
Movement Primitive Sequencing via Attribute Grammars

Rudolf Lioutikov1 and Jan Peters1,2

Abstract— In this work we propose attribute grammars
as a mechanism to sequence movement primitives. Attribute
grammars extend probabilistic context-free grammars by intro-
ducing attributes and conditions to the grammar symbols and
rules. We show how such grammars can be applied to solve
complex tasks by sequencing simpler subtasks. Each subtask
is represented as movement primitive and the main task is
solved by a sequence of primitives. By defining a general set of
attributes and a corresponding evaluation scheme we introduce
a general framework to transform probabilistic context-free
grammars for movement primitive sequencing tasks to attribute
grammars. We apply an attribute grammar to solve the task
of picking and placing a stone in a game of tic-tac-toe.

I. INTRODUCTION

Movement primitives (MPs) are a well established concept
in robotics. MPs are used to represent atomic, elementary
movements and are, therefore, appropriate for tasks consist-
ing of a single stroke-based or rhythmic movement [1]. They
have been used in a large variety of applications, e.g., table
tennis [2], pancake flipping [3] and hockey [1]. However, for
more complex tasks a single MP is often not sufficient. Such
tasks require sequences of MPs for feasible solutions.

Considering a set or library of MPs, such sequences
can be generated in a variety of ways, including Hidden
Markov Models [4], Mixture Models [5] and other hierar-
chical approaches [6]. These approaches can be regarded as
mechanisms that produce sequences of MPs. This perspective
reveals a common, important downside: understanding these
mechanisms requires a significant amount of expert knowl-
edge. However, a declared goal of robotics is the deployment
of robots into scenarios where direct or indirect interactions
with non-expert users are required. Therefore, more intuitive
sequencing mechanisms for non-experts are necessary.

This work proposes the use of formal grammars for
the sequencing of MPs. In particular, we suggest attribute
grammars with a general evaluation scheme, presented in
this paper, for sequencing tasks. Formal grammars represent
a formal description of symbols and rules, representing
the structure of a corresponding language. They have been
intensively studied in both natural language processing and
compiler construction but have also been applied in a variety
of fields, e.g., molecular biology [7], bioinformatics [8], com-
puter vision [9] and robotics [10], [11]. Probabilistic context-
free grammars (PCFGs) allow the implicit embedding of
hierarchies within the rules of the grammar associating every
produced sequence with at least one corresponding parse
tree. A parse tree represents the derivation of the produced

1Intelligent Autonomous Systems, TU Darmstadt, 64289 Darmstadt,
Germany, {lioutikov, peters}@ias.tu-darmstadt.de

2Max Planck Institute for Intelligent Systems, 72070 Tübingen, Germany

Fig. 1: Playing tic-tac-toe against the robot. The robot exe-
cutes a sequence of primitives, picking up a stone and placing
it on an empty field. The primitives correspond to terminals
in an attribute grammar. The sequence of terminals was
produced using the general evaluation scheme for movement
primitive tasks presented in this paper.

sequence in an intuitive way. Figure 1 shows a user playing
a match of tic-tac-toe against a robot where the robots next
move is represented by an easily comprehensible parse tree.
The grammar and the parse tree are shown more detailed in
Figure 3.

Attribute grammars enhance the expressiveness of PCFGs
even further. Attributes assigned to symbols contain values
that evaluate during the production of the parse tree. Condi-
tions defined on the attributes introduce control mechanisms
into the production process that surpass common PCFGs.
Furthermore, attribute grammars allow a straight forward in-
corporation of sensor input into the sequencing. For instance,
the position of an object that is supposed to be picked up by
the robot, could be encoded as an attribute. Depending on
the attribute than the production of primitives that reach the
object becomes more likely than production that would not
be able to pick up the object.

Unfortunately these attributes enhance the complexity of
the grammar and therefore make it less comprehensible
for non experts. In this paper we present attributes and
a corresponding evaluation scheme that generalizes across
sequencing tasks, and needs only little to no adaptation
for specific task, without the introduction of new attributes.
While the introduced evaluation scheme appears complex
at first, it is designed to stay mostly equal across different
sequencing tasks. Therefore, the non-expert user does not
have to be presented with the full scheme but merely with
the attribute values specific to the task at hand.

A. Probabilistic Context-Free and Attribute Grammars

We first introduce the general concept of probabilistic
context-free grammars and attribute grammars. A PCFG is a

4-tuple G = 〈A,V,R,S〉, consisting of a set of terminals
A =

{
a1, a2, a3, . . . , a|A|

}
, a set of nonterminals V ={

A1, A2, A3, . . . , A|V|
}

, a set of starting symbols S ⊆ V ,
and a set of production rules R = {(A,RA,ρA)|A ∈ V}.
The ordered set RA ∈ ((A∪V)+)|RA| is referred to as the
productions of the nonterminal A ∈ V and the elements ρ ∈
ρA of the multinomial ρA ∈ ∆|RA|−1 are the probabilities
or parameters of A. A common example grammar is the one
describing the language anbn

G = 〈A,V,R,S〉 ,
A = {a, b} , V = {A} , S = {A} , (1)

R =
{(

A, (ab, aAb) , [0.7, 0.3]T
)}

.

This grammar describes the language of all sequences that
consist of any number of as followed by the same number
of bs. A more common but less formal notation is

START → A (1.00)
A → ab (0.70)
A → aAb (0.30)

(2)

which better illustrates, the function of a rule. The nonter-
minal on the left-hand side, A, can produce the sequences
ab and aAb on the right-hand side with a probability of 0.7
and 0.3 respectively.

Attribute grammars are context-free grammars, where each
terminal and nonterminal can be assigned one or more
attributes. Usually attributes are distinguished into inherited
and synthesized attributes. An inherited attribute belongs to
a symbol on the right-hand side of a rule which obtains
its value from attributes of the nonterminal of the left-hand
side or other symbols on the right-hand side. A synthesized
attribute is an attribute of the nonterminal on the left-hand
side of a rule whose value is computed using attributes of
the right-hand side symbols. The above example for instance
can be transformed into an attribute grammar containing the
attributes depth and max depth.

START → A (1.00)
A → ab (0.70)

A.depth = 1
A1 → aA2b (0.30)

A1.depth =A2.depth+ 1
A2.max depth =A1.max depth− 1
cond (A1.max depth > 0)

(3)

The indices of A1 and A2 simply distinguish between the
same nonterminal within a single rule. The synthesized
attribute depth evaluates to the number of recursion that
occurred during the production of a sentence, while the
inherited attribute max depth defines how many recursion
are at most supposed to occur. The latter is achieved by
defining the condition that the second rule is only chosen
if A1.max depth > 0, resulting in sentences with at most
max depth number of as and bs. Such conditions extend
the expressiveness of attribute grammars beyond the one of
context-free grammars. For instance, the language an bn cn

can not be represented by context-free grammars but easily
by attribute grammars similar to the one above.

Fig. 2: A possible sequence of terminals produced by the
attribute grammar and three of the corresponding primitives.

II. ATTRIBUTE GRAMMARS FOR MOVEMENT PRIMITIVE
SEQUENCING

Defining such attributes and conditions requires detailed
knowledge of the domain and the desired sentences the gram-
mar is supposed to produce or parse, rendering the induction
of an attribute grammar including the identification of the
attributes very difficult if not infeasible. In our case we apply
attribute grammars for the purpose of sequencing movement
primitives. We define that each terminal in the grammar
corresponds to a single movement primitive. A sequence of
terminals therefore corresponds to a sequence of primitives as
illustrated in Figure 2, where the terminal pick far represents
the execution of the corresponding primitive at this point in
the sequence. The attribute stone 4 further indicates that the
primitive would be conditioned on the position of the fourth
stone.

Initially we induce a probabilistic context-free grammar
from demonstrations[12]. Subsequently we extend this gram-
mar with attributes and conditions that generalize to different
movement primitive sequencing tasks and, therefore, need
only little to no adaptation for specific tasks, with the
exception of the initialization of the specific attribute values.
We define the following attributes:

transition: This attribute defines where the current
primitive ends and the next primitive is supposed to start

endpoint: The endpoint of a movement primitive.
viapoints: An ordered list of points that is supposed

to be traversed by the sequence of primitives. The points are
given in the state-space of the primitives. Once the first point
is traversed by a primitive it is removed from the list and the
next point is considered.

reachable: Given a primitive and a point in the prim-
itive state-space, this condition evaluates if the point is
reachable by the primitive.

producible: Given a nonterminal this condition eval-
uates to true if at least one of the corresponding right-
hand sides is producible. A right-hand side is considered
producible if all mandatory conditions evaluated to true,
given the current set of attributes.

A. The tic-tac-toe pick-and-place task

We explain the functionality of the attributes in more detail
using the example of the tic-tac-toe pick-and-place task. The

initial probabilistic context-free grammar, as seen in (4), was
previously induced from observed demonstrations [12].

START → MOVE (1.00)
MOVE → pick near TO (0.40) | pick far TO (0.60)
TO → LEFT home (0.47) | RIGHT home (0.53)
LEFT → close place left open (1.00)
RIGHT → close place right open (1.00)

(4)

The production of the sequence always begins at the
START nontermial. We assign two points, one for the
position of a stone and one for the field the stone is supposed
to be placed to the viapoints attribute. Furthermore, we set
the transition attribute to the current position of the robot
in the primitive state-space. We use the literals stone pos,
field pos and cur pos instead of the actual numerical values.

START.transition = cur pos
START.viapoints = [stone pos, field pos]
eval: START
assert: producible(START)
assert: empty(START.viapoints)

START → MOVE (1.00)
MOVE.viapoints = START.viapoints
MOVE.transition = START.transition
eval: MOVE
assert: producible(MOVE)
START.viapoints = MOVE.viapoints
START.transition = MOVE.transition

(5)

The notation eval: indicates an evaluation of a nonterminal,
e.g. eval: MOVE denotes, that at this point the MOVE
nonterminal is evaluated. Moreover, we use the notation
assert: to indicate that this condition must evaluate to
true otherwise the entire right-hand side is removed from
consideration as a possible production of the corresponding
nonterminal given the current attribute set. If the START
nonterminal is not producible, the task under the given
attributes is not solvable. Furthermore, if the viapoints-
list is not empty after evaluating START not all points were
traversed and the task is also not considered solved.

The MOVE nonterminal contains multiple right-hand
sides, each consisting of multiple symbols. The right-hand
sides can be evaluated in parallel, i.e. the evaluation of
each of the right-hand sides begins with the same set of
attributes, independent of the changes that have occurred
during the evaluation of the other right-hand side. In con-
trast, the symbols of a single right-hand side are evaluated
sequentially, i.e, every symbol begins with the attributes set
after the evaluation of the previous symbol. As mentioned
before, terminals represent single movement primitives. It
is important that a sequence of primitives does not contain
any jumps in the state-space, since a real robot will not be
able to make significant changes in its configuration instan-
taneously. Therefore, we ensure that every selected primitive
starts where the previous primitive ended. In the proposed
evaluation scheme for attribute grammars this is achieved by
ensuring that the reachable condition holds for the primitive
and the current transition-point. If the primitive can start
from the transition-point, the transition attribute is set
to the endpoint of the primitive afterwards. Furthermore, if

there exists a point in the viapoint-list and the currently
evaluated primitive can traverse that point it does so and
extracts the point from the viapoint-list. Given that the
possible adaptation of the primitive to the point could change
the endpoint this has to happen before the transition-point
is adapted.

MOVE → pick near TO (0.40)
assert: reachable(pick near,MOVE.transition)
if: reachable(pick near,MOVE.viapoints[0])

MOVE.viapoints = MOVE.viapoints[1 :]
MOVE.transition = pick near.endpoint
TO.viapoints = MOVE.viapoints
TO.transition = MOVE.transition
eval: TO
assert: producible(TO)
MOVE.viapoints = TO.viapoints
MOVE.transition = TO.transition

(6)

Only the evaluation for one of the two right-hand sides. The
evaluation of the other right-hand side is defined analogously,
but with the terminal pick far instead of pick near. The
notation if: indicates that this condition is optional. The
subsequent indented statements only occur if the condition
evaluates to true. As mentioned before, the right hand sides
are evaluated in parallel. Despite that both of the right
hand sides next evaluate the TO nonterminal, the actual
evaluations might differ due to two different sets of attribute
values.

TO → LEFT home (0.47)
LEFT.viapoints = TO.viapoints
LEFT.transition = TO.transition
eval: LEFT
assert: producible(LEFT)
TO.viapoints = LEFT.viapoints
TO.transition = LEFT.transition
assert: reachable(home,TO.transition)
if: reachable(home,TO.viapoints[0])

TO.viapoints = TO.viapoints[1 :]
TO.transition = home.endpoint

(7)

Again two different possible right-hand sides are evaluated
in parallel but only one is shown. The evaluation of the
other right-hand side is defined equivalently, but with the
nonterminal RIGHT instead of the LEFT. In contrast to
the evaluation of MOVE the right-hand sides of TO require
the evaluation of a nonterminal before the evaluation of a
terminal.

B. A General Evaluation Scheme for Sequencing Tasks

A structure for both terminal and nonterminal evaluations
is clearly evident. Every terminal a on the right-hand side of
a rule with nonterminal A on the left-hand side is evaluated
using the statements

assert: reachable(a,A.transition)
if: reachable(a,A.viapoints[0])

A.viapoints = A.viapoints[1 :]
A.transition = a.endpoint

(8)

And every nonterminal B on the right-hand side of a rule
with nonterminal A on the left-hand side is evaluated using

B.viapoints = A.viapoints
B.transition = A.transition
eval: B
assert: producible(B)
A.viapoints = B.viapoints
A.transition = B.transition

(9)

The presented evaluation schemes are very general and can
be applied to any movement primitive sequencing task. Using
not further specified via-points has the advantage that the
evaluation does not restrict which primitive traverses which
point. For instance, in the case of an obstacle it might be
sufficient that the obstacle is passed at some point, but
it does not necessarily matter which primitive avoids it.
However, the unspecified list of via-points has a significant
disadvantage. A primitive might require a certain via-point,
for instance pick near and pick far have to know where
the stone is positioned in order to pick it up successfully.
Nothing in the current scheme associates via-points with a
certain primitives. We solve this problem by introducing two
additional attributes.

keywords: An unordered list of keywords. This at-
tribute is assigned only to terminals before the evaluation and
contains keywords identifying relevant points in the targets
attribute.

targets: An unordered list of keywords, where each
keyword is associated with an ordered list of points. The
points are defined in the primitive state-space. A primitive
containing a matching keyword in its keywords attribute ex-
tracts the first point in the corresponding list. The evaluation
scheme for terminals is now defined as

assert: reachable(a,A.transition)
for: key in a.keywords

assert: key in A.targets
assert: reachable(a,A.targets[key][0])
A.targets[key] = A.targets[key][1 :]

if: reachable(a,A.viapoints[0])
A.viapoints = A.viapoints[1 :]

A.transition = a.endpoint

(10)

We introduce the for: notation to indicate an iteration and the
in notation to indicate the existence of an element in a list.
The evaluation scheme for nonterminals only changes such
that the targets attribute is additionally passed down and
received afterwards, analogously to the viapoints attribute.

C. Evaluating Parallel Attribute Sets

We already established, that the right-hand sides of a single
nonterminal are evaluated in parallel. If more than one right-
hand side evaluates without violating any asserts, there are
consequentially multiple parallel sets of attributes returning
from that nonterminal evaluation. Given that within one
right-hand side the attributes are passed sequentially from
symbol to symbol the question arises which of the multiple
attribute sets should to be considered. A naive approach
would be to select a random attribute sets. However, one
attribute set might result in an unproducible right-hand side
while another might not. We address this problem by storing
every attribute set corresponding to a producible right-hand

Fig. 3: A parse tree as produced by the attribute grammar for
making a move in a game of tic-tac-toe. The grammar ap-
plied the general evaluation scheme for movement primitive
sequencing as presented in this paper.

side in an ordered list. The order is defined randomly, while
being weighted with the probabilities of the right-hand sides.
Only the first set of attributes is considered, unless the
set results in an assert violation, then the attribute set is
discarded and the evaluation continues with the next set in
the list. If no sets are left, the right-hand side is considered
unproducible.

III. EXPERIMENTS

We evaluated the described attribute grammar with the
introduced evaluation schemes on a real robot platform
using Probabilistic Movement Primitives (ProMPs)[1] as a
movement primitive representation. We consider a point
reachable if it is within 2× the standard deviation of
the ProMP distribution. However, other movement primitive
representation as for instance Dynamic Movement Primitives
(DMPs)[13] can also be used.

In the experiment a user was playing tic-tac-toe against
the robot. The user was presented the grammar and a parse
tree for every sequence produced by the grammar, including
the information which stone would be picked and on which
field the robot would place the stone. A corresponding parse
tree and the producing grammar are shown in Figure 3. This
allowed the user to not only foresee the robot behavior but
also to understand why the robot chose this sequence of
primitives, i.e., see which rules were applied at which time
with which attributes. Given that the evaluation schemes
are very general for both terminals and nonterminals it is
not necessary to include the full schemes in the grammar
or the parse trees presented to the user. In this experiment
we restricted the presentation of the attributes solely to the
keywords attributes and their value. The attribute value, e.g.,
the stone position was replaced with an index identifying the
field the stone is on, since this might be more informative to
a non-expert than the position in the corresponding primitive
state-space.

Before every turn of the robot the positions of all stones
were detected using a Kinect and a simple blob detection

algorithm. Afterwards one of the remaining robot stones
was selected at random and a stochastic backwards induction
algorithm determined the target field. The positions were as-
signed as target[stone] = [stone pos] and target[field] =
[fieldpos] respectively. Both the pick near and the pick far
terminals were augmented with the keywords = [stone]
attribute. The place left and place right terminals were
assigned the keywords = [field] attribute. No further speci-
fications or adjustments in addition to the general evaluation
scheme had to be made.

IV. CONCLUSION

In this work, we introduced attribute grammars as a
mechanism to sequence movement primitives. We defined
attributes and conditions for sequencing tasks and introduced
a general evaluation scheme. We enhanced an initially in-
duced probabilistic context-free grammar for playing tic-tac-
toe with the defined attributes and the evaluation scheme.
The attribute grammar was used to produce sequences to
pick up a stone and place it on an empty field using a real
robot platform. In the future, we will extend the scheme to
include the evaluation of concurrently executed primitives.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7-ICT-2013-10) under grant agreement 610878
(3rdHand) and from the European Union’s Horizon 2020
research and innovation programme under grant agreement
640554 (SKILLS4ROBOTS).

REFERENCES

[1] Paraschos, Daniel, Peters, and Neumann, “Using probabilistic move-
ment primitives in robotics,” Autonomous Robots (AURO), accepted.

[2] Muelling, Kober, Kroemer, and Peters, “Learning to select and gener-
alize striking movements in robot table tennis,” International Journal
of Robotics Research (IJRR), pp. 263–279, 2013.

[3] Kormushev, Calinon, and Caldwell, “Robot motor skill coordination
with em-based reinforcement learning,” in International Conference on
Intelligent Robots and Systems, October 18-22, 2010, Taipei, Taiwan.
IEEE, 2010, pp. 3232–3237.

[4] Kulic, Ott, Lee, Ishikawa, and Nakamura, “Incremental learning of full
body motion primitives and their sequencing through human motion
observation,” I. J. Robotics Res., vol. 31, pp. 330–345, 2012.

[5] Lioutikov, Neumann, Maeda, and Peters, “Learning movement primi-
tive libraries through probabilistic segmentation,” International Jour-
nal of Robotics Research (IJRR), 2017.

[6] Daniel, Neumann, Kroemer, and Peters, “Hierarchical relative entropy
policy search,” pp. 1–50, 2016.

[7] Chiang, Joshi, and Searls, “Grammatical representations of macro-
molecular structure,” Journal of Computational Biology, vol. 13, pp.
1077–1100, 2006.

[8] Rivas and Eddy, “The language of RNA: a formal grammar that
includes pseudoknots,” Bioinformatics, vol. 16, pp. 334–340, 2000.

[9] Zhu, Mumford, et al., “A stochastic grammar of images,” Foundations
and Trends® in Computer Graphics and Vision, vol. 2, pp. 259–362,
2007.

[10] Dantam and Stilman, “The motion grammar: Analysis of a linguistic
method for robot control,” IEEE Trans. Robotics, vol. 29, pp. 704–718,
2013.

[11] Lee, Su, Kim, and Demiris, “A syntactic approach to robot imita-
tion learning using probabilistic activity grammars,” Robotics and
Autonomous Systems, vol. 61, pp. 1323–1334, 2013.

[12] Lioutikov, Maeda, Veiga, Kersting, and Peters, “Inducing probabilistic
context-free grammars for the sequencing of robot movement prim-
itives,” in Proceedings of the International Conference on Robotics
and Automation (ICRA), 2018.

[13] Ijspeert, Nakanishi, Hoffmann, Pastor, and Schaal, “Dynamical move-
ment primitives: learning attractor models for motor behaviors,” Neu-

ral computation, vol. 25, pp. 328–373, 2013.

	Introduction
	Probabilistic Context-Free and Attribute Grammars

	Attribute Grammars for Movement Primitive Sequencing
	The tic-tac-toe pick-and-place task
	A General Evaluation Scheme for Sequencing Tasks
	Evaluating Parallel Attribute Sets

	Experiments
	Conclusion
	References

