RSA

Rivest**S**hamir**A**dleman

RSA Secure?

What makes RSA difficult?

RSA Secure?

- What makes RSA difficult?
 - Factoring is hard!
 - Well at least for large integers

History

- Was developed independently by Clifford Cocks in 1973
 - However, it was classified as secret and RSA guys never knew about it.
 - It was declassified in 1998
 - More about the patents stuff on Wikipedia

Encipher

$$c = m^e \mod n$$

Decipher

 $m = c^d \mod n$

Variables

- n = pq, where p and q are prime numbers
- e : $gcd(e, \phi(n)) = 1$ - $\phi(n) = (p-1)(q-1)$
- $d = e^{(-1)} \mod \varphi(n)$

Example code

- n = 77
- d = 53
- e = 17
- Encode the message then decode the message. Use the weird print function (wprint) to see if you got it right.

Quantum Stuff

- Qubit
 - Has 3 states (sort of)
 - 0
 - 1
 - Superposition of the two states

Quantum Stuff

- Qubit can be in states described previously, but when read must be 0 or 1.
 - Measuring the system changes it

Quantum Stuff

- Quantum Entanglement
 - Two objects interact and become entangled
 - Anything affecting either side causes the other to be changed
 - This holds even if the entangled objects are separated over long distances

Quantum Key Exchange

 How would this be helpful for exchanging keys secretly?

Quantum Key Exchange

- How would this be helpful for exchanging keys secretly?
 - If we can tell someone is eavesdropping on the conversation then we know when the key is compromised

Quantum Key Exchange

- How would this be helpful for exchanging keys secretly?
 - If we can tell someone is eavesdropping on the conversation then we know when the key is compromised
 - Is it just theoretical?

Shores Algorithm

 An algorithm that runs in polynomial time that factors a number N.

Shores Algorithm

- An algorithm that runs in polynomial time that factors a number N.
 - So what can we do with that?

Shores Algorithm

- An algorithm that runs in polynomial time that factors a number N.(1994)
 - So what can we do with that?
 - BREAK RSA! O((log n)³)
 - Its been done on a 7 qubit quantum computer

Grovers Algorithm

- Grovers search algorithm
 - Searching in unsorted database
 - Quantum algorithm that runs on O(sqrt(N))
 - Traditionally O(N)

Grovers Algorithm

- Cuts the complexity by the square root
 - So what? Are there any implications to symmetric crypto?

Grovers Algorithm

- Cuts the complexity by the square root
 - So what? Are there any implications to symmetric crypto?
 - NO. Just double the key and you are back to where you started on classical computers

Take Away

- Asymmetric crypto?
- Symmetric crypto?

Take Away

- Asymmetric crypto: is dead in the face of quantum computers when/if they arrive
- Symmetric crypto: lives in the face of quantum computers
 - How to exchange keys though?

Take Away

- Asymmetric crypto: is dead in the face of quantum computers when/if they arrive
- Symmetric crypto: lives in the face of quantum computers
 - How to exchange keys though?
 - Quantum Key distribution!