
Generation and Exploitation of Local Models for Rapid Learning of a
Pouring Task

Joshua D. Langsfeld1 and Krishnanand N. Kaipa1 and Satyandra K. Gupta1

Abstract— We present an approach that allows a robot to
learn to perform a complex task instance in as few attempts
as possible. Specifically, our approach allows a robot to boot-
strap from initial exploratory experiments and identify task
parameters to successfully perform a given task instance. This
is achieved by first generating local models in the vicinity
of previously conducted experiments that explain both task
function behavior and estimated divergence of the generated
model from the true model when moving within the neigh-
borhood of each experiment. Later, these models are used to
guide parameter selection given a desired task outcome and
the models are updated based on the actual outcome. The
local models are built within adaptively chosen neighborhoods,
thereby allowing the algorithm to capture arbitrarily complex
function landscapes. We validate our approach by testing it
on both synthetic nonlinear functions and a physical robot
performing a dynamic fluid pouring task. We show initial
results comparing our approach with a simple greedy algorithm
using Gaussian Process Regression. Real robot results reveal
that the correct pouring parameters for a new pour volume can
be learned quite rapidly, with sparse exploratory experiments.

I. INTRODUCTION

Programming robots to carry out real-world tasks is
challenging and time consuming. Manual construction of
analytical models that accurately capture the dynamics of
complex tasks (e.g., manipulation of deformable materials
and/or fluids) is often not feasible. Additionally, compliant
joints typically found in new robots such as Baxter make
it difficult to specify the task based on purely geometric
descriptions. Such scenarios can often be more naturally
handled by having the robot build an internal model of the
task, which is improved as more data is acquired. This theme
is common in all robot learning, including imitation [1],
reinforcement, and active [20] learning.

A central issue with learning algorithms is the explo-
ration/exploitation trade-off. In this paper, we present an
approach that is biased toward exploitation in order to
allow a robot to learn to perform a complex task instance
in as few attempts as possible. Specifically, our approach
allows a robot to bootstrap from partial information that
is available either from human demonstrations or robot’s
initial exploratory experiments (also called motor babbling
[19]), and thereafter, identify task parameters to successfully
perform a given task instance by generating local models in
the vicinity of the previously conducted experiments. The
algorithm selects a new set of task parameters by exploiting
the local model information. We show that our approach

1Department of Mechanical Engineering, University of Maryland, MD
USA [jdlangs|kkrishna|skgupta]@umd.edu

allows the robot to conduct sparse experiments and adapt
to task variations in few attempts.

We model the task abstractly as a set of parameters
existing in a finite-dimensional space where each point in
the space defines a policy to perform a single task variation.
These parameters are arbitrary and might correspond to
trajectory features that are input to a planner or possibly to
the shaping parameters of a dynamic motion primitive [6].

Our approach has the goal of rapidly finding valid solution
points in the parameter space corresponding to the problem
of new task variations with sparse initial data. This is
achieved by first generating local models in the vicinity of
the previously conducted experiments that explain both the
task function behavior and the estimated divergence of the
generated model from the true model when moving within
the neighborhood of each experiment. Later, these models
are used to guide parameter selection given a desired task
outcome and the models are updated based on the actual
outcome. The local models are built within adaptively chosen
neighborhoods, thereby allowing the algorithm to capture
arbitrarily complex function landscapes.

Our approach mainly takes a two-fold inspiration from
LWPR: (1) Similar to LWPR, we use linear regression
models to capture the target function behavior. LWPR also
projects the original input space into a relatively much lower
dimensional space that has critical influence on the output
(dependent variable). However, in this paper, we restrict our
approach to maintaining full dimensionality during model
generation. (2) LWPR incorporates a local feature by using
kernel functions that explicitly emphasize the influence of
samples in the vicinity of, while discounting the influence
of samples far away from, a test point in the input space.
We incorporate this by constructing a local model at each
sample using other samples that reside only within a small
adaptive neighborhood and using a divergence-model that
provides estimates of the approximation error as a function
of distance from the sample point. Note that while these two
features are somewhat inspired from LWPR, we significantly
differ in how they are realized in our approach.

We validate the approach by testing it both on synthetic
nonlinear functions and on a physical robot. For physical
experiments, we consider a dynamic pouring task, in which
the robot is tasked to pour a certain volume of liquid from
a bottle into a container placed on a rotating turntable.
Moving the bottle to track the container while simultaneously
pouring from it creates complex fluid dynamics. This makes
the mapping from pouring-trajectory parameters to poured
volume highly nonlinear and infeasible to model analytically.

1



Our results reveal that the correct pouring parameters for a
new pour volume can be learned quite rapidly.

II. RELATED WORK

Our problem, formulated abstractly, shares aspects with
nonlinear function approximation from policy parameters
to task description (score), and is commonly addressed
in machine learning. In the robotics community, the two
most-commonly used algorithms for approximating functions
are Gaussian Process Regression (GPR) [16] and Locally
Weighted Projection Regression (LWPR) [24]. GPR is a
standard approach for estimating a nonlinear function from
sparse samples and has been used in many motion learning
tasks [14]. Whereas this approach requires the function to be
learned globally in a batch process, we focus on developing
an approach based on local models. We do, however, show
initial results comparing our approach with a simple algo-
rithm using GPR model. LWPR provides an efficient method
of incrementally learning nonlinear functions through the use
of linear models that have local influence only, similar to our
approach. LWPR has the advantage of being nonparametric
and able to generate new local models as needed. However,
a gradient descent is required for each local model, which
substantially increases the number of samples needed when
searching for a target point.

Another related field, active learning [20], has been applied
to a variety of problems in engineering and robotics where
mathematical models are difficult to obtain. Some examples
include nonlinear system identification [2], inferring robot’s
own morphology [3] and that of other robots in the environ-
ment [7], learning the inverse kinematics of highly redundant
bionic arms [17], learning environment’s degrees of freedom
[15], and robot grasping [9].

The underlying theme of active learning approaches is
to allow algorithms to rapidly learn internal models of
target systems by formulating methods that pose informa-
tive queries in the parameter space. Some traditional query
formulating strategies include query-by-committee [22], ex-
pected error reduction [18], and expected model change [21].
While we take inspiration from these approaches in terms of
using existing information to guide parameter selection for a
given task instance and updating of local models, we differ
in that we exploit local information and global exploration
is only a secondary effect.

In reinforcement learning, Kakade et. al. [8] show an
approach similar to ours where the behavior of a continous
state-action pair space is assumed to be approximated by
local models surrounding a finite set of samples. They
prove bounds on the optimality of such a model but the
problem of defining the ideal finite covering set remains
specific to the application. Other work includes a hybrid
approach [12] where an agent undergoing reinforcement
learning can request relocation to a different region of the
state space and can actively select the most promising state
to reduce its task cost. In a sense, our approach includes
this feature, but we expand it by continually evaluating the
benefit of relocation to any previous point for each task

trial. Our approach also has similarities with Bayesian policy
optimization [11], [10], which uses function approximation
for mapping parameters to performance in a reinforcement
learning setting with probabilistic interpretations. Other rel-
evant work includes demonstration-guided motion planning
[4], in which a sampling-based motion planner uses the
learned cost metric to compute plans that avoid obstacles
and satisfy task constraints.

Finally, our approach parallels the work in previous work
in robot pouring [13], where a stationary pouring task is
learned using reinforcement learning techniques with error
approximation models and local movements in the param-
eter space. Our main conceptual difference is to allow for
movements from any previously evaluated point in the space.
Other related work involving robot pouring includes the work
of Tamosiunaite et. al. [23] and Brandi et. al. [5], which
we primarily distinguish ourselves from by addressing the
problem of pouring specific volumes of liquid with high
tolerances rather than the entire bottle.

III. APPROACH

The primary guiding principle of the proposed approach
is to iteratively explore points in the task parameter space
by creating local models of parameteric neighborhood and
finding a movement within a variable-size neighborhood that
has the minimum uncertainty. First, in an initialization phase,
a set of training samples is obtained from robot executions of
randomly selected points in the parameter space. Each sam-
ple is a tuple comprising a parameter vector and its mapping
to a task score. Second, in a model generation phase, the
algorithm builds local models based on the current training
set. Third, in a model exploration phase, the algorithm finds a
new point by using the current set of local models, evaluates
its task score, and adds the newly found point to the training
set. The cycle of model generation and model exploration
repeats until a point is found whose task score is within the
desired success tolerance.

A. Initialization

Let S = {(x(i), y(i)) : x(i) ∈ X , y(i) ∈ Y, i =
1, 2, . . . ,m} be the initial set of training samples, where X is
the set of sample points in the parameter space, x(i) ∈ Rn is
the ith point in X , Y is the set of corresponding task scores,
y(i) ∈ R is the ith task score in Y , and m is the number
of training samples. Let x(i)j ∈ R represent the jth element
of x(i). Further, let x ∈ Rn represent a general point in the
parameter space.

B. Model Generation

This phase is achieved in three steps: (1) adaptive neigh-
borhood selection, (2) planar model approximation, and (3)
error-divergence model approximation.

1) Adaptive neighborhood selection: For each point
x(i) ∈ X , the algorithm builds a local linear model by
using points x(j) ∈ X residing within an adaptive box-
neighborhood N (i) ⊂ X :

2



N (i)(k) = {x(j) ∈ X : ||x(i) − x(j)||∞ ≤ δ(i)k } (1)

where k is the number of neighbors in the neighborhood
and δ(i)k is the neighborhood size, which is given by

δ
(i)
k = max

x(j)∈N (i)(k)
||x(i) − x(j)||∞ s.t. |N (i)(k)| = k. (2)

According to (1) and (2), note that δ(i)k is assigned to the
minimum possible size that results in k−nearest neighbors.
Since the density of points in the data set can be highly
variable, it is important to find a δ

(i)
k that results in a

neighborhood with sufficient points to generate a relatively
accurate local approximation, but not so many that the
nonlinear behavior of the underlying function deteriorates the
approximation. This is done by using a leave-one-out cross-
validation technique to estimate the optimal neighborhood
size δ(i)k∗ . In particular, for each x(j) ∈ N (i)(k), a plane is fit
using least-squares on the set N (i)(k)/x(j) and the linear-fit
error at x(j) is computed. Now, the mean of linear-fit errors
ηk over all x(j) ∈ N (i)(k) is used as a fitness to evaluate
the neighborhood size.

We consider k = n + 2 as the least number of desired
points in N (i)(k) since n + 1 points are needed for a
unique plane fit, plus an additional point for cross-validation
error measurement. Accordingly, the neighborhood size is
initialized to δ

(i)
n+2 and the corresponding ηk is computed.

Next, k is incremented by one and ηk+1 is computed. If
ηk < ηk+1, then δ

(i)
k is reported as optimal. Otherwise, the

search continues to find a better neighborhood-size.
In general, if sample density around x(i) is moderate, the

successive error values will decrease as the plane fits are
less sensitive to noise induced from few samples, but then
increase again as the neighborhood begins to include the non-
linearity of the sampled function. Finding the neighborhood-
size when the error first increases is used as a rough heuristic
to find the balance between these two factors while also not
evaluating more neighborhood sizes than necessary.

2) Planar model approximation: An affine hyperplane
F (i)(x) is fit to points in the neighborhood N (i)(k∗):

F (i)(x) = A(i)(x− x(i)) + y(i) (3)

where A(i) =
[
a
(i)
1 a

(i)
2 · · · a(i)n

]
is a row vector of planar

model coefficients. If the plane is not uniquely determined
(e.g., all the points are collinear), then the neighborhood size
is incrementally expanded until a set of points is found that
uniquely determines the plane.

3) Divergence-model approximation: The plane obtained
using (3) is assumed to be an approximation of the tangent
plane of the true task function in the vicinity of the point
in question. This approximation is expected to diverge sub-
stantially as we move away from the fitted neighborhood.
Therefore, we then estimate how quickly this divergence
occurs by computing the absolute error e(j) between the
predicted task score (using plane approximation at x(i)) and

the actual measured score for every point x(j) in an annular-
box-neighborhood M(i):

M(i)(β) = {x(j) : x(j) ∈ X/ N (i) ∧ ||x(i) − x(j)||∞ ≤ β}
(4)

where β > δ is the size of the neighborhood:

e(j) = |y(j) −F (i)(x(j))| ∀ x(j) ∈M(i) (5)

where F (i) is the affine hyperplane corresponding to x(i).
For each x(i), we then construct an error bound function

E(i)(∆x) that acts as an upper bound on these absolute
error values. Our formulation uses a quadratic function with
different weights ω(i)

j for each parameter axis and whose
minimum lies at x(i) where the plane is fit:

E(i)(∆x) =

n∑
j=1

ω
(i)
j ∆x2j (6)

where ∆x = x−x(i). The weights ω(i)
j are found by solving

the following optimization problem:

Minimize
n∑

j=1

(
ω
(i)
j

)2
, (7)

subject to E(i)(∆x(j)) ≥ ej∀x(j) ∈M(i). (8)

At the end of the model generation phase, we have N =
{N (i) : i = 1, 2, . . . ,m}, F = {F (i) : i = 1, 2, . . . ,m}
and E = {E(i) : i = 1, 2, . . . ,m} representing the sets of m
adaptive neighborhoods, m hyperplanes, and m error bound
functions, respectively, corresponding to each sample point
in S.

C. Model Exploration

Given a desired task score yd, the sets S, F , and E are
used to find a new point in the parameter space. As we
want to explore the parameter space quite conservatively,
we would like to query a new point that will provide the
smallest uncertainty in task score with respect to a local error
bound function. This is performed by selecting an existing
sample point in S as a base point and by selecting only a
single parameter for modification at that base point, which
minimizes the possibility of error arising from unknown
cross-effects between the parameters.

These two selections are made by conducting a search at
each base point x(i) in the following way. For each parameter
x
(i)
j , the desired corrective movement ∆x

(i)
j is calculated by

finding a point in the direction parallel to that parameter axis
whose task score based on the plane approximation is equal
to the desired amount yd. The parameter change is saturated
if the corresponding error bound function rises above a given
threshold emax before reaching the new point. Accordingly,
the parameter change is given by

∆x
(i)
j = sgn

(
yd − y(i)

a
(i)
j

)
min

∣∣∣∣∣yd − y(i)a
(i)
j

∣∣∣∣∣ ,
√
emax

ω
(i)
j


(9)

3



∀ j = 1, 2, . . . , n.
The saturation limit on parameter change used in (9)

prevents the system from testing points that have the potential
for large error, possibly resulting in trials outside the proper
operating range which would give no new information.

Note that explorations in the search space are always
restricted to individual parameter directions. This results in
generation of new sets of points called line-sets, where all
points in a line-set L(i)

j lie on a line parallel to single
parameter axis j, j = 1, 2, . . . , n:

L(i)
j = {x(k) ∈ X : |x(i)` − x

(k)
` | 6= 0 only for ` = j}. (10)

Therefore, whenever such a line-set is available for a base
point x(i), the algorithm makes use of a line-approximation
over the points in the line-set, instead of using the planar
approximation in (3), to compute the parameter change at
that point. That is, for each parameter j where |L(i)

j | 6= 0,
the algorithm computes b(i)j as the slope of the best fit line
through the points in {x(i),L(i)

j }. Accordingly, b(i)j replaces
a
(i)
j in (9) during the computation of ∆x

(i)
j .

Finally, all parameter changes from all initial data points
are compared and the one with the smallest error function
value is selected as optimal. Note that this optimal parameter
change will depend both on how large it is, which depends on
the model coefficients a(i)j or b(i)j , and how quickly the error
function rises, which is a function of the quadratic surface
weight ω(i)

j .
The new point x̂ is then sent to the trajectory generation

module, which then provides the robot with a new trial. The
robot performs the trial and the new task score ŷ is recorded.
Assuming the trial execution still results in failure, the new
sample (x̂, ŷ) is appended to S and the process is repeated.

IV. RESULTS

A. Function Approximation

Our approach was first tested by considering a synthetic
task defined by an unknown nonlinear function and having
the algorithm attempt to find points in the function domain
with values equal to given targets. An N-dimensional varia-
tion of the Schwefel function was used as the test function,
defined by

zs(x) =
1

2c

N∑
i

cxi
√

sin |cxi|. (11)

For the results presented, both functions were tested in a
five-dimensional parameter space.

The algorithm performance was evaluated by generating
random samples of the function with each parameter in the
range -1 to 1. A set of function value targets was defined
uniformly over the range of values covered by the samples
and the average number of iterations needed to find each
target in the set was used as the performance metric. All
results are shown with a set of 51 targets tested.

For comparison purposes, we also implemented a simple
algorithm using GPR, designed to greedily select new points

Algorithm 1 Model generation and movement selection
1: Input: S = {(x(i), y(i)) : x(i) ∈ X , y(i) ∈ Y, i = 1, 2, . . . ,m},

target score yd, success tolerance ε
2: while (@ y(i) ∈ Y s.t. |yd − y(i)| < ε) do
3: for i = 1 : m do
4:

[
N (i), k

]
← AdaptiveNeighborhoodSelection(i,S);

5: A(i) ← FitHyperplane
(
{(x(j), y(j)) : x(j) ∈ N (i)(k)}

)
using (3)

6: M(i)(β)← {x(j) : x(j) ∈ X/ N (i) ∧ ||x(i) − x(j)||∞ ≤ β}
7: for j = 1 : |M(i)| do
8: e(j) ← |y(j) −F(i)(x(j))|;
9: end for

10: ω(i) ← FindWeights
(
E(i)(∆x), f(ω(i)), {e(j) ∈M(i)}

)
;

using (6)−(8)
11: end for
12: for i = 1 : m do
13: for j = 1 : n do
14: L(i)j ← {x

(k) ∈ X : |x(i)` − x
(k)
` | 6= 0 only for ` = j};

15: c← a
(i)
j ;

16: if |L(i)j | 6= 0 then

17: c← FitLine
(
{x(i),L(i)j }

)
;

18: end if

19: ∆x
(i)
j ← sgn

(
yd−y(i)

c

)
min

(∣∣∣∣ yd−y(i)c

∣∣∣∣ ,√ emax

ω
(i)
j

)
;

20: end for
21: end for
22: ∆x

(i∗)
j∗ ← min

i

(
arg min

j
E(i)(∆x(i)j )

)
;

23: [i∗, j∗]← arg ∆x
(i∗)
j∗

24: x̂j ←
{

x
(i∗)
j + ∆x

(i∗)
j if j = j∗

x
(i∗)
j , otherwise

25: ŷ ← Evaluate(x̂);
26: S ← Append(x̂, ŷ);
27: if |yd − ŷ| < ε then
28: success← 1; break;
29: end if
30: t← t+ 1;
31: end while

Algorithm 2 Adaptive neighborhood selection
1: Input: Sample set S, index of base point i;
2: k ← n+ 2;
3: N (i)(k)← GenerateNeighborhoodSet(k); using(1) & (2)
4: η ← 0;
5: for j = 1 : k do
6: A← FitHyperplane(N (i)(k)/x(j));

7: η ← η+FindLinearFitError(A,x(j))
k

;
8: end for
9: k∗ ← k;

10: ηprev ← η;
11: while (true) do
12: k ← k + 1;
13: N (i)(k)← GenerateNeighborhoodSet(k); using(1) & (2)
14: η ← 0;
15: for j = 1 : k do
16: A← FitHyperplane(N (i)(k)/x(j));

17: η ← η+FindLinearFitError(A,x(j))
k

;
18: end for
19: if ηprev < η then
20: k∗ ← k − 1; break;
21: end if
22: ηprev ← η;
23: end while
24: return

[
N (i)(k∗), k∗

]

4



Fig. 1. (a) Experimental setup. (b) A comparison of the algorithm
performance on the Schwefel test function, with varying sizes of the initial
randomly sampled data set. All trials were performed with a tolerance of
0.005.

that are expected to acheive task success, without regard to
long-term improvement of the model quality. We trained a
Gaussian Process globally on the full data set and then used
a standard optimizer to find the point most likely to have
task success. If the new point did not lead to success, the
GP was fully retrained on the new data.

Figure 1(b) shows the performance as a function of the
initial random data set size. As we expect to see, there is
indication of asymptotic behavior where the algorithm is able
to find a solution in a single iteration with sufficiently dense
sampling of the parameter space. However, it is notable that
the majority of the decrease in estimated number of iterations
occurs at small data sizes (around 100), indicating good per-
formance is attainable with only minor cost-intensive initial
sampling. Notice that this trend does not occur with GPR,
simply because we are searching over the entire parameter
space and adding one sample at a time does not change the
model greatly when the data set sizes are large.

B. Dynamic Pouring

To validate our approach on a physical robot, we used a
dynamic pouring task (seen in Fig. 1(a)), where a Baxter
robot is tasked to pour a specific amount of liquid into a
container which is placed on a rotating table. This task is
intended to be representative of a manufacturing scenario
where the robot may be asked to perform new tasks or task
variations with limited time available for learning. Addition-
ally, the task of pouring liquid into a moving container is
highly amenable to autonomous learning as it is extremely
difficult to model accurately without an existing data set.

We selected the tilt trajectory of the bottle held by the
robot as the learning target with the complementary mo-
tions of the robot’s joints found using standard planning
algorithms. In particular, the tilt profile robot’s end-effector
action consists of tilting the bottle in one direction (forward
tilt) for some duration, keeping the tilt steady for some time,
and untilting the bottle (reverse tilt). Accordingly, the tilt
profile was parameterized by five real-valued parameters,
which were manually defined as relevant physical features
of the pouring action: (1) forward tilt time tf , (2) forward
tilt rate θ̇f , (3) steady pouring time ts, (4) reverse tilt time
tr, and (5) reverse tilt rate θ̇r. A value for each of these

Fig. 2. Baxter learning performance for a uniformly distributed set of
targets. Each group of three bars is the number of iterations needed for a
single target, with the gray, blue, and green bars corresponding to tolerances
of 10, 20, and 30 grams, respectively. All trials were done with the initial
set of 37 random points.

parameters defines a point in the five-dimensional parameter
space in which the learning algorithm operates.

An initial library of 40 points was generated by evaluating
randomly generated points in the parameter space. Three
were removed where either the entire volume of fluid (450
grams) or none was poured. With this initial data set, twelve
targets were given uniformly from 100 to 400 grams. Figure
2 shows the performance on these targets for three different
task success tolerance values. Notice the differing means
for the different tolerance levels. Figure 3 shows a second
experiment where the same targets were repeated but the
initial data set used included the points tested in all previous
targets. Again, paralleling the results from the previous
section, there is a visible trend of a decreasing number of
iterations needed as the initial library size grows. Also note
that the all the means for the long-term learning in Fig. 3,
using a 20 gram tolerance, are lower than the mean for the
20 gram tolerance case in Fig. 2.

V. CONCLUSIONS

We presented an approach that allowed a robot to bootstrap
from sparse initial exploratory experiments and learn to
perform a pouring task in very few attempts. Our initial
results indicate that our local model exploitation is effective
at both rapid and long-term learning for a physical task with
complex dynamics. Our approach is mainly useful for motion
planning problems in which model prediction by simulating
the underlying physics involving the trajectory variables and
task behavior is very difficult.

Future work will focus on extending the approach to be
feasible for more complex problems. In particular, how the
complexity and computational limits of the algorithm scale
to higher dimensions is still an open question. Currently
we update all local models as new data is acquired but
the formulation naturally extends to an incremental learning

5



Fig. 3. Baxter learning performance depending on initial size of the data
set when starting each new target. For this data, the robot was given the
same initial set of 37 samples, but as it progressed through the 12 targets,
all trials were saved in the data set so later targets had more samples to
learn from. The full experiment was then repeated starting from the initial
set once again to obtain 24 total target samples. As there was substantial
variation in the samples, the results were divided into three bins so that a
rough mean could be estimated. The tolerance was 20 grams for all targets.

scheme where only the models in the vicinity of the new data
point are adjusted. Additionally, other modeling algorithms
can also be used with the exploitation strategy effectively.
This suggests we could expand the approach to become
model-agnostic and even use a hybrid approach where dif-
ferent regions of the parameter space could be modeled by
different algorithms, depending on the function behavior. The
linear models could be used in regions of sparse data with
high computational performance, a Gaussian process can be
used to provide more accurate predictions in regions of high
variability, and LWPR could be used when sufficient samples
had been acquired to slow down the other algorithms. These
improvements may enable the approach to be competitive for
much higher dimensional problems as well.

Other important questions remain to be answered in-
clude whether we can provide theoretical guarantees for
boundedness of model error and convergence of parameters.
Currently, the pouring task is parameterized manually. The
applicability of this approach can be enhanced by devising
methods to automatically extract relevant task parameters.
Another future direction worth exploring is to see if there
are similarities between tasks and can a learned model
be extrapolated from one task to solve another instead of
learning the model again.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of
robot learning from demonstration. Robotics and Autonomous Systems,
57(5):469–483, 2009.

[2] J. C. Bongard and H. Lipson. Nonlinear system identification using
coevolution of models and tests. IEEE Transactions on Evolutionary
Computation, 9(4):361–384, Aug 2005.

[3] J. C. Bongard, V. Zykov, and H. Lipson. Resilient machines through
continuous self-modeling. Science, 314(5802):1118–1121, 2006.

[4] C. Bowen, Gu Ye, and R. Alterovitz. Asymptotically optimal motion
planning for learned tasks using time-dependent cost maps. Automa-
tion Science and Engineering, IEEE Transactions on, 12(1):171–182,
Jan 2015.

[5] Sascha Brandi, Oliver Kroemer, and Jan Peters. Generalizing Pouring
Actions Between Objects using Warped Parameters. In Humanoid
Robots, 2014 14th IEEE-RAS International Conference on, 2014.

[6] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. Dy-
namical Movement Primitives: Learning Attractor Models for Motor
Behaviors. Neural computation, 25:328–73, 2013.

[7] K. N. Kaipa, J. C. Bongard, and A. N. Meltzoff. Self discovery
enables robot social cognition: Are you my teacher? Neural Networks,
23(89):1113 – 1124, 2010. Social Cognition: From Babies to Robots.

[8] S. M. Kakade, M. J. Kearns, and J. Langford. Exploration in metric
state spaces. Proceedings of the 20th International Conference on
Machine Learning, pages 306–312, 2003.

[9] O.B. Kroemer, R. Detry, J. Piater, and J. Peters. Combining active
learning and reactive control for robot grasping. Robotics and
Autonomous Systems, 58(9):1105 – 1116, 2010. Hybrid Control for
Autonomous Systems.

[10] Scott Kuindersma, Roderic Grupen, and Andrew Barto. Variational
bayesian optimization for runtime risk-sensitive control. Robotics:
Science and Systems, page 201, 2013.

[11] Daniel Lizotte, Tao Wang, Michael Bowling, and Dale Schuurmans.
Automatic gait optimization with gaussian process regression. In
Proceedings of the 20th International Joint Conference on Artifical
Intelligence, IJCAI’07, pages 944–949, San Francisco, CA, USA,
2007. Morgan Kaufmann Publishers Inc.

[12] L. Mihalkova and R. Mooney. Using active relocation to aid rein-
forcement learning. Proceedings of the 19th International FLAIRS
Conference, pages 580–585, 2006.

[13] B. Nemec, D. Forte, R. Vuga, M. Tamosiunaite, F. Worgotter, and
A. Ude. Applying statistical generalization to determine search
direction for reinforcement learning of movement primitives. IEEE-
RAS International Conference on Humanoid Robots, pages 65–70,
2012.

[14] Duy Nguyen-Tuong and Jan Peters. Model learning for robot control:
a survey. Cognitive Science, 12(4):319–40, 2011.

[15] S. Otte, J. Kulick, M. Toussaint, and O. Brock. Entropy-based
strategies for physical exploration of the environment’s degrees of
freedom. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 615–622, Sept 2014.

[16] C. E. Rasmussen and C. K. Williams. Gaussian Processes for Machine
Learning. MIT Press, Boston, Massachusetts, United States, 2006.

[17] M. Rolf and J. J. Steil. Efficient exploratory learning of inverse
kinematics on a bionic elephant trunk. IEEE Transactions on Neural
Networks and Learning Systems, 25(6):1147–1160, 2014.

[18] N. Roy and A. McCallum. Toward optimal active learning through
sampling estimation of error reduction. In Proceedings of the Eigh-
teenth International Conference on Machine Learning, ICML ’01,
pages 441–448, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc.

[19] R. Saegusa, G. Metta, G. Sandini, and S. Sakka. Active motor
babbling for sensorimotor learning. In IEEE International Conference
on Robotics and Biomimetics, pages 794–799, Feb 2009.

[20] B. Settles. Active Learning Literature Survey. Machine Learning,
15:201–221, 2010.

[21] B. Settles, M. Craven, and S. Ray. Multiple-instance active learning. In
J.C. Platt, D. Koller, Y. Singer, and S.T. Roweis, editors, Advances in
Neural Information Processing Systems 20, pages 1289–1296. Curran
Associates, Inc., 2008.

[22] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In
Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, COLT ’92, pages 287–294, New York, NY, USA, 1992. ACM.

[23] Minija Tamosiunaite, Bojan Nemec, Aleš Ude, and Florentin
Wörgötter. Learning to pour with a robot arm combining goal and
shape learning for dynamic movement primitives. Robotics and
Autonomous Systems, 59(11):910–922, 2011.

[24] S. Vijayakumar, A. D’Souza, and S. Schaal. Incremental online
learning in high dimensions. Neural computation, 17:2602–2634,
2005.

6


