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Abstract— Semantic knowledge, more specifically semantic
maps that associate semantic concepts (labels like ‘room’ and
‘corridor’) to spatial entities, has been employed to improve
the performance of (multi-)robot planning tasks, such as
search and exploration. However, although current semantic
mapping approaches are very effective in labeling the parts
of environments already visited by the robots, they are usually
unable to predict the labels and, more generally, the structure of
unvisited parts of environments. In this contribution, following
a Constructive Machine Learning (CML) approach, we discuss
the use of a generative method that is able to model and
predict the topological structure and the labels of rooms for
an indoor, previously unknown (or partially observed) environ-
ment. While this approach is not always able to find a perfect
prediction of the structure of a given unknown environment, it
seems nevertheless able to capture some fundamental structural
properties. We explicitly note that the purpose of this paper
is not to show any definitive results (although we provide a
detailed example), but advocate the potential of using high-
level semantic knowledge to predict the structure of unknown
parts of indoor buildings in order to improve exploration and
search.

I. INTRODUCTION

In the last years, it has been shown how the use of semantic
knowledge of environments could improve the performance
for several (multi-)robot planning tasks, such as exploration
and search [1]. This semantic knowledge takes usually the
form of a semantic map of the environment, that associates
semantic labels to spatial portions of environments [2]-[4].
For example, some areas can be labeled as ‘rooms’, while
other areas could be labeled as ‘corridors’, performing place
classification [4]. For instance, [1] proposes a method for
speeding up multi-robot exploration using semantic knowl-
edge. Most of the methods for place classification follow an
approach that starts from the data perceived by the sensors
mounted on-board mobile robots (e.g., laser range scanners
and cameras), extracts some features from these data, and
classifies the area from which the data have been acquired us-
ing (supervised) machine learning techniques. This approach
has been shown to be very effective in labeling parts of
environments already visited by the robots, but usually does
not address the problem on inferring new knowledge on the
labels and, more generally, the structure of unvisited parts of
environments (except from some remarkable examples, as
[5]1), which are considered as completely unknown.

More recently, techniques for improving performance in
exploration and search that use semantic knowledge not
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only relative to the visited portions of the environment, but
also on the unvisited ones have been proposed. In [6], it
is shown how search methods could be improved using
a probabilistic model of the search environment able to
perform place classification and make local predictions on
the locally connected unexplored spaces as well. In [7],
it is shown how a correct prediction of the labeling of
the unexplored parts of an environment could improve the
exploration performance of a team of robots.

II. OUR CML APPROACH

While (approximate) knowledge on the unexplored space
is useful for many online planning applications, it is still
unclear how such knowledge could be obtained. An attempt
is that of [5], [6] that show a method that could perform local
predictions, i.e., probabilistic predictions of the labels of
the unvisited rooms directly connected to the places already
visited (and semantically labeled) by a robot.
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(a) Floor plan of a real school.

(b) Predicted topological structure.

Fig. 1: Example of a prediction of the structure of a real
school with our method presented in [8].

In this paper, we propose a general framework for ob-
taining semantic knowledge on the global structure of a
previously unknown (or partially visited) indoor building, as
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(a) Explored/known part, in yellow.

(b) Only local prediction, in green.

(c) Global prediction, in orange.

Fig. 2: Example of a prediction of the structure of a real school, under the assumption of making perfect predictions.

similarly done in [9]. For this purpose, we propose to use
a generative method, that we present in detail in [8], that
is able to model the topological structures and the labeling
schemas of buildings and to predict the structure and the
schema for an hypothetical new building. While in [8] we
abstractly describe the generative method in all of its steps, in
this paper we want to discuss one of its possible applications.
Our generative model follows the general pattern of Con-
structive Machine Learning (CML), where the ultimate goal
of learning is not to find good models of the data but instead
to find one or more particular instances of the domain which
are likely to exhibit desired properties, while selectively
sampling from an infinite or exponentially large instance
space. A (floor of a) building is represented as an undirected
graph, whose nodes represent labeled rooms and edges
represent direct physical connections between two rooms.
Our approach segments graphs representing some buildings
for finding significant subgraphs, which are then clustered
according to their similarity. Finally, a graph representing
a new building or an unseen part of a building is gener-
ated by sampling subgraphs from clusters and connecting
them. The generated building shares the same structure and
semantic labeling of the original buildings. This generative
method, similarly to [9], can be thought as a move from
a room-level perspective, modeling the semantic relations
between perceived features and rooms, to a building-level
perspective, modeling the connections between rooms. Our
approach distinctively focuses on building types, namely on
specific classes of buildings that share the same functions
and, consequently, the same structures, like school or office
buildings [10], [11].

This generative method could be used to predict a tentative
structure and a semantic labeling schema of the unknown
parts of an indoor building that could be exploited in order
to speed up search and exploration tasks. We now discuss
an example of the possible improvements in planning tasks
that could be achieved using our method as source of
knowledge to predict a possible configuration of the unvisited
environment. Note that, although the predicted configuration
might not correspond to that of any real building, it could
exhibit relevant features of the real buildings, thus providing
some global semantic knowledge of the unknown space.

I1I. EXAMPLE OF APPLICATION

In this section we do not present any definitive experimen-
tal result, but we provide an example of the possible use of
our framework. In Fig. 1, we assume to have a robot that is
exploring an unknown school building and that has already
discovered the structure and the room’s labels of the entrance,
which is the 4-edge graph reported in Fig. 1a (with the same
notation of [8]). Given this initial knowledge, and using our
method, the robot gets a prediction of the global structure
the school, thus obtaining new semantic knowledge (Fig. 1b,
where the known part is enclosed in a red box on top left).
This generated semantic knowledge is represented as a graph,
where every node is a room and an edge is placed wherever
two rooms are connected. The color of each node indicates
the label of the room. The relevant features of a real school
building are present in the predicted semantic structure of
Fig. 1b, and are highlighted in both images: a loop of
corridors constituting the skeleton of the building (light blue)
and the administrative section (red overlay). Of course, our
method is not able to perfectly predict the structure of a
partially visited real environment, but both figures show
roughly the same number of rooms and the same distribution
of labels. Network properties of the sampled building (such
as graph centrality, degree distribution, and length of the
shortest path between two nodes) are consistent with the
corresponding values of the real building.

Fig. 2 shows the amount of knowledge available for plan-
ning, when we consider the semantic knowledge obtained
from the explored parts of the building (Fig. 2a), a local
prediction obtained with a method like [5] (Fig. 2b), and the
global prediction obtained with our approach (Fig. 2c). For
simplicity, for both local and global prediction, we suppose
to have a perfect prediction on the unknown part of the
environment. From the initial knowledge of visited rooms, a
method able to perform local prediction, such the one used
in [5], could infer the presence of the rooms and of the
corresponding labels as in Fig. 2b, in green. A method like
ours, performing a global prediction, could infer the presence
of the rooms and of the corresponding labels for all the
environment, as shown in Fig. 2c, in orange.
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