Advantages and Limitations of Reservoir Computing on Model
Learning for Robot Control

Athanasios S. Polydoros, Lazaros Nalpantidis and Volker Kriiger

Abstract—1In certain cases analytical derivation of physics-
based models of robots is difficult or even impossible. A po-
tential workaround is the approximation of robot models from
sensor data-streams employing machine learning approaches.
In this paper, the inverse dynamics models are learned by
employing a learning algorithm, introduced in [1], which is
based on reservoir computing in conjunction with self-organized
learning and Bayesian inference. The algorithm is evaluated
and compared to other state of the art algorithms in terms
of generalization ability, convergence and adaptability using
five datasets gathered from four robots in order to investigate
its pros and cons. Results show that the proposed algorithm
can adapt in real-time changes of the inverse dynamics model
significantly better than the other state of the art algorithms.

I. INTRODUCTION

The use of models for the representation of robots’ embod-
iment and their interaction with the environment is common
in the field of intelligent robotics for action control and
prediction [2]. Models can be derived analytically based
on the physics and structure of the robot. However, such
methods can not cope with changes of the robot structure and
dynamic environments. Furthermore, analytical computation
of models, especially on low-cost manipulators with elastic
actuators, is too difficult or even impossible.

In order to overcome such problems towards the develop-
ment of adaptive and cognitive robots, models should instead
be learned online using streams of sensory data. Model
learning can be generally defined as a process where an agent
can infer the characteristics of its structure and environment.
Thus, data-based model learning algorithms have become
popular for being able to accurately model complex robotic
systems. Most of the existing approaches can be classified in
three classes: Direct Modeling, Indirect Modeling and Distal
Teacher Learning [2].

We deal with this problem—Iearning robot models in real-
time through data-streams—>by introducing a novel machine
learning algorithm, dubbed Principal-Components Echo State
Network (PC-ESN). The presented algorithm can be applied
within a Direct Modeling scheme, as diagrammatically illus-
trated in Fig. 1 for learning robot control. A forward model is
learned using observed inputs and outputs as training signals,
while a feed-back controller is employed for compensating
errors.

All the authors are with the Robotics, Vision and Machine
Intelligence (RVMI) Lab., Department of Mechanical and
Manufacturing Engineering, Aalborg University Copenhagen, Denmark
{athapoly, lanalpa, vok}@m-tech.aau.dk

This work has been supported by the European Commission through the
research project “Sustainable and Reliable Robotics for Part Handling in
Manufacturing Automation (STAMINA)”, FP7-ICT-2013-10-610917.

Learning Signal:
Actual Trajectory & Applied Torques

oc Robotic

Manipulator

Proposed
Deep Learning
Algorithm

Estimated
Torques

Desired
Trajectory

Applied
Torques

Tt

Feed-back
Torques

Actual
Trajectory

Feed-Back
Controller

Fig. 1. A direct model for learning inverse dynamics using the proposed
algorithm. The desired joints’ positions, velocities and accelerations are fed
into the algorithm, which provides an estimation of the required torques.
Those torques are corrected by the feed-back controller’s signal. The feed-
back torques are a linear combination of the actual position and velocity of
the manipulator, weighted by error constants. The sensors’ measurements
that derive from the applied torques are used as training signal of the
algorithm [1].

As thoroughly presented in [1], the structure of the net-
work consists of four layers: the input, the output, and
two hidden layers—a self-organized and a recursive reser-
voir. The self-organized layer decorrelates the inputs by
approximating their principal components using Generalized
Hebbian Learning (GHL). The reservoir projects the un-
correlated inputs to high dimensional space and provides a
fading memory. The Bayesian linear regression is recursively
applied as learning rule for updating the connections between
the reservoir and output layer. We argue that the algorithm
belongs to the class of deep learning methods since it models
a desired mapping using a large set of non-linear transfor-
mations of the input data [3] Also, the recursive reservoir is
considered to be a deep neural network because, if folded
out in time, it corresponds to a feed-forward network with
indefinite number of layers [4].

The main contribution of this work is to present the ad-
vantages and limitations of reservoir computing as a solution
to the robot model learning problem. For this purpose we use
the results derived in [1] since it is, to the best of the authors
knowledge, the first pure reservoir computing algorithm
proposed for real-time robot model learning. Our approach
extents the applicability of model learning methods to noisy
data, obtained by robots without accurate force/torque sen-
sors. Furthermore, our approach can quickly converge to
new situations generating the appropriate control signals, due
to the fading memory of the reservoir. Thus, it is able to
adapt to changes of the environment (e.g. handling different
objects, or picking and releasing objects) or the robot itself
(e.g. due to mechanical wear). Contrary to other popular
machine learning methods, such as kernel-based methods,
the presented approach does not require an a priori selection

of kernel or hyperparameter optimization. What makes the
proposed algorithm particularly appealing for real-time robot
control is that its complexity is independent of the number of
training samples, since they are not retained but rather used
to recursively update it. Thus, a minimum update frequency
of the model, during operation, can be guaranteed. Finally, as
an additional contribution, we make publicly available three
new datasets for inverse dynamics model learning, captured
from two industrial robots.

II. STATE OF THE ART

A benchmark problem in model learning is the model-
ing of robotic manipulators inverse dynamics. The inverse
dynamics problem involves the computation of the required
joints’ torques in order to achieve a desired motion (position,
velocity, acceleration). The inverse dynamics relationship can
be expressed as:

M(q)4+C(q,q) + G(q) =T)]

where q,q and § are the joints’ angular position, velocity
and acceleration respectively. M is the inertia matrix, C the
centripetal and Coriolis torques. Finally, G is the effect of
the gravity at the system and 7 is the vector of the applied
torque command. The disadvantage of such a physics-based
model is that parameters, like friction and moments of inertia,
are hard to get defined [5]. Two main approaches have
been proposed for the derivation of these parameters—the
dynamic parameter identification [6] and adaptive control [7].

The derivation of the physics-based dynamics model of (1)
is based on assumptions regarding the structure of the robotic
manipulator and the type of its joint. Those assumptions
do not necessarily hold in the case of light-weight and
compliant manipulators. Thus, the necessity of data-driven
model learning of the inverse dynamics mapping becomes
prominent. In this case, the machine learning algorithm has
to approximate a function f(-) such that:

fla,4,4)+e=T1 (2)

where € is the noise of the manipulator’s system. Thus, the
approximation of the inverse dynamics mapping provided by
(2) corresponds to a regression problem, which can be solved
by a large variety of machine learning algorithms [8]-[15].
Their common characteristic is that they are nonparametric.
In this paper, we focus on real-time algorithms that are devel-
oped for sequential torque estimation and model adaptation.

Locally Weighted Projection Regression (LWPR), intro-
duced in [8], is a local model which approximates non-
linear mappings in high-dimensional space. Its computational
complexity depends linearly on the amount of the training
instances. The algorithm copes with the curse of dimen-
sionality by performing a projection regression. A drawback
of this approach is the large number of free parameters
which are hard to optimize. Furthermore, the authors in [13]
introduced prior knowledge in LWPR in order to increase
the algorithm’s generalization ability.

A large portion of the literature is focused on employing
kernel-based methods for the estimation of the inverse dy-

namics mapping by employing approaches, such as Gaussian
Process Regression (GPR) and Support Vector Regression
(SVR).

Local Gaussian Process (LGP), introduced in [11], handles
the problem of real-time learning by building local models
on similar inputs, based on a distance metric and uses
the Cholesky decomposition for incrementally updating the
kernel matrix.

In [15] the authors propose a real-time algorithm, dubbed
SSGPR, which incrementally updates the model using GPR
as learning method. The model is capable of learning non-
linear mappings by using random features mapping for ker-
nel approximation whose hyperparameters are automatically
updated.

A hybrid algorithm that combines both reservoir com-
puting and GPR is presented in [12]. The search space is
reduced by employing an online goal babbling method. The
manipulator’s state is represented by a recurrent Echo State
network, and this state is used as input to the Local GPR
algorithm.

In this paper, we use a pure reservoir computing algorithm,
as presented in [1], in order to identify its potential compared
to other state of the art methods. Contrary to the described
kernel-based methods [11], [15], in the reservoir computing
algorithm there is no need for kernel selection and hyperpa-
rameter optimization. Furthermore, its complexity does not
depend on the amount of the training instances, due to the
recursive updating rule. Thus, the data-stream is not kept
in memory, like in [8], [11], [12]. Also, the learning rule
depends only on two parameters, which control the fit of the
model on the training data. This attribute makes fine-tuning
easier compared to methods with many free parameters
such as [8]. Finally, the proposed method is adaptive to
changes of the inverse dynamics mapping that occur when
the manipulator handles various loads.

III. OVERVIEW OF THE ALGORITHM

The illustration of the deep neural network’s structure
is presented in Fig. 2. The connections between the input
and the self-organized layer are feed-forward and they are
updated based on the GHL rule. The self-organized layer
is directly connected to the output layer and the reservoir,
which consists of a large number of fully interconnected
neurons. The connections between the reservoir neurons and
the outputs’ feed-back connections are constant and derived
so as to ensure the Echo-State property of the reservoir. The
connections towards the output layer are updated by applying
Bayesian Linear Regression. A more detailed presentation of
the applied learning algorithm can be found in [1].

A. The self-organized layer

The values of the nodes in the self-organized layer depend
on the values of the inputs and of the weights. In the case
of inverse dynamics modeling, the inputs are the position,
velocity and acceleration of each joint. Thus, the nodes’
values s of the self-organized layer are calculated as:

St+1 = g(Wi"ut) 3)

Reservoir Outputs’

Layer

Inputs’ Self-organized
Layer Layer

Fig. 2. Structure of the deep neural network. Nodes correspond to neurons
and arcs to weights that describe cause-effect relationships between neurons.
Solid arcs represent constant weights, contrary to doted arcs that change
according to a learning rule. Rectangles represent the bias on the reservoir
and output layer.

where W™ is the inputs’ weights matrix whose value in
entry (s, k) is the weight from the input node k& to the self-
organized node s and g(+) is the neurons’ activation function,
the hyperbolic tangent. The inputs are represented by the
column vector u and the neurons of the self-organized layer
by the column vector s.

The GHL is an unsupervised learning rule [16] and it
is used for the adaptation of the inputs’ weights Wi as
presented in 4. This learning rule is a generalization of Oja’s
rule, belongs to the family of Hebbian Learning algorithms.

AW = p,(us” — LT [ss”] W) 4)

Thus, GHL yields the entire set of the eigenvectors for a
processed data-stream. The operator LT [-] converts a matrix
to lower-triangular and 7 is the learning step. If the learning
rate decreases after each time-step and for infinite time-
steps, the rows of an initially random inputs’ weights matrix
Win would correspond to the eigenvectors of the inputs’
covariance matrix. Furthermore, the GHL rule assumes that
the inputs are centered, therefore the inputs’ mean value is
updated at each time step and subtracted from the input vec-
tor. Since the data-stream consists of high-frequency samples
of the manipulator’s position, velocity and acceleration, the
inputs of the algorithm can be significantly correlated. Using
such a transformation, the inputs get uncorrelated which
results to a better prediction accuracy.

B. The Reservoir

The uncorrelated inputs are fed to the second hidden layer,
a Recurrent Neural Network (RNN). This type of network is
selected, instead of a feedforward network, because RNNs
can approximate dynamical systems [17]. Furthermore, due
to the recurrent connections their state represents the history
of the inputs, thus they have a dynamic memory. Those
characteristics make them powerful tools for time-series pre-
diction and therefore can be applied on real-time dynamics
approximation.

Despite their advantages, the application of RNNs, as
machine learning tools, was limited because of the computa-
tional expensive, gradient-based, update rules. The difficulty

of training rises from the recurrent connections between
the nodes of the network. Thus, in order to apply training
rules such as back-propagation, which is widely used in
feedforward networks, the recurrences have to be unfold
through time.

This drawback is solved by introducing the dynamic
reservoir. A reservoir is a large set of recurrently connected
nodes. The connections are fixed, except those from the
reservoir towards the output layer (readout connections). The
reservoir has two main functions, it expands the uncorrelated
signal s non-linearly to a high-dimensional space and it
preserves a memory of that signal. The values of the fixed
weights W79 that interconnect the reservoir nodes, are set
by following the procedure described in Algorithm 1. This
procedure yields a reservoir consisting of nodes with the
Echo Sate property [18] regardless how the other, also fixed,
weights are set.

The Echo State property has as result that the state r of the
reservoir is unique for each different input sequence sg_, 7.
This fact, in conjunction with the short term memory embed-
ded in the state of the reservoir and the fixed connections,
makes this type of reservoir appropriate for real-time model
learning.

The global parameters for setting the Echo State reservoir
are the sparsity, the number of nodes and the spectral radius.
A large number of reservoir nodes is recommended if there
are not enough available training instances [19]. However,
this is not the case in model learning of manipulator inverse
dynamics, since the inputs can be sampled with frequencies
up to 1 KHz. Thus, a good approximation of the inverse
dynamics can be achieved with a relatively small number of
reservoir nodes.

The sparsity of the reservoir affects the computational time
and slightly the performance. The spectral radius « should
be less than 1 in order to ensure the Echo State property
for any input. Its value depends on the relation between the
history of the inputs s and the target value u. Large values
of the spectral radius are recommended when the history of
the data-stream is significant for the derivation of torques;
otherwise, small values are preferable. Thus, for modeling
the inverse dynamics, small spectral radius is preferred.

In the proposed model, the values of the reservoir nodes
are updated according to:

ri1 =g (W, + Wls, + W/ho,) 5)

where 1, is the state of the reservoir at time step ¢ + 1,
Wself is the weights matrix connecting the nodes of the self-
organized layer with the reservoir, W"* are the connections
between the nodes of the reservoir and W/? the feed-back
connections from the output o, to the reservoir nodes.

The values of the output layer’s nodes are a linear combi-
nation of the nodes connected with them and are calculated
as follows:

0rp1 = W% | + WTs, (6)

Where W4 are the weights from the reservoir to the output

and W%" the weights from the self-organized layer to the
output.

Algorithm 1 Pseudocode for creating the reservoir weights
matrix

Input: Wy random sparse matrix, w;; ~ U (—1,1)

Input: desired spectral radius : o < 1

Output: Matrix W"*® with the Echo-State Property

VV1<:>\1 Wy

> Amax largest absolute eigenvalue of Wy
> W has now spectral radius «

The derivation of the required weights corresponds to a lin-
ear regression problem, thus the weights W%t and W% are
updated by applying Bayesian linear regression. For notation
simplicity, all the weights to the output are concatenated in a
single matrix W% and their corresponding nodes values
to the vector c. As a result, (6) can be written as:

0141 = W¢, 4 (7N

C. Recursive Bayesian Linear Regression

The employed learning rule has to optimize the weights
Wrain o that the output of the algorithm, o, approximates
the output of function f () in (2). In order to keep the
notation simple, the presentation of the learning rule is
confined in the case of a single joint but can be easily
generalized for all the manipulator’s joints. Thus, the weights
towards the output node o are represented as a row vector
wirtint = [we wep WoN Whias |. The inverse
dynamics model of a single joint at time step ¢ can be
rewritten as:

Wzr‘ainct +e=7 (8)

The regression problem in (8) can be solved using meth-
ods such as ordinary least squares estimation and ridge
regression. Applying the Bayesian approach to this problem,
a probability distribution over the regression coefficients
p (Wi D) is derived instead of a simple point estimation.
By assuming Gaussian likelihood and prior distributions,
and applying the Bayesian rule on linear Gaussian systems,
then the posterior is also a Gaussian distribution with mean
wi" and covariance matrix V41 which are recursively
derived from (9) and (10) respectively by setting the initial
weights wq to a zero vector and Vy = ¢°I .

; 1
t -1
Wt:_afn = Vt+1Vt_1Wt =+ ;VH_lctTt (9)

-1
V= (V;}l + %ctctT) (10)

Thus, at each time step the weights’ covariance matrix
is updated based on the nodes’ values that are connected
with the output node. Since the Bayesian rule is applied
recursively, the weights’ posterior distribution at time step
t is used as prior distribution at time step ¢ + 1. From
(9) and (10) is clear that the algorithm’s computational
complexity for training depends on the number of nodes that

TABLE I
DESCRIPTION OF THE DATASETS USED FOR EVALUATION
(DATASETS MARKED WITH P ARE PUBLICLY AVAILABLE, WHILE
DATASETS WITH ¥ ARE NEW SELF-RECORDED ONES)

l Dataset Samples Training Testing Motion Type [DoF l
Sarcos” 19122 13622 5500 Rhythmic 7
Barrett? 18572 13572 5000 Rhythmic 7

BaxterRand ™Y 20000 15000 5000 Random 7
BaxterRepeatN 8918 6000 2918 Rhythmic 7
UR10Y 12352 N/A N/A Pick&Place 6

are connected to the output. Therefore, in order to reduce
the complexity, a Cholesky decomposition can be applied
on the covariance matrix V for calculating its rank update
and inverse.

IV. EVALUATION RESULTS

We evaluated our proposed algorithm and compared it
against three state of the art real-time learning algorithms,
namely the LWPR, LGP and SSGPR, presented in [8],
[11] and [15] respectively. The evaluation and comparison
was performed using five different—both publicly available
and self-recorded—datasets of four robots. Each of these
datasets consist of tuples of position, velocity, acceleration,
and applied torque values for all joints at each time step.
More details about the datasets can be found in Table I.
The datasets of the Sarcos and Barret robots are publicly
available [11] and correspond to rhythmic, repetitive move-
ments. Beyond these datasets, typically used in the relevant
literature, we have captured and tested three new datasets on
two low-cost industrial robots. The two Baxter robot datasets
were generated by sampling (at 120 Hz sampling frequency)
a random and a rhythmic, movement respectively. The UR10
dataset consists of samples obtained from a Universal Robots
URI10 robot during a pick-and-place manipulation task of a
4 Kg object with a sampling frequency of 120 Hz'.

The components that affect the prediction performance of
the proposed deep network are the self-organized layer and
the size of the reservoir. In Fig. 3 is illustrated the impact of
the self-organized layer on the model’s accuracy. It becomes
clear that the decorrelation of the inputs, performed in the
first hidden layer, results in much better torques’ estimation
compared to a structure with only the reservoir layer.

The most important parameter of the proposed deep neural
network is the size of the reservoir because it affects both
the approximation performance and the computational load.
Thus, an appropriate trade-off between the reservoir’s size
and the approximation error has to be derived. Fig. 4 shows
the normalized Mean Square Error (nMSE) obtained for
various sizes of the reservoir in three datasets. Based on
these results, it can be deduced that using a reservoir with
600 nodes provides a reasonable trade-off, since neither the
mean, nor the deviation of the nMSE change significantly
when more nodes are considered.

'As part of this work, we have made publicly available our three new
datasets at: https://bitbucket.org/athapoly/datasets

0.7

061

051

0.4r

nMSE

031

021

0.1

1 2 3 4 5 6 7
Degree of Freedom

Fig. 3. Impact of including (or not) the self-organized layer in the proposed
model. The prediction error (nMSE) was evaluated on the BaxterRand
dataset. Blue bars (ESN) correspond to a network with only a reservoir
layer, consisting of 100 nodes, while red bars (PC-ESN) corresponds to the
proposed structure.

—=— BaxterRand |_|
—4— Sarcos
Barrett 1

Averaged nMSE
°
T

Tt T ——¢ 5
I L e

L L 1 = IS
0 100 200 300 400 500 600 700 800 900 1000 1100
Reservoir Size

Fig. 4. Impact of the reservoir size on the error of torques’ estimation for
the proposed algorithm. The presented nMSE results are averaged over all
joints, while the error bars indicate the standard deviations.

The generalization ability of the proposed PC-ESN algo-
rithm was evaluated by assessing the estimation accuracy of
the desired torques obtained on novel data using a trained
model. In Fig. 5 the proposed algorithm was compared to
the three other state of the art algorithms, on the Sarcos
dataset. The results exhibit that the generalization ability of
PC-ESN is comparable to that of the other algorithms.

We further evaluated and compared the convergence of the
algorithms. This exhibits how fast the algorithms can learn
the inverse dynamics model. The comparison results, shown
in Fig. 6, were obtained using all the samples contained in the

Degree of Freedom

Fig. 5. Evaluation of generalization ability. All algorithms were trained with
the Sarcos training set. The illustrated error corresponds to the estimated
torques on the testing set. LWPR and LGP results are taken from [11].

|
0 5000 10000 15000
Samples

(a) Barrett

0.1
0.09
0.08
0.07
0.06

7}
2005
z
0.04
0.03
0.02
0.01

o T n h | . |
1000 2000 3000 4000 5000 6000 7000 8000 9000
Samples

(b) BaxterRepeat

Fig. 6. Estimation error on Barrett and BaxterRepeat dataset. Only one
joint is plotted for clarity of presentation. The models were updated on-the-
fly; the torques were estimated for a given input and then the models were
updated using the target value of the torque.

Barrett and BaxterRepeat datasets. In both cases the proposed
PC-ESN converged faster that LWPR and LGP, while SSGPR
demonstrated the best performance.

A further set of experiments investigated the ability of
the algorithms to adapt to changes of the inverse dynamics
model. Such changes can occur during object manipulation.
Data from a non-compliant robot were used because such
robots adapt the applied torques in order to compensate
external loads. Thus, the adaptability is evaluated on samples
collected from the non-compliant URI10 robot during a
pick and place operation. The dataset is extremely noisy
because URI10 is not equipped with torque sensors; the
torques are rather approximated based on the motors’ current
measurements. The results, illustrated in Fig. 7, show that the
proposed algorithm is more stable than LWPR and SSGPR
and similar to the LGP, while always producing the smallest
error of them all.

The final set of experiments investigated the appropriate-
ness of PC-ESN for real-time learning. All 8918 samples of
the BaxterRepeat dataset were considered and we calculated
the mean time and standard deviation, as measured on an
Intel core i7 @ 2.4 Ghz processor with 12 GB of RAM. In
Table II the times required specifically for training, prediction
and hyperparameters optimization are presented for all four
considered algorithms. Even though PC-ESN is slower than
the other algorithms in training, it exhibits a very small stan-
dard deviation of measured execution times. This is because
its complexity depends only on the size of the reservoir.
The prediction time is less than 0.6 msec which allows the
real-time control of a manipulator. Another advantage of the
proposed algorithm is that no hyperparameter optimization
procedure is required. As a result, our algorithm can be used
for real-time model learning.

TABLE I
MEAN TIME (MSEC) AND STANDARD DEVIATION (MSEC) FOR TRAINING,
PREDICTION AND HYPERPARAMETER OPTIMIZATION

l Algorithm [Training Prediction [Optimization l
LWPR 5.73 £0.55 5.7+ 0.31 Not Required
LGP 11.10 £6.43 | 5.44 +£0.03 36520 £ 850
SSGPR 0.36 £ 0.02 0.34 £0.01 274170 £ 30230
PC-ESN 30.38 £0.05 | 0.56 = 0.04 Not Required
5 T T T T T T
4.5 = LWPR |
4. SSGPR | |

PC-ESN

0 8000
Samples

Fig. 7. Torque estimation error on a single joint of the UR10 dataset.
Large error fluctuations are caused because of low adaptability.

V. DISCUSSION AND CONCLUSION

In this paper we focused on the evaluation results of the
reservoir computing algorithm introduced in [1] in order to
initiate a discussion about the advantages and disadvantages
of such approaches on model learning. The performance
of the algorithm is evaluated on two publicly available
and three self-recorded datasets from four robots (Sarcos,
Barrett, Baxter and UR10). The evaluations included the
generalization ability, the convergence, the adaptability, the
training and prediction time of the algorithms.

The generalization ability of PC-ESN is similar to the state
of the art. The strengths of our algorithm are better exploited,
the more frequently the model is updated. This happens due
to the recurrent structure of the network where the errors are
accumulated if the model is not regularly updated. Therefore,
in all the real-time learning evaluations, PC-ESN exhibits
better performance than LWPR and LGP. Furthermore, it
converges fast in both noise-free (Barrett) and noisy (Bax-
ter) datasets. The most important characteristic is the high
adaptability which is important for applying model learning
in real life applications. Adaptive learning algorithms can
cope with dynamic changes of the modeled mapping. This
mapping, changes e.g. in object manipulation tasks—picking
and releasing objects. In such tasks the proposed approach
outperforms all other considered state of the art algorithms,
as it was shown to exhibit better adaptability.

In the initial tests the impact of the network’s compo-
nents on the prediction performance was evaluated. The
most important component is the self-organized layer which
decorrelates the inputs and provides better prediction perfor-
mance compared to a network with only the reservoir layer.
Furthermore, it was illustrated that reservoirs consisting of
more than 600 nodes do not improve the estimation error.
Using this size of reservoir, the weights’ update frequency is
approximately 30 Hz and the prediction frequency is 1 KHz.
Such an update and prediction frequency, in conjunction

with the presented performance, imply that the proposed
algorithm is applicable for online learning of the inverse
dynamics on real robotic manipulators.

As future work, we intend to extend the application
of the proposed PC-ESN algorithm on a real compliant
robotic manipulator using a direct model approach for online
learning. We expect that such an implementation will be able
to perform various manipulation tasks.

REFERENCES

[1] A. S. Polydoros, L. Nalpantidis, and V. Kriiger, “Real-time deep
learning of robotic manipulator inverse dynamics,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), Sept
2015.

[2] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a
survey,” Cognitive processing, vol. 12, no. 4, pp. 319—40, Nov. 2011.

[3] Y. Bengio, “Learning deep architectures for Al Foundations and
trends in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.

[4] M. Hermans and B. Schrauwen, “Training and analysing deep recur-
rent neural networks,” in Advances in Neural Information Processing
Systems, 2013, pp. 190-198.

[5] H. Olsson, K. J. Astrom, C. Canudas de Wit, M. Gifvert, and
P. Lischinsky, “Friction models and friction compensation,” European
Journal of control, vol. 4, no. 3, pp. 176-195, 1998.

[6] J. Wu, J. Wang, and Z. You, “An overview of dynamic parameter
identification of robots,” Robotics and Computer-Integrated Manufac-
turing, vol. 26, no. 5, pp. 414-419, 2010.

[71 M. W. Spong and R. Ortega, “On adaptive inverse dynamics control of
rigid robots,” IEEE Transactions on Automatic Control, vol. 35, no. 1,
pp. 92-95, 1990.

[8] S. Vijayakumar and S. Schaal, “Locally weighted projection regres-
sion: An O(n) algorithm for incremental real time learning in high
dimensional space,” in International Conference on Machine Learning
(ICML), 2000.

[9] D. Nguyen-Tuong, B. Scholkopf, and J. Peters, “Sparse online model
learning for robot control with support vector regression,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Oct 2009, pp. 3121-3126.

[10] J. S. de la Cruz, W. Owen, and D. Kulic, “Online learning of inverse
dynamics via gaussian process regression,” in /EEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct 2012, pp.
3583-3590.

[11] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Model learning with
local gaussian process regression,” Advanced Robotics, vol. 23, no. 15,
pp. 2015-2034, 2009.

[12] C. Hartmann, J. Boedecker, O. Obst, S. Ikemoto, and M. Asada,
“Real-time inverse dynamics learning for musculoskeletal robots based
on echo state gaussian process regression.” in Robotics: Science and
Systems, 2012.

[13] J.S. de la Cruz, D. Kuli¢, and W. Owen, “Online incremental learning
of inverse dynamics incorporating prior knowledge,” in Autonomous
and Intelligent Systems, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2011, vol. 6752, pp. 167-176.

[14] Y. Choi, S.-Y. Cheong, and N. Schweighofer, “Local online support
vector regression for learning control,” in International Symposium
on Computational Intelligence in Robotics and Automation, 2007, pp.
13-18.

[15] A. Gijsberts and G. Metta, “Real-time model learning using incremen-
tal sparse spectrum gaussian process regression,” Neural Networks,
vol. 41, pp. 59-69, 2013.

[16] T. D. Sanger, “Optimal unsupervised learning in a single-layer linear
feedforward neural network,” Neural networks, vol. 2, no. 6, pp. 459—
473, 1989.

[17] K. Funahashi and Y. Nakamura, “Approximation of dynamical systems
by continuous time recurrent neural networks,” Neural networks,
vol. 6, no. 6, pp. 801-806, 1993.

[18] I. B. Yildiz, H. Jaeger, and S. J. Kiebel, “Re-visiting the echo state
property,” Neural networks, vol. 35, pp. 1-9, 2012.

[19] M. LukosSevicius, “A practical guide to applying echo state networks,”
in Neural Networks: Tricks of the Trade. Springer, 2012, pp. 659-686.

