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Abstract— In this paper, we present an approach that relies
on machine learning techniques to follow people efficiently
during robotic assistance tasks, in which the robot is mainly
interested in reaching the final navigation goal of the human.
People can perform unexpected actions during navigation,
which can lead to inefficient trajectories to the target destination
(ex: answer land-line phones ... etc). Therefore, the following
robot should infer the human’s intended navigation goal and
intelligently plan its own path to reach it, instead of just
following the human’s path. We propose a novel learning
framework to generate such an efficient navigation strategy
for the robot. In particular, we apply reinforcement learning
from which we get a Q-function that computes for each pair of
robot and human positions the best navigation action for the
robot. Our approach applies a prediction of the human’s motion
based on a softened Markov decision process (MDP). This MDP
is independent from the navigation learning framework and is
learned beforehand based on previously observed trajectories.
We thoroughly evaluated our approach in simulation and on
a real robot. As the experimental results demonstrate, our
approach leads to an efficient navigation behavior during the
following task and can significantly reduce the path length and
completion time compared to naive following strategies.

I. INTRODUCTION

Following humans with mobile robots is a challenging
problem and is needed in several applications such as in in-
dustrial settings where robots are deployed as transportation
systems, in home scenarios, especially for the elderly people,
in stores with autonomous shopping carts, or in environments
where robotic wheelchairs should navigate next to an accom-
panying pedestrian. Various solutions have been proposed
for such instances of the robotic following task as discussed
in the next section. However, these solutions mainly focus
on following the human in a certain distance irrespective
of its intended final destination. In other words, the robot
will keep on following the human, even if it moves on an
inefficient path to that destination. This inefficiency may be
due to the fact that the human can be easily interrupted by an
unexpected event that may arise. For example, consider the
case of a home-assistance robot performing a transportation
task and following human when suddenly a land-line phone
rings, or the doorbell rings in the middle of the task. In such
cases, a robot applying naive following strategies can only
follow the human since the destination is unknown to the
robot. This leads to inefficient navigation behavior causing
unnecessary battery consumption or wear.
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Fig. 1. The human moves through the environment between different
destinations (bottom image) where it stays for a while and may need the help
of a mobile robotic assistant. The task of the robot is to reach the initially
unknown destination of the human in an efficient and timely manner (top
right image). We developed a learning framework that generates efficient
navigation actions based on predicted motions of the human.

We developed a reinforcement learning framework that
leads to efficient navigation behavior in the described sit-
uations and can handle such unexpected human behaviors.
Our approach continuously predicts the human’s intended
destination and based on that the robot moves so as to reach
the goal efficiently while following a learned navigation
strategy. The prediction of the human path is updated every
time step and, thus, the robot is able to adapt its own actions
if necessary.

An overview of our framework is depicted in Fig. 1.
We rely on a set of previously observed human trajectories
between possible destinations where the human stays for a
while and might need the help of the robot, i.e., for general
assistance tasks, social interaction, or delivery tasks. Given
these trajectories, our approach learns a prediction model that
can be used to reason about the future motions and target
destination of the human given its trajectory observed so
far. The output of our learning method is a table of Q-values
that encodes the most efficient navigation action for the robot



considering the current robot and human position as well as
the predicted human motion.

As we show in the experiments, our approach leads
to an efficient navigation behavior. The robot focuses on
reaching the human’s final destination – which is initially
unknown to the robot – regardless of the inefficiency of
the human target’s trajectory. We demonstrate that a robot
executing the learned navigation strategy can successfully
handle the cases that the human trajectory contains detours or
unexpected behaviors. Our method results in efficient paths
with a significantly reduced completion time compared to
naive following strategies. To the best of our knowledge, we
present the first solution to a robotic following application
that considers the efficiency of the generated robot paths.

II. RELATED WORK

Robotic following tasks have been thoroughly investigated
using control theory, e.g., Huang [1] presented two control
models for both the linear and angular velocity of a wheeled
robot. These control models focus on originating velocity
commands that allow the robot to track the target while
ensuring smoothness of the resulting trajectory. Nascimen-
toa et al. [2] developed an approach for cooperative tar-
get tracking and proposed a nonlinear predictive formation
control model for the robots in a distributed architecture.
Each robot shares information about its pose with the rest
of the robots team and optimizes its control signals under
a prediction of the next state of the target as well as the
other team members’ states. Pradhan et al. [3] proposed a
path planning method with a navigation function that uses
predictive fields of moving obstacles to follow a target.
Choi et al. [4] presented a model for the target-following
task in an environment equipped with RFID tags that are used
by the robots for localization. The velocity of the following
robot is computed according to the leading robot’s relative
position, it is inversely proportional to the relative distance.

Furthermore, there are approaches that aim at following a
person at a fixed distance, e.g., Prassler et al. [5] considered
side-by-side following within the application of a robotic
wheelchair following a human. The authors apply a velocity-
based prediction of the human’s position and control both
position and velocity of the follower robot. Also Kuderer
and Burgard [6] considered the wheelchair application and
developed an approach to predict the human trajectory taking
into account information about obstacles in the environment.
The authors compute the robot’s trajectory so that the dis-
tance to the desired relative position along the predicted path
is minimized. In this way, the robot can act foresightedly and
local minima resulting from obstacles in the environment are
avoided.

Related approaches predict human trajectories to gener-
ate robot motions that do not interfere with people. Ben-
newitz et al. [7] proposed to predict human trajectories
based on learned motion patterns to avoid interferences in
tight environments. Ziebart et al. [8] developed an approach
using a Markov decision process (MDP) to learn from a
previously observed set of trajectories. The authors learn a

Q-table that can be used to predict the human’s trajectories
and avoid colliding with it. In our work, we use the method
of Ziebart et al. to learn a MDP for prediction, however,
we aim at making use of the prediction for learning how to
efficiently follow a human.

Concerning the use of machine learning techniques in
comparable problems, Goldhoorn et al. [9] proposed solving
a hide-and-seek game using reinforcement learning with the
aim to find a human and follow him/her to a goal location.
The learning reward here relies on minimizing the distance
between the following robot and the human during the
following task. Kollar and Roy [10] developed an approach
that applies reinforcement learning to reduce the effect of
pose uncertainty induced by certain movements of the robot
and aims at minimizing the uncertainty in the belief distri-
bution during navigation. Furthermore, Hornung et al. [11]
presented a technique to learn actions in order to to reach
navigation goals reliably and efficiently under consideration
of uncertainty.

As opposed to all the approaches discussed above, we
present a learning framework that enables a service robot
to efficiently reach the intended final destination of the
human, thereby reducing the possible inefficiency of the
human target’s trajectory. Using our approach, the robot is
not required to follow the human target in a fixed distance,
instead, the robot predicts the navigation goal, continuously
updates it, and adapts its actions.

III. MOTION PREDICTION

In this section, we present the motion prediction technique
applied in our learning framework. We predict the human’s
trajectory based on the part of the trajectory observed so far
and use the prediction in the state space representation of our
learning approach for generating efficient navigation actions
for the robot.

Our technique for motion prediction is based on the work
of Ziebart et al. [8]. This approach models the sequence of
motion actions performed by a human as a softened Markov
decision process (MDP) whose state space corresponds to
the cells of a discretized grid map of the environment.
The authors propose to train a prediction model using a
softened version of the Bellman equation and value iteration
to get a Q-table that represents the most likely motion
action performed by the human at a certain position. This
softened version uses the soft-maximum function instead
of the ordinary maximum to be able to reason about the
distribution of the trajectories, instead of having just one
optimal trajectory. The soft-maximum function is defined as

softmaxxf(x) = log
∑

x
ef(x) (1)

and is used within the computation of the state and action
values V (s) and Q(s, a):

Q(s, a) = R(s, a) + V (T (s, a)) (2)
V (s) = softmaxa Q(s, a) (3)

Here, s and a represent the human’s current state and
corresponding action, respectively, T (s, a) is the transition



function, and R(s, a) is the reward after executing action a
at the current state s. Eq. (2) and Eq. (3) are used to train
the motion predictor based on a set of training trajectories
with a reward function that takes into account obstacle
locations. Ziebart et al. use the obtained Q-table to predict
the future final destination of a partially observed trajectory
as explained in the following.

Let ζA→B denote the observed partial trajectory of the
human from the initial state A to the current state B and
ζB→C the future trajectory from B to the unknown final
destination state C. The probability P (dest C|ζA→B) of
a certain destination C given a partially observed trajec-
tory ζA→B can then be computed with Bayes’ rule, where
the likelihood P (ζA→B |dest C) intuitively depends on the
ratio of the reward of ζA→B and the expected value of ζB→C
to the value of the whole trajectory to the destination ζA→C :

P (dest C|ζA→B)
Bayes’
=

P (ζA→B |dest C)P (dest C)
P (ζA→B)

(4)

=
eR(ζA→B)+V (B→C)

eV (A→C) P (dest C)∑
D
eR(ζA→B)+V (B→D)

eV (A→D) P (dest D)
(5)

Here, D corresponds to a destination among the set of possi-
ble final destinations according to the training trajectories and
the prior distribution P (dest D) is known from the training
set. Furthermore, the reward of a partial trajectory R(ζ)
is the sum of all individual rewards of state-action pairs
according to ζ:

R(ζ) =
∑

(s,a)∈ζ

R(s, a) (6)

and V (X → Y ) denotes the softmax value function of the
trajectory form state X to state Y .

Using the above equations, we can then compute the poste-
rior over the future trajectory ζB→C to the unknown, future
destination C given the partial, observed trajectory ζA→B
using marginalization:

P (ζB→C |ζA→B)
=

∑
D

P (ζB→C |ζA→B , dest D)P (dest D|ζA→B)(7)

= P (ζB→C |dest C)P (dest C|ζA→B) (8)

=
eR(ζB→C)

eV (B→C)
P (dest C|ζA→B) (9)

= eR(ζB→C)−V (B→C)P (dest C|ζA→B) (10)

As can be seen, the posterior probability P (dest C|ζA→B) is
used to weight the conditional probability P (ζB→C |dest C)
of the expected future trajectory given the destination.

In our implementation, we assume that the human can
move one step at a time step in any of the eight possible
directions corresponding to the neighbor cells or remain in
the same state. Accordingly, our action space consists of nine
actions. We set the reward to be inversely proportional to the
distance from obstacles within a certain range of the human.

Using the learned posterior over the future trajectory
according to Eq. (10), we can predict the position of the
human at a certain time step given its trajectory history. How
we use this information in our learning framework for the
navigation actions is described in the following section.

IV. LEARNING NAVIGATION ACTIONS

A. Reinforcement Learning

We apply Sarsa(λ) reinforcement learning based on previ-
ously executed actions at ∈ A in different states st ∈ S and
the obtained reward rt ∈ R. During each learning episode,
the value of each state-action pair Qπ(s, a) following the
policy π is updated according to the achieved reward Rt
with

Rt =

T∑
i=t+1

ri (11)

as follows [12]:

Qπ(st, at) = Eπ{Rt|st, at} (12)

Furthermore, we use an ε-greedy action selection policy.

B. State Space S

In our model, we use a discretized representation of the
environment in form of a grid map. This grid map includes
static obstacles as occupied cells where the human and the
robot cannot move. The state representation of the rein-
forcement learning framework includes the relative distance
between the current 2D position of the human xht and the
current 2D position of the following robot xrt at time t as
well as the relative distance between xr

t and the predicted
position of the human after i further time steps xht+i

st =

[
xht − xrt

xht+i − xrt

]
. (13)

Here, we compute xht+i as explained in Sec. III. Note that
we use relative positions instead of global positions to be
able to generalize and learn from different trajectory classes
and different maps.

C. Action Set A

The action space consists of a set of discrete moving
actions in the eight main directions in addition to standing
still. Accordingly, the Q-table computed by our framework
contains entries Q(s, a) for each state-action pair where s is
defined as in Eq. (13) and a is one of the nine navigation
actions.

Note that a navigation action can only be executed if the
distance to an obstacle is larger than a certain range. In this
way, obstacles are implicitly modeled in our framework.



D. Reward R
We designed the reward function so as to combine both

the shortest path to the predicted human position as well as
the difference between the distance traveled so far by the
human and the traveled distance by the follower robot. The
first term aims at staying close to the human, whereas the
second term is for preferring shorter paths during the task.
Accordingly, we define the intermediate reward rt at time t
as follows

rt =

{
10, 000 if t = T

−distA?(xrt , xh
t+i) + (travht − trav r

t ) otherwise,
(14)

where T is the final time step and distA∗ is a function that
applies the A* algorithm on the grid map representation
of the environment to compute the length of the shortest
path between the current robot position xr

t and the predicted
position of the human xh

t+i under consideration of the
obstacles. Furthermore, trav t refers to the distance traveled
until time step t. This reward function leads to the generation
of efficient navigation actions that minimize the cost of the
robot to follow the human. The final state is reached when
the robot’s pose is sufficiently close to the destination the
human moved to.

V. EXPERIMENTAL RESULTS

A. Environment Setup

We evaluated our approach in simulation and real-world
experiments in an environment of the size of 4.5 m×3.5m
containing three possible destinations reachable from the
starting position of the human (see Fig. 2). We used a map
resolution of 60 cm, which we found to yield reasonable nav-
igation actions for the real robot with a diameter of 45 cm1.
Currently, we assume perfect knowledge about the robot
as well as the human position and that both are moving
approximately with the same velocity2.

B. Random Generation of Training and Test Sets

We randomly generated human trajectories for both the
training and test phases composed of straight line seg-
ments of 25 cm length. The orientation of the segments
relative to the destination is chosen uniformly from the
interval [0◦, 60◦]. Our training set consists of 60 trajectories,
20 for each of the three possible destinations (see Fig. 2).
For the test set, we randomly generated 15 trajectories for
the three possible destinations as described above.

C. Parameters for the Learning Framework

During the learning of the Q-table, we use a value of 0.4
for ε of the greedy action selection to allow for exploring
the state space strategy. For the execution, we decrease this
value to 0.05, i.e., the robot chooses the action with the

1Note that even if the environment only consists of 48 grid cells, the
size of the actual state space is much bigger since we consider the relative
distance of the current and predicted robot’s and the human’s position (see
Eq. (13)).

2Note that adding the velocity as a further dimension into the state
representation would lead to a significantly more complex learning problem.

Fig. 2. Grid map of the environment with three possible destinations
and corresponding human trajectories’ classes used for training the motion
predictor.

highest Q-value with probability 0.95. The motivation behind
considering random actions at all is to be able to escape
from potential local minima. The Q-table for our experiments
was learned from 12,000 learning episodes. We consider a
learning episode as successful if the distance of the robot
to the human destination is smaller than 1.2m within a
maximum number of 100 time steps, otherwise the episode
is aborted. In the test runs, we abort the execution in case the
robot does not reach the human destination within 20 time
steps after the human arrives there. We used a value of 3
for i in Eq. (13) and Eq. (14), which means that our model
performed a prediction three steps ahead.

In the learning episodes and test runs, we generated the
robot’s starting position randomly within a range of 60 cm
around the human target’s initial position.

D. Evaluation Metrics

In order to evaluate our approach, we computed the saving
w.r.t. the path length by comparing the distance traveled
by the robot according to our learned navigation actions to
that of a greedy following method. Here, the robot observes
the humans position at each time step and starts to follow
the shortest path to this observed position until the next
time step. Furthermore, we evaluated the completion time
of our approach to a ’wait-and-observe-first’ strategy, where
the robot waits until the human reaches its destination and
only then starts moving according to the shortest path to
the destination. We computed the shortest path on the grid
map (60 cm resolution) with A* using eight possible actions
leading to the neighbor cells. After that, we applied a
statistical z-test on these metrics of the testing runs to ensure
the statistical significance of our results.

E. Experiments in Simulation

For each of the human trajectories in the test set, we gener-
ated the robot’s initial position randomly as explained above
and performed 100 runs with different starting positions of
the robot. As can be seen from Table I, our approach achieves
an average gain of 7% compared to the trajectory length of
the naive following strategy.

Furthermore, we evaluated our method on a test set that
additionally contains a percentage of 25% non goal-directed



trajectories to show the effectiveness of the robot behavior
generated by our learning framework. In the corresponding
runs, the human trajectory leads around the obstacle in the
left part of the map (similar to the trajectory in Fig. 5).
This can be seen as the case where the human fetches some
items and then continues walking to its actual destination.
If such scenarios are included in the test set, we even
achieve an overall average gain of 18.3% (see Table I). Note
that trajectories containing cycles were not included in the
training of the Q-table for the navigation actions.

As these results show, our method yields significant dis-
tance savings, especially in the case of trajectories were the
human does not move along the shortest path to his/her
destination. We also achieved a shorter completion time on
average compared to the ’wait-and-observe-first’ strategy as
can be seen from Table I.

In 5.55% of 2,000 testing runs, the execution was aborted
since the robot was caught in local minima and did not
reach the destination in time. The corresponding runs are
not included in the evaluation.

In addition to the experiments described above, we per-
formed a further experiment to illustrate the strength of our
approach. Here, the human was walking to an unanticipated
intermediate destination to pick up an item. This unexpected
behavior was correctly handled by the robot as it did not
follow the human but already started moving in the direction
of the possible final destinations, before waiting for the
human to infer the correct destination (see Fig. 3).

F. Experiments with a Real Robot

We also carried out experiments with a real
robot (Robotino by Festo) to test the performance of
our learning framework. In order to detect the position
of the human and localize the robot, we used an external
motion capture (MoCap) system.

In these real-world experiments, we focused on a scenario
that shows the strength of our proposed framework, i.e., the
case when the trajectory of the human does not directly
lead to his/her destination. As shown in Fig. 4, the human
performed an inefficient trajectory by walking around the
obstacle in the left part instead of directly going to his/her
destination. As can be seen, the follower robot ignored this
cycle and only proceeded to follow the human afterwards.
The corresponding path (see Fig. 5) is much shorter than a
trajectory resulting from directly following the human.

TABLE I

GAIN IN TRAVELED DISTANCE COMPARED TO THE NAIVE FOLLOWING
STRATEGY AND GAIN IN COMPLETION TIME COMPARED TO

’WAIT-AND-OBSERVE-FIRST

Test set Distance savings Time savings
Gain P-value Gain P-value

Basic test set 7% 0.0018 5.58% 0.24
Cycles included 18.3% 0.0005 8.95% 0.08

(a) (b)

Fig. 3. Experiment in which the human first walks to an unanticipated
intermediate destination to pick up an item. (a) The robot does not follow
the human but waits. (b) Only as the human continues moving to one of
the predicted destinations, the robot follows to arrive efficiently at the final
destination.

(a) (b)

(c) (d)

Fig. 4. (a) The human walks in straight line towards its (unknown)
destination and the robot executes navigation actions to follow. (b) The
human reaches the obstacle and walks in a cycle around it. (c) However,
the robot behaving according to our learned policy ignores this cycle and
waits. (d) The human continues walking towards its destination, followed
by the robot.

VI. CONCLUSIONS

We developed an approach to generating efficient naviga-
tion behavior of an assistance robot. We consider the scenario
in which the human moves between different destinations
where it may need the help of the robot. Thus, the task of
the robot is to reach these places while minimizing trajectory
length and completion time. Our framework relies on a
learned prediction model for the human motions that is used
to reason about its future trajectory and target destination.
Based on this prediction and the current robot position, we
use reinforcement learning to generate the optimal navigation
action for the robot. As the experiments carried out in
simulation and with a real mobile robot show, the paths
computed by our approach are significantly shorter and lead
to a significantly reduced completion time compared to naive



(a) (b)

Fig. 5. Trajectories of the human and the robot corresponding to the
experiment shown in Fig. 4 recorded by the MoCap system. (a) The robot’s
trajectory is rather efficient, as the robot correctly predicts that the human
will continue moving to a destination in the area on top and therefore waits
for the human. (b) Both human and robot resume the path to the destination.

following strategies.
In the future, we will extend our system to use the robot’s

on-board sensors for people tracking, which will lead to
occlusions and uncertainty about the human’s position. So
the robot will need to learn to perform active re-localization
of the human given the predictions of the human’s motion.
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