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Abstract— To render learning controllers feasible for real
robots, interaction time with the real environment needs to
be minimized. One of the popular approaches to tackle this
is to model and improve the simulation gap. In this paper,
we develop an iterative model learning approach which learns
the simulation gap. Our approach provides two benefits: (1)
it can scale to systems with highly non-linear and contact-
rich dynamics with continuous state and action spaces and
(2) provide sample complexity results. The approach reduces
the demand for real samples by only learning the difference in
regions of the state space which are essential for completing the
task. We test our approach in simulations on two platforms, an
inverted pendulum and a 7-DoF walking robot. We compare
the performance of the proposed approach against cold-started
and warm-started learning and show the reduction of real
interaction time by about 20 and 5 times, respectively.

I. INTRODUCTION

Learning with no or little prior knowledge about the
environment is becoming more popular among control re-
searchers. The reason is that learning provides a generic
toolbox for solving complex high dimensional tasks pos-
sibly subject to discontinuities. A good example of such
task is bipedal locomotion. The intrinsic vulnerability of
bipedal walking platforms limits the amount of possible
real experience, thereby making it very expensive to obtain.
Therefore, data-driven methods require the development of
measures which reduce their sample complexity and speed
up the learning. The consequence is that such methods lack
generality and hence become applicable to specific types of
robots [1], [2].

In the light of the recent success of deep reinforcement
learning (RL) methods for control of high degrees of freedom
(DoF) systems [3], [4], we study the applicability of neural
network representations to learning control policies for such
systems in the real world. The methods demonstrate re-
markable performance on highly challenging 3D locomotion
tasks but require a large number of training samples and are
therefore limited to simulated environments [5]. Furthermore,
due to the discrepancy between the model and the real
system, the simulation gap, policies that perform optimally in
simulation fail to perform adequately in the real world, even
if applied to low DoF systems like the inverted pendulum.

There has been a large body of work which belong to the
class of model-based RL methods which tackle the issue of
high sample complexity. In these methods, the policy training
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is either interleaved with a forward model learning [6], [7]
or it is done concurrently [8]. These methods usually start
with no knowledge about the model and aim for learning it
by interaction with the real system.

However, usually an idealized model of the physical
system is known but various uncertainties do not allow
achieving optimal performance of the policy trained on this
idealized model. To correct the discrepancy between the sys-
tem and the model, [9], [10] learn the inverse model directly
from the physical system. These methods assume that the
inverse model can connect successive states prescribed by
the nominal controller. The approach taken in [11] is free
from this assumption because it learns an additive component
of the forward model. The approach allows to compensate
both parametric and structural uncertainties, but cannot scale
to systems with discontinuities. A similar approach was
proposed in [12]. Unfortunately, it uses Gaussian processes
for modeling the simulation gap which limits its application
to high DoF systems [3]. The approach proposed in [13]
scales to high DoF systems and environmental discontinuities
but requires expert guidance to select parameter sets to
investigate after each model update. Approach [14] works in
combination with nonlinear model predictive control which
allows it to provide safety barriers on RL exploration de-
pending on the severity of the mismatch. The approach can
scale to high DoF systems with parametric and structural
uncertainties but requires an additional controller at hand.

In this article, our contribution is twofold. First, we
propose an iterative model learning approach which scales
to high DoF contact-rich systems and does not require
human supervision. We assume that an idealized model of
a system is provided and that the real system resembles the
model to some extent. We approximate the difference with
a deep neural network (DNN) which allows us to apply our
method to high dimensional continuous systems. We expect
that the accurate representation of the difference between
systems can mitigate the simulation gap. Second, we provide
a detailed sample complexity analysis by comparing the
performance of our method against warm-started and cold-
started (from scratch) learning on two simulated examples:
1-DoF inverted pendulum and 7-DoF bipedal robot Leo. To
our knowledge, such analysis is currently missing in the
literature. Since the simulation gap only matters in regions of
the state space explored by the policy, the difference model
only needs to be accurate in those parts of the state space.
This helps us to reduce sample complexity further since the
model only needs samples in regions which are important
for the task.
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Fig. 1. Proposed framework.

II. REINFORCEMENT LEARNING

We consider a standard reinforcement learning problem
formulation. The learning is formalized by Markov decision
process which is the tuple 〈S,A, T,R〉, where S is a set of
ns-dimensional states s ∈ Rns , A is a set of na-dimensional
actions a ∈ Rna , T : S×A×S → [0, 1] is a transition func-
tion which defines a probability of ending up in state sk+1

after taking action ak in state sk. Here k denotes discrete
timesteps of the system. Reward function R : S×A×S → R
gives a scalar reward r(sk, ak, sk+1) for particular transitions
between states.

The goal of the learning agent is to maximize the dis-
counted expected return

Gγ
k = E

{ ∞∑
i=0

γir(sk+i, ak+i, sk+i+1)

}
(1)

where γ ∈ [0; 1) is the discount factor which ensures
integrability of the infinite sum.

The control policy, or the actor, µ : S → A is a
deterministic function which selects action ak in state sk.
Exploration is achieved by adding random noise sampled
from some process N . When solving continuous control
problems, it is convenient to evaluate the quality of the policy
by the action-value function Qµ : S × A → R, or critic. It
describes the expected return after taking an action ak in
state sk and thereafter following policy µ.

We use a particular realization of RL, the off-policy Deep
Deterministic Policy Gradient (DDPG) algorithm [3] with
deep neural network function approximation and compatible
features, chosen for its ability to optimize continuous control
policies for high DoF systems. The value function and policy
are parametrized by the network weights θQ and θµ.

III. PROPOSED METHOD

A. Notation

In this article, we work only with simulated models.
Therefore, we create two models called idealized and true.
We assume the same state space in the idealized and true
models. However, inaccuracies due to the modeling differ-
ences give rise to the differences in transition probabilities.
Our method minimizes the gap between these models by
learning the difference model. Schematically, the proposed
method is shown in Figure 1.

The idealized model f idl(sk, ak) = sidl
k+1 is a forward

dynamics (usually first principles) model based on a certain
idealized configuration of the robot. We denote the policy
trained on this model as µidl.

Run policy on the true model
to collect transitions

Update d(s, a)

Learn policy µidl

Stopi ≤ I
yes

Learn new policy µd

Fig. 2. Algorithm overview.

The true model f true(sk, ak) = strue
k+1 is a forward dynamics

model based on the real configuration of the robot. The
corresponding policy trained on this model is denoted as
µtrue.

The difference model d(sk, ak) = strue
k+1 − sidl

k+1 predicts
the difference in the transition states given an initial state
and action. The policy trained using the difference model is
denoted as µd.

B. Algorithm

An overview of the algorithm is presented in Figure 2. The
algorithm starts by pre-training the initial policy µidl and the
corresponding value function using the idealized model of
the robot. The policy behaves sub-optimally when applied
to the true model due to the simulation gap. To eliminate
the gap, we propose an iterative approach which consists of
three distinctive steps. In the first step, we collect a number
of real samples through interaction with the true model and
save them in buffer D. In the second step, we use the whole
buffer to learn the difference model represented by the deep
neural network. The difference model predicts the difference
in states between the idealized model and the true model.
In the third step, DDPG is used to learn a new policy µd

with this difference model. The newly obtained policy is
likely to perform better on the true model. However, if the
initial simulation gap is large, the new policy may still not
perform satisfactory. Thus, we iterate the process of updating
the difference model and the policy until a certain number of
iterations is reached. To keep the successive DDPG training
time short, we bootstrap parameters of the policy and the
value function from the ones used in the previous iteration.

C. Training data

The data used for training the difference model is obtained
by running the previously obtained policy on the true model
several times. Let this policy be denoted by µ(s; θµi−1). The
action to be taken is calculated as a = µ(s; θµi−1) + N .
The particular advantage of using policy from the previous
iteration is that it progressively matches the distribution
of training transitions to those required for the successful
completion of the task. Since DDPG is used to learn a new
policy after every update of the difference model, the replay



buffer from the first update of the policy is saved and used
in every following update. This helps to reduce the number
of iterations required to find a good policy at each step and
increases the diversity of samples.

IV. EXPERIMENT DETAILS

A. Inverted pendulum

Figure 3 shows the inverted pendulum of mass m =
0.055 kg which rotates around the fixed point O located l =
0.042m away from the center of mass of the pendulum. The
pendulum state s = (φ, φ̇) is composed of pendulum angle φ
and angular velocity φ̇. The control input a ∈ [−3V, 3V] is
the voltage applied to the motor located at O. The voltage is
bounded to prevent the pendulum from performing a swing-
up in one go. The pendulum is initialized in state s0 = (π, 0),
and the agent has to learn to swing up the pendulum and
balance it until the end of the 20 s episode. The reward
function is given by

r = −5φ2 − 0.1φ̇2 − 0.01a2.

Sampling period is Ts = 0.05 s.
The true model has a higher pendulum mass shown in

Table I.

B. Bipedal robot Leo

Leo [15] is a 2D bipedal robot developed by the Delft
BioRobotics Lab shown in Figure 4. The robot is attached
to a boom which prevents it from lateral falls. Leo is modeled
using Rigid Body Dynamics Library [16] with the boom
mass added to the torso.

Leo has 7 actuators, two for each hip, knee, and ankle,
and the last one for the shoulder. All joints and the torso-to-
boom connection are equipped with encoders which provide
real-time measurements. The learning state space of Leo
comprises of 18 dimensions which consist of the angles φ
and the angular velocities φ̇ of all but shoulder joints, and
the torso linear positions and velocities. The action space of
Leo consist of voltages applied to each actuator except the
shoulder which is actuated using a proportional-derivative
controller.

The reward function awards the agent 300m−1 for every
meter of forward movement of the robot. The agent is
penalized by a −1.5 additional reward for every time step
and by a −2 J−1 reward for every Joule of electrical work
done. Premature termination of the 20 s episode due to a fall
is punished by the negative reward of −75. Sampling period
is Ts = 0.03 s.

The true Leo model has higher torso mass and viscous
friction added to all actuators. These differences affect the
performance of the idealized policy when applied to the true
model, occasionally leading to oscillations and eventual fall
of the robot. The change in parameters is shown in Table I.

C. Training data and parameters

All parameters are kept the same for both systems. The
DDPG critic and actor networks consist of 2 hidden layers
with 300 and 400 neurons, respectively. Learning rates of
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O

Fig. 3. Inverted pendulum. Fig. 4. Leo: the model and the real robot.

TABLE I
DIFFERENCE IN PHYSICAL PARAMETERS BETWEEN IDEALIZED AND

TRUE MODEL.

Parameter Idealized model True model

Inverted pendulum
Pendulum mass m (kg) 0.055 0.090

Robot Leo
Torso mass (kg) 0.942 1.250
Viscous friction coefficient (N s m−2) 0.000 0.030

0.001 and 0.0001 are chosen for the critic and the actor.
Additional parameters include a target network update rate of
0.001 and the discount rate γ = 0.99. Exploration is achieved
by an Ornstein-Uhlenbeck noise model with parameters σ =
0.12 and θ = 0.15 used during warm-start learning and
learning with the difference model. For cold-start learning
noise parameters are slightly higher.

The difference model consists of 3 hidden layers with 400
neurons in each layer. The activation function for each of
the hidden layers is ReLu while the output layer has a linear
activation function. To reduce over-fitting to the training data,
we use dropout [17] with probability 0.3. Dropout is only
applied to the hidden layers and is the same for all layers.
Before each model update, 3750 data-points are collected
by running the previously obtained policy on the true model
which are saved to a buffer that has not limits on size. We
train the network using AdaGrad [18] which is a variant of
stochastic gradient descent. The advantage of using AdaGrad
over normal stochastic gradient is the ability to adapt the
learning rates based on the training data. This implies that
the initial learning rate does not have much impact on the
performance of the algorithm.

D. Evaluation measures

For quantitative assessment, we evaluate performance of
the proposed method in terms of the undiscounted return
(1). Additionally, for the Leo robot we evaluate the walked
distance L and the motor work E normalized to the walked
distance given by

E =
Ts

L

J∑
j=1

Uj
Uj −Kτ φ̇j

R

where Uj is the voltage applied to the motor j, Kτ is the
motor’s torque constant, R is the winding resistance, and J
is the number of learned controls.



For qualitative assessment, we also show system trajecto-
ries obtained by each method.

V. RESULTS

A. Inverted pendulum

Figures 5 and 6 show the return and final trajectories
obtained by the policies evaluated on the true model. The
policy trained on the idealized model is not capable of
balancing the pendulum and therefore obtains the lowest
return of −15508. On the contrary, the proposed method
of learning the difference model can evade the simulation
gap. After one model update, the policy reaches the return
of −660.0 which is similar to the one obtained by the policy
µtrue trained on the true model. This number of updates
corresponds to 3.125min of interaction with the true model.
The cold-started method requires around 75min to converge.
We also see the similarity in the final state and control
trajectories in Figure 6 between policies µtrue and µd

Table II compares results of learning on the true model
obtained by DDPG learning from scratch (cold start), initial-
izing the value function and the policy by learning on the
idealized model (warm start) and by the proposed method.
Given that we have a limit of 15000 on true model samples,
the proposed method obtains the highest return. Alternatively,
it requires 6 times fewer samples than the warm-started
learning to reach the target return of −1000.0.

B. Bipedal robot Leo

The results of learning the policy with the difference
model are presented in Figure 8. Here all policies are
evaluated on the true model. Initial updates of the difference
model show a high standard error, which is reduced in later
updates. After 7 updates, the proposed method reaches the
mean return of 2297.46 which is within 10% of the return
obtained by learning directly from the true model. This
number of updates corresponds to about 13min of interaction
with the true system, while the cold-started method requires
200min to converge.

The corresponding final performance of policies evaluated
on the true model is shown in Table III. In both benchmarks,
the policy trained on the idealized model performs the worst.
The policy µtrue provides 38.3% improvement in the walked
distance (see Figure 7) and 4.8% reduction in the energy
consumption as compared to the policy µidl. Visually, all
trajectories display some irregularity of the walking cycle. As
expected, the µidl policy performs worst, and its gait exhibits
small step sizes and a tendency to lift the swing knee very
high1. This results in a slow walking gait. The difference
model improves the idealized model. Therefore, the µd policy
leads to a higher walking speed due to the reduction of the
swing knee lifts.

Table IV compares sample complexity results for Leo.
Compared to the inverted pendulum, we increase the number
of true model samples to 33750. The proposed method
obtains the highest return. Alternatively, it requires about

1Video Link: https://youtu.be/rVIpd0qtaWA
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Fig. 5. Comparison of results by evaluating the performance of different
policies on the true model for the inverted pendulum.
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Fig. 6. State trajectories and control input for policies learned on different
models and evaluated on the true model.

5 times fewer samples than the warm-started learning to
reach the target return of 2300. Compared to the cold-
started learning, the proposed method requires 20 times fewer
samples to reach the target.

VI. DISCUSSION

The presented results demonstrate that learning the differ-
ence model for the inverted pendulum is easier than for Leo.
This is an expected result because the dimensionality of the
pendulum is much lower, and there are no discontinuities
in trajectories. For the pendulum, a single model update is
enough to generalize well in the unseen parts of the state
space. However, for Leo, this is not the case. The mismatch
between the true and idealized models affects the whole
state space of the robot, and we need more than one model
update to compensate for it. The very high standard error
for the initial updates of the difference model is due to the
occasional failures of µd on the true model. A possible reason
for this could be that the µd policy explores regions of the
state space where the difference model is not yet accurate
enough. This can happen because there are no constraints
on the policy update, and the policy is free to divert into the
regions of the state space where little or no data is available.

However, the difference model gets more accurate with
the number of updates, as new samples are collected in pre-
viously unexplored regions. The corrected model predictions
reduce the probability of the learned policy failing on the
true model, thus reducing the standard error of the return.

https://youtu.be/rVIpd0qtaWA


Fig. 7. This figure illustrates the performance of µidl (yellow), µd (green), and µtrue (blue) on the true model. The policy learned with the difference
model achieves almost the same walking distance while only requiring 6.5% of interaction time compared to the cold-started method.

TABLE II
PENDULUM SAMPLE COMPLEXITY AND PERFORMANCE COMPARISON

FOR THE PROPOSED METHOD VERSUS COLD AND WARM STARTS.

Method Sample budget Return, G1

Fixed budget
Cold start 15000 −20507.6± 2801.9
Warm start 15000 −14087.2± 235.6
Difference model 15000 −657.2± 22.9

Fixed return
Cold start 82164± 7498 −1000.0
Warm start 23383± 2357 −1000.0
Difference model 3750 −1000.0
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Fig. 8. Comparison of results by evaluating the performance of different
policies on the true model for Leo. The results with the difference model
are averaged over 5 runs and plotted with 95% confidence interval.

Finally, we note that for learning with the difference model
allowed us to reduce exploration noise compared to the cold-
start learning. This is an important property for learning
on real robots as lower noise can potentially reduce system
damage.

VII. CONCLUSION

In this article, we develop a method of reducing the sample
complexity of learning on a real robot by iterative updates
of the difference model. We compare the performance of
our method with cold-started and warm-started learning
on two simulated platforms: 1-DoF inverted pendulum and
7-DoF robot Leo. The proposed method achieves signifi-
cantly higher returns given the same exploration budget on
the true model, or it achieves the same return but with a
much smaller number of true model samples.

Sample diversity is a known bottleneck of neural networks,
which also holds true for learning the difference model.
However, our method is successful due to the fact that the
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Fig. 9. Torso trajectory for policies µtrue, µidl and µd evaluated on the
true model. Each walking trial lasts for 20 s.

TABLE III
THE COMPARISON OF DIFFERENT POLICIES PERFORMANCE EVALUATED

ON THE TRUE MODEL.

Policy Distance walked, L (m) Motor work, E (J m−1)

µidl (idealized) 9.2± 2.4 111.4± 11.1
µd (difference) 14.9± 0.5 106.0± 3.8
µtrue (true) 14.8± 0.5 98.2± 6.7

TABLE IV
LEO SAMPLE COMPLEXITY AND PERFORMANCE COMPARISON FOR THE

PROPOSED METHOD VERSUS COLD AND WARM STARTS.

Method Sample budget Return, G1

Fixed budget
Cold start 33750 −42.9± 12.1
Warm start 33750 1782.1± 247.4
Difference model 33750 2434.1± 111.1

Fixed return
Cold start 309766± 35282 2300.0
Warm start 84326± 6287 2300.0
Difference model 15750± 7648 2300.0

difference model needs to be accurate only in the region of
the state space which is essential for walking.

The proposed method is generic and can be utilized for a
wide variety of robotic systems. A next possible step is to
learn the difference model on the real robot Leo.
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