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Abstract— We propose to take a novel approach to robot
system design where each building block of a larger system
is represented as a differentiable program, i.e. a deep neural
network. This representation allows for integrating algorithmic
planning and deep learning in a principled manner, and thus
combine the benefits of model-free and model-based methods.
We apply the proposed approach to a challenging partially
observable robot navigation task. The robot must navigate to a
goal in a previously unseen 3-D environment without knowing
its initial location, and instead relying on a 2-D floor map and
visual observations from an onboard camera. We introduce the
Navigation Networks (NavNets) that encode state estimation,
planning and acting in a single, end-to-end trainable recurrent
neural network. In preliminary experiments we successfully
trained navigation networks to solve the challenging partially
observable navigation task in simulation.

I. INTRODUCTION

Humans employ two primal approaches to decision-making:
reasoning with models and learning from experiences. The
former is called planning, and the latter, learning. By
integrating planning and learning methods, AlphaGo has
recently achieved super-human performance in the challenging
game of Go [1]. Robots must also integrate planning and
learning to address truly difficult decision-making tasks, and
ultimately to achieve human-level robotic intelligence.

Robots act in the real world that is inherently uncertain and
only partially observable. Under partial observability the robot
cannot determine its state exactly. Instead, it must integrate
information over the past history of its actions and observa-
tions. Unfortunately, this drastically increases the complexity
of decision making [2]. In the model-based approach, we
may formulate the problem as a partially observable Markov
decision process (POMDP). Approximate algorithms have
made dramatic progress on solving POMDPs [3], [4], [5],
[6], [7]; however, manually constructing POMDP models or
learning them from data remains difficult [8], [9], [10]. In the
model-free approach, we circumvent the difficulty of model
construction by directly searching for a solution within a
policy class [11], [12]. The key issue is then choosing priors
that allow efficient policy search.

Deep neural networks (DNNs) have brought unprecedented
success in many domains [13], [14], [1]. Priors on the
network architecture make learning efficient, e.g. convolutions
allow for local, spatially invariant features [15]. DNNs
provide a distinct new approach to partially observable
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Fig. 1: Integrating planning and learning through algorithmic
priors. The policy is represented by a model connected to
an algorithm that solves the model. Both the model and the
algorithm are encoded in a single neural network.

decision-making [16], [17], [18], [19]. In particular, DQN,
a convolutional architecture, has successfully tackled Atari
games with complex visual input [14]. Combining DQN
with recurrent LSTM layers allows them to deal with partial
observability [18], [19]. However, such architectures are
fundamentally limited, because their priors fail to exploit
the underlying sequential nature of planning.

We want to combine the strength of algorithmic planning
and deep learning in order to scale to the challenges of real-
world decision-making. The question is then: how do we
integrate the structure of algorithmic planning into a deep
learning framework, i.e. what are the suitable priors on a DNN
for decision making under partial observability? We propose
algorithmic priors that integrate algorithmic planning and
deep learning by embedding both a model and an algorithm
that solves the model, in a single DNN architecture (Fig. 1).

We apply this approach to a challenging partially observable
navigation task, where a robot is placed in a previously unseen
3-D maze and must navigate to a specified goal while avoiding
unforeseen obstacles. In this decision-making task the state
of the robot is partially observable. The robot receives a 2-D
floor map, but it does not know its initial location on the
map. Instead, it must infer it from long sequences of sensor
observations from an onboard monocular camera.

We introduce the Navigation Networks (NavNet), a re-
current neural network (RNN) that employs algorithmic
priors for navigation under partial observability. NavNets
extend our work on QMDP-nets that addressed partially
observable planning in simplified domains [20]. In contrast
to QMDP-nets, NavNets embed the entire solution structure
of partially observable navigation: localization, planning and
acting. Localization must now deal with camera images;
and a reactive actor policy is now responsible for avoiding
unforeseen obstacles. In preliminary experiments NavNets
successful learned policies from expert demonstrations that
generalize over simulated 3-D environments. Results indicate
that integrating algorithmic planning and deep learning
enables reasoning with partial observations in large-scale,



visual domains. In our experiments the robot is restricted to
a grid, and actions are simple, discrete motion commands;
however, the approach could be applied to continuous control
in the future.

II. RELATED WORK

The idea of embedding specific computation structures in
the neural network architecture has been gaining attention
recently. Previous work addressed decision making in fully
observable domains such as value iteration in Markov
decision processes [21], searching in graphs [22], [23], [24],
path integral optimal control [25] and quadratic program
optimization [26], [27]. These works do not address the
issue of partial observability which drastically increases the
computational complexity of decision making [2]. Another
group of work addressed probabilistic state estimation [28],
[29], but they do not deal with decision making or planning.

Both Shankar et al. [30] and Gupta et al. [31] addressed
planning under partial observability. The former focuses on
learning a model rather than a policy, where the model
does not generalize over environments. The latter proposes
a network learning approach to robot navigation with the
focus on mapping instead of partially observable planning.
They address a navigation problem in unknown environments
where the location of the robot is always known. In our
setting the robot location is partially observable: it must be
inferred from camera images and a 2-D map.

Finally, we introduced QMDP-nets [20] that use algorith-
mic priors for learning partially observable decision making
policies in simplified domains. In this paper we extend QMDP-
nets to tackle a much more complex navigation domain that
requires reasoning with visual observations and accounting
for unforeseen obstacles.

III. ALGORITHMIC PRIORS

We propose to use planning algorithms as “priors” on
a DNN architecture for efficiently learning under partial
observability. We search for a policy in the form of a DNN,
but impose the structure of both a model and a planning
algorithm on the DNN architecture (Fig. 1). The weights of
the neural network then correspond to the model parameters,
which are learned. We do not want to rely on data alone
for learning the computational steps of planning. Instead, we
explicitly encode a planning algorithm in a network learning
architecture, and thus combine the strengths of model-free
policy search and model-based planning. The core idea for
encoding an algorithm in a DNN is is to view neural networks
as differentiable programs, where algorithmic operations are
realized as layers of the neural network. For example, a
weighted sum becomes a convolutional layer, a maximum
operation becomes a max-pool layer.

We expect that embedding a model in the network allows
efficient generalization over a large task space. Embedding
an algorithm allows learning end-to-end and thus circumvents
the difficulties of traditional model-based learning. Moreover,
we may learn abstractions that compensate for the limitations
of an approximate algorithm through end-to-end training [20].
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Fig. 2: NavNets are recurrent neural networks with algo-
rithmic priors. A NavNet represents a policy, it maps from
observations to actions, but it encodes the entire solution
structure of navigation – state estimation, planning and acting
– in a single, differentiable neural network.

Ultimately, we envision a fundamentally new approach
to robotic systems design, where all building blocks are
implemented as differentiable programs, and thus can be
jointly optimized for the overall system objective.

IV. NAVIGATION NETWORKS

We define a partially observable navigation task that is
prevalent in mobile robot applications. A robot is placed in
a previously unseen indoor environment and must navigate
to a specified goal. The robot receives a 2-D floor map that
indicates walls and the goal; however, the robot does not
know its own location on the map initially. Instead, it must
estimate it based on past actions and observations from an
onboard monocular camera. Although being uncertain of its
location, the robot must choose actions that lead to the goal
while avoiding walls, as well as other, previously unforeseen
obstacles that were not indicated on the floor map.

We introduce the Navigation Network, a deep RNN archi-
tecture that employs algorithmic priors specific to navigation
under state uncertainty (Fig. 2). Robot navigation is typically
addressed by decomposing the problem to localization,
planning and control. We apply the same decomposition, but
encode all three components in a unified DNN representation.
More specifically, the weights of a NavNet encode an
abstract POMDP model, which is learned. The network also
encodes an algorithm that solves the POMDP model. First, a
Bayesian filter integrates information from sequences of visual
observations and past actions into a belief, i.e. a probabilistic
estimate of the state. Second, a QMDP planner creates a high-
level plan given the map and the current belief. Finally, an
actor policy takes the high-level plan and a camera observation
and outputs an action. The actor generally chooses actions
that execute the plan; however, it may also need to deviate
from the plan to account for unforeseen obstacles blocking
the path.

A navigation network encodes a POMDP model, M(V)=
(S,A,O, T =fT (·|V), Z=fZ(·|V), R=fR(·|V)), which is
explicitly conditioned on the floor map, V. The states s ∈ S
are cells in a grid with orientation, actions a ∈ A are discrete
actions of the robot, and observations o ∈ O are camera
images. The spaces S, A and O are fixed across environments
and are chosen a-priori. The rewards R = fR(·|V), transition
model T = fT (·|V) and observation model Z = fZ(·|V) are
conditioned on the environment, i.e. the floor map V. They
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Fig. 3: Observation model that maps from a camera image
and the floor map to the posterior z(s) = p(s|ot,V). We
use cnn(k, f) to denote convolution with k×k kernel and f
filters; and max(k) to denote max-pooling with k×k kernel.
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Fig. 4: The actor component maps from a camera image and
a vector representation of the high-level plan, πt, to an action,
ut. The Fo component in Fig. 3 and Fig. 4 has the same
structure but the weights are not tied. We use fc(h) to denote
a fully connected layer with h output units.

are represented by distinct neural network blocks, and are
learned through end-to-end training.

The Bayesian filter updates the belief iteratively through

b′t(s) =
∑
s′∈S T (s

′, at, s)bt(s
′), (1)

bt+1(s) = ηZ(s, ot)b
′
t(s), (2)

where bt(s) is the belief over states s ∈ S at time t;
ot ∈ O is the observation received after taking action
at ∈ A; and η is a normalization factor. The QMDP algorithm
approximates the solution to the planning problem through
dynamic programming. It first takes K steps of value iteration,

Qk+1(s, a) = R(s, a) + γ
∑
s′∈S T (s, a, s

′)Vk(s
′), (3)

Vk(s) = maxaQk(s, a). (4)

where k = 1..K is the planning step, V and Q are state and
state-action values, respectively. The algorithm then chooses
an action based on an approximation of its future value,

q(a) =
∑
s∈S QK(s, a)bt(s). (5)

We embed the filter and the planner in a single neural
network (Fig. 2) by implementing both as differentiable
programs, i.e. we express the algorithmic operations (1 – 5)
as convolutional, linear and max-pool layers. The operations
are applied to the components of the POMDP model, fT ,
fZ and fR, all of which are represented by neural networks
and are learned. We do not use supervision on the model
components. Instead, we expect a useful model to emerge
through training the policy end-to-end.

The neural network architecture is similar to QMDP-
nets [20], with the notable exception of the observation model
and the reactive actor component. In our experiments the
robot is restricted to a discrete grid of size M×N and has L
possible orientations. The input map is a M×N image. The
belief is then represented by a M×N×L tensor. fT (·) is a
single 3×3 convolutional layer with L · |A| output channels,
one for each discrete orientation and action pair. fR(·|V)
is a two-layer CNN, with 3×3 and 1×1 kernels, and 150
convolutional filters. The input is the map V; the output
is a M×N×L·|A| tensor corresponding to rewards in each
state-action pair.

The observation model, fZ , is the most complex component
of the learned POMDP model. Unlike in QMDP-nets, we
must now deal with visual observations. This involves
inferring the environment geometry from a camera image
and matching it against the 2-D floor map. Learning the
joint probability distribution Z(s, o|V) for the large space of
image observations is intractable. Instead, we directly learn
the posterior z(s) = p(s|ot,V) and plug it in to (2). The
implementation of this component is show in Fig. 3.

Navigation networks also include a low-level actor policy
that executes the high-level plan while avoiding obstacles
that the plan could not account for. The actor takes in a
camera observation, ot, and a vector representation of the
high-level plan, πt; and outputs a low-level action, ui. In
our experiments u and a are defined in the same discrete
space corresponding to actions in a discrete grid; but u could
be continuous velocity or torque signal in future work. The
high-level plan is represented by a vector of the computed Q
values for each high-level action, i.e. πt = q(a) for a ∈ A. In
addition, we found that a few steps of history helps the actor
to avoid certain oscillating behaviors. Therefore, we include
in πt four steps of past weighted Q values, πt−τ , and four
steps of previous action outputs, ut−1−τ where τ = 1..4.
The network architecture is shown in Fig. 4.

V. PRELIMINARY EXPERIMENTS

We evaluated the navigation networks for variants of the
partially observable navigation task in a custom-built, high-
fidelity simulator based on the Unity 3D Engine [32]. The
robot is placed in a randomly generated 3-D environment,
where it is restricted to a 19×19 discrete grid and 4 possible
orientations. The action are simple motion commands: move
forward, turn left, turn right, and stay put. The robot does not
know its own state initially. Instead, it receives a 2-D map of
the environment (19×19 binary image) and must estimate its
location based on camera observations (60×80 RGB images)
rendered from the 3-D scene. We place additional objects in
the environment at random locations, without fully blocking
a passage. The objects are picked randomly from a set of
23 common household furniture such as chairs, tables, beds,
etc. Examples are shown in Fig. 5. We evaluate collisions
assuming the robot occupies the entire grid cell it is located
in.

We define three variants of the navigation task as follows:



Fig. 5: Examples for floor maps and camera observations from
the training set (top) and test set (bottom). The environment
layout and the textures are randomly generated.

• Task A. In this setting objects (apart from walls) act
solely as visual obstruction: the robot can go through
them, and they are not shown on the floor map. With this
tasks we evaluate the ability of localizing given camera
images and a floor map, and navigating to distant goals
in a new environment.

• Task B. The robot can no longer move through objects,
but the robot’s map – unlike a typical real-life floor map
– includes all objects in the environment such as chairs,
tables, etc. The robot must recognize objects and their
relative position from camera images, and account for
them for both localization and planning.

• Task C. In this most difficult setting the robot must
avoid all objects in the environment, but its floor map
only indicates the walls. Planning is unaware of objects
not shown on the map, therefore the actor may need
to deviate locally from the high-level plan in order to
avoid unforeseen obstacles.

We trained navigation networks from expert demonstrations
in a set of 10k environments. We then evaluated the learned
policies in a separate set of 200 random environments.
For training we used successful trajectories produced by a
clairvoyant QMDP policy, 5 trajectories for each environment.
The clairvoyant expert has access to all objects on the map
and receives binary observations that define the occupancy
of grid cells in front of the robot.

The training was carried out by backpropagation through
time using a cross-entropy loss between demonstrated and
predicted action outputs, thus learning a policy end-to-end
without supervision on the underlying POMDP model. We
used multiple steps of curriculum. First, we trained a policy
in synthetic grids that share the underlying structure of
planning, but only involves simple binary observations. We
then trained further for Task A, Task B and Task C in a
sequence, gradually increasing the difficulty1. We used the
full network architecture described in the previous section
for Task C, while for Task A and Task B we replaced the
actor component by a single fully connected layer.

1For Task C we initialized the planner and filter weights from Task A,
while the weights of the visual processing block in the actor component
were initialized from Task B.

TABLE I: Summary of results comparing navigation network
policies (NavNet) and a clairvoyant QMDP policy (QMDP).

Task A Task B Task C
Objects on floor map walls only all objects walls only
Collider objects walls only all objects all objects

NavNet success rate 97.5% 96.5% 91.5%
(excluding collisions) (97.0%) (95.5%) (83.0%)
NavNet collision rate 1.5% 1.5% 14.5%
NavNet time 37.7 34.4 36.5

QMDP success rate 81.1% 84.1% 62.6%
QMDP collision rate 0.0% 0.0% 0.0%
QMDP steps 32.8 31.1 32.1

VI. RESULTS

Preliminary results are summarized in Table I. We report
success rate (trials that reached the goal); success rate
excluding collisions (collision free trials that reached the goal);
collision rate (trials that involved one or more collisions);
and average time (steps required to reach the goal, averaged
for successful trials only).

Learned policies were able to successfully reach the goal
in a reasonable number of steps with no collisions for the
majority of the environments.

We compared to a clairvoyant QMDP policy that has access
to much simpler binary observations and a map with all
obstacles; and it plans with the “true” underlying POMDP
model. The true POMDP model would give a perfect solution
to our learning problem if the planning algorithm is exact; but
not necessarily if the algorithm is approximate. An “incorrect”,
but useful model may compensate the limitations of an
approximation algorithm, in a way similar to reward shaping
in reinforcement learning [33]. In our experiments learned
NavNets performed significantly better than the clairvoyant
QMDP. The QMDP algorithm is the same for both the
clairvoyant QMDP and the NavNets, but end-to-end training
allowed learning a model that is more effective for the
approximate QMDP algorithm. We note that the clairvoyant
QMDP was used to generate the expert data for training, but
we excluded unsuccessful demonstrations. When including
both successful and unsuccessful demonstrations NavNets
did not perform better than QMDP, as expected.

The algorithmic priors on the DNN architecture enabled
policies to generalize efficiently to previously unseen 3-D
environments, by carrying over the shared structure of the
underlying reasoning required for planning. While we defer
direct comparison with alternative DNN architectures to
future work, we note that in previous reports DNNs without
algorithmic priors were unable to learn navigation policies
even in much simpler settings [20].

While initial results are promising, the success rate and
collision rate in the more difficult setting (Task C) are not
yet satisfactory for a real-world application. We observed
that many failures are caused by the inability of avoiding
obstacles that were not anticipated by the plan. A possible
reason for this is that without memory, the actor can only



alter the plan when an obstacle is visible. It also cannot
choose good alternative path locally, because it is unaware of
the goal and the plan apart from the value of the immediate
next step. We may address these deficiencies by feeding in
multiple steps of past camera observations to the actor, as
well as a larger local “section” of the high-level plan.

VII. DISCUSSION

We proposed algorithmic priors to integrate planning with
deep learning. In this section we discuss when algorithmic
priors can be expected to be effective; and identify key
challenges for future research.

When comparing to standard model-free learning we should
consider the following. Certain tasks are hard because they
require a complex model to describe, however, solving the
model can yield a simple policy. Other tasks require a complex
policy, but the policy can be derived from a moderately
complex model through tractable planning. Model-free policy
learning can be effective in the former case, while we expect
algorithmic priors to be critically important in the latter
case. We can apply the same reasoning when decomposing a
complex problem to sub-problems: we can employ different
degrees of algorithmic priors depending on the nature of
a sub-task. For example, in navigation networks the filter
and planner components encode strong algorithmic priors
for dealing with partial observability, but we do not employ
algorithmic priors for low-level actor, because this sub-task
is expected to be reactive in nature.

How does the approach compare to traditional model-
based learning? Model learning is often hard because of the
difficulty of inferring model parameters from the available
data; or because small model errors are amplified through
planning. Embedding the model and the algorithm in the same
neural network allows learning end-to-end, which may in turn
circumvent the difficulties of conventional model learning.

In order to embed an algorithm in a neural network, we
must implement it as a differentiable program. However,
some algorithmic operations are not differentiable, such
as indexing, sampling or argmax. We may deal with such
operations by developing their differentiable approximations,
e.g. soft-indexing in QMDP-nets [20]; or by analytically
approximating gradients of larger computational blocks [26].
Another concern is that repeated computation, as well as more
sophisticated algorithms, render large neural networks, that
are in turn hard to train. Differential programs are certainly
limited in terms of algorithmic computation, but they allow
learning abstract models or a suitable search space end-to-
end, and thus may reduce the required planning computation
significantly. Results on navigation networks and QMDP-nets
demonstrate that this is indeed possible; however, we believe
that learning more aggressive abstractions will be important
in scaling to more difficult tasks.

In partially observable domains, a particularly important
issue is the representation of beliefs, i.e. probability distribu-
tions over states. Modern POMDP algorithms make planning
tractable by sampling from the belief and reasoning with
particles [6], [7]. An exciting line of future work may explore

encoding more scalable belief representations, such as particle
beliefs, in a differentiable neural network.

VIII. CONCLUSION

We proposed to integrate planning and learning through
algorithmic priors. Algorithmic priors impose the structure
of planning on a DNN architecture, by viewing DNNs
as differentiable programs instead of parametric function
approximators. Implementing all components of a larger
robotic system by differentiable programs would allow jointly
optimizing the entire system for a given task. In this paper
we made a step towards this vision by encoding state
estimation, planning and acting in a single neural network
for a challenging partially observable navigation task.

There are several exciting directions for future work that
deal with high-dimensional state spaces for planning; encode
more capable algorithms in the neural network; or explore
how differentiable modules can be effectively pre-trained and
transferred over domains.
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