvement over the Random and
AGILE methods for the trained (p < 0.05 and p < 0.01,
respectively), novel (p < 0.01 and p < 0.01), and difficult
(p < 0.01 and p < 0.01) object sets.

object sets (F (3, 42) = 14.08, p < 0.0001, F (3, 27) =
25.44, p < 0.0001, and F (3, 24) = 24.6, p < 0.0001,
respectively). Tukey’s HSD post tests showed that Pairwise
significantly outperformed the Random baseline and AGILE
method for both the trained (p < 0.01, p < 0.01) and novel
(p < 0.01, p < 0.01) object sets, showing that, despite
requiring some training, the pairwise method can generalize
to novel objects and maintain its higher grasp success rate.
The pairwise method’s advantages are most pronounced for
the difficult object set, where more object-specific grasping
strategies were necessary for success. Tukey’s HSD post tests
showed a significant improvement of Pairwise over all of the
methods (p < 0.01, p < 0.01, p < 0.05 for Random, Agile,
and Pointwise, respectively), reflecting the Pairwise method’s
ability to effectively adapt its approach to difficult objects.

IV. DISCUSSION AND FUTURE WORK

We have shown an end-to-end pipeline that incorporates
autonomous segmentation and grasp calculation into a Pro-
gramming by Demonstration interface. The pipeline includes
object segmentation robust to clutter, which acts as input to
a novel autonomous grasp calculation method. Grasp calcu-
lation makes use of pairwise ranking, which, in keeping with
the advantages of programming by demonstration, leverages
easy-to-provide user input from the interface to improve
grasping performance on difficult-to-grasp objects.

Our initial results show that our pairwise grasp rank-
ing method outperforms contemporary approaches, while
generalizing to novel objects with a minimal amount of
training data. We would next like to perform a user study
evaluating the full end-to-end system, to determine whether
and to what degree replacing the grasp demonstration step of
pick-and-place programming by demonstration with robust



segmentation and autonomous grasp calculation improves the
ease of the demonstration process and the effectiveness of
reproducing skills from those demonstrations.

REFERENCES

[1] A. Richtsfeld, T. Mrwald, J. Prankl, M. Zillich, and M. Vincze,
“Segmentation of unknown objects in indoor environments,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Oct 2012, pp. 4791–4796.

[2] A. Richtsfeld, “The object segmentation database (osd),,” http://www.
acin.tuwien.ac.at/?id=289, 2012.

[3] J. Bohg and D. Kragic, “Learning grasping points with shape
context,” Robotics and Autonomous Systems, vol. 58, no. 4, pp. 362 –
377, 2010. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0921889009001699

[4] M. Fenzi, R. Dragon, L. Leal-Taixé, B. Rosenhahn, and J. Ostermann,
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