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Abstract—Fault tolerance techniques often presume
that the end-user computation must complete flawlessly.
Though such strict correctness is natural and easy to
explain, it’s increasingly unaffordable for extreme-scale
computations, and blind to possible preferences among
errors, should they prove inevitable. In a case study on
traditional sorting algorithms, we present explorations of
a criticality measure defined over expected fault damage
rather than probability of correctness. We discover novel
‘error structure’ in even the most familiar algorithms,
and observe that different plausible error measures can
qualitatively alter criticality relationships, suggesting the
importance of explicit error measures and criticality in
the wise deployment of the limited spare resources likely
to be available in future extreme-scale computers.

Keywords. Fault-intolerance, fault tolerance, criticality,
sorting algorithms, robust-first computing

I. BEYOND STRICT CORRECTNESS

A computation is often envisioned as an abstract
mathematical function, faultlessly mapping provided in-
puts to desired outputs. Of course, a real computation is
performed by some necessarily fallible physical device
or devices—a process that may or may not yield the
intended outputs, raising the question of what should
be considered acceptable. The strict ‘all-or-nothing’
approach to correctness and error, for example, views
any fault-induced alteration of the input-output mapping
as a total failure of the computation. Strict correctness
is simple and seems honorable—but it also implies that
all errors are equally bad, no matter how harmless or
catastrophic.

Though such puritanical rigidity can be satisfied for
small programs, the probability of perfection for large
computations declines precipitously [1]. Extreme-scale
users, understandably reluctant to discard resource-
intensive computational results lightly, will increasingly
choose to judge some errors worse than others, and thus
abandon—if only informally and implicitly—the strict
boolean view of correctness. We argue it is better to do
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that explicitly—and sooner rather than later—to under-
stand better the trade-offs and potentials of graduated
correctness or error measures that offer ‘partial credit’,
making distinctions finer than just right and wrong.

A. Criticality

In this paper we define criticality, a method of
comparing program behavior when specific faults do or
do not occur, with respect to some given error measure.
Expanding on a previous demonstration [2], we explore
the criticality of comparison operations in traditional
pairwise sorting algorithms. Across four strategies for
scoring sorting error, we observe both expected and
unexpected interactions among the algorithms, their
efficiencies, and their behaviors under faults.

The rest of this section considers related work,
focusing on fault tolerance as well as measures of the
‘sortedness’ or (conversely) disorder of a list, which we
re-purpose as error measures for fallible sorting algo-
rithms. Then Section II explains the criticality method,
and Section III presents case study results, illustrating
how criticality offers insights into algorithmic behavior
in realms beyond strict correctness. Finally, Section IV
briefly discusses future work and offers conclusions.

B. Fault tolerance

Multifaceted research and development on the relia-
bility and dependability of computing systems has been
ongoing for over four decades [3]. One main branch of
that work begins, conceptually, with a fault-intolerant
computation [4]—designed to terminate immediately on
any uncorrected fault—and then strives to preserve and
protect that fragile core using fault tolerance techniques
based in hardware, such as [5]–[8], or in software, such
as [9]–[13].

A related thrust emphasizes degradable performance
and performability [14], evaluating system capability
and reliability together to support graceful system
degradation. By considering degrees of performance,
performability moves distinctly beyond all-or-none sys-
temic perfection, but it still presumes strict correctness
for each subtask or component. For example, a degrad-
able performance measure might involve variable job
completion delays or changes in link failure probabili-
ties [15], [16]—while still demanding strict correctness



of each job computed and messages conveyed over each
link. A performability framework could be extended to
handle graduated error measures within individual work
components, by adding some suitable error measure, but
we have yet to find such efforts in the literature.

There is some research, however, that envisions
faults altering the function computed, and requiring
evaluation at that level. For example, the selective
reliability approach, discussed by [17], develops error
bounds on computations that are divided into higher
and lower reliability sections. The present work in some
ways complements that approach, seeking to identify
computational steps most likely to need high reliability.
Rather than hardware bit-flip faults, our case study
model considers faults at the algorithmic level, in the
comparison operations performed during sorting.

As another example, approximate design [18] aims
to increase energy efficiency by running chips at volt-
ages that allow transient errors. An approach called
Application Resilience Characterization (ARC) [19],
based on dynamic binary instrumentation [20], sup-
ports approximate design by helping programmers
understand how their applications may function in
fault-prone environments. Like selective reliability and
our criticality method, ARC also reaches beyond the
“fault-intolerant core” framework. A difference is we
have applied criticality to classical deterministic al-
gorithms, while ARC has been predominantly applied
to function approximations—such as machine learning
algorithms—for which perfect correctness is rarely the
norm. Another difference is that criticality quantifies the
impact of faults in individual operations—however they
are defined—while ARC categorizes inner loop lines of
code qualitatively as resilient or sensitive.

Interestingly, [21] develops robust floating point iter-
ations for several traditionally exact algorithms, includ-
ing sorting. They work within a fault-intolerant strict
correctness error model, and demonstrate sorting small
lists perfectly even with as many as half the floating
point operations failing.

C. Measuring Sortedness

In contrast with that work, our interest is in better
understanding tradeoffs and algorithmic behaviors when
the end user may be willing to accept less than strictly
correct results. To investigate sorting as an example,
we must confront the question of what “sort of sorted”
might mean. Fortunately, sorting is an extremely well-
studied topic, and researchers have defined a variety
of sortedness measures— [22] is one survey—that
quantify the notion of ‘partially correct sorting’. These
measures have traditionally been used to measure a list’s
‘presortedness’—its degree of disorder before sorting—
but they are also usable as measures of output quality
of a potentially fallible sorting algorithm.

Existing sortedness measures include inversions er-
ror—the number of items immediately preceding a
smaller item, and max displacement—the maximum
distance any item must be moved to reach its correct
position. In this paper, we explore those measures, as
well as all-or-none strict correctness, and a measure
called positional error discussed in the next section.

II. METHODOLOGY

Arbitrary faults can have arbitrary effects on the
execution of a program, and in the general case little
can be said. For this case study:

• We consider only sorting programs based on
pair-wise comparisons. The program input is
a random permutation of the numbers 0..51,
modeling a shuffled deck of cards.

• We presume the existence of an error measure
that maps any permutation of the input data
into a scalar value from 0.0 meaning “perfectly
sorted” to 1.0 meaning “maximally unsorted.”

• We consider only faults in the pair-wise sorting
comparisons. Such faults fit naturally into our
adopted sortedness measures, but of course they
are only one of many possibilities. In particular,
we presume the data items are never corrupted.

• We collapse a fault’s impact on a given com-
parison down to a scalar called the “criticality”
of that fault at that comparison, by averaging
across possible inputs and other possible faults.

The rest of this section provides details.

A. Comparison Criticality Defined

Intuitively, the goal of the criticality method is
to isolate the additional program error due to some
specific fault on some specific computational step. The
impact of any specific fault depends on three factors,
which we call the ‘fault mode’, the ‘error measure’,
and the ‘fault pattern’.

The fault mode determines how the computational
step acts during a particular type of fault. Specifically,
when comparisons fail in our case study, the result is
as if the comparison was performed backwards. If the
operation Compare(3, 4) faulted it would return >, as
if the performed operation had been Compare(4, 3).

The error measure specifies how badly any given
computational result deviates from its correct outcome.
In this study we tested four different sorting error
measures. The first error measure, strict correctness, is
0 if the output is perfectly sorted and 1 otherwise. Def-
initions for the other three error measures—normalized
inversions error [22], normalized max displacement
[22], and normalized positional error [2]—appear below
in equations 1, 2, and 3, respectively.



In those equations L(i) is the position of item i in
the output list L, while L[i] is the inverse operation:
The value of the ith item in list L. Since we sort lists
of distinct numbers from 0 to N − 1 the ith item in
a correctly sorted list is equal to i. Note that each
error measure is normalized to [0, 1] by dividing by the
maximum possible value of that error measure.

Inv(L) =

∑N−2
i=0

L[i]−L[i+1]
|L[i]−L[i+1]| + 1

2N − 2
(1)

MaxDis(L) =
maxN−1i=0 |i− L(i)|

N − 1
(2)

PosErr(L) =

∑N−1
i=0 |i− L(i)|

MaxPosErr(N)
(3)

The normalization factor MaxPosErr(N)—the
maximum positional error for an input list of size N—
is equal to the positional error when a list is reverse
sorted:

MaxPosErr(N) =

N−1∑
i=0

|N − (2i)− 1|

= 2
⌊(N

2

)2⌋
(4)

Finally, the fault pattern specifies when and where
faults occur during the computation. In general the fault
pattern may require a matrix to represent computational
steps in space and time, but in this case, since the tested
sorting algorithms are sequential, a single bit vector
suffices, indexed by the number of comparisons so far
executed 1.

Given a fault, a fault mode, a fault pattern, and a
set of program inputs, the output of the program is
completely determined, and its quality can be assessed
by the error measure. The criticality of a fault, then, is
simply the error measure value when the fault occurs
minus its value when the fault is absent. For extremely
small computations it is possible to calculate a fault’s
criticality exactly, but more typically the combinatorics
make direct calculation intractable. This study uses
Monte Carlo sampling to estimate the error measure
values with and without the fault, and the difference of
those estimates are reported in the next section.

The criticality for a failure at each comparison index
was obtained by taking a sample of 1000 fault pattern-
input pairs for each comparison in the algorithm. Inputs
were randomly generated so that each list item had
a uniform probability of occurring in any location in
the list. Fault-patterns were sampled from a binomial

1In this paper comparison index c refers to the cth comparison
executed by the algorithm

distribution set to produce true bits at rates of 0%, 10%,
and 20% so that comparisons not under consideration
would fail at a consistent i.i.d. background failure rate2.
The average output error was measured for each of
these fault pattern-input pairs—once with the compar-
ison under consideration forced to fail and once with
it succeeding. This gave us two average conditional
error measures whose difference was then taken as the
comparison’s criticality. See the top graph in figure 2
for an example of how this was done.

III. RESULTS AND DISCUSSION

We tested quick sort, merge sort, and bubble sort,
using permutations of the N = 52 numbers [0, 1, ..., 51]
as input. For each algorithm, we estimated comparison
criticality with respect to the four error measures pre-
sented in Section II-A, at background failure rates of
0%, 10%, and 20%. In this section. we briefly touch
on a few expected and unexpected phenomena we have
observed.

A. Strict Correctness Hides Most Criticality Structure

To get a feel for criticality in general—and to
see some of the liabilities of all-or-none correctness—
Figure 1 shows estimated criticalities under the strict
correctness error measure. While the figure does make
clear that quick and merge sorts perform many fewer
comparisons than bubble sort, relatively little other
structure is revealed. Despite averaging over random
input permutations, the strict correctness criticality of
each comparison is usually either 1 or 0: Any given
comparison is either maximally critical or not at all.
Given 0% background failures (red curve), for example,
there will only be a single fault. For bubble sort, a
failure is critical if that fault is in any of the last
N comparisons (seen at about comparison 2600), but
otherwise it’s harmless. By contrast, with merge and
quick sorts nearly every comparison is critical—if any
comparison fails, the output will not be strictly cor-
rect. The last comparisons for quick and merge sorts
show intermediate criticalities because, depending on
the specific input permutation tested, the algorithm will
sometimes finish before that comparison is reached, so a
failure at that comparison index is sometimes harmless.

Given strict correctness, if the background failure
rate is appreciably non-zero (e.g., 20%, blue curve) all
comparisons became non-critical in all three algorithms:
Since the output will essentially never be strictly correct,
the occurrence or absence of any one fault makes no
difference.

2Note that a background failure rate of 0% does not mean ‘no
failures whatsoever.’ Instead it means there are no failures other than
the one failure being induced in the comparison under consideration.



Fig. 1. Extremal values dominate in a plot of strict correctness
criticality (‘Boolean criticality’; y axis) vs. the comparisons
executed during a sort (‘Comparison index’; x axis): Most faults
are either maximally critical or not at all. See text for details.
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B. Graduated Criticality Reveals Algorithmic Structure

As a second example, Figure 2 shows average con-
ditional positional error and criticality for the merge sort
algorithm. The criticality of a fault at a given compar-
ison index—illustrated in the middle graph—is simply
equal to the difference between the top and bottom lines
in the first graph of Figure 2—the estimated error when
the fault does occur less that when it doesn’t.

We note two striking aspects in the middle graph in
Figure 2. First, the positional error measure reveals a
fractal criticality structure for the merge sort algorithm.
In retrospect at least this makes sense given the depth-
first recursion used in this merge sort implementation.
Comparisons at the deepest recursive levels—when two
items are merged into a length 2 sublist—are also
the most critical comparisons; the deeper “criticality
valleys” reflect the larger merges.

Second, that recursive criticality structure is strik-
ingly persistent across background fault rates. Even at
a background failure rate of 20% we can still see four
distinct ‘humps’ in merge sort’s criticality results. This
implies that criticality structure is robust when the right
algorithm and error measure are used. Note that the
the criticality falls off at larger background failure rates
since criticality measures additional error due to a fault
and at higher background failure rates so much damage
has already been done to the output that it becomes
difficult for faults to do even more damage.

Next, when comparing the middle graph of figure
2 to the bottom graph we see that max displacement

Fig. 2. The average conditional positional error curves (top
graph), corresponding to the estimated error with and without
the fault at the given comparison index, and the positional error
criticality (middle graph), both based on a 10% background error
rate. Note that the purple and blue boxes are error bars. Both
positional error criticality and max displacement error criticality
reveal the fractal structure of the recursive merge sort algorithm
(bottom graph). See text for details.
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error reveals a structure that is similar to that revealed
by positional error. However, unlike positional error
which reveals a structure that is persistent in the face of
background faults, the structure of max displacement
error quickly collapses as the number of background
errors increases.

The existence of such criticality structures suggest
the possibility of deploying computational armoring
strategically to the most critical comparisons. Methods
like triple modular redundancy [23]—applied here to
list comparisons—are expensive, and targeting via crit-
icality might help increase the “bang for the buck” of



such techniques.

C. Criticality Structures Depend on Error Measures

The strict correctness error measure is a degenerate
case, but we also found that the comparison criticality
can vary greatly given different graduated error mea-
sures. Using quick sort, for example, we measured
comparison criticality for the first 250 comparisons
using both normalized positional error and inversions
error. In Figure 3 we see the results: With positional
error criticality, the first N = 52 comparisons have
much greater criticalities than all other comparisons in
the sort. This occurs because the first N comparisons
of quick sort are responsible for sorting the list into a
‘top’ half and ‘bottom’ half with all items less than the
pivot in the bottom half and all items greater than the
pivot in the top half. A faulty comparison in the first
N comparisons leads to the miscompared item being
placed, on average, about N/2 away from its correct
position.

On the other hand, for inversions error criticality,
the first N comparisons have lower criticalities than
all other comparisons. We suspect this is because items
misplaced in either the top or bottom half of the list will
tend to move toward the center where the halves meet,
so even many faults in the first N comparisons will tend
to add only a single inversion to the error measure.

Fig. 3. Different error measures generate different criticality
structures. See text for details.
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Though positional error and inversions error, like
all error measures, agree on the meaning of perfectly
sorted, they measure significantly different list proper-
ties, and their criticality structures are therefore quite
different. Although we may hope to find general prin-
ciples, it is important to understand that wise choice
of error measure requires not only sensitivity to likely
faults, but also to the needs of a computation’s end-user.

D. Criticality Structure is Highly Dependent on the
Algorithm

As a final illustration, consider the bubble sort
results in Figure 4. Bubble sort’s O(N2) comparisons
give it a great deal of redundancy, so the criticalities in
Figure 4 are much smaller than in, say, Figure 3—but in
addition, the details of its criticality structures emerge
most clearly at relatively high background error rates. It
is unsurprising that bubble sort’s last N comparisons are
most critical, but we, at any rate, hadn’t anticipated the
small but distinct length N periodic structure throughout
bubble sort’s execution, indicating increased criticality
in the last half of each pass through the list.

Fig. 4. Periodic criticality in bubble sort facing a non-zero
background error rate. The bottom graph is a subgraph of the
top graph. See text.
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All three sorting algorithms displayed structures
related to the input size of N = 52: First N criticality in
quick sort, last N criticality in merge sort, and a period
N oscillation in bubble sort.



IV. FUTURE WORK AND CONCLUSIONS

Moving forward, we want to apply criticality to
other problems and algorithms, especially those tradi-
tionally approached via strict correctness. We also hope
to investigate additional fault modes, selected to help
hardware designers minimize computational damage by
triaging and shaping faults, rather than trying to sup-
press them all. And finally, though the presented data
was obtained numerically, the observed relationships
between input size and criticality raise the possibility
of developing predictions of comparison criticality an-
alytically, or by extrapolation from small instances.

In this paper we have introduced the idea of criti-
cality, and demonstrated the application of graduated
error measures—beyond strict correctness—in a case
study of traditional sorting algorithms. We observed that
the algorithms possessed previously-unseen criticality
structures, which can change significantly depending on
the chosen error measure, and which can persist in the
face of rising background failures.

The “fault-intolerant core” computing style has
scaled vastly beyond what von Neumann predicted for it
over sixty years ago [24]. The extreme-scale computing
community—tasked with “living in the future”—is in-
creasingly perceiving now what will later become com-
mon wisdom: Computing must embrace fault tolerance
and robustness throughout the computational stack, all
the way to the end-user.

Extreme scale will lead the way.
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