
Drifting Gaussian Process Regression for Inverse Dynamics Learning

Franziska Meier1,2 and Stefan Schaal1,2

Abstract— Computationally efficient online learning of non-
stationary models remains a difficult challenge. A robust and
reliable algorithm could have great impact on problems in
learning control. Recent work on combining the worlds of com-
putationally efficient and locally adaptive learning algorithms
with robust learning frameworks such as Gaussian process
regression has taken a step towards both robust and real-time
capable learning systems. However, online learning of model
parameters on streaming data – that is strongly correlated,
such as data arriving along a trajectory – can still create serious
issues for many learning systems. Here we investigate the idea of
drifting Gaussian processes which explicitly exploit the fact that
data is generated along trajectories. A drifting Gaussian process
keeps a history of a constant number of recently observed
data points and updates its hyper-parameters at each time step.
Instead of optimizing the neighborhood size on which the GP
is trained on, we propose to use several – in parallel – drifting
GPs whose predictions are combined for query points. Initial
evaluations on both synthetic data and an inverse dynamics
learning task illustrate the potential of this approach.

I. INTRODUCTION

Machine learning has the potential to significantly improve
model-based control. For instance, a good dynamics model is
a key component of compliant control and force control for
complex robots, like humanoids. However, due to unknown
and hard to model nonlinearities, analytical models of the
dynamics for such systems are often only rough approxima-
tions. Indeed, for this setting, machine learning algorithms
have been investigated to provide automatic model learning
[1], [2], [3].
Because sensors of the robot can generate thousands of data
points per second, a necessary focus of these approaches
has been computational efficiency – in addition to producing
accurate models. To this end local learning approaches were
developed [4], [5], that are fast enough for real-time learning
and can handle non-stationary data by learning local distance
metrics. However, besides computational cost, another crucial
design criterion has to be reliability and robustness. To this
end, recent work has moved towards using Gaussian process
regression methods [6], [2], [3].
Gaussian process regression (GPR) offers a powerful and
robust hyper-parameter learning framework. On top of that,
GPR enables us to associate uncertainty estimates with
the models prediction, which can be useful in gauging the
reliability of the prediction. The main challenge is to create
computationally efficient approximations of the standard GP
framework, while retaining its robust learning framework.
Recent work has combined the worlds of fast local learning

1Computational Learning and Motor Control Lab, University of Southern
California, Los Angeles, CA 90089, USA. 2Max-Planck-Institute for Intelli-
gent Systems, 72076 Tübingen, Germany. Email:fmeier@usc.edu

Fig. 1. Snapshot of 2 drifting Gaussian process regression models. The
model on top is considering a shorter history of the trajectory than the model
displayed on the bottom and thus was better able to adapt to the landscape.

with the robust GPR framework for the task of learning
dynamics models [6], [3]. An alternative to localizing GPs
are sparse GP approximations. Indeed, online versions of
sparse GPs [7], [2] have produced a viable alternative for
real-time model learning problems. However, these sparse
approaches typically learn one global distance metric, making
it difficult to fit the non-stationary data encountered in robotics.
Moreover, restricting the resources in a GP also restricts the
function space that can be covered, such that with the need
to cover a growing workspace, the accuracy of learning will
naturally diminish.
Finally, a concern often not addressed is the online learning of
(hyper)parameters on highly correlated data. Global models
trained through online learning on correlated data would tend
to unlearn previously optimized parameters to fit the currently
observed data. This is true especially on tasks like learning
kinematics or dynamics, where the generated data lies on a
trajectory. Since it is not feasible to generate a representative
dataset for offline training, algorithms need to be able to
learn models from correlated streaming data. While stochastic
learning of sparse GPs [8] exists, their success is dependent
on randomly drawn mini batches. Thus it is questionable
whether a global model learned online on correlated data is
preferable over one locally drifting model.
To this end, we explicitly account for the fact that data
comes in on a trajectory. Intuitively, at any given point
in time one should be able to build a locally valid model
from the last few observed data points. Here we explore the



idea of a drifting GP. This allows us to be locally adaptive
when experiencing curvature changes, but it comes with the
advantages of GPs, namely robust parameter learning and
uncertainty estimates. The key question is how many recently
observed data points to utilize for training. Intuitively, one
might think to use as many points as one can process in
real time. However, Figure 1 illustrates that how many data
points to use is also a question of the current function
curvature. While we might be able to use a lot more of the
recent observations, a model with shorter attention span
might actually perform better because it can better adapt to
the quickly changing curvature.

In the following, we review Gaussian process regression and
sparse gaussian process regression in Section II, which we
will utilize to achieve low computational complexity. Next,
in Section III we introduce the notion of drifting Gaussian
process models at varying neighborhood sizes. Finally, in
Section IV an initial evaluation of our approach demonstrates
the potential of this approach.

II. BACKGROUND: SPARSE GAUSSIAN PROCESS
REGRESSION

Gaussian process regression (GPR) [9] offers principled
inference for hyper-parameters. However, the computational
cost of GPR grows cubically with the number of data point..
Thus, in its standard form GPR is not practical in applications
like inverse dynamics learning where thousands of data points
are observed in just a few seconds of moving. Specifically, let
N be the number of noisy observations y, at input locations
X with hidden (true) function values f . In standard Gaussian
process regression the likelihood function p(y ∣ f) and the
prior over hidden function values p(f) are defined as

p(y ∣ f) = N (y ∣ f , β−1IN) (1)
p(f) = N (f ∣ 0,KNN) (2)

where for simplicity we have assumed a zero-mean prior, and
where KNN is the kernel matrix evaluated between all input
points X . Optimization of the the hyper-parameters (noise
precision β and parameters of the kernel) is performed by
maximizing the log marginal likelihood

log p(y) =∬ p(y ∣ f) p(f)df = logN (y ∣ 0,Ky,NN) (3)

Both, evaluation and optimization of the log marginal
likelihood involves the inversion of Ky,NN = β

−1IN +KNN -
thus causing the high computation cost of standard GPR.

As mentioned above, recent progress in sparsifying Gaussian
processes [10], [11] has resulted in scalable implementations
of GPR. These sparsification methods can broadly be classi-
fied into two approaches: Identification of M support points,
where M << N , [12], [13] or sparsification of the spectrum
of the GP [14], [15], which essentially transforms GPR to
the parametric Bayesian regression domain. Both of these
sparsification methods have been successfully applied in a
variety domains.

A. Variational Sparse Gaussian Process Regression

Here, we are following the work of [12], which introduces a
variational framework for optimization of M pseudo input
locations. To create a sparse GP approximation [12] starts by
introducing M additional hidden function values u at input
locations Z, to form the following hierarchical model

p(y ∣ f) = N (y ∣ f , β−1IN) (4)

p(f ∣ u) = N (f ∣ KNMK
−1
MMu,KNN −KNMK

−1
MMKMN) (5)

p(u) = N (u ∣ 0,KMM) (6)

Marginalizing out u results in the standard GP regression
setup from above, and thus marginalizing out both u and f
results in the same expression for the log marginal likelihood
as in (3),

log p(y) =∬ p(y ∣ f)p(f ∣ u)p(u)dudf . (7)

Thus with exact inference this model is equivalent to standard
GPR and has the same high computational complexity. As
a remedy, in [16] a variational approximation is sought
that reduces the computational complexity. Specifically,
[16] seeks to approximate the true posterior p(f ,u ∣ y)
with an approximate posterior q(f ,u) by minimizing the
KL-divergence KL(q(f ,u)∣∣p(f ,u ∣ y)). The key idea of
using an approximate posterior q(f ,u) is to capture the
idea of u being a sufficient statistic for f . Thus, optimizing
pseudo-input locations Z shifts around Z,u such that the
sufficient statistics approximation is as exact as possible.

Marginalizing out u,f under the approximate posterior
induces a lower bound on the exact log marginal likelihood.
This bound is given through

Lsparse(β,Z,θ) = logN (y ∣ 0, β−1IN +KNMK
−1
MMKMN)

−

β

2
tr [KNN −KNMK

−1
MMKMN] (8)

which depends on pseudo-input locations Z, noise β and any
kernel parameters θ. This lower bound on the log marginal
likelihood becomes tight when Z =X . Note, how inversion of
the N ×N kernel matrix KNN has been replaced by inverting
the much smaller kernel matrix KMM.

III. DRIFTING GAUSSIAN PROCESS

We want to utilize sparse GP regression in the setting of
continuous learning of, for instance, inverse dynamics. In
this scenario data comes in on a trajectory. At time step t
we want to use the last N data points to build a model to
make a prediction for a new input xt+1. After observing the
true yt+1 we want to update our model to include this new
data point.

Thus let Mt denote the Gaussian process model at time
step t, with parameter set {βt, θt,Zt

}, where βt is the
noise precision, θt denote the kernel parameters and Zt

are the current pseudo input locations. This model Mt

has been optimized using the last N observed data points
D

t
= {xn, yn}

t
n=t−N . We can thus use this model to make



Algorithm 1 Update Parallel Drifting GPs

Require: {xt+1, yt+1}, Dt
k, {M

t
k}

K
k=1

// update data set

1: Dt+1
k ^Dt

k − {xt−Nk
, yt−Nk

} + {xt+1, yt+1}
// initialize new model for time step t + 1 with parameters

2: Mt+1
k ^Mt

k∀k ∈ 1, . . . ,K
3: Z = 0
4: for k = 1_K do

// maximize log marginal likelihood (lml) of kth GP and return final lml

5: Lk =M
t+1
k _ optimize(Dt+1)

6: Z = Z + exp{Lk}

7: end for
// compute weight per GP, OPTION 1

8: wt+1
k ^ 1/Z exp{Lk}

// or via OPTION 2

9: kmax = arg maxLk

10: wt+1
kmax

= 1.0,∀k ≠ kmax,w
t+1
k = 0.0

11: return {M
t+1
k ,wt+1

k }
K
k=1

a prediction how much torque yt+1 is required to move to
the next desired state. Once executed, the actual state and
applied torque {xt+1, yt+1} is used to update the model.

To avoid increasing computational complexity, we propose
to drift the model along the trajectory instead of growing
it. This allows us to keep the number of used data points
N constant. The fact that data arrives on a trajectory can
be used, to simply drop the oldest data point and replace
it with the newest data point {xt+1, yt+1}. Specifically, a
drifting GP model at time step t + 1 is trained on Dt+1,
with Dt+1

= D
t
− {xt−N , yt−N} + {xt+1, yt+1}. Furthermore,

instead of training models at each time step from scratch we
can use the model from the previous time step to initialize
the new one, and perform only a few optimization iterations
per time step.

A. parallel GPs with varying neighborhood size

The key question now is how many past data points N to
use to train the model at each time step with. It is likely that
this number is not fixed and that it rather depends on the
current curvature of the function to fit. Note, that in local
methods this issue is being addressed by learning localized
distance metrics, which define how large the neighborhood
of active data points per local model is.

Here, instead of trying to learn the neighborhood size, we
choose to run K drifting GP models Mk,∀k = 1, . . . ,K
in parallel, each of which takes into account a different
number Nk of data samples and thus covering neighborhoods
with different sizes. At each time step all models Mk are
updated with the new incoming data point. An overview of
this algorithm is given in Algorithm 1. The question that
remains is how to make predictions.

B. Prediction

Given a query point x∗, each of the K Gaussian Process
models independently makes a prediction with mean µ∗k
and variance σ∗k . A variety of options exist to form a final
prediction. In this work we form the final prediction through
a weighted combination of all GPs. Here we investigate two
options:

a) Option 1, denoted as GPw: Compute the lower bound on
the log marginal likelihood value L(Mt

k,D
T
k ) of each sparse

GP, and compute the weights as

wk =
L(M

t
k,D

t
k)

∑
K
i=1L(Mt

i,D
t
i)

(9)

b) Option 2, denoted as GPmax: At each time step we can
choose the Gaussian process that has the highest log marginal
likelihood value – more precisely the approximate lower
bound L, Equation (8) .Using this option, the weight of the
model with the maximum lower bound is set to one, and all
others are set to zeros:

kmax = arg maxLk (10)

wt+1
kmax

= 1.0, ∀k ≠ kmax,w
t+1
k = 0.0 (11)

Given these weights we can form a convex combination of
all K predictions to compute the final predictive mean and
variance as

µ∗ =
K

∑

k=1
wkµ

∗
k and σ∗ =

K

∑

k=1
wkσ

∗
k (12)

The computation of the lower bound L(Mt
k,D

t
k) does not

incur any additional cost, as this is the objective function
that is being maximized with respect to the hyper-parameters.
Thus, after each optimization step we automatically receive
the current value of the lower bound, as illustrated in the
pseudo algorithm 1.

IV. EXPERIMENTS

We perform an initial evaluation of our approach on two
datasets. First, we use a synthetic dataset with varying curva-
ture to provide a detailed illustration of parallel drifting GPs.
Then we use the Sarcos dataset, often used as a benchmark for
inverse dynamics learning [9], for a quantitative analysis of the
proposed method. In all experiments we use the squared expo-
nential kernel k(xi,xj) = σ

2
f exp{−0.5∑d

1
l2
d

(xi,d − xj,d)
2
}

with automatic relevance determination. For both experiments,
we perform 5 iterations of scaled conjugate gradients to update
the hyperparameters given the current data sets Dt

k, and given
these models perform a one step look ahead prediction for
input xt+1. Errors reported are the (normalized) mean squared
errors over these look ahead predictions.

A. Synthetic Data

For the synthetic data set we draw 1000 points from f(x) =
sin(2x)+2 exp(−16x2) and add Gaussian noise with variance
0.12. We use M = 5 pseudo inputs for the approximate sparse
Gaussian process model, which are optimized along the other



Fig. 2. Snapshots of all 3 Gaussian process regression models at 3 different
time steps as they drift across the function. Black vertical dashed lines
indicate the snapshot times. Noisy data points drawn from f(x) shown in
green.

TABLE I
PREDICTIVE PERFORMANCE ON SYNTHETIC DATA

MSE GP1 MSE GP2 MSE GP3 MSE GPw MSE GPmax

0.01593 0.0154 0.0194 0.0150 0.0148

hyper-parameters at each time step. In this experiment we use
K = 3 Gaussian process models that keep a history of the last
N1 = 50,N2 = 100,N3 = 150 data points seen to optimize
their parameters. In Figure 2 we visualize a snapshot of the
3 drifting Gaussian process models GP1,GP2 and GP3 at 3
different time steps. We can see that GP3, which keeps the
longest history (bottom), has a problem with the quickly
changing curvature in the middle of f(x). In Figure 3 we
visualize the weighted one step look ahead predictions (top),
computed using Option 2. We can see that the predictions
are not affected by the suboptimal fit of GP3 however. The
bottom graph of Figure 3 displays a typical evolution of
the lengthscale parameter l, showing how the lenghtscale
decreases to account for the high curvature region of f(x).
We performed this experiment with 10 randomly seeded runs
and report the average mean squared errors per Gaussian
process model, and for both options of combining the
predictions. GPw and GPmax stand for predictions made via
option 1) and option 2), respectively. On average, the weighted
predictions of all 3 drifting GP outperforms the single GPs.
Note however, that more importantly, in a real setting we
wouldn’t be aware which GP is performing how well. Thus,
automatically combining the predictions of all K models is
essential, and is here shown to perform at least as well as
the best single GP.

B. Sarcos Data

We use the publicly available SARCOS data, which consists
of rhythmic motions and contains 44,484 training data
points and 4,449 test data points. The Sarcos arm has
seven degrees of freedom, thus for the inverse dynamics
learning tasks we have 21 input variables x, representing

Fig. 3. Illustration of one instance of one step look ahead predictions using
option 2 to combine predictions (top). Evolution of lengthscales for all 3
GP models (bottom).

TABLE II
PREDICTIVE PERFORMANCE ON SARCOS INVERSE DYNAMICS

Joint nMSE GP1 nMSE GP2 nMSE GPw GPmax

j1 0.036 0.036 0.035 0.036
j2 0.048 0.041 0.042 0.042
j3 0.037 0.033 0.033 0.034
j4 0.013 0.013 0.012 0.011
j5 0.043 0.038 0.039 0.038
j6 0.060 0.057 0.055 0.056
j7 0.021 0.019 0.019 0.019

joint positions, velocities and accelerations for the 7 joints.
The task is to predict the 7 joint torques, each of which we
treat as independent regression problems. We exclusively
use the training set here, and simulate the setting of data
incrementally arriving on a trajectory. We use K = 2 models,
with GP1 keeping a history of the last N1 = 1000 and GP2

of the last N2 = 2000 data points. Each sparse GP uses
M = 10 pseudo inputs that are being optimized via scaled
conjugate gradients at each time step (along with the other
hyper-parameters).

In Table II we present the normalized mean squared error
made on the one step look ahead predictions, similar to the
evaluation on the synthetic data set. It is noteworthy that
these results are on par with recently reported result for local
and global learning methods in [17]. Thus, drifting GPs can
keep up with the current state of the art. Also, the weighted
combinations for making the one step look ahead predictions,
perform as on par or better as the best single drifting GP.

V. CONCLUSIONS

We have shown that a simple, drifting Gaussian process
regression model can achieve good performance on tasks
like inverse dynamics learning. We circumvent learning a
neighborhood size - which typically involves gradient descent
on non-convex objective functions - by drifting several GP
models in parallel and investigate how to combine them to
form predictions. Future work will investigate the use of such
an approach on a real system.



REFERENCES

[1] S. Vijayakumar, “Computational theory of incremental and active
learning for optimal generalization,” Ph.D. dissertation, 1998.

[2] A. Gijsberts and G. Metta, “Real-time model learning using incremental
sparse spectrum Gaussian process regression,” Neural Networks, vol. 41,
pp. 59–69, 2013.

[3] F. Meier, P. Hennig, and S. Schaal, “Efficient Bayesian local
model learning for control,” in Proceedings of the IEEE
International Conference on Intelligent Robotics Systems (IROS), 2014.
[Online]. Available: http://www-clmc.usc.edu/publications/M/meier-
IROS2014.pdf

[4] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted learning
for control,” Artificial Intelligence Review, no. 1-5, pp. 75–113, 1997.
[Online]. Available: http://www-clmc.usc.edu/publications/A/atkeson-
AIR-II-1997.pdf

[5] S. Schaal and C. G. Atkeson, “Constructive incremental learning from
only local information,” Neural Computation, vol. 10, no. 8, pp. 2047–
2084, 1998.

[6] D. Nguyen-Tuong, J. R. Peters, and M. Seeger, “Local Gaussian process
regression for real time online model learning,” in Advances in Neural
Information Processing Systems, 2008, pp. 1193–1200.

[7] M. F. Huber, “Recursive Gaussian process: On-line regression and
learning,” Pattern Recognition Letters, vol. 45, pp. 85–91, 2014.

[8] J. Hensman, N. Fusi, and N. D. Lawrence, “Gaussian Processes
for Big Data,” Proceedings of UAI, pp. 282–290, 2013. [Online].
Available: http://auai.org/uai2013/prints/papers/244.pdf

[9] C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine
Learning. MIT Press, 2006.

[10] J. Quiñonero Candela and C. E. Rasmussen, “A unifying view of
sparse approximate Gaussian process regression,” JMLR, vol. 6, pp.
1939–1959, 2005.

[11] K. Chalupka, C. K. Williams, and I. Murray, “A framework for
evaluating approximation methods for Gaussian process regression,”
JMLR, vol. 14, no. 1, pp. 333–350, 2013.

[12] M. K. Titsias, “Variational learning of inducing variables in sparse
Gaussian processes,” in International Conference on Artificial Intelli-
gence and Statistics, 2009, pp. 567–574.

[13] E. Snelson and Z. Ghahramani, “Sparse Gaussian processes using
pseudo-inputs,” Advances in neural information processing systems,
vol. 18, p. 1257, 2006.

[14] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines.” in NIPS, 2007.

[15] M. Lázaro-Gredilla, J. Quiñonero-Candela, C. E. Rasmussen, and A. R.
Figueiras-Vidal, “Sparse spectrum Gaussian process regression,” JMLR,
vol. 11, pp. 1865–1881, 2010.

[16] M. Titsias, “Variational Learning of Inducing Variables in Sparse
Gaussian Processes,” in AISTATS, vol. 5, 2009, pp. 567–574. [Online].
Available: http://eprints.pascal-network.org/archive/00006353/

[17] F. Meier, P. Hennig, and S. Schaal, “Incremental Local Gaussian
Regression,” in {Advances in Neural Information Processing Systems},
2014, pp. 972–980.


