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Abstract— Probabilistic Roadmap Methods (PRMs) solve
the motion planning problem in two phases by sampling free
configurations and connecting them together to build a map
that is used to find a valid path. Existing algorithms are
highly sensitive to the topology of the problem, and their
efficiency depends on applying them to a compatible problem.
Reinforcement learning has been applied to motion planning
and rewards the action performed by planners during either
sampling or connection, but not both.

Previous work computed a global reward and action scheme,
which saw a setback when heterogeneous environments were
concerned. Local learning (connection) was recently introduced
to offset this weakness identified during global learning, and
there was some improvement in planner performance. These
different learning schemes (global and local) have shown
strengths and weaknesses individually.

In this paper, we investigate local learning for sampling.
We study what type of learning to apply when, and how the
two phases of PRM roadmap construction interact, which has
not been investigated before. We show the performance using
each scheme on a KUKAyouBot, an 8 degree of freedom robot,
and analyze what happens when they are all combined during
roadmap construction.

I. INTRODUCTION

Motion planning problems consist of finding collision-

free paths between a given start and goal position for an

object. To simplify these computationally hard problems,

most algorithms assume that the start and goal are known

by the agent. Probabilistic Roadmap Methods (PRMs) [15]

are a category of algorithms that solve motion planning

problems in two phases. During the sampling stage, valid

configurations of the robot in the environment are generated,

and during the connection stage those sampled nodes are

connected together with edges to construct a roadmap that

is used to find the valid path.

There are certain motion planning problems, e.g., planning

for deformable robots [11], [21], [22], manipulation planning

[14] and computational biology search problems [18], [24],

where the efficiency of the solution depends on applying the

best method to the corresponding problem. However, it is

hard to predict an optimal technique for every environment.

Furthermore, heterogeneous environments, which comprise

the majority of problems of interest in motion planning,

would need more than one algorithm choice applied to

different sections of the space.

Machine learning approaches with a cumulative reward

approach to actions performed have been applied to PRMs

[6]–[8], [13] with some measure of success, such as better
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roadmap quality and less time to solve a query. Such previous

work looked into rewarding the actions of methods during the

sampling and connection stage of PRM roadmap construction

while using a global approach, i.e., rewarding the actions

of these methods based on their performance in the whole

environment. However, these methods need the environments

partitioned ahead of time in order to ensure maximum

performance. This is a major drawback since partitioning

the environment doesn’t guarantee homogeneous or adequate

partitions and in some cases is challenging to do.

This learning approach was taken a step further by explor-

ing the idea of local learning during the connection phase of

PRM roadmap construction, i.e., rewarding methods based

on the actions of methods within a dynamically determined

region [9]. This is helpful in heterogeneous environments

where the narrowness of the environment varies and the

density of obstacles differs from point to point. This local

learning method eliminated the need to explicitly partition

the environment.

In this work, we introduce local learning to the sampling

stage of PRM roadmap construction and study how beneficial

it is to use learning methods during both the sampling and

connection phases of PRMs. We discuss and show what

stages it would be useful to have these learning methods

applied to. If we have to learn at all stages, we need to know

the overhead in terms of time to construct these roadmaps

compared to non-learning approaches and the quality of

roadmaps produced.

We run experiments on a KUKAyouBot and analyze the

impact of applying local learning to either one or both phases

of the PRM roadmap construction. Our results show that

local learning is important during sampling and connection

phases with less time needed to solve a given query.

II. RELATED WORK

In this section we discuss work related to this research

including adaptive sampling, connection and overall planning

for PRM methods.

A. Adaptive Sampling

Many techniques use machine learning to improve the

performance of methods during the sampling phase of PRM

roadmap construction. In this section we briefly highlight

some of these methods.

1) Feature Sensitive Motion Planning [19] uses machine

learning to help partition and characterize planning

problems. Here, the planning space is subdivided in

a recursive manner, then each region is classified

and assigned an appropriate planning method. One



main strength of this approach is its ability to map

workspace/C-Space topologies for a particular planner

to generate configurations in. However, it is not able

to adapt sampling methods over time.

2) HybridPRM [13] employs a reinforcement learning

approach to select a node generation method that is

expected to be the most effective at the current time

in the planning process. However, these samplers are

applied globally over the whole problem, and the

features of the planning space, such as topology, are

not used when deciding where to apply the selected

method.

3) Utility Guided Sampling [6], [7] uses information

from previous experiences to guide sampling to more

relevant areas of C-Space. Every exploration of C-

Space provides information to the motion planner.

They construct an approximate model of C-Space.

Their model captures and maintains information from

each configuration and predicts the state of unobserved

configurations to reduce collision detection calls.

B. Adaptive Connection

This section focuses on the learning methods applied

during the connection phase of PRM roadmap construction.

1) Adaptive Neighbor Connection (ANC): The work in [8]

adaptively selects the appropriate connection method to use

over time (i.e., a combination of a local planner and neighbor

finding approaches based on some distance metric). It does so

by maintaining a selection probability for each method. The

main weakness of this approach is that it bases its decisions

on the performance of connection methods over the entire

environment in a global approach.

2) Spatial Adaptive Neighbor Connection (ANC Spatial):

In this work, learning was customized based on the past

performance in dynamically determined regions. It made

use of spatial information continuously obtained from dy-

namically determined regions in the environment based on

the different connection method’s performance. It stored the

reward and cost of each previous connection attempt during

the roadmap construction process and used this history to

learn the appropriate connection method for a given node in

a dynamically determined region. This saves the user from

partitioning the environment, a trade-off that was needed in

[8] to yield good results.

C. Adaptive Planning

This section discusses the adaptive methods that focus on

the overall approach, i.e., sampling and connection during

PRM roadmap construction.

1) RESAMPL [23] uses local region information (e.g.,

entropy of neighboring samples) to make decisions

about both how and where to sample, and which

samples to connect together. This use of spatial infor-

mation about the planning space enables RESAMPL

to increase sampling in regions identified as narrow

and decreases sampling in regions identified as free.

These approaches do not consider the topology that is

discovered within the explored space.

2) Learning from Experience [4] proposes a framework

called Lightning that is able to learn from experience.

Lightning consists of two modules that run in parallel:

a planning from scratch module and a module that

retrieves and repairs paths stored in the path library.

Any path that is generated for a new query is checked

by a library manager to decide how expensive the

path is and how similar it is to previously generated

paths. However, as the size of the library gets bigger,

it becomes impractical to add new paths.

3) Apprenticeship Learning [1] uses inverse reinforce-

ment learning and presents a refined algorithm that

compares the trajectories with a more accurate metric

and uses the algorithm in the context of apprenticeship

learning. It solves problems within the context of mo-

tion planning by observing how expert agents behave

i.e., learn from demonstration.

4) Curiosity Driven PRM [10] utilizes reinforcement

learning to enhance PRM planners for humanoids. To

enhance time overhead of PRM as it plans (thinks)

before executing actions, the authors created a modular

behavioral environment (MoBeE) that implements a

model-based reinforcement learner on planners. They

assign probabilities to all possible actions from a given

state and use them to identify interesting versus non

interesting actions. This helps explore least visited

areas, thus speeding up the planning stage of PRM.

However this work is modeled to work for humanoids

and it is not a general PRM method.

III. LOCAL LEARNING APPROACH

The local learning approach focuses on the performance

of the learning methods within a dynamically determined re-

gion. Using reinforcement learning, each method is evaluated

in terms of the cost and reward of previous attempts in that

region. A method is rewarded for every successful addition

it performs. The cost is expressed in terms of the number of

collision attempts made.

A. The Reinforcement Learning Model

To give some insight into how we apply reinforcement

learning within our framework, the different states refer to

the steps of building the roadmap. We take an action every

time we choose a connection method or a sampler, and

applying the chosen method is the function that gets us to

the following state. The reward and cost are then computed

after observing the performance of the chosen method, and

the agent saves that method with its reward and cost, to be

used and updated in the following round. Our reinforcement

learning model then consists of:

• Environment states: process of building the roadmap,

• Actions: choosing the next method,

• Functions: applying the chosen method to move be-

tween states,

2



• Rules: computing the reward and cost based on perfor-

mance.

Algorithm 1 describes the spatial learning algorithm. This

is a general algorithm that can be used for sampling and

connection. We initialize all the methods M to uniform

probability and determine the local learning region as defined

by the set of nearest neighbors using NFlocal in D, where

D is a tuple containing the method, reward and cost. For

each determined neighbor, we update the probability using

the UpdateProbability function in Algorithm 2. We deter-

mine the next method to perform an action based on the

updated probabilities and call the PerformAction functions

(Algorithm 3 and 4) which updates the cost and reward and

also adds a configuration to the roadmap (sampling) or add

an edge (connection) based on required specifications.

Algorithm 1 Spatial Learning(D, M , NFlocal)

1: Let Pq be a set of probabilities initialized to the uniform

distribution, D be data containing tuples (m, reward,

cost), NFlocal be a neighbor finding method, and M
be a set of learning methods such that | Pq | = |M |.

2: Let L be the learning region defined as the set of nearest

neighbors to q given by NFlocal in D.

3: for each n ∈ L do

4: Pq = UpdateProbability(n.method, n.reward, n.cost)

5: end for

6: Select m based on Pq .

7: (reward,cost) = PerformAction(m)

8: D ← (m, reward, cost)

The UpdateProbabilty function (Algorithm 2) is used to

continually calculate and update the probabilities of the

methods. This is important because this is where learning

and keeping tabs on their performance is done.It shows the

reinforcement learning calculations performed to obtain the

probabilities determined for the methods M .

Algorithm 2 UpdateProbability(m,reward,cost)

1: w ← Update Weight using reward and m in Equation 1

2: Pnc ← Calculate Probability without cost using w in

Equation 2

3: Pq ← Calculate Probability using Pnc , m and cost in

Equation 3

4: return Pq

First, methods are rewarded according to the number of

their returned configurations that are successful. The reward

is updated on the cost insensitive probability because it

should be independent of the accrued cost.

After finding the updated reward, the weight is calculated

as a function of the updated reward:

wi(t+ 1) = wi(t) exp
γx∗

i

m
, i = 1, 2, ...,m, (1)

where x∗

i is the updated reward found by dividing the reward

by the cost insensitive probability. For the weights to adapt

quickly, we use an exponential factor.

We then find the probability p∗nc for each method mi

ignoring the cost:

p∗nc = (1 − γ)
wi(t)

m∑

j=1

wj(t)

+ γ
1

m
, i = 1, 2, ...,m, (2)

where wi(t) is the weight of mi in step t, t is the number of

connection attempts made by the planner, γ a fixed constant

that represents the randomness of the method choice and m
is the number of methods in the set. We set gamma as 0.5 to

ensure all methods have equal chances of being utilized. This

formula computes the probability p∗nc as a weighted sum of

the relative weight of the mi and the uniform distribution,

which ensures that each method gets a chance to be selected.

We calculate a cost sensitive probability as a function of

the cost insensitive one and the cost of connection attempts:

pq =

p∗

nc

ci
m∑

j=1

p∗j
cj

, i = 1, 2, ...,m. (3)

B. Perform Action during Sampling

Algorithm 3 describes local learning during the sampling

stage. We sample using the learnt sampling method m from

the set M , create a configuration q, and if is invalid, return

the reward and cost as 0 and 1 respectively. Otherwise,

we connect the configuration q to the roadmap G. We

return a reward of 1, if the current connected component

curr.count is greater than or equal to the previous connected

component count prev.count where curr = current and prev
= previous. Otherwise, we make a calculation on how visible

the configuration generated is.

Algorithm 3 Sampling

PerformAction(m)

1: Sample configuration q using m
2: if q is not valid then

3: return (0,1) where 1 is the sampling collision calls

4: else

5: Connect configuration to G.

6: end if

7: if curr.count ≥ prev.count then

8: reward = 1
9: else

10: visibility = curr.succ/curr.att
11: reward = ǫ−γ∗visibility2

12: end if

13: cost = # of collision calls after connection + # of

collision call after sampling

14: return (reward, cost)

As defined in [20], a configuration q is visible to q′ if

there exists a path (e.g. a straight line) from q to q′ that

is entirely valid. In our analysis, a method that creates a

configuration that increases the visibility of its connected

component is more rewarded than one that adds a random
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configuration that oversamples the connected component. we

determine visibility as a function of current success recorded

by the method divided by all the current attempts so far.

The reward is thus an exponential function determined by

the methods visibility. We determine the cost as the number

of collision calls made after the connection has been made

including the collision call recorded after the configuration

q has been sampled.

C. Perform Action during Connection

Algorithm 4 describes the local learning connection stage

for PRM. We connect the configurations based on m from

the set M and reward the methods based on the number

of successful connections in ratio to the total connection

attempts. We calculate the cost as the number of collision

calls made after the connection has been made.

Algorithm 4 Connection

PerformAction(m)

1: Connect configuration q to G using m
2: reward = # of successful connections /Total connection

attempts

3: cost = # of collision calls after connection

4: return (reward,cost)

IV. EXPERIMENTAL RESULTS

We begin by performing experiments using individual

sampling methods, global and local learning using the K-

Closest connection method. Subsequently, we pick the best

individual sampling method to run experiments using con-

nection methods including our global learning and local

learning connection method. Finally, we apply learning to

both the sampling and connection phase of PRM roadmap

construction.

A. Experimental Setup

Our tests were run in a C++ motion planning library devel-

oped in the PARASOL lab at Texas A&M. All experimental

results are averaged over 10 runs. We ran our experiments

on a KUKAyouBot robot [16] as shown in Figure 1. It

is an 8 DOF robot in an environment with four different

rooms. Its base has 5 DOFs that allow it to move forward,

backward and rotate, and its arm has 3 DOFs. The robot

moves through different rooms with narrow passages and

arrives at a destination where it performs an action (grasps or

puts an object down). We perform single query experiments

and record the time needed to solve the query.

The sampling methods we compare to are Uniform sam-

pling [15], OBPRM [2], Gauss [5], Bridge Test [12], and

UOBPRM [25]. For connection methods, we use K-Closest,

K-Closest,K-Rand and R-Closest,K-Rand with k = 10 and

k2 = 3k as determined in [17], local learning and global

learning.

(a) configuration (b) Start

(c) Goal (d) Goal (top view)

Fig. 1: KUKAyouBot. (a) The KUKAyouBot space config-

uration is composed of narrow passages that are hard to

sample and connect. (b) Figures show the starting (a) and

ending (b) positions of the robot and (c) shows an up view

of the goal position.

1) Learning in the Sampling Phase: Figure 2(a) shows

the time needed to solve the query in the KUKAyouBot

environment (see Figure 1(a)) using the different sampling

methods listed. Here we determine how each of the sampling

methods perform including global and local learning during

the sampling phase. We use the K-Closest(ScaledEuclidean)

connection method because experiments have shown that it

is the simplest and most commonly used [3] which is also

the best performing method from our previous experiments

[8].

Both local and global learning methods are better than all

the individual methods. The local learning sampling method

performs better than the global method in this experiment

which indicates that learning is important during the sam-

pling phase. The Bridge Test performs better in terms of

time to solve the query than the other sampling methods

where learning is not applied.

Figure 4(b) shows the frequency of usage of the different

sampling methods when learning is applied to the connection

phase alone (i.e., global and local results). We see that global

learning in most cases learns to use Uniform sampling which

is the simplest algorithm and thus would record a smaller

cost which the global method leverages on. However it does

not learn the Bridge Test sampling method which from our

results (see Figure 2(a)) is the better performing individual

sampling method. Local learning utilizes all the available

sampling methods efficiently and records the smallest time

needed to solve the query.

2) Learning in Connection: The results in Figure 2(a)

helps us select the sampling method (Bridge Test) to utilize

for this experiment. Figure 3(a) shows time need to solve the

query using the Bridge Test as a sampling method and the

different connection methods including our global and local
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learning connection methods. We perform this experiment to

determine if applying learning during the connection stage

is beneficial.

From the plots, the local connection method outperforms

all the other methods. It outperforms the other methods by

a magnitude of 10 as is the case with the LpSwept method.

This result indicates that learning is indeed important during

the connection phase. The same trend of learning benefits

seen in section IV-A.1 appears here.

Figure 4(b) shows the performance the frequency of usage

of the connector methods for learning employed during the

connection stage. Here we see that global connection learn-

ing learns LpSwept which is not one of the better connection

method. Global learning connection’s performance as earlier

discussed in [8] is as result of the need to partition the

environment to get good results which we did not do in these

experiments. The local connection method however, utilizes

the methods more which is an important feature of the local

learning approach, i.e., their ability to utilize resources in a

more intelligent way, which in this case is being able to use

methods available as the need arises.

3) Learning in Both Phases: Figure 4(a) shows the time

needed to solve the query when learning (global and local)

is applied to both the sampling and connection phase. Our

results show that applying local learning to sampling and
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Connection Methods using Bridge Test Sampling

global learning to connection solves the query in the least

time.

We see that applying local learning to sampling and global

learning to connection is the best performing combination,

followed closely by a global sampling and then local con-

nection approach. Figure 4(b) shows the frequency of usage

during learning both for sampling and connection and we

see that the methods utilize all available methods in it list

better than other methods.

Global sampling learning in most cases learns to use

Uniform sampling which is the simplest algorithm and thus

would record a smaller cost which the global method would

leverage on. However, global connection learning in most

cases picks the LpSwept method which is a method that

spans the volume of the space when identifying neighbors

which is more effective but tends to be more expensive.

In general however, we have shown that being able to have

sampling and connection methods available to learn from

during PRM roadmap construction improves in the overall

time taken to solve a given query.

V. CONCLUSION

We have analyzed the impact of using global and local re-

inforcement learning strategies on the two phases of planning

for PRMs. We performed experiments on a KUKAyouBot
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robot in a heterogeneous environment, we were able to

show that learning is important to solving motion plan-

ning problems. We discussed the benefits of applying local

learning during all phases of PRM roadmap construction.

In the future, we plan to analyze the performance of our

learning approach on problems with more degrees of freedom

and more complex environments. We also plan to continue

investigating on fine tuning our local learning algorithms to

increase optimality of runtime.
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