
Fast Stochastic Functional Path Planning in Occupancy Maps

Gilad Francis, Lionel Ott and Fabio Ramos∗

Abstract— Path planners are generally categorised as either
trajectory optimisers or sampling-based planners. The latter is
the predominant planning paradigm for occupancy maps. Most
trajectory optimisers require a fully defined artificial potential
field for planning and cannot plan directly on a partially
observed model such as an occupancy map. A stochastic
trajectory optimiser capable of planning over occupancy maps
was presented in [1]. However, its scalability is limited by the
O(N3) complexity of the Gaussian process path representation.
In this work, we introduce a novel highly expressive path
representation based on kernel approximations to perform
trajectory optimisation over occupancy maps. This approach
reduces computational complexity to O(m) where m � N .
Moreover, to accelerate convergence we employ an adaptive
sampling strategy. We present comparisons to other state-of-
the-art planning methods in both simulation and with real
occupancy data, which demonstrate the significant reduction
in runtime resulting in performance comparable to sampling-
based methods.

I. INTRODUCTION

Occupancy maps are a probabilistic representation of the
robot’s environment as it is perceived from noisy sensor
observations [2]. A map is a discriminative model, which
returns the probability that an obstacle is present. Planning
on occupancy maps is most commonly done by sampling-
based planners [3]. While these methods have been proved
to be probabilistically complete in finding safe paths, they do
not explicitly optimise any objective function such as path
length or execution time.

Trajectory optimisers offer a different take on path plan-
ning using a variational approach. This enables optimisation
of any objective function, such as safety or dynamic con-
straints, directly in the space of trajectories. Most trajectory
optimisers employ signed distance field as an obstacle cost
and aside from [1], there are no implementations of trajectory
optimisation in occupancy maps. The main impediment for
employing a trajectory optimiser using occupancy maps
lies in the optimiser’s main assumption that it can draw
valid samples to update the path anywhere in the map.
However, such a general assumption is not applicable in
occupancy maps. Built on observations, an occupancy map
has unobserved areas. Samples drawn from these areas would
result in uninformative path update.

In this paper, we present a novel approach for trajectory
optimisation using occupancy maps. We utilise kernel ap-
proximation techniques to form an expressive and tractable
non-linear path model, which can be considered as a general-
isation of the motion planning in reproducing kernel Hilbert

∗ Gilad Francis, Lionel Ott and Fabio Ramos are with The
School of Information Technologies, University of Sydney, Australia
gilad.francis@sydney.edu.au

spaces (RKHSs) paradigm of [4]. Moreover, the approximate
kernel representation is naturally updated through random
samples, replacing the fixed sampling schedule of [4], [5],
thus forming a hybrid method of sampling-based trajec-
tory optimisation. Consequently, optimisation can employ
Stochastic Gradient Descent (SGD) [6] with its convergence
guarantees. Finally, with a finite path representation, updating
and querying the path model has a fixed cost, which alleviates
the main computational restriction of the non-parametric
representation in [1]. The technical contributions of this
paper are:

1) An expressive and tractable path model based on kernel
matrix approximations, which can be considered a gen-
eralisation of other kernel-based trajectory optimisers
such as [4], [5].

2) Computationally efficient algorithm, with constant cost
per update compared to cubic in the number of samples
as in [1]. Path update employs Stochastic Gradient
Descent (SGD) [6] which ensures efficient convergence
to an optimal solution under the guarantees of SGD.

3) An adaptive sampling strategy to accelerate functional
update based on the effectiveness of samples. The
same sampler also provides a probabilistic indicator
of convergence. This sample-based indicator replaces
the exhaustive convergence checks done by other FGD
planners.

The remainder of this paper is organised as follows:
Section II reviews the literature on path planning using occu-
pancy maps. Section III provides background on functional
gradient methods and their adaptation for path planning.
Section IV provides details on the core elements of the
proposed method. The results obtained in various simulation
and real data scenarios are shown in Section V. Finally,
Section VI draws conclusions about the proposed method.

II. RELATED WORK

Path planning techniques can be categorically grouped into
two main branches; sampling-based planning and trajectory
optimisation. Sampling-based methods have been predomi-
nately used for path planning in occupancy maps with a wide
range of successful algorithms such as Rapidly exploring
Random Trees (RRT) [7], Probabilistic Road Map (PRM) [8]
and Space skeletonisation [9], [10], [11]. A comparison of
the performance of these methods for planning in occupancy
maps can be found in [3].

The other approach for path planning, although not com-
monly used with occupancy maps, is trajectory optimisation.
In this planning paradigm the resulting path is a stationary
solution of an explicit optimisation problem defined by a



cost function. The cost function provides a measure of path
optimality which can arise from a variety of criteria, e.g.
distance from obstacles or motion costs. Optimisation can
take various forms. Khatib [12] introduced a path planning
method based on artificial potential fields (APF). Stochastic
Trajectory Optimisation for Motion Planning (STOMP) [13]
performs optimisation by exploring the space of trajectories
using noisy perturbations. TrajOpt [14] performs sequential
convex optimisation to achieve locally optimal trajectories
that comply to a set of motion constraints. Zucker et al.
[15], in their work on Covariant Hamiltonian Optimisation
for Motion Planning (CHOMP), reframed path optimisation
as a variational problem directly in the space of trajectories.
Similar approach using different path representations was
used by [5], [4]. However, as shown in [1], all these methods
fail to generate a safe path while planning in occupancy
maps.

Trajectory optimisation using occupancy maps were intro-
duced in [1]. Similar to the approach taken here, stochastic
gradient samples were used to update the path. However,
path variations were represented by a Gaussian process (GP)
instead of the kernel matrix approximation used in this
work. GPs offer a highly flexible path representation, albeit
with a significant computational cost. Employing kernel
matrix approximation, on the other hand, can ensure that the
complexity is independent of the number of samples used,
leading to an efficient path optimisation process.

III. PRELIMINARIES

In the following section, we formulate functional gradient
descent (FGD) as a general optimisation framework for
motion planning.

A. FGD for Motion Planning
FGD forms a variational framework for optimisation. In

the context of path planning, the optimisation objective is to
produce a safe, collision-free path. A secondary objective
may incorporate other costs such as smoothness of the
trajectory or path length.

We begin by first introducing notation. A path, ξ : [0, 1]→
C ∈ RD is a function that maps a time-like parameter
t ∈ [0, 1] into configuration space C. We define an objective
functional U(ξ) : Ξ → R that returns a real number for
each path ξ ∈ Ξ. The objective functional is used in the
optimisation process to capture the path optimisation criteria
such as smoothness and safety.

Path optimisation is performed by following the functional
gradient. The iterative functional gradient update rule is
derived from a linear approximation of the cost functional
around the current trajectory, ξn:

ξn+1 = ξn − ηnA−1∇ξU(ξn). (1)

Here, n indicate iteration number, A a metric tensor and ηn
is a user-defined learning rate. The form of the update rule
in (1) is general, and thus, invariant to the choice of the
objective function U(ξ) or the solution space representation.
The only requirements are that A is invertible and the
gradient ∇ξU(ξn) exists.

B. Motion Planning Objective Functionals

The objective functional U(ξ) in a motion planner
paradigm consists typically of a weighted sum of at least
two penalties; (i) Uobs(ξ) which encodes a penalty based
on proximity to obstacles; (ii) Udyn(ξ) that regulates and
constrains the shape or space-time dynamics of the trajectory.
Combining both penalties using a user-defined trade-off
coefficient λ we obtain the following objective function:

U(ξ) = Uobs(ξ) + λUdyn(ξ). (2)

In the following sections we define the objective func-
tionals, Uobs and Udyn, and their corresponding functional
gradients.

1) Obstacle Functional Uobs(ξ): Obstacles lie in the
robot’s working space W ∈ R3. However, the path ξ is de-
fined in configuration space C. Hence, estimating the obstacle
cost functional requires mapping of ξ(t) from configuration
space into workspace using a forward kinematic map x. To
account for the size of the robot or any uncertainty in its
pose, a set of body points on the robot, B ∈ R3 are defined.
x (ξ(t), u) maps a robot configuration ξ(t) and body point
u ∈ B to a point in the workspace x : C × B → W . As the
obstacle functional returns a single value for each ξ(·), the
overall cost is calculated by aggregating the workspace cost
function, c : R3 → R, along the trajectory and robot body
points using a reduce operator. Examples of such operators
are the integral or maximum. We require that the reduce
operator can be approximately represented by a sum over a
finite set, T (ξ) = {t, u}i of time and body points:

Uobs(ξ) ≈
∑

(t,u)∈T (ξ)

c (x (ξ(t), u)) . (3)

2) Dynamics Functional Udyn(ξ): Udyn(ξ) acts as a
penalty term based on the kinematic costs associated with ξ.
A common approach is to penalise on the trajectory length
by optimising the integral over the squared velocity norm
[15]:

Udyn(ξ) =
1

2

∫ 1

0

∣∣∣∣∣∣∣∣ ddtξ(t)
∣∣∣∣∣∣∣∣2 dt. (4)

3) Functional Gradients: Eq. 2 defines the objective func-
tional as a weighted sum of separate penalties. Therefore,
the functional gradient can be computed as the sum of the
different gradient term, ∇ξUobs(ξ(t), u) and ∇ξUdyn(ξ(t)) .

Functional gradients are derived using the Euler-Lagrange
formula [15] which when applied to the obstacle objective
Uobs yields;

∇ξUobs(ξ(t), u) =
∂

∂ξ(t)
x(ξ(t), u)∇Wc (x (ξ(t), u)) , (5)

where J(t, u) ≡ ∂
∂ξ(t)x(ξ(t), u) is the workspace Jacobian

and ∇W is the Euclidean gradient of the cost function c.
For the planning problems described in this work, J is the
identity matrix. With (4) as choice for the dynamic penalty
Udyn, the functional gradient can be easily computed using
as ∇ξUdyn(ξ(t)) = − d2

dt2 ξ(t).



IV. METHOD

FGD is an efficient method for path optimisation. How-
ever, current implementations are not suitable for planning
with occupancy maps. In our previous work [1], we identi-
fied two main reasons for that. First, the occupancy map’s
obstacle functional and its spatial gradient have a counter
intuitive form, which differ significantly from the well-
behaved obstacle functional based on signed distance field
used by other planners (e.g. [15], [4], [5]). Second, the path
is updated by a deterministic fixed sampling schedule. As
this schedule is defined a-priori, samples might be from
unobserved areas (invalid) or drawn far from the transition
areas around obstacle boundaries (ineffective). Consequently,
the solution of such planners does not have any guarantees
of converging to a safe path.

The approach taken in this work replaces the spatial
obstacle function c with P(x), which is the probability of
occupancy for any query point x ∈ W . It uses the occupancy
at every body point P(x (ξ(t), u)) to decide whether to
accept or reject a gradient update. Thus, there is no need
to precompute any cost or gradient as the spatial gradient
∇WP (x (ξ(t), u)) is estimated on-line where it is required.

How to compute the spatial gradient depends on the map-
ping method used. For occupancy grid map [2], the gradient
can be approximated from one of several gradient operators
used in computer vision, e.g. Sobel-Feldman operator [16].
For Gaussian Process Occupancy Maps [17], one can com-
pute the spatial gradient in closed-form from the underlying
GP. In this work, however, we opted to work with Hilbert
maps [18], which provide a fast and continuous occupancy
map model. We follow our previous work, presented in [1],
to compute spatial occupancy gradient directly from the map
model in closed form.

A. Stochastic Functional Regression

Any FGD planner optimises an objective function, such
as (2). As the objective is uncountable, it is estimated
via samples. Therefore, the choice of sampling schedule is
paramount for a successful and efficient planner. The impor-
tance of the sampling schedule is exacerbated in occupancy
maps, where not every sample can generate an informative
gradient. Consequently, sampling everywhere along the curve
is most desired, as this increases the chance of identifying
transition areas in the map and the path expressivity. Yet,
with a fixed resolution sampling scheme, defining a sufficient
resolution a-priori is difficult. Hence most methods, even
planners with smooth path representation [5], [4], limit
the sampling resolution according to their computational
resources.

Similar to the approach in [1], we sample randomly. While
[1] use a costly non-parametric GP path representation, we
employ a parametric path representation based on kernel
approximation. This allows to update the path model using
samples drawn randomly anywhere along the path while
keeping a fixed computational cost.

In kernel machines, Υ(t) defines a mapping from t ∈ [0, 1]
into a potentially infinite-dimensional vector-valued Repro-

ducing Kernel Hilbert Space (RKHS) 1 H [19]. The kernel
function k(t, t′) defines the inner product

〈
·, ·
〉
H between

two points in that space. In the approximate kernel approach
we denote Υ̂ as a finite set of features that approximate the
RKHS inner product by a dot product;

k(t, t′) =
〈
Υ(t),Υ(t′)

〉
H ≈ Υ̂(t)T · Υ̂(t′). (6)

We note that the set of features only approximates the
selected kernel in expectation, hence the ˆ notation. There
are several methods to generate features to approximate a
kernel. For the radial basis function (RBF) kernel defined
by k(t, t′) = exp(−γ ‖ t − t′ ‖2), with γ a free parameter
and ‖ · ‖ is the Euclidean norm, we employed two different
approximations:

I. Random Fourier features (RFF) [20]
This approximation requires m random samples of two
variables; si ∼ N (0, 2γI) and bi ∼ uniform[−π, π]
where i = 1...m.
The features vector is then given by

Υ̂RFF (t) =
1√
m

[cos(s1t+b1), ..., cos(smt+bm)] (7)

II. RBF features
A kernel matrix K with rank n can be approximated
by projecting it into a lower rank matrix using a set
of m inducing points denoted by t̂1, ..., t̂m [21]. Then,
K ≈ Kn,mK̂

†
mKm,n. K̂†m is the pseudo inverse of

K̂m. Using these m inducing points, the approximation
features vector is given by [21]:

Υ̂RBF (t) = D̂1/2V̂ T [k(t, t̂1), ..., k(t, t̂m))]T (8)

Here, D̂ is the diagonal matrix of eigenvalues of K̂m

and V̂ are the corresponding eigenvectors.
We note that since the planner in [4] also uses a fixed

number of support points, it implicitly employs the RBF
kernel approximation. The proposed method generalises this
to other kernel approximation techniques such as RFF. More-
over, by using a fixed predetermined sampling schedule, [4]
restricts the expressivity of the path representation. Using
random samples, our method performs path updates every-
where along the path, incorporating only the valid samples
and rejecting the invalid ones.

Using a weight vector w ∈ RD we can now express the
robot configuration ξ(t) at t, as a function of the finite set
of approximating features, Υ̂(t):

ξ(t;w) = ξo(t) + ξb(t) + wT Υ̂(t). (9)

Here, ξo is an offset path, which is used to bias the solution.
This permits using prior information or a rough path as the
optimisation’s starting point, for example, a waypoint path
generated by an RRT or the current path if re-planning is
needed. ξb is a term used to enforce boundary conditions.
Both ξo and ξb are represented by an approximated kernel

1The path RKHS is different to the one used by the Hilbert maps.



representation with the same curve properties as ξ (conti-
nuity, differentiability, etc.), although the feature set can be
different.

Once the path representation has been defined, we can
treat path planning as a regression problem, i.e., optimising
the weight vector w given a set of observations T ;

woptimal = arg min
w

∑
t∈T
U
(
ξ(t,w)

)
. (10)

The advantage of using this approach is that the model can
be learned from points sampled randomly anywhere along
the path.

Eq. (9) expresses the path as a weighted sum of features,
therefore the iterative update rule of (1) must be performed
with respect to the weight vector w. Following (1), we
sample the functional gradient of the objective function at
time ti. We refer to these samples as stochastic, since ti can
be drawn at random from anywhere along the curve domain,
ti ∈ [0, 1], and is not limited by a predefined sampling
resolution. The sampled gradient ∇ξU

(
ξn(ti,wn)

)
∈ H can

be viewed as a path perturbation, which is defined in H
and thus must be projected onto the finite representation
spanned by w using the appropriate inner product, which
is approximated using (6). This approximation leads to the
following iterative update rule:

wn+1 = wn − ηnA−1Υ̂(ti)
T Υ̂(ti)∇ξU

(
ξn(ti,wn)

)
. (11)

ξo and ξb are removed from (11) for brevity. Note that to
guarantee convergence of SGD, the learning rate ηn must
satisfy the Robbins-Monro conditions [22];

∑
n=1 η

2
n < ∞

and
∑
n=1 ηn =∞.

Boundary conditions are handled in a similar fashion. We
employ an additional path ξb = wT

b Υ̂b to compensate for
the boundary conditions. The boundary features Υ̂b are not
necessarily identical to Υ̂. The update rule for wb is:

wbn+1 = wbn −A−1Υ̂b(tb)
T Υ̂b(tb)∆xb(tb). (12)

Here tb are time points where boundary conditions are
defined and ∆xb(tb) is the corresponding difference between
the current value of ξ at tb and the desired value at the
boundary. Note that this similar to (11), except ηn was
omitted and the gradient was replaced by the difference to
the desired boundary value.

B. Targeted Sampling

In order to speed-up convergence, we introduce a dynamic
proposal distribution Q, that draws samples based on their
expected effectiveness. Q replaces the uniform distribution
used in [1]. Such a sampling schedule increases the chance of
sampling around areas where previous updates were effective
while still drawing samples over the entire path domain
t ∈ [0, 1]. We note that Q serves a similar purpose to impor-
tance sampling [23], however in the functional optimisation
framework, Q must dynamically adapt to changes in the
functional.

An effective Q needs to be proportional to the amplitude
of the objective functional gradient. In addition, sampling

and updating Q should not incur high computational costs.
These two properties are achieved by representing Q as a
mixture model:

Q(t) =
∑
l∈L

p(l)p(t|l), (13)

where L is a set of intervals l ∈ L such that ∪l∈Ll = [0, 1].
p(t|l) is a uniform distribution defined over the interval l, i.e.,
p(t|l) = U [l];∀l ∈ L . p(l) is the probability of selecting
interval l, and we require

∑
l∈L p(l) = 1. The mixing

probability p(l) defines the importance of each interval.
More importantly, p(l) can be adapted during optimisation to
reflect the effectiveness of samples drawn from that interval.
Q can also be used as an indicator of convergence. Q

biases sampling according to the impact a sample had on
the path update. Meaning, that around ξoptimal, new samples
should have little effect on the path. As a result, Q should
return to maximum entropy sampling, i.e. U [0, 1]. Hence,
by monitoring the entropy of Q, one can identify whether
sampling follows a uniform distribution which indicates a
solution has been found.

C. Path Planning Algorithm

The pseudo-code of the stochastic approximate kernel path
planner is shown in Algorithm 1. The output of this algorithm
is an optimised path ξoptimal(·), parametrised by the weight
vector woptimal.

At each iteration, a mini-batch (ts, us) is drawn uniformly.
The occupancy of each sample t∗ ∈ ts and u∗ ∈ us is
assessed by querying the map model at state ξn(t∗, u∗). If
the probability of occupancy at ξn(t∗), Pocc, is within the
safety limits, i.e. clear of obstacles, a functional gradient
update is performed. Following (11), the weight vector w
is updated with the stochastically sampled gradient observa-
tions, leading to a new path representation ξn+1(·). Finally,
the boundary conditions are enforced using (12).

This leads to an algorithm with low computational com-
plexity which stems from the concise path representation
and update rule. Using m approximated features, the com-
putational cost of updating and querying the path model is
O(m) which is constant regardless of the number of samples
drawn. This is in contrast to the computational cost of the
stochastic GP path planner [1], which is cubic in the number
of samples, i.e. O(N3). Meaning that the time per iteration
increases as more samples are collected.

V. RESULTS

In this section, we evaluate the performance of our method
and compare it with other related path planning techniques
on real laser data. We show that stochastic sampling is a
critical aspect of path planning in occupancy maps, which
is complimented by the scalable model of the approximate
kernel path representation. We compare our proposed method
with two other planning methods for occupancy maps; RRT∗

[24] and the stochastic GP path planner [1]. As both our
method and RRT∗ optimise on path length, we used RRT∗

as a representative of the sampling based methods. To



Algorithm 1: Stochastic approximate kernel path planner
Input: P: Occupancy Map.

ξ(0), ξ(1): Start and Goal states.
Psafe: No obstacle threshold.
Υ̂: Approximated feature vector.
Q: Proposal distribution (default: uniform).

Output: woptimal, ξoptimal(·)
n = 0
while solution not converged do

(ts, us) ∼ Q ← Draw mini-batch from Q
foreach (t∗, u∗) ∈ (ts, us) do

Pocc ← P(x(ξn(t∗), u∗)) Query map
if Pocc ≤ PSafe then

wn+1 ← update rule Eq. 11
end
Fix boundary conditions, Eq. (12)

end
Update Q using samples n = n+ 1

end

ensure consistent runtime comparison, all methods, including
Hilbert maps, are implemented in Python and tested on an
Intel Core i5-4570 with 8GB RAM.

A. Real data

The map for this experiment was fitted according to
laser observations from the Intel-Lab dataset (available at
http://radish.sourceforge.net/). Both RFF and RBF planners
used m = 50 features and γ = 4. The trade-off parameter
λ = 0.0075 and the per iteration learning rate ηn = η0(n+
n0)−1, where η0 = 50 and n0 = 100. A demonstration
of planning in this scenario is also available in https:
//youtu.be/wKQIzCRlJXc.

Fig. 1 and Table I show a comparison between the different
methods. RRT∗ forms a path based on several waypoints
(states) the robot should pass from start to goal. As a result,
the path typically is jagged, with short jerks. In contrast, the
paths generated by our method are continuous and smooth. In
addition, unless using inflated obstacles, RRT∗ paths tend to
move close to the walls or cutting corners, as indicated by the
relative high, and unsafe, occupancy of RRT∗ in Table I. The
stochastic planner follows the mid line between obstacles
and performs smooth turns resulting in shorter and safer
trajectories. Table I provides quantitative comparisons be-
tween these planners. All planners obtain similar path length,
which corresponds to the length of the corridor. Runtime
results reveal the main advantage of the approximate kernel
planner. While the stochastic non-parametric GP planner of
[1] requires less samples to converge, its actual runtime
is almost 25 times slower. Meaning that while the non-
parametric GP path representation is highly expressive, it
is not scalable due the cubic computational complexity. The
RRT∗ runtime performance is quite poor too. While RRT∗

have similar per iteration cost as the approximate kernel
approach, its sampling efficiency in this scenario is low since
most of the map is either occupied or unknown. In contrast to

TABLE I: Intel dataset comparison

Max.
occupancy

Path length
[m] Samples Runtime

[s]

RBF 0.34±0.05 20.3± 0.2 1629± 287 3.2± 0.6
RFF 0.34±0.03 20.3± 0.1 1861± 60 5.6± 1.8
Gp Paths [1] 0.38±0.08 20.4± 0.2 398± 132 78.3±47.5
RRT∗ [24] 0.49±0.05 20.3± 0.4 10788± 1462 34.5±10.0

both methods, our method uses an approximate kernel path
representation, which has a fixed linear complexity. Conse-
quently, the properties of the path are similar to that of the
non-parametric path, however adding more observations does
not change the computational performance of the model. As
a result, the runtime of the proposed method is much shorter
compared with the GP planner and RRT∗.

B. Targeted Sampling

A performance comparison over 100 simulations of plan-
ning using an adaptive distribution as opposed to a uniform
scheme is shown in Table II. The adaptive sampling presents
faster optimisation with smaller variance and with no degra-
dation in performance, as length is almost unaffected by the
change in sampling procedures.
Q is also used as a convergence indicator. Path planning

with uniform sampling converges when all samples are valid,
i.e. safe. An adaptive sampling method, on the other hand,
can reason on other convergence conditions, such as the
change in the objective functional. Fig. 2 depicts path safety
and Q’s entropy during optimisation. To emphasise this
process, Q was set with 50 intervals. Initially, the maximum
occupancy along the path, marked in red, is 1, a certain
collision. As the optimisation progresses, the path clears from
obstacles, indicated by a maximum occupancy below 0.5.
At that point, a uniform sampling scheme would indicate
converges. Although safe, this solution is not necessarily
optimal with regards to the overall objective. The entropy
of Q, in blue, provides the complimentary condition for
convergence.

VI. CONCLUSIONS

The planning method proposed in this work employs
SGD to optimise a path represented by an approximate
kernel feature set. This model provides a highly expressive
path with a cost effective representation. SGD combines the
approximate kernel path model with a stochastic sampling
schedule to form a computationally efficient optimisation
process with convergence guarantees.

Using random samples across the entire path domain
avoids the need to commit to an a-priori sampling resolu-
tion of the objective function. Consequently, the optimiser
identifies transition areas around the borders of obstacles,

TABLE II: Adaptive sampling - Performance comparison

Adaptive Sampling Uniform Fixed Sampling

Iterations to converge 132± 43 202± 98
Path length [m] 21.07± 0.36 21.02± 0.35
Converged solution [%] 85 65

https://youtu.be/wKQIzCRlJXc
https://youtu.be/wKQIzCRlJXc


Fig. 1: Comparison of path planning methods on a continuous occupancy map of the Intel-Lab (partially shown); (a) RBF
approximation, (b) RFF approximation, (c) stochastic non-parametric GP paths [1] and (d) RRT∗ [24]. Each image shows
ten paths generated by the planning algorithm, to indicate repeated performance. The planning methods in (a), (b) and (c)
produce smooth paths which follow the mid lines between walls. RRT∗ paths are typically not smooth, and some have small
jerks. In addition, RRT∗ paths pass dangerously close to walls.

Fig. 2: Indicting convergence using the entropy of Q. The
two conditions for convergence are safety and maximum
entropy. A path is considered safe when the maximum
occupancy along the path is below a safety threshold. The
shaded area marks iterations during the optimisation where
the path was not safe. The second condition for convergence
requires that the sampler’s entropy would be approximately
the maximum attainable entropy.

which enables the optimiser to overcome the uninformed
areas formed by the obstacles.

Experimental result demonstrates the importance of ran-
dom sampling for planning in occupancy maps. Combined
with an approximate kernel path representation, our method
offers a scalable and fast method for trajectory optimisation
in occupancy maps.

REFERENCES

[1] G. Francis, L. Ott, and F. Ramos, “Stochastic Functional Gradient for
Motion Planning in Continuous Occupancy Maps,” in IEEE Int. Conf.
on Robotics and Automation, 2017.

[2] A. Elfes, “Using Occupancy Grids for Mobile Robot Perception and
Navigation,” Computer, 1989.

[3] E. G. Tsardoulias, A. Iliakopoulou, A. Kargakos, and L. Petrou, “A
Review of Global Path Planning Methods for Occupancy Grid Maps
Regardless of Obstacle Density,” Journal of Intelligent & Robotic
Systems, 2016.

[4] Z. Marinho, B. Boots, A. Dragan, A. Byravan, G. J. Gordon, and
S. Srinivasa, “Functional Gradient Motion Planning in Reproducing
Kernel Hilbert Spaces,” in Robotics: Science and Systems, 2016.

[5] M. Mukadam, X. Yan, and B. Boots, “Gaussian Process Motion
Planning,” in IEEE Int. Conf. on Robotics and Automation, 2016.

[6] L. Bottou, “Large-Scale Machine Learning with Stochastic Gradient
Descent,” in Int. Conf. on Computational Statistics, 2010.

[7] S. M. Lavalle, “Rapidly-Exploring Random Trees: A New Tool for
Path Planning,” tech. rep., Iowa State University., 1998.

[8] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilis-
tic Roadmaps for Path Planning in High-dimensional Configuration
Spaces,” IEEE Transactions on Robotics and Automation, 1996.

[9] T. Lozano-Pérez and M. A. Wesley, “An Algorithm for Planning
Collision-free Paths among Polyhedral Obstacles,” Communications
of the ACM, 1979.

[10] P. Bhattacharya and M. L. Gavrilova, “Voronoi Diagram in Optimal
Path Planning,” in Int. Symp. on Voronoi Diagrams in Science and
Engineering, 2007.

[11] S. Garrido, L. Moreno, M. Abderrahim, and F. Martin, “Path Planning
for Mobile Robot Navigation using Voronoi Diagram and Fast March-
ing,” in IEEE/RSJ Conf. on Intelligent Robots and Systems, 2006.

[12] O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and
Mobile Robots,” The International Journal of Robotics Research,
1986.

[13] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic Trajectory Optimization for Motion Planning,”
in IEEE Int. Conf. on Robotics and Automation, 2011.

[14] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion Planning with Sequential
Convex Optimization and Convex Collision Checking,” The Interna-
tional Journal of Robotics Research, 2014.

[15] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “CHOMP: Covariant
Hamiltonian Optimization for Motion Planning,” The International
Journal of Robotics Research, 2013.

[16] G. Kaehler and A. Bradsk, Learning OpenCV: Computer vision with
the OpenCV library. O’Reilly Media Inc., 2008.

[17] S. T. O’Callaghan and F. T. Ramos, “Gaussian Process Occupancy
Maps,” The International Journal of Robotics Research, 2012.

[18] F. Ramos and L. Ott, “Hilbert Maps: Scalable Continuous Occupancy
Mapping with Stochastic Gradient Descent,” in Robotics: Science and
Systems, 2015.

[19] B. Schölkopf and A. J. Smola, Learning with kernels : support vector
machines, regularization, optimization, and beyond. MIT Press, 2001.

[20] A. Rahimi and B. Recht, “Weighted Sums of Random Kitchen Sinks:
Replacing Minimization with Randomization in Learning,” in Neural
Information Processing Systems, 2009.

[21] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear Component
Analysis as a Kernel Eigenvalue Problem,” Neural Computation, 1998.

[22] H. Robbins and S. Monro, “A Stochastic Approximation Method,” The
Annals of Mathematical Statistics, 1951.

[23] C. M. Bishop, Pattern recognition and machine learning. Springer,
2006.

[24] S. Karaman, “Incremental Sampling-based Algorithms for Optimal
Motion Planning,” Proc. Robotics Science and Systems, 2010.


	Introduction
	Related Work
	Preliminaries
	FGD for Motion Planning
	Motion Planning Objective Functionals
	Obstacle Functional Uobs()
	Dynamics Functional Udyn()
	Functional Gradients


	Method
	Stochastic Functional Regression
	Targeted Sampling
	Path Planning Algorithm

	Results
	Real data
	Targeted Sampling

	Conclusions
	References

