
Deep Neural Networks for
Swept Volume Prediction Between Configurations

Hao-Tien Lewis Chiang1 Aleksandra Faust2 Lydia Tapia1

Abstract— Swept Volume (SV), the volume displaced by an
object when it is moving along a trajectory, is considered a
useful metric for motion planning. First, SV has been used
to identify collisions along a trajectory, because it directly
measures the amount of space required for an object to
move. Second, in sampling-based motion planning, SV is an
ideal distance metric, because it correlates to the likelihood
of success of the expensive local planning step between two
sampled configurations. However, in both of these applications,
traditional SV algorithms are too computationally expensive for
efficient motion planning. In this work, we train Deep Neural
Networks (DNNs) to learn the size of SV for specific robot
geometries. Results for two robots, a 6 degree of freedom (DOF)
rigid body and a 7 DOF fixed-based manipulator, indicate that
the network estimations are very close to the true size of SV
and is more than 1500 times faster than a state of the art SV
estimation algorithm.

I. INTRODUCTION

Swept Volume (SV) is the volume displaced by an object
when it is moving along a trajectory [3], [1]. Essentially,
it is the union of the volumes of all configurations of the
object along a trajectory. Computing SV requires computing
a complex geometry in an often high-dimensional config-
uration space (C-space), where each point in this space
completely describes the robot geometry. SV is useful in
many applications such as geometric modeling [6], robot
workspace analysis [2], collision avoidance [11] and motion
planning [16].

SV has been identified as being particularly useful for
robot motion planning since the performance of sampling-
based motion planners, such as probabilistic roadmap (PRM)
[10] and rapidly exploring random tree (RRT) [14], depends
greatly on a distance metric that returns an estimated distance
between two sampled configurations [4]. The distance metric
determines the configuration pairs that are selected for the
expensive local planning operation that makes roadmap con-
nections in a PRM or tree extensions in RRT. Intuitively, a
good metric should limit the connect or extend operations to
those that are most likely to succeed, i.e., free of collision [4].
The size of SV between configurations has been identified as
an ideal distance metric 3 since it is related to the probability
of collision between two points in C-space [13].

Computation of exact SVs is intractable, and all prac-
tical SV algorithms focus on generating an approximate

1 Chiang and Tapia are with Department of Computer Science,
University of New Mexico, Albuquerque, NM, USA. e-mail: lewis-
pro,tapia@cs.unm.edu

2 Faust is with Google Brain, Mountain View, CA 94043, USA e-mail:
faust@google.com.

3Formally, SV would be a distance semimetric. However, we use the
planning terminology distance metric in this work.

SV [12]. Common approaches for computing approximate
SVs include occupation grid-based and boundary-based
methods. Occupation grid-based approaches decompose the
workspace, e.g., into voxels, in order to record the robot’s
workspace occupation as it executes a trajectory [8], [17].
The resulting approximation of SV has a resolution-tunable
accuracy and is conservative, which can be critical for
applications such as collision avoidance [15]. The boundary-
based methods identify and record the polygons contributing
to the outer most boundary of the SV. These polygons are
then used to extract the boundary surface [5], [12], [3].
Despite advances in approximate SV computation, SV is still
considered too expensive to be used as the distance metric
in sampling-based motion planners [13].

In this paper, Deep Neural Networks (DNNs) learn the
complex and nonlinear relationship between trajectories in
C-space and the corresponding size of SV for a variety of
robot geometries. The trained DNNs can quickly return the
estimated size of SV between any pair of configurations. To
train the networks, we generate training data by randomly
sampling pairs of configurations and computing the approx-
imate SV between each pair using an occupation grid-based
method [17]. The DNNs are then trained to infer the size of
SV in a supervised manner.

To evaluate the quality of SV learning, we trained and
evaluated two DNNs for two robot types, a six degree of
freedom (DOF) rigid body and a 7 DOF fixed-based manip-
ulator. While each DNN was trained independently, the two
DNNs were trained using the same hyper-parameters, e.g.,
structure of hidden layers, training batch size, learning rate
and number of epochs. Results indicate that these networks
can accurately estimate the size of SV and are more than
1500 times faster than a state of the art approximate SV
computation algorithm.

II. METHOD

The size of SV for a trajectory in C-space can be described
by a function SV(c1, c2), where c1 and c2 are the start and
end configurations. In this work, we assume the trajectory
between c1 and c2 is a straight line in C-Space. SV(c1, c2)
can be highly complex and nonlinear due to rotational
degrees of freedoms, especially in cases where the robot has
an articulated body. To approximate this complex function,
we utilize a simple fully-connected feedforward DNN, which
has been shown to be able to approximate any continuous
bounded function [9]. Training data is generated with an
octree occupation grid-based method. We explain the DNN
and training data generation below.



(a) (b) (c)

(d) (e) (f)
Fig. 1: Example start (a, d) and end (b, e) configurations and the corresponding SV(start, end) for a L-shaped rigid-body robot (top row) and a
fixed-base Kuka LBR IIWA 14 R820 manipulator (bottom row).

A. Generating Training Data

The training data is composed of many pairs of c1 and
c2 and the corresponding SV(c1, c2). Each pair of c1 and c2
is randomly sampled from C-space. To compute SV(c1, c2),
we implemented a state of the art octree-based SV algorithm
[17], where the trajectory of the robot is represented by N
intermediate C-space configurations. Since we only consider
straight line C-space trajectories, the nth intermediate con-
figuration is

cn = (1− n/N)c1 + n/Nc2. (1)

Next, the forward kinematics of the robot maps each cn to
the workspace occupancy of the robot

Gn(x, y, z) =

{
1, robot overlaps with point (x, y, z)

0, otherwise.
(2)

The SV can be approximated by taking the union of all Gn.
The occupancy and the union operation can be approximated
by an octree decomposition of workspace up to a resolu-
tion, ∆, in order to speed up computation compared to an
uniformly distributed voxel grid. Lastly, SV(c1, c2) can be
computed by adding the volume of all occupied cubes in the
octree.

B. Learning SV

We use a simple fully-connected feedforward DNN (Fig-
ure 2) to approximate SV(c1, c2). Our network has 2M input
neurons where M is the dimension of the C-space. The first
M input neurons have activations equal to the components of
c1 while the second M equals to the components of c2. The
input layer is connected to the hidden layers of k layers each
with Ni neurons using the ReLu [7] activation function. The
output layer has one neuron and the amount of activation is
the estimated size of SV SV ′(c1, c2).

The goal of the network is to learn SV(c1, c2). Therefore,
we define the loss function as

Loss = (SV ′(c1, c2)− SV(c1, c2))2. (3)

Stochastic gradient descent-based back-propagation algo-
rithms can be used to adjust network parameters to minimize
the loss function over a batch of training data.

Input	Layer

…

…

Hidden	Layers Output	Layer

c1

c2

k

…

…

SV 0(c1, c2)

Fig. 2: The feedforward DNN used to compute SV ′(c1, c2). c1 and c2 are
the start and end configurations of the trajectory, respectively. Neurons in
the hidden layers use the ReLu activation function represented by the blue
curves.

III. RESULTS

To evaluate the quality of SV learning, we trained a DNN
to learn SV for each robot. The performance of the network
was evaluated by an evaluation data set. This data set was
generated in the same fashion as the training data, but it was
previously unseen by the network.

The two networks share the same hyper-parameters. These
include: the number of hidden layers k = 3, the number of
neurons in the hidden layers = [1024, 512, 256], learning
rate = 0.1, training batch size = 100 and the number of
training epochs = 500 (the number of times the network



0 200 400 600 800 1000 1200 1400
(c1, c2)

0

100

200

300

400

500

Oc
cu

ra
nc

es

(a)

0 200 400 600 800 1000 1200 1400
′(c1, c2)

0

100

200

300

400

500

600

Oc
cu

ra
nc

es

(b)

−800 −600 −400 −200 0 200 400 600 800
(c1, c2) - ′(c1, c2)

0

500

1000

1500

2000

2500

3000

Oc
cu

ra
nc

es

(c)

0 200 400 600 800 1000 1200 1400
(c1, c2)

0

100

200

300

400

500

600

Oc
cu

ra
nc

es

(d)

0 200 400 600 800 1000 1200 1400
′(c1, c2)

0

100

200

300

400

500

Oc
cu

ra
nc

es

(e)

−800 −600 −400 −200 0 200 400 600 800
(c1, c2) - ′(c1, c2)

0

1000

2000

3000

4000

5000

Oc
cu

ra
nc

es

(f)
Fig. 3: The size of SV (SV(c1, c2)) of an L-shaped robot (a) and a Kuka LBR IIWA 14 R820 (d). The size of SV estimated by the DNN (SV ′(c1, c2))
for the two robots are shown in (b) and (e). The difference between SV ′(c1, c2) and SV(c1, c2) are shown in (c) and (f).

utilizes the entire training data set during training). One hun-
dred thousand training samples and ten thousand evaluation
samples were generated for each robot. N = 100 intermediate
configurations are generated between c1 and c2. The octree
resolution was ∆ = 0.025m.

The DNNs are implemented with Tensorflow in Python
on an Intel i7-6820HQ at 2.7GHz with 16GB of RAM. The
training data generation is implemented within the open-
source V-REP robot simulator platform.

The robots are shown in Figure 1. The first is a 6 DOF L-
shaped rigid body of size 40cm, 60cm, 10cm (width, height,
depth) (shown in Figure 1 (a)). A configuration of the robot
is described by the center of mass position and the yaw,
pitch and roll of the robot. The second robot is a fixed-
based Kuka LBR IIWA 14 R820 (shown in Figure 1 (d)).
The seven joint angles describe a configuration of the robot.
Configurations are uniform-randomly sampled from [-1.5m,
1.5m] for position axes and [-π, π] for rotation axes.

Figures 3 (a) and 3 (d) show the distribution of SV(c1, c2)
of ten thousand pairs of c1 and c2 for the evaluation data.
Note the differences in distribution between the robot geome-
tries. Figures 3 (b) and 3 (e) show SV ′(c1, c2) for the same
data as estimated by DNNs. Across robot geometries, there
are striking similarities between SV ′(c1, c2) and SV(c1, c2)
indicating successful learning. In addition, Figure 3 (c) and
(f) shows the estimation error (SV ′(c1, c2) − SV(c1, c2))
which is small, symmetric and centered around zero.

We further explored the predictions of the DNNs by
comparing SV(c1, c2) against SV ′(c1, c2) and the Euclidean
distance (Figure 4). The blue diamonds in Figure 4 show
SV ′(c1, c2). They closely track SV(c1, c2). For comparison,
the green circles show the Euclidean distance between c1
and c2, a commonly used distance metric for sampling-based
planners [4]. In order to represent SV(c1, c2), we scale the
value such that the average Euclidean distance matches the

0 200 400 600 800 1000 1200 1400
(c1, c2)

0

200

400

600

800

1000

1200

1400
Di
st
an

ce
 M

ea
su

re

Euclidean
′(c1, c2)

(a)

0 200 400 600 800 1000 1200 1400
(c1, c2)

0

200

400

600

800

1000

1200

1400

Di
st
an

ce
 M

ea
su

re

Euclidean
′(c1, c2)

(b)
Fig. 4: The size of SV (SV(c1, c2)) and the distance measure estimated by
the DNN (blue diamonds) and Euclidean C-space distance (green circles)
for a L-shaped robot (a) and a Kuka LBR IIWA 14 R820 (b).

average SV(c1, c2) of the evaluation data. It it clear that
the Euclidean distance does not correlate to SV(c1, c2) well,
especially when SV(c1, c2) is large. Since larger SV(c1, c2)
implies a higher probability of collision between c1 and
c2, an overestimation of SV(c1, c2) misses opportunities to
make connections that are likely to succeed. In the opposite
case of underestimation, the planner can waste computation
attempting connections that are unlikely to succeed.

Training DNN SV ′(c1, c2)
Robot Sample Training with DNN

L-Shaped 0.46s 3751.03s 297.33±6.67µs
Kuka LBR 4.06s 4023.35s 276.97±8.15µs

TABLE I: Computation time costs for generating a training data sample,
training the DNNs, and estimating SV ′(c1, c2) via DNNs.

Table I shows the computation time for generating a
training data sample, training the DNNs, and using the DNN
to output SV ′(c1, c2). Recall that training sample generation
involves computing the SV between two configurations and



then compute the size of SV. This takes about half a second
for the simpler rigid-body geometry and about 4 seconds
for the more complex manipulator geometry. This further
demonstrates the infeasibility of state of the art SV com-
putation methods as a distance metric for motion planning.
On the other hand, estimating the size of SV by DNN is
extremely fast. While about 44 times slower than computing
the euclidean distance, it is more than 1500 times faster than
the state of the art approximated SV.

IV. CONCLUSIONS AND FUTURE WORK

We demonstrated that a simple DNN can be trained to
estimate the size of SV well. In addition, estimating the size
of SV from the network is very fast. These facts suggest that
a trained DNN for SV can be used as a distance measure for
sampling-based motion planners.

We plan to extend our experiments to include more robot
types such as mobile manipulators. In addition, we will
integrate our method with sampling-based motion planners
such as RRT and PRM in order to evaluate the performance
gain of using SV ′(c1, c2) as a distance metric.

V. ACKNOWLEDGMENTS

Tapia and Chiang partially supported by the National
Science Foundation under Grant Numbers IIS-1528047 and
IIS-1553266 (Tapia, CAREER). Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

REFERENCES

[1] K. Abdel-Malek, J. Yang, D. Blackmore, and K. Joy. Swept volumes:
foundation, perspectives, and applications. International Journal of
Shape Modeling, 12(01):87–127, 2006.

[2] S. Abrams and P. K. Allen. Swept volumes and their use in viewpoint
computation in robot work-cells. In Proc. of IEEE International
Symposium on Assembly and Task Planning, pages 188–193, 1995.

[3] S. Abrams and P. K. Allen. Computing swept volumes. The Journal
of Visualization and Computer Animation, 11(2):69–82, 2000.

[4] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo.
Choosing good distance metrics and local planners for probabilistic
roadmap methods. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
volume 1, pages 630–637, 1998.

[5] M. Campen and L. Kobbelt. Polygonal boundary evaluation of
minkowski sums and swept volumes. In Computer Graphics Forum,
volume 29, pages 1613–1622, 2010.

[6] J. Conkey and K. I. Joy. Using isosurface methods for visualizing
the envelope of a swept trivariate solid. In Proc. of IEEE Pacific
Conference on Computer Graphics and Applications, pages 272–280,
2000.

[7] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and
H. S. Seung. Digital selection and analogue amplification coexist in
a cortex-inspired silicon circuit. Nature, 405(6789):947, 2000.

[8] J. C. Himmelstein, E. Ferre, and J.-P. Laumond. Swept volume
approximation of polygon soups. IEEE Trans. on Autom. Sci. and
Eng., 7(1):177–183, 2010.

[9] K. Hornik. Approximation capabilities of multilayer feedforward
networks. Neural networks, 4(2):251–257, 1991.

[10] L. Kavraki, P. Svestka, J. claude Latombe, and M. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 566–
580, 1996.

[11] J. Kieffer and F. Litvin. Swept volume determination and interference
detection for moving 3-D solids. Journal of Mechanical Design,
113(4):456–463, 1991.

[12] Y. J. Kim, G. Varadhan, M. C. Lin, and D. Manocha. Fast swept
volume approximation of complex polyhedral models. Computer-
Aided Design, 36(11):1013–1027, 2004.

[13] J. J. Kuffner. Effective sampling and distance metrics for 3d rigid
body path planning. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
volume 4, pages 3993–3998, 2004.

[14] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning.
Int. J. Robot. Res., 20(5):378–400, 2001.

[15] N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yoshida. Fast
humanoid robot collision-free footstep planning using swept volume
approximations. IEEE Trans. Robot., 28(2):427–439, 2012.

[16] F. Schwarzer, M. Saha, and J.-C. Latombe. Exact collision checking
of robot paths. In Proc. Int. Workshop on Algorithmic Foundations of
Robotics (WAFR), pages 25–41. 2004.

[17] A. Von Dziegielewski, M. Hemmer, and E. Schömer. High precision
conservative surface mesh generation for swept volumes. IEEE Trans.
on Autom. Sci. and Eng., 12(1):183–191, 2015.


