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Abstract— Robot learning from demonstration has been suc-
cessfully used, in industrial environments, to increase the speed
and reduce the complexity of the programming phase. A major
challenge, however, consists in enabling a robot to generalize
task demonstrations to a complex dynamic environment. To
tackle this problem, an approach has been proposed in [1],
combining GMM/GMR and DMPs with optimal control. This
approach allows a robot to generalize noisy task demonstrations
to different goal points and environments with static obstacles.
Considering that in practical applications, a robot must perform
a task in dynamic environments, here we extend the approach
in such a way that a robot can learn a task model from
demonstrations in an environment with stationary obstacles and
reproduce the task in an environment with moving obstacles.

I. INTRODUCTION

Robot Learning from Demonstration (robot LfD) has been
proposed to reduce the programming time and cost. This
allows a user to teach a robot how to perform a task by
demonstrating that task and without explicitly hardcoding it,
where the robot is able to replicate the demonstrated task in
different conditions. The main issue, however, arises where
a robot must replicate the task in a different environment.
The problem of generalizing a task to a new environment
may be considered at different levels. For example, Dynamic
Movement Primitives (DMP) [2], analogous with imitation
in human learning, generalizes an optimal demonstrated
trajectory to new start and goal points; Gaussian Mixture
Model/Gaussian Mixture Regression (GMM/GMR) [3] can
be used to get a smooth nonlinear trajectory from a data set
collected from noisy and suboptimal human demonstrations
[4], analogous with mimicking in human learning.

A task-parametrized probabilistic model is proposed in [5]
allowing a robot to scale a trajectory to a new goal point from
a set of different demonstrations, combining mimicking with
imitation learning.

Assume a person would like to teach by demonstration a
pick-and-place task to a learner robot or person. Although
human learns the pick-and-place task from demonstrations by
imitating a teacher, he/she also learns from demonstrations
how to respond to different objects in order to avoid colliding
with the objects by emulating the teacher. Using the DMP
model, the robot can only learn how to pick and place the
object from and at different positions.

In this regard, a number of methods have been proposed
combining some hardcoded models of obstacle avoidance
with DMP [6]–[9]. For example, Park et al. [10] included
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Fig. 1. Demonstrating the manipulation example with ABB FRIDA
prototype (YuMi). A cylinder is considered as an obstacle on the table
during demonstration.

obstacle avoidance in DMP model by adding to the equa-
tions of motion a repellent force, a gradient of a potential
field centered around the obstacle. Although these proposed
approaches enable a robot to avoid colliding with an obstacle,
they do not provide a robot with the ability to learn a user-
specific response to an obstacle; thus, a non-expert cannot
teach his/her own desired response to an obstacle to the robot
by demonstrating it on-the-fly.

A multi-layered approach of robot LfD [1] has been pro-
posed in analogy with observational learning [11] allowing
a user to readily teach a robot both a desired task model
and responses to different object classes. This approach only
works where the environment is static and obstacles do not
move.

Nonetheless, in practical applications, e.g. Human-Robot
Collaboration (HRC), a robot must avoid collision with both
static and moving obstacles. Here, we focus on a specific
use of robot LfD in medium and small size company in
which a user needs to teach a task and adaptation to another
worker carrying an object in a collaborative environment. For
example, assume that a person is teaching an industrial dual
arm robot how to place an object in a box by moving its arm
to provide a demonstration (Fig. 1), where the robot must
perform the task while the task production interferes with
an object moved by another worker. Although the robot can
learn a task model and a different object avoidance policy
for each object using the multi-layered approach, it will not
be capable of generalizing the task in an environment with
an object moved by a human worker along its path.

In this work, we extend the multi-layered approach of
robot LfD enabling a robot to reproduce the learned task
in an environment with a moving obstacle. In the context of
HRC it is of utmost importance to provide human workers
with a methodology to easily teach a robot a desired task and



a desired adaptation to an environment with moving obstacle.

Motivating background of this work: Based on the stud-
ies of sensorimotor learning in cognitive psychology and
neuroscience, many intelligent, context-specific responses
of humans to different stimuli during a task execution are
consistent with the theoretical framework of optimal con-
trol [12]. Here, we adopt the same perspective, using the
multi-layered approach of robot LfD to estimate a utility
function that represents a set of task demonstrations and
can be used to reproduce the task in an environment with
a moving obstacle.

To do so, we recognize a learning phase (bottom block
in Fig. 2) and a reproduction phase (top block in Fig. 2)
in the multi-layered approach of robot LfD. The learning
phase is identical to the original approach, while the repro-
duction phase is proposed to account for a moving obstacle
according to the studies of sensorimotor learning in cognitive
psychology and neuroscience [12], [13].

In the reproduction phase, the images acquired from an
off-the-shelf RGB camera are used by an object tracking
block which provides us with measurement of an object po-
sition at each time. Furthermore, a Kalman filter is employed
to filter the noisy measurements and to provide predictions
of the object positions in a time horizon. To include the
uncertainty of the estimated object position within the model
we modify the utility function used in the multi-layered
approach of robot LfD allowing for robustly reproducing a
task learned from demonstrations in the presence of moving
obstacles. The approach of the multi-layered robot LfD,
herein proposed, can be easily extended to a scenario with
multiple obstacles as well.

II. UTILITY FUNCTION FORMULATION

As per multi-layered approach of robot LfD, we consider
the problem of producing a task to be formulated as an
optimal control problem. A set of trajectories ζd ∈ D∀ d =
1, ...,Ndem, are available through demonstrations in the corre-
sponding environments, Ed , corrupting with noise. A single
obstacle is also fixed at Od in the environment during every
demonstration.

The optimal control problem is defined by a state space
S ⊂Rn, an action space A ⊂Rm, a state transition function
T (s ∈S ,a ∈A ) : Rn+m→ Rn, and a utility function R(s ∈
S ) : Rn→ R. We assume the utility function is a function
of the state x ∈ Rp and of the features of the environment
f ∈ Rq, so that R(s = (x, f )) and n = p+ q. Our goal is to
learn a utility function that allows us to compute the optimal
action a ∈ A at each state s ∈ S for a new unobserved
environment. A robot can use this utility function, R(xt , ft) =
RI(xt)+RE( ft), obtained from demonstrations, to compute
a sequence of optimal actions that maximizes the expected
return ρπ = ∑

Te−1
t=1 R(st+1), resulting in an optimal policy π∗,

Inverse
Kinematic
q̇∗ = J†ẋ∗
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Fig. 2. Incremental robot learning from demonstration scheme (top) and
the extended scheme to generate a task in an environment with a moving
obstacle (bottom).

as per eq. (1).

π
∗ = argmax

π

Te−1

∑
t=1

(RI (xt+1)+RE ( ft+1))

subj. to st+1 = T (st ,at),

st ∈ S̄ ,

at ∈U ,

(1)

where

RI (xt : Q) =−
(
xt − xN

t
)T Q

(
xt − xN

t
)

xN
t ∈ ζ

N(xstart ,xgoal) , t = 1, ...,Te (2)

and

RE
(
xt ,ζ

N ,O : R
)
=−e(−(xt−Ot )

T R−1 (xt−Ot )) (3)

π = {a1, ...,aTe−1} is a sequence of optimal actions resulting
in a sequence of optimal states ζ̄ = {s1, s̄2, ..., s̄Te}, s1 is a
given initial condition, S̄ and U are the polyhedral feasible
subset of the set of all states and actions respectively. Q is the
imitation parameter and xN

t ∈ Rn is a point on the nominal
path ζ N(xstart ,xgoal). The nominal path may be computed
from a set of noisy demonstrations by using GMM/GMR
in learning phase, where in the reproduction phase with a
new target point the nominal path is computed using a DMP
trained by the path computed in the learning phase (Fig. 2).
ft = xt −Ot is a vector of the environmental features at xt ,
captured during the dth demonstration.

Here, execution of a robotic task is assumed to be for-
mulated as an episodic optimal control problem with fixed
time horizon Te, deterministic world, with discrete time and
a continuous state-space and action-space.
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Fig. 3. Parameters of the utility function are computed by minimizing the
distance between a demonstration and a reproduction.

Emulation parameter estimation

According to principal of sensorimotor learning [13],
humans use the concept of predictive control to regenerate
a task in a dynamic environment. We use the same concept;
hence, in the learning phase we assume the obstacle position
is fixed where in the task generation phase the concept of
predictive control is used to generate the task in a dynamic
environment. The free parameters of the utility function
define a trade-off between imitation and emulation, being
close to the nominal trajectory, imitation, and being far from
an obstacle, emulation. The value of Q is fixed to be an
identity matrix while the value of the matrix R is computed
so that the cumulative distances between the optimal solution
ζ̄R(θ ,ζ N ,O) and the demonstrations is minimized as depicted
in figure 3:

θ
∗ = argmin

θ

D

∑
d=1

Te

∑
t

∥∥∥ζ̄R(θ ,ζ N ,O)(t)−ζd(t)
∥∥∥2

(4)

where ζd(t) and ζ̄R(θ ,ζ N ,O)(t) are the corresponding points
on the demonstration and the solution to the estimated utility
function. The free parameters θ of the utility are iteratively
computed by minimizing eq. (4), using a quasi-Newton
strategy and limited-memory BFGS updates [14]1.

III. GENERALIZING THE TASK TO AN ENVIRONMENT
WITH A MOVING OBSTACLE

To account for dynamic environments characterized by
the presence of moving obstacles, the multi-layered approach
of robot LfD is here extended. Although, for the sake of
simplicity, we present the formulation for a single moving
obstacle, it can be easily extended to a scenario with arbitrary
number of obstacles.

To account for uncertainty in the predicted obstacle posi-
tion we sum the emulation component of the utility function
over a set of points sampled from a uniform distribution,
whose expected value is equivalent to the predicted position
of the obstacle, as follows:

Rg(st) =

Nsample

∑
h=1
−
(
xt − xN

t
)T Q

(
xt − xN

t
)
− e−

(
f T
t,h R−1 ft,h

)
(5)

where Nsample is the number of sampled data points, ft,h =
xt − Ôt,h, and Ôt,h is a sample of the estimated position of
the obstacle at time t. Based on the Model Predictive Control

1For more details about the multi-layered approach of robot LfD see [1].

(MPC) formulation used in multi-layered approach of robot
LfD, one needs to get a prediction of the obstacle position
in a time horizon Tp to find an optimal solution at each
computational time step. In order to get the obstacle position
information, an object tracking is first performed by applying
a color filtering algorithm (which is part of the OpenCV
library [15]) to the images acquired from a calibrated RGB
camera. The resulting object silhouette is further processed
to extract its center of gravity in image plane coordinates.
The intrinsic and the extrinsic calibration parameters of the
camera is computed using Camera Calibration Toolbox for
Matlab2. Since we consider an example in which the object is
moving on the plane of the table, it is possible to reconstruct
the Cartesian position of the tracked point and use it as
the obstacle position. To filter noisy measurements of the
object position and to estimate the object velocity, a linear
Kalman filter is used. Furthermore, this linear model is used
to compute the prediction of the object positions in the
prediction time horizon. We derive the equation of motion
for an object moving in 2-D with a constant velocity as
follows:

Oi+1 = Oi +Vi∆t (6)

where Oi is the two-dimensional position of the object at
time step i, while Vi is the two-dimensional velocity, once
again at time step i. The state space representation of eq. (6)
is

yi+1 = Fiyi +wi, zi = Hiyi +νi (7)
where

yi = [Oi Vi]
T ,

Fi =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , Hi =

[
1 0 0 0
0 1 0 0

]
(8)

The designed Kalman filter is also used to compute a set
of predicted obstacle position, Ôt = {zi+1, ...,zi+TP}, in the
prediction time horizon TP, where zi+1 = [O1,i+1,O2,i+1]

T .
In order to robustly find a point maximizing the utility

function, we consider an uncertainty bound on the predicted
values. The uncertainty bound is a circle centered at the
predicted value. The larger the prediction time, the larger
the uncertainty bound on the predicted values. This implies
that we consider less confidence in the predicted values with
larger prediction time. In order to account for uncertainty
bound in the utility function we generate some points uni-
formly sampled within the considered uncertainty bounds
(eq. 9); then, we find the optimal solution over all these
sample points (Fig. 4).

Ôt+1,h = F(zi+1,σi+1) (9)

The larger the prediction time, the larger the considered
radios of the uncertainty bound σ .

σi+1 = i σ0

2http://www.vision.caltech.edu/bouguetj/calib doc/



A∗t (x(t)) = argmax
At

Tp−1

∑
k=0

Rg(xt+k, ft+k)

s.t. constraints in (10)

∆xt+1 = A∆xt +Bat

x∗t+1 = xN
t+1 +∆xt+1
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Fig. 4. Scheme of model predictive control architecture used to compute
an optimal solution at each time t in the presence of a moving obstacle.

where σ0 is a tunable parameter. Finally, the set of future ob-
stacle positions, which is used to compute the optimal action,
is Ôt = {Ôt,1, ..., Ôt,NSample , ..., Ôt+TP,1, ..., Ôt+TP,NSample}.

Task Generation Phase: To compute an optimal policy
using the obtained utility function, the expected return in
eq. (1) is maximized, resulting in a sequence of optimal
actions a∗t ∀ t = 1, ...,Te − 1. We consider that the task is
episodic with a constant episode time interval ∆t = H

Te , i.e.
xi = x(i∆t), assuming the robot completes the task in H
seconds. To find an optimal solution to the utility function
with continuous state space, the following MPC problem
with a prediction time horizon Tp is solved.

A∗t (x(t)) = argmax
At

Tp−1

∑
k=0

Rg(xt+k, ft+k)

s.t. xt = x(t), Ot = O(t) Measurement

Ôt = {Ôt+1,1, ..., Ôt+TP,Nsample} Prediction

∆xt+k+1 = A∆xt+k +Bat+k System model

∆xt+k = xt+k− xN
t+k

xt+k ∈X State constraints

at+k ∈U Action constraints

At = {at+k, ...,at−1+Tp} Optimization variables

(10)
where X is the polyhedral feasible sets of robot states,
A and B are chosen such that the corresponding equations
form a stable dynamical system. At time t, a sequence
of optimal actions, A∗t (x(t)) = {a∗t , ...,a∗t+Tp

}, is computed
in the prediction time horizon Tp. However, only the first
action, a∗t , at time t is used to move the robot to the next
optimal position, resulting in a sequence of optimal actions,
π∗ = {a∗1, ...,a∗Te−1}. Hence, the corresponding sequence of

xgoal

xstartO

Fig. 5. The task model used for data collection with da Vinci surgical
robot with a single obstacle (marker). The green line is the nominal path
that expert follows in the absence of obstacles;
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Fig. 6. (a) The data set collected with da Vinci robot for different positions
of the marker (green shaded circles), training set (red solid line) and test
set (blue dashed line), the average path computed by GMM/GMR (black
thick line); (b) The contour of the learned utility function for the da Vinci
experiment, and the computed optimal solution to the utility function. Areas
with hotter colors represent positions with higher associated utilities.

optimal states is ζ̄R(θ ,ζ N ,O) = {x1, x̄2, ..., x̄Te} with initial value
x1. As per [1], the action a∗ is computed such that the
vectors

−−−−→
xN

i xN
i+1 and

−−→
xixN

i are always orthogonal (for further
information see [16]).

A scheme of the extended controller is shown in Fig. 4,
integrating MPC, object tracking; Kalman filter and inverse
kinematic.

IV. EXPERIMENT

We present an example of pick-and-place task during
surgical training while a fixed marker exists in the environ-
ment. This is a common task during surgeon training. To
simulate the small available space within a patient’s body,
a specifically designed structure, shown in Fig. 5, has been
used in [1] to collect a data set composed of eight pick-
and-place trajectories going from xstart to xgoal (Fig. 6). The
operator performed the pick-and-place task while avoiding
collision with both walls and a marker fixed within the
structure at different positions.

At first, data set of demonstrations has been collected:

ζd = {xd,1, . . . ,xd,Te}, d = 1, . . . ,Ndemo



TABLE I
ERROR AND ACCURACY OF PICKING AND PLACING TASK WITH DA

VINCI.

MSER : 0.0911 var(MSER) : 0.0064
Prtraining : 84.0% Prtest : 79.5%

where Ndemo = 8 was the number of demonstrations
(Fig. 6(a)).

The utility function representing the demonstrations has
been computed using eq. (4). The corresponding nominal
path ζ N and a generated path using the obtained utility
function are shown in Fig. 6.

The data set is divided into a training set (blue dashed line
in Fig. 6(a)) and a test set (red line in Fig. 6(a)). To evaluate
the obtained task model, the mean square error (MSE) of the
paths generated by the obtained model is computed for both
test set and training set, as follows:

MSER =
1

N(dem, .)Te

N(dem, .)

∑
d=1

Te

∑
i=1
‖xd,i− xR

t ‖

where Te = 100 is the number of sample points of the
demonstrated path and N(dem, .) is the number of paths within
the training set (N(dem, tr) = 2) or test set (N(dem, tst) = 6).

Furthermore, an accuracy measure for every generated
path is computed (Table I), as follows:

Pr =
MSEav−MSER

MSEav
×100

where

MSEav =
1

N(dem, .)Te

D

∑
d=1

Te

∑
i=1
‖xd,i− xN

t ‖

and xN
t is a point of the average path computed by Gaussian

Mixture Model/Gaussian Mixture Regression (GMM/GMR).
The computed Pr for the training set and the test set in

Table I show that the obtained model with the training set
generates the paths corresponding to the ones in the test set
with good accuracy.

Simulation of the task generation with a moving bstacle:
We further simulate the task reproduction with a moving
marker. The marker is considered to move along the average
path with constant velocity Vo while the operator moves the
da Vinci tool with a constant velocity Vr >Vo. Hence, at time
t = 0 both the tool and the marker start moving from Ostart
and xstart with constant velocity Vo and Vr, respectively.

As shown in Fig. 7, the learned model and the extended
reproduction phase is capable to robustly reproduce the task
in the presence of a moving object. This simulation illustrates
the effectiveness of the proposed approach to deal with
moving obstacles. In the future work, we apply the extended
multi-layered robot LfD to the manipulation task with YuMi
robot.

In our experiment, TP = 5, Nsample = 3 and σ = 0.01.
In future work, we are going to use the proposed approach
to teach a YuMi bimanual robot a pick-and-place task where
the robot replicate the task with different placing position
while avoiding collision with a moving obstacle (Fig. 1).
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Fig. 7. (a) Task reproduction in the presence of a moving obstacle (blue
line), which starts from xstart and ends at xgoal . During task reproduction,
the obstacle moves along the red line from Ostart to Ogoal ; (b) the lines
depict the correspondence sample points of the path followed by obstacle
and robotic tool at each time step.

V. CONCLUSION

Robot LfD has been proposed to increase the speed and
reduce the complexity of programming an industrial ma-
nipulator. A major challenge, however, is the generalization
of task demonstrations to complex dynamic environments.
Although some methods has been used to generalize a set of
demonstrations to a new goal point and a new environment
with stationary obstacles, they are not capable of generalizing
demonstrations to an environment with moving obstacles.

In this paper, we extended the approach proposed in [1] to
enable a robot to reproduce a task in a dynamic environment.
The extended approach allows a robot to learn a task model
from demonstrations in an environment with stationary obsta-
cles and reproduce the task in an environment with moving
obstacles. This study implies that human may not necessarily
need to learn different models from demonstrations for
dynamic and static environments. In future work, we apply
the extended multi-layered robot LfD to the manipulation
task with YuMi robot.

REFERENCES

[1] Ghalamzan, A., C. Paxton, G. Hager, and L. Bascetta, “An incremental
approach to learning generalizable robot tasks from human demonstra-
tion,” in Robotics and Automation (ICRA), 2015 IEEE International
Conference on. IEEE, 2015, pp. 5616–5621.

[2] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” in International
Conference on Robotics and Automation, vol. 2. IEEE, 2002, pp.
1398–1403.

[3] S. Calinon, Robot Programming by Demonstration. EPFL Press,
2009.

[4] B. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469–483, 2009.



[5] S. Calinon, D. Bruno, and D. G. Caldwell, “A task-parameterized prob-
abilistic model with minimal intervention control,” in International
Conference on Robotics and Automation. IEEE, 2014, pp. 3339–
3344.

[6] S. Calinon, I. Sardellitti, and D. G. Caldwell, “Learning-based control
strategy for safe human-robot interaction exploiting task and robot
redundancies,” in International Conference on Intelligent Robots and
Systems. IEEE, 2010, pp. 249–254.

[7] F. Guenter, M. Hersch, S. Calinon, and A. Billard, “Reinforcement
learning for imitating constrained reaching movements,” Advanced
Robotics, vol. 21, no. 13, pp. 1521–1544, 2007.

[8] P. Kormushev, S. Calinon, and D. G. Caldwell, “Robot motor skill
coordination with em-based reinforcement learning,” in International
Conference on Intelligent Robots and Systems. IEEE, 2010, pp. 3232–
3237.

[9] H. Hoffmann, P. Pastor, D. Park, and S. Schaal, “Biologically-inspired
dynamical systems for movement generation: automatic real-time goal
adaptation and obstacle avoidance,” in International Conference on
Robotics and Automation. IEEE, 2009, pp. 2587–2592.

[10] D. Park, H. Hoffmann, P. Pastor, and S. Schaal, “Movement reproduc-
tion and obstacle avoidance with dynamic movement primitives and
potential fields,” in International Conference on Humanoid Robots.
IEEE, 2008, pp. 91–98.

[11] A. Whiten, N. McGuigan, S. Marshall-Pescini, and L. M. Hopper,
“Emulation, imitation, over-imitation and the scope of culture for child
and chimpanzee,” Philosophical Transactions of the Royal Society B:
Biological Sciences, vol. 364, no. 1528, pp. 2417 – 2428, 2009.

[12] E. Todorov, “Optimality principles in sensorimotor control,” Nature
neuroscience, vol. 7, no. 9, pp. 907–915, 2004.

[13] D. M. Wolpert, J. Diedrichsen, and J. R. Flanagan, “Principles of
sensorimotor learning,” Nature Reviews Neuroscience, vol. 12, no. 12,
pp. 739–751, 2011.

[14] M. Schmidt, “Graphical model structure learning with l1-
regularization,” Ph.D. dissertation, University of British Columbia,
2010.

[15] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[16] Ghalamzan, A., L. Bascetta, M. Restelli, and P. Rocco, “Estimating
a mean-path from a set of 2-d curves,” in Robotics and Automation
(ICRA), 2015 IEEE International Conference on. IEEE, 2015, pp.
2048–2053.


	Introduction
	Utility Function Formulation
	Generalizing the task to an environment with a moving obstacle
	Experiment
	Conclusion
	References

