
Avoiding Moving Obstacles with Stochastic Hybrid Dynamics using
PEARL: PrEference Appraisal Reinforcement Learning

Aleksandra Faust1,2, Hao-Tien Chiang1, Nathanael Rackley1, and Lydia Tapia1

Abstract— Manual derivation of optimal robot motions for
task completion is difficult, especially when a robot is re-
quired to balance its actions between opposing preferences.
One solution has been proposed to automatically learn near
optimal motions with Reinforcement Learning (RL). This has
been successful for several tasks including swing-free UAV
flight, table tennis, and autonomous driving. However, high-
dimensional problems remain a challenge. We address this
dimensionality constraint with PrEference Appraisal Reinforce-
ment Learning (PEARL), which solves tasks with opposing
preferences for acceleration controlled robots. PEARL projects
the high-dimensional continuous robot state space to a low
dimensional preference feature space resulting in efficient and
adaptable planning. We demonstrate that on a dynamic obstacle
avoidance robotic task, a single learning on a much simpler
problem performs real-time decision-making for significantly
larger, high-dimensional problems working in unbounded con-
tinuous states and actions. We trained the agent with 4 static
obstacles, while the trained agent avoids up to 900 moving
obstacles with complex hybrid stochastic obstacle dynamics in
a highly constrained space using only limited information about
the environment. We compare these tasks to traditional, often
manually tuned solutions for these high-dimensional problems.

I. INTRODUCTION

There are many high-dimensional, motion-based robotic
tasks, including multi-robot coordination and control of
complex kinematic linkages. These complex robotic prob-
lems often require planning high-dimensional motions that
complete the task in a timely manner. Motion and trajectory
planning identifies a sequence of actions that move the robot
in accordance to its dynamics (physical constraints) and the
task objectives. Since manually accounting for all possibili-
ties is often infeasible, sampling-based, learning-based, and
other intelligent methods are the norm [18]. Reinforcement
learning (RL), in particular, has been successful for robotic
task learning [15] in several problems such as table tennis
[21], swing-free UAV delivery [7], and a self-driving car [12].
However, traditional RL methods do not handle continuous
and high-dimensional state spaces well [11].

A primary challenge in these problems is task description.
The task goals and constraints that the robot must obey
are often unknown or difficult to calculate. For example,
consider a simple manipulation task; a robot is required
to set a glass on a table without breaking it. We do not
know precisely the amount of force that causes the glass
to shatter, yet we can describe our preferences: low force

1Computer Science Department, University of New Mexico,
USA, 2Currently with: Google, Inc. {faust@google.com,
lewispro@unm.edu, nprackley@gmail.com,
tapia@cs.unm.edu}

X (m)
-50 -40 -30 -20 -10 0 10 20 30 40 50

Y
 (

m
)

-50

-40

-30

-20

-10

0

10

20

30

40

50

G S

Fig. 1. Dynamic Obstacle Avoidance Task: The robot (red dot)
must travel from S (start) to G (goal) without colliding with 900
obstacles moving with hybrid stochastic dynamics. The dark red
curve is an example path of the robot. The black/green/blue dots are
stochastically moving obstacles with swerve/linear/arc dynamics.

and fast task completion. Preference reinforcement learning
learns and performs preference balancing tasks (PBTs) with
desired qualities (preferences). These tasks cannot be easily
demonstrated, but the set of preferences can be described
[27].

We present PrEference Appraisal Reinforcement Learning
(PEARL) for solving high-dimensional motion-based PBT
problems (Figure 2). PEARL trains the planning agent on
a small problem, and transfers the learned policy to be
used for planning for high-dimensional problems. The key
to PEARL is the feature selection method that constructs
task-preference features invariant to the robot’s state space
dimensionality. Because the method learns and performs the
task in the feature space, such transfer is possible. Previously,
we empirically showed that, using hand-crafted features,
batch RL learns in small spaces and acts on larger problems
[8], [7], but did not address when learning transfer is possible
and how to do it for an arbitrary problem. This paper
formalizes the feature selection and the conditions under
which transfer is possible so that it can be applied for classes
of PBTs. We include preferences that increase over time as
well.



Fig. 2. PrEference Appraisal Reinforcement Learning (PEARL)
framework for learning and executing PBT. The user-provided
preferences are encoded into polymorphic features. The learning
agent appraises preference priorities on a low-dimensional training
problem. The planner takes an initial state of a high-dimensional
problem and produces actions in a closed feedback loop.

We demonstrate PEARL on the dynamic obstacle avoid-
ance problem, which is critical in several applications such
as flight coordination [10], autonomous vehicles and human
interacting robots [17]. The case study shows that our
method is fast, easy to use, successful for high-dimensional
problems, and is a useful tool in a RL-based motion planning
toolbox. An agent is required to move to the goal without
colliding with hundreds of moving obstacles with hybrid
stochastic dynamics. PEARL learns the task with only four
static obstacles, and plans trajectories in densely populated
environments with up to 900 obstacles. In real-time, at 10 Hz,
the planner generates shorter trajectories of higher success
rates compared to a traditional Gaussian Artificial Potential
Field (APF) obstacle avoidance method, which requires ex-
tensive manual tuning [17]. In addition, trajectories generated
by PEARL have higher success rates and less running time
per planning step compared to a state of the art velocity
obstacle based collision avoidance algorithm [9]. In a previ-
ous (unpublished) IROS 2015 workshop paper, we showed
results with simpler obstacle dynamics [6]. Here, we increase
the complexity by considering moving obstacles with hybrid
dynamics, which includes three stochastic dynamics modes
and a probability to switch modes. The enclosed video
submission contains examples of the simulations.

The contributions of this work are: 1) a solution for
planning high-dimensional, preference-balancing, motion-
based problems (PEARL), and 2) continuous RL solutions
to dynamic obstacle avoidance that outperforms state-of-the-
art collision avoidance algorithms. These contributions are
achieved by Markov decision process formulation for PTBs,
and obstacle avoidance tasks, formalizing the preference
feature selection method, including preferences that increase
over time, and appraising the preferences on small tasks with
continuous action RL.

II. RELATED WORK

Reinforcement Learning: Function approximation RL
methods typically assume user-provided features [2]. Be-
cause they map the entire robot’s state subspace to a single

point, RL is very sensitive to feature selection [2], making
feature selection very difficult. Classically, two feature types
are used in RL: discretization, and basis functions [28].
Discretization partitions the domain, scaling exponentially
with the space dimensionality. Basis functions, such as ker-
nels and radial basis function networks, offer more learning
flexibility. These functions, however, can require manual
parameter tuning, and the feature number increases MDP
formulation for multi-robot systems and dynamic obstacle
avoidance tasks exponentially with the state space dimen-
sionality [28]. PEARL proposes a feature selection method
that solves a particular class of motion tasks for acceleration-
controlled robots. PEARL features exploit task knowledge.
Their number is invariant to the problem dimensionality,
and the computation time scales polynomially with the state
space dimension. In related work, Voronoi decomposition
solves high-dimensional manipulation problems by project-
ing the robot’s configuration space onto a low dimensional
task space [23]. The features we propose define a basis
in the preference-task space as well. However, PEARL
autonomously learns the relationship between the features.
Another RL approach solves manipulation tasks with hard
[24] and soft [16] constraints. Our tasks, however, do not
have known constraints and bounds; they are set up as pref-
erences to guide dynamically feasible trajectory generation.

In summary, PEARL takes task preferences as objectives,
and generates features. It appraises the features to come up
with weights. Another approach, Weighed Real-Time Heuris-
tic Search (RTHS) [22], uses the weights along the search
during planning, and work only in finite spaces. PEARL uses
RL, which intrinsically includes weights to balance short and
long term gains. In addition, PEARL learns weights between
features to find a good balance of priorities among opposing
preferences, and works in continuous spaces.

Dynamic Obstacle Avoidance: Planning motions in dy-
namic environments is challenging because plans must be
frequently adjusted due to moving obstacles. Sampling-based
methods provide low cost solutions to high-dimensional
planning problems in dynamic environments [13], [14], [20].
For example, lazy Probabilistic Roadmaps (PRM) accom-
modate moving obstacles by rechecking edge validity [13],
[14], while [20] pre-builds a Rapidly-exploring Random
Tree (RRT) that is modified whenever obstacle changes
are detected. Artificial Potential Fields (APF) provide low-
cost solutions to dynamic environments by using only local
information near the robot [17]. Nevertheless, several param-
eters impact the performance, such as the relative strength
between the repulsive and attractive potentials, and the size
of the repulsive potential. In contrast, Velocity Obstacle (VO)
based motion planning [9], a state-of-the-art multi-obstacle
collision avoidance algorithm, assumes collaborative agents
where each agent runs the same VO avoidance method. VO
computes the velocity of other nearby agents, and plans
an action that reciprocally avoids collision. Unlike VO,
our approach makes no assumptions about the obstacles’
behavior, and is appropriate for environments where we do
not have control over the other agents. We compare the



proposed method with a modified VO code-base that removes
the agent collaboration assumption [4].

III. BACKGROUND

We consider robots as mechanical systems that can be
moved using an external force, and model their motion with
a special case of nonlinear systems, a discrete-time control-
affine system [18]. Consider a robot with m degrees of
freedom (DoF). If an acceleration a(n) ∈ Rm is applied to
the robot’s center of mass at time-step n, the new position-
velocity vector (state) s(n+ 1) ∈ R2m is,

D : s(n+ 1) = f(s(n)) + g(s(n))a(n), (1)

for some functions f , g. A Markov decision process (MDP),
a tuple (S,A,D,R) with states S ⊂ R2m and actions
A ⊂ Rm, that assigns immediate scalar rewards R : S → R
to states in S, formulates a task for the system (1) [2]. A
solution to a MDP is a control policy π : S → A that
maximizes cumulative discounted reward over the agent’s
lifetime, value, V (s(0)) =

∑∞
i=0 γ

iR(s(i)), where 0 ≤
γ ≤ 1 is the discount factor. Approximate value iteration
(AVI) [5], finds a solution to a continuous state MDP by
approximating state-value function V with a linear map

V̂ (s) = θTF (s). (2)

AVI takes a feature vector F (s) and learns weights θ
between the features by sampling the state-space and observ-
ing the rewards. It iteratively updates θ in an expectation-
maximization manner.

After parameter learning is completed, batch RL enters
a planning phase. The planner takes the value function
approximation (2), an initial condition, and generates a
trajectory using the closed-loop control with a greedy policy
with respect to the state-value approximation,

πV̂ (s) = argmax
a∈A

V̂ (s′); (3)

where state s′ is the result of applying action a to state
s. Action selection in continuous spaces, which calculates
the greedy policy (3), is a multivariate optimization over
an unknown function. Several sampling-based methods that
approximate the policy efficiently exist, such as Hierar-
chical Optimistic Optimization applied to Trees (HOOT)
[19]. HOOT uses hierarchical discretization to progressively
narrow the search on the most promising areas of the
input space, thus ensuring an arbitrarily small error [19]. In
practice, HOOT works well for single-agent planning with
value functions that have many small-scale maxima.

IV. METHODS

Our aim is to solve tasks that can be described with a set of
goals (attractors) and obstacles (repellents) for acceleration-
controlled robots with unknown dynamics. We require that
the solution, PEARL, is efficient and adaptive. By efficient,
we mean that PEARL controls agents in real-time in fully
continuous and physically unbounded spaces; by adaptive,
we mean that a single learning can be applied to a number
of tasks.

PEARL solves PBTs in two phases, learning and acting
(Figure 2), adhering to the batch RL paradigm. To start
the learning phase, a user provides PEARL with basic
information about the problem; the robot’s DoFs, maximum
accelerations, etc., and a set of objectives (preferences). The
basic system information is encoded into a MDP as presented
in Section IV-A. Meanwhile, given the preferences which
consist of task goals and obstacles, PEARL generates the
features using the methods described in Section IV-B.

With the MDP and features setup, the learning phase
uses one of the AVI-based RL algorithms on a simplified
problem space to discover the relative weights between the
preferences (preference appraisal). The value function, ap-
proximated with Equation (2), is a linear map of preference-
based features. Once the preference weights are learned, they
are handed over to the planner, and the acting phase can
begin.

The acting is a closed-loop feedback system, decision-
making that can work online or plan trajectories offline in
simulation. The planner solves problems with larger state
and action domains, because the features are valid in the
larger domain and capture the important elements of the task,
rather than the physical space. The features enable both the
efficiency, by learning on small problems, and adaptation,
by allowing the policy transfer to larger problems. It is the
use of the polymorphic, automatically generated features that
separates PEARL from standard batch RL, and creates a
virtually tuning-free task learning and completion method.

A. MDP Setup

For the General PEARL Formulation, we assume the
robot works in continuous state and action spaces, is con-
trolled through acceleration applied to its center of mass, and
has dynamics that are not explicitly known. Let s, ṡ, s̈ ∈
Rdr be the robot’s position, velocity, and acceleration, re-
spectively. The MDP state space is S = Rds , where ds =
2dr, where dr is the robot’s DoFs. The state s ∈ S is joint
vector s = [s, ṡ]T , and action a ∈ A = Rm is the joint
acceleration vector, a = s̈. The state transition function,
which we assume is unknown, is a control-affine system (1).

We assume for training purposes the presence of a sim-
ulator or dynamics samples for the robot. The reward R
is set to one when the robot achieves the goal, and zero
otherwise. The tuple (S,A,D,R) defines the MDP for the
robot problem.

For the Dynamic Obstacle Avoidance Task, the MDP
setup is the joint vector of robot position and velocity, S =
R4. The action space is the acceleration on each axis with
dimension A = R2.

B. Feature Selection

For the General PEARL Formulation, we define a
PBT with no objectives, o1, ...,ono , and preferences with
respect to the objectives. The objectives, points in position or
velocity space, oi ∈ Rdri , i = 1, .., no, either attract or repel
the one or more agents. We call preferences that attract the
agent distance-reducing, whereas the preferences that repel



it are intensity-reducing; both preference types have the goal
of reducing their measure to an objective.

To learn PBT with no objectives, o1, ...,ono
, we form a

feature for each objective. Assuming the low dimensional
task space and high-dimensional MDP space no � ds, we
consider task-preference features,

F (s, ds) = [F1(s, ds), ..., Fno
(s, ds)]

T .

Parametrized with the state space dimensionality, ds, the
features map the state space S to the preference space,
and, depending on the preference type, measure either the
squared intensity or distance to the objective. Let poi(s) be
a projection of the robot’s state onto the minimal subspace
that contains oi. For instance, when an objective oi is a point
in a position space, poi(s) is the robot’s position. Similarly,
when oi is a point in a velocity space, poi(s) is the robot’s
velocity. Then, distance-reducing features are defined with

Fi(s, ds) = ‖poi(s)− oi‖2, (4)

and intensity-reducing features are defined with

Fi(s, ds) = (1 + ‖poi(s)− oi‖2)−1. (5)

Algorithm 1 summarizes the feature selection procedure.

Algorithm 1 PEARL feature selection.
Input: o1, ...,ono

objectives, pt1, ..., ptno
preference types

Input: MDP (S,A,D,R),
Output: F (s, ds) = [F1(s, ds), ..., Fn(s, ds)]

T

1: for i = 1, . . . , no do
2: if pt1 is intensity then
3: Fi(s, ds) = (1 + ‖poi(s) − oi‖2)−1 {intensity

preference}
4: else
5: Fi(s, ds) = ‖poi(s)− oi‖2, {distance preference}
6: end if
7: end for
8: return F (s, ds)

For the Dynamic Obstacle Avoidance Task, there are two
natural preferences: 1) minimize the distance to the goal, and
2) maximize the distance from obstacles. The feature vector
is then formulated as the combination of the two preferences:
F (s) = [F1(s) F2(s)]

T . Providing Algorithm 1 with the
goal’s and obstacle’s coordinates, the features are F1(s) =
‖p(s) − G‖2, and F2(s) = (β + d2)−1, where G is the
goal’s position, p(s) is the position of the robot, d is the
minimum distance to the closest obstacle, and β is a constant
empirically selected to be 0.01m.

V. ANALYSIS

Feature properties: Features selected in this manner
have the following properties, allowing PEARL to have the
potential to learn on small problems and transfer the learning
to larger problems:
• Feature domain: The features are Lipschitz continuous

and defined for the entire state space, Fi : Rm →

R, i = 1, .., ds, in contrast to tiling and radial basis
functions [28], [2] that are active only on a section of
the problem domain.

• Projection to preference space: Features project the
state subspace into a point that measures the quality
of the preferences. Thus, the state-value function ap-
proximation from (2) is an ds-dimensional manifold in
the preference space, and their number does not change
as domain space change.

• State space polymorphism: Because they are based
on the vector norm and projections, the features are
polymorphic with respect to the domain dimensionality.
Since learning is more computationally intensive than
planning, we use lower-dimensional problems for train-
ing. The feature vector size is invariant to the number of
agents, state space dimensionality, and physical space
dimensions. If the agents operate in 2D space, the
features consider only planar space. But, when the same
agents are placed in a 3D environment, the feature
set remains unchanged even though the 3D space is
considered in feature calculations [7].

• Polynomial computation time: The feature computation
time is polynomial in state space dimensionality.

Local minima analysis: For tasks with mixed objectives,
such as moving obstacle avoidance, the agents follow pref-
erences, but there are no formal completion guarantees. In
fact, the value function (2) has potentially two maxima, one
on each side of the obstacle.

For the purpose of this analysis, we assume that the
problem is well formulated, and contains one attractor, i.e.,
the intersection of subspaces defined by distance reducing
objectives is non-empty, and forms a connected set. Note that
in order for both distance and intensity features to behave
as attractor and repellent respectively, the resulting weights
must be negative θi < 0. Since a straight line is the shortest
path between an agent and its attractor, we analyze the
value function restricted to that line with varying obstacle
distances. To simplify the analysis, we transform the value
function (2). Without loss of generality, we rotate and scale
the coordinate system, such that the attractor is in the origin,
and the agent is on the x−axis. The two nearest obstacles
lay on (1, d), and (1, −d). In addition, we multiply the entire
function (2) by minus one, to give a rise to function Vx(x).
Now, we are interested in finding necessary conditions Vx(x)
minima, which correspond to the V (x, y) maxima.

First to construct Vx(x), let c = θ2
θ1

> 0 be the ratio
between learned weights for the obstacle and the attractor
feature. The value function after the affine transformation is

Vx(x) = −1 ∗ V (x, 0) = x2 +
c

(x− 1)2 + d2
.

We examine necessary conditions for Vx(x)’s minima based
on the obstacle distance, d, and the coefficient c. Point x0 is
local minima if

dVx
dx

(x0) = 2x0 −
2c(x0 − 1)

((x0 − 1)2 + d2)2
= 0, (6)



and the second derivative is positive,

d2Vx
dx2

(x0) = 2 + 2c
(x0 − 1)2 − d2

((x0 − 1)2 + d2)3
> 0. (7)

For 6 to hold, the following must be the case,

x0 < −1, or x0 > 0, (8)

and given (8), (7) holds when,

‖x0 − 1‖ > ‖d‖. (9)

We conclude that the value function (2) for dynamical
obstacle avoidance has two local maxima, one to the left
of the goal, and the other one to the right of the obstacles. If
the agent is located between the goal and the obstacles, it will
settle at the equilibrium point to the left of the goal. If the
agent is on the right side of the obstacles, it will settle to the
right of the obstacle, unless the obstacles move. Further, the
equilibrium point tend to the goal, as the distance between
the obstacles increase.

To verify the analysis, we perform an empirical study,
depicted in 3. The value function either has a single maxima
near an attractor (magenta, and cyan lines in Figure 3), has
two maxima (blue and green lines), or has an inflection
point near the obstacles (red line). Inspection of the partial
derivative ∂V

∂y at the minima points in Figure 3 reveals that
these points are saddle points.

In summary, when the obstacles are far enough apart there
is only a global maximum. As the obstacles come closer
together, a new region of attraction forms on the other side
of the obstacle. If the agent gets into the local maximum
region of attraction, gradient-descend methods will trap it.
Sampling-based greedy methods such as HOOT, however,
might get the agent out of the region of attraction if it is
sufficiently close to the boundary.

X (m)
-6 -4 -2 0 2 4 6

Va
lu

e 
Fu

nc
tio

n

-40

-35

-30

-25

-20

-15

-10

-5

d = 0.001

d = 0.005

d = 0.1

d = 0.2

d = 1

Fig. 3. Value function inflection points for c = 100.

VI. RESULTS

We now demonstrate PEARL for the Dynamic Obstacle
Avoidance Task. PEARL was implemented in MATLAB and
all experiments were run on an Intel i3-2120 at 3.3GHz with
4GB RAM.

Figure 1 illustrates the testing environment and task for
the point-like holonomic robot to navigate from the starting
location to the goal without colliding with circular obstacles.

The robot observes only the current position of the closest
obstacle, and has no information about its velocity.

Learning Setup: We use 4 stationary obstacles placed at
[3m, 0m], [0m, 3m], [0m, −3m], [−3m, 0m] to learn the
weights between the two features. The goal is at the origin.
The sampling space is inside a two-dimensional hypercube
[−5m, 5m]2. The robot has a maximum speed of 0.37m/s,
and a maximum acceleration of 3m/s2. We run AVI [5] with
HOOT policy approximation [19], as the learning agent in
PEARL for 300 iterations to learn the feature vector weights.

Learning Result: The resulting weights are θ = [−0.23 −
0.1696]T . All simulations are done at 10 Hz. The time to
learn is 123 s.

Planning Environment Setup: The planning task envi-
ronment is illustrated in Figure 1. The robot must travel from
the start position [25m, 0m] to the goal at [−25m, 0m]
under the same speed and acceleration constraints as used
for learning.

We maintain the constant density of moving obstacles by
restricting the robot and moving obstacles to lie in a circle
with radius 50m. When an obstacle hits the boundary of the
circle, it is transported to the antipodal position on the circle
and continues evolving from this new position. The resulting
density of moving obstacles is similar to [3].

Obstacles Setup: To demonstrate motion planning with
PEARL in environments with many moving obstacles with
complex stochastic dynamics, our planning environment has
N = {300, 450, 600, 750, 900} randomly placed moving
obstacles with hybrid stochastic dynamics. The hybrid dy-
namics involves three stochastic dynamics modes (linear, arc,
and swerve). An obstacle is in one of the three modes at any
given moment and the initial mode is randomly determined
according to the initial probability shown in Figure 4. Every
Tresample = 1 s, the obstacle has a probability of 0.1 to switch
mode and the probability of switching to a particular mode
is specified in Figure 4.

Fig. 4. Hybrid stochastic dynamics includes three stochastic dy-
namics modes (linear, arc and swerve) and probabilities to switch
modes. The initial percentage value represents the number ratio at
the beginning of the expriment.

Obstacles in linear dynamics mode has a fixed heading
but the speed of travel is sampled stochastically from the set:
{0.1, 0.2, 0.5, 0.7} m/s with probability {0.4, 0.1, 0.2, 0.3}.
Obstacles in arc dynamics mode move counter clock-wise
with radius 5m at a stochastically sampled angular speed



from the set {0.039, 0.058, 0.088, 0.117} rad/s with prob-
ability {0.4, 0.1, 0.2, 0.3}. Obstacles in swerve dynamics
mode are changing heading linearly at the rate of π/3 rad/s
between [−φinvert, φinvert]. φinvert is sampled uniformly
between [−π/2, π/2]. All obstacles, regardless of dynamics
modes, resample stochastically with frequency 1

Tresample
.

The hybrid stochastic dynamics is highly complex and
unpredictable. Figure 5 trajectories show the hybrid dynam-
ics (magenta) generates unpredictable and diverging paths
between runs, e.g., (dark and light trajectories, also numbered
1 and 2 in the legend). For comparison, trajectories with
constant dynamics modes (blue, grey and green) are also
shown.

X (m)
-10 -5 0 5

Y
 (

m
)

0

5

10

15

20
Swerve 1
Swerve 2
Linear 1
Linear 2
Arc 1
Arc 2
Hybrid 1
Hybrid 2

Fig. 5. Example paths of stochastically moving obstacles in various
dynamics modes. All obstacles start at the origin and move for 50 s.
The dark and light magenta obstacles have hybrid dynamics, which
switches between all three modes probabilistically. For comparison,
constant dynamics modes are also shown. The dark and light
green/blue trajectories are in constant linear/arc dynamics mode
while the black and grey trajectories are in constant swerve mode.

The obstacles are circles with radius robs = 0.5m. The
average speed of obstacles (0.37m/s regardless of dynamics
modes) is identical to the maximum speed of the robot.

Comparison Methods: We compared our method with
two obstacle avoidance methods, which, similarly to PEARL,
only consider the current position (and velocity) of obstacles:
Gaussian APF and VO. The Gaussian APF method considers
only the position of obstacles. It combines a linear attractive
potential toward the goal and a repulsive potential from
obstacles [17]. The obstacle potentials are Gaussians with
σ = 0.45m around obstacles, tuned empirically for this
problem. The relative strength between the attractive and
repulsive potential, α, has a significant impact on the success
rate and needs to be manually tuned. Larger α represents
a more goal-greedy robot behavior. We compared various
values of α to our method. VO considers the position and
velocity of obstacles [9]. A C++ implementation of ORCA
[26] was downloaded and modified to support a single robot
with multiple moving obstacles from [1]. This was done
by disabling the VO calculation and reciprocal collision
avoidance for agents acting as moving obstacles. The agent
acting as the robot calculates VOs in order to avoid moving

obstacles.
Planning Result: Figure 6a and 6b show that planning

with PEARL has a higher probability of successfully avoid-
ing obstacles, and reaches the goal in less time compared
to the Gaussian APF method. The success rate and task
finish time of the Gaussian method depends greatly on the
parameter α. This parameter has to be tweaked manually
or by optimization algorithms [25] after many planning
trials. PEARL balances the features (similar to finding the
optimal α) in the learning phase with a simplified scenario,
and is able to transfer the weights to the online plan with
comparable or better performance.

Figure 6a also shows that PEARL has a higher success
rate than VO. This is primarily due to VO’s optimal velocity
obstacle formulation, which assumes the obstacle has a fixed
velocity. This results in trajectories optimal in finish time
but very small clearance to obstacles. This often causes
collisions with the highly unpredictable obstacles. PEARL
on the other hand, by balancing the goal reaching and
obstacle avoidance features, was able to generate trajectories
with enough clearance to account for the unpredictability of
obstacle motion. In addition, Figure 6b shows the running
time per planning step for PEARL is lower than VO, even
though PEARL is implemented in MATLAB and VO is in
C++. PEARL scales linearly with the number of obstacles
and is capable of generating higher success rate trajectories
in real-time (Figure 6c). This suggests that PEARL is a viable
alternative method for dynamic obstacle avoidance, even
when the obstacles are moving with highly unpredictable
hybrid stochastic dynamics.

VII. CONCLUSION AND FUTURE WORK

This paper presents PEARL, a solution for high-
dimensional preference-balancing motion problems, that is
efficient, adaptive, and controls the agent in real-time. The
method uses features that work in continuous domains,
scale polynomially with the problem’s dimensionality, and
are polymorphic with respect to the domain dimensionality.
PEARL was demonstrated on a complex Dynamic Obstacle
Avoidance Task where the agent has to progress toward the
goal while avoiding collision with 900 moving obstacles with
highly unpredictable hybrid stochastic dynamics using only
limited information about the environment. Our experiments
show that PEARL outperforms the traditional Gaussian APF
method and VO, a state of art algorithm for the obstacle
avoidance.

In future work, we plan to investigate the relationship
between the difficulty of the training environment and the
planning environment. In particular, we will impose stronger
kinodynamic constraints to the robot and faster moving
obstacles to tune the trade-off between learning and planning
difficulties.

ACKNOWLEDGMENTS

The authors thank Marco Morales for the feedback on the
manuscript. We thank Jur Van Den Berg for feedbacks on
modifying ORCA. PEARL was developed by Faust while



300 450 600 750 900

Number of Obstacles

0

20

40

60

80

100

S
u

cc
e

ss
 R

a
te

 %

PEARL

α = 0.1

α = 0.01

α = 0.001

VO

(a) Success rate

300 450 600 750 900
Numer of Obstacles

150

200

250

300

350

400

Ta
sk

 F
in

is
h 

Ti
m

e 
(s

)

PEARL
α = 0.1
α = 0.01
α = 0.001
VO

(b) Task Finish Time

300 450 600 750 900
Number of Obstacles

0

5

10

15

20

25

30

35

40

45

R
un

ni
ng

 T
im

e 
P

er
 P

la
nn

in
g 

S
te

p 
(m

s)

PEARL
Gaussian
VO

(c) Running time

Fig. 6. Trajectory characteristics (averaged over 200 trials) for environments with varied complexity (number of obstacles). The agent
planned with the same policy for all runs. A policy learned with four static obstacles. (a) Collision-free success rate of finishing the task.
The error bars are computed using the 99% confidence interval formalism. (b) Amount of time for the agent to reach the goal without
collision, the dotted line is the minimum finish time without obstacles. (c) Running time per planning step. PEARL has a higher success
rate and less running time per planning step compared to VO.

at University of New Mexico, and partially supported with
New Mexico Space Grant. This work is partially supported
by National Science Foundation Grant IIS-1528047.

REFERENCES

[1] J. V. D. Berg, S. J. Guy, J. Snape, M. C. Lin, and D. Manocha.
Rvo2 library: Reciprocal collision avoidance for real-time multi-agent
simulation. http://gamma.cs.unc.edu/RVO2/.

[2] L. Buşoniu, R. Babuška, B. De Schutter, and D. Ernst. Reinforcement
Learning and Dynamic Programming Using Function Approximators.
CRC Press, Boca Raton, Florida, 2010.

[3] H.-T. Chiang, N. Malone, K. Lesser, M. Oishi, and L. Tapia. Aggres-
sive moving obstacle avoidance using a stochastic reachable set based
potential fi eld. In Proc. Int. Workshop on Algorithmic Foundations
of Robotics (WAFR), 2014.

[4] H.-T. Chiang, N. Rackley, and L. Tapia. Stochastic ensemble simu-
lation motion planning in stochastic dynamic environments. In Proc.
IEEE Int. Conf. Intel. Rob. Syst. (IROS), pages 3836–3843, 2015.

[5] D. Ernst, M. Glavic, P. Geurts, and L. Wehenkel. Approximate value
iteration in the reinforcement learning context. application to electrical
power system control. International Journal of Emerging Electric
Power Systems, 3(1):1066.1–1066.37, 2005.

[6] A. Faust, H.-T. Chiang, N. Rackley, and L. Tapia. Dynamic obstacle
avoidance with PEARL: Preference appraisal reinforcement learning.
In Second Annual Machine Learning in Planning and Control of Robot
Motion Workshop at IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) 2015, Hamburg, Germany, October 2015.

[7] A. Faust, I. Palunko, P. Cruz, R. Fierro, and L. Tapia. Automated aerial
suspended cargo delivery through reinforcement learning. Artificial
Intelligence, 2014.

[8] A. Faust, P. Ruymgaart, M. Salman, R. Fierro, and L. Tapia. Continu-
ous action reinforcement learning for control-affine systems with un-
known dynamics. Automatica Sinica, IEEE/CAA Journal of, 1(3):323–
336, 2014.

[9] P. Fiorini and Z. Shiller. Motion planning in dynamic environments
using velocity obstacles. The International Journal of Robotics
Research, 17(7):760–772, 1998.

[10] W. Glover and J. Lygeros. A stochastic hybrid model for air traffic
control simulation. In Hybrid Systems: Computation and Control,
pages 372–386. Springer, 2004.

[11] H. Hasselt. Reinforcement learning in continuous state and action
spaces. In M. Wiering and M. Otterlo, editors, Reinforcement Learn-
ing, volume 12 of Adaptation, Learning, and Optimization, pages 207–
251. Springer Berlin Heidelberg, 2012.

[12] T. Hester and P. Stone. TEXPLORE: real-time sample-efficient
reinforcement learning for robots. Machine Learning, 90(3):385–429,
2013.

[13] L. Jaillet and T. Simeon. A PRM-based motion planner for dynam-
ically changing environments. In Proc. IEEE Int. Conf. Intel. Rob.
Syst. (IROS), 2004.

[14] M. Kallman and M. Mataric. Motion planning using dynamic
roadmaps. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages
4399–4404, 2004.

[15] J. Kober, D. Bagnell, and J. Peters. Reinforcement learning in robotics:
A survey. International Journal of Robotics Research, 32(11):1236–
1272, 2013.

[16] T. Kunz and M. Stilman. Manipulation planning with soft task
constraints. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1937–1942, October 2012.

[17] C.-P. Lam, C.-T. Chou, K.-H. Chiang, and L.-C. Fu. Human-centered
robot navigation towards a harmoniously human–robot coexisting
environment. Robotics, IEEE Transactions on, 27(1):99–112, 2011.

[18] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006.

[19] C. Mansley, A. Weinstein, and M. Littman. Sample-based planning
for continuous action markov decision processes. In Proc. of Int.
Conference on Automated Planning and Scheduling, 2011.

[20] M.Otte and E.Frazzoli. RRT-X: Real-time motion planning/replanning
for environments with unpredictable obstacles. In Proc. Int. Workshop
on Algorithmic Foundations of Robotics (WAFR), 2014.

[21] K. Mülling, J. Kober, and J. Peters. A biomimetic approach to robot
table tennis. Adaptive Behavior, 19(5):359–376, 2011.

[22] N. Rivera, J. A. Baier, and C. Hernandez. Weighted real-time heuristic
search. In Proceedings of the 2013 International Conference on Au-
tonomous Agents and Multi-agent Systems, AAMAS ’13, pages 579–
586, Richland, SC, 2013. International Foundation for Autonomous
Agents and Multiagent Systems.

[23] A. C. Shkolnik and R. Tedrake. Path planning in 1000+ dimensions
using a task-space voronoi bias. In Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), pages 2061–2067. IEEE, may 2010.

[24] M. Stilman. Global manipulation planing in robot joint space with
task constraints. IEEE/RAS Transactions on Robotics, 26(3):576–584,
2010.

[25] K. C. Tan and W. Ming-Liang. Evolutionary artificial potential fields
and their application in real time robot path planning. In Evolutionary
Computation, 2000. Proceedings of the 2000 Congress on, pages 256–
263, 2000.

[26] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha. Reciprocal n-
body collision avoidance. In Robotics research, pages 3–19. Springer,
2011.

[27] C. Wirth and J. Fürnkranz. Preference-based reinforcement learning:a
preliminary survey. In ECML/PKDD-13 Workshop on Reinforcement
Learning from Generalized Feedback: Beyond Numeric Rewards, Sep
2013.

[28] C. Wu. Novel function approximation techniques for large-scale
reinforcement learning. PhD thesis, Northeastern University, Apr
2010.


