OpenGL Transformations

Ed Angel
Professor of Computer Science, Electrical and Computer Engineering, and Media Arts
University of New Mexico
Objectives

• Learn how to carry out transformations in OpenGL
 - Rotation
 - Translation
 - Scaling

• Introduce OpenGL matrix modes
 - Model-view
 - Projection
OpenGL Matrices

- In OpenGL matrices are part of the state
- Multiple types
 - Model-View (GL_MODELVIEW)
 - Projection (GL_PROJECTION)
 - Texture (GL_TEXTURE) (ignore for now)
 - Color(GL_COLOR) (ignore for now)
- Single set of functions for manipulation
- Select which to manipulated by
 - glMatrixMode(GL_MODELVIEW);
 - glMatrixMode(GL_PROJECTION);
Current Transformation Matrix (CTM)

• Conceptually there is a 4 x 4 homogeneous coordinate matrix, the *current transformation matrix* (CTM) that is part of the state and is applied to all vertices that pass down the pipeline.

• The CTM is defined in the user program and loaded into a transformation unit.

\[p' = C \cdot p \]
CTM operations

• The CTM can be altered either by loading a new CTM or by postmultiplication
 Load an identity matrix: \(C \leftarrow I \)
 Load an arbitrary matrix: \(C \leftarrow M \)

 Load a translation matrix: \(C \leftarrow T \)
 Load a rotation matrix: \(C \leftarrow R \)
 Load a scaling matrix: \(C \leftarrow S \)

 Postmultiply by an arbitrary matrix: \(C \leftarrow CM \)
 Postmultiply by a translation matrix: \(C \leftarrow CT \)
 Postmultiply by a rotation matrix: \(C \leftarrow CR \)
 Postmultiply by a scaling matrix: \(C \leftarrow CS \)
Rotation about a Fixed Point

Start with identity matrix: \(C \leftarrow I \)
Move fixed point to origin: \(C \leftarrow CT \)
Rotate: \(C \leftarrow CR \)
Move fixed point back: \(C \leftarrow CT^{-1} \)

Result: \(C = TR \; T^{-1} \) which is backwards.

This result is a consequence of doing postmultiplications. Let’s try again.
Reversing the Order

We want $C = T^{-1} R T$
so we must do the operations in the following order

\[
\begin{align*}
C & \leftarrow I \\
C & \leftarrow C T^{-1} \\
C & \leftarrow C R \\
C & \leftarrow C T
\end{align*}
\]

Each operation corresponds to one function call in the program.

Note that the last operation specified is the first executed in the program.
CTM in OpenGL

- OpenGL has a model-view and a projection matrix in the pipeline which are concatenated together to form the CTM
- Can manipulate each by first setting the correct matrix mode
Load an identity matrix:

```c
 glLoadIdentity();
```

Multiply on right:

```c
 glRotatef(theta, vx, vy, vz)
```

theta in degrees, (vx, vy, vz) define axis of rotation

```c
 glTranslatef(dx, dy, dz)
```

```c
 glScalef(sx, sy, sz)
```

Each has a float (f) and double (d) format (**glScaled**)

Example

• Rotation about z axis by 30 degrees with a fixed point of (1.0, 2.0, 3.0)

```c
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(1.0, 2.0, 3.0);
glRotatef(30.0, 0.0, 0.0, 1.0);
glTranslatef(-1.0, -2.0, -3.0);
```

• Remember that last matrix specified in the program is the first applied
Arbitrary Matrices

• Can load and multiply by matrices defined in the application program

 \[
 \text{glLoadMatrixf}(m) \\
 \text{glMultMatrixf}(m)
 \]

• The matrix \(m \) is a one dimension array of 16 elements which are the components of the desired 4 x 4 matrix stored by columns

• In \(\text{glMultMatrixf} \), \(m \) multiplies the existing matrix on the right
Matrix Stacks

- In many situations we want to save transformation matrices for use later
 - Traversing hierarchical data structures (Chapter 10)
 - Avoiding state changes when executing display lists
- OpenGL maintains stacks for each type of matrix
 - Access present type (as set by `glMatrixMode`) by

    ```
    glPushMatrix()
    glPopMatrix()
    ```
Reading Back Matrices

• Can also access matrices (and other parts of the state) by *query* functions

 GLfloat m[16];
 glGetFloatv(GL_MODELVIEW, m);

• For matrices, we use as

 glGetIntegerv
 glGetFloatv
 glGetBooleanv
 glGetDoublev
 glEnable

Using Transformations

- Example: use idle function to rotate a cube and mouse function to change direction of rotation
- Start with a program that draws a cube (colorcube.c) in a standard way
 - Centered at origin
 - Sides aligned with axes
 - Will discuss modeling in next lecture
```c
void main(int argc, char **argv)
{
    glutInit(&argc, argv);
    glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
    glutInitWindowSize(500, 500);
    glutCreateWindow("colorcube");
    glutReshapeFunc(myReshape);
    glutDisplayFunc(display);
    glutIdleFunc(spinCube);
    glutMouseFunc(mouse);
    glEnable(GL_DEPTH_TEST);
    glutMainLoop();
}
```
Idle and Mouse callbacks

```c
void spinCube()
{
    theta[axis] += 2.0;
    if( theta[axis] > 360.0 ) theta[axis] -= 360.0;
    glutPostRedisplay();
}

void mouse(int btn, int state, int x, int y)
{
    if(btn==GLUT_LEFT_BUTTON && state == GLUT_DOWN)
        axis = 0;
    if(btn==GLUT_MIDDLE_BUTTON && state == GLUT_DOWN)
        axis = 1;
    if(btn==GLUT_RIGHT_BUTTON && state == GLUT_DOWN)
        axis = 2;
}
```
void display()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();
 glRotatef(theta[0], 1.0, 0.0, 0.0);
 glRotatef(theta[1], 0.0, 1.0, 0.0);
 glRotatef(theta[2], 0.0, 0.0, 1.0);
 colorcube();
 glutSwapBuffers();
}

Note that because of fixed from of callbacks, variables such as \texttt{theta} and \texttt{axis} must be defined as globals.

Camera information is in standard reshape callback.
Using the Model-view Matrix

• In OpenGL the model-view matrix is used to
 - Position the camera
 • Can be done by rotations and translations but is often easier to use `gluLookAt`
 - Build models of objects
• The projection matrix is used to define the view volume and to select a camera lens
Model-view and Projection Matrices

• Although both are manipulated by the same functions, we have to be careful because incremental changes are always made by postmultiplication
 - For example, rotating model-view and projection matrices by the same matrix are not equivalent operations. Postmultiplication of the model-view matrix is equivalent to premultiplication of the projection matrix
Smooth Rotation

• From a practical standpoint, we are often want to use transformations to move and reorient an object smoothly
 - Problem: find a sequence of model-view matrices M_0, M_1, \ldots, M_n so that when they are applied successively to one or more objects we see a smooth transition

• For orientating an object, we can use the fact that every rotation corresponds to part of a great circle on a sphere
 - Find the axis of rotation and angle
 - Virtual trackball (see text)
Incremental Rotation

- Consider the two approaches
 - For a sequence of rotation matrices R_0, R_1, \ldots, R_n, find the Euler angles for each and use $R_i = R_{iz} R_{iy} R_{ix}$
 - Not very efficient
 - Use the final positions to determine the axis and angle of rotation, then increment only the angle

- Quaternions can be more efficient than either
Quaternions

• Extension of imaginary numbers from two to three dimensions
• Requires one real and three imaginary components i, j, k

\[q = q_0 + q_1 i + q_2 j + q_3 k \]

• Quaternions can express rotations on sphere smoothly and efficiently. Process:
 - Model-view matrix \rightarrow quaternion
 - Carry out operations with quaternions
 - Quaternion \rightarrow Model-view matrix
Interface

- One of the major problems in interactive computer graphics is how to use two-dimensional devices such as a mouse to interface with three-dimensional objects.
- Example: how to form an instance matrix?
- Some alternatives
 - Virtual trackball
 - 3D input devices such as the spaceball
 - Use areas of the screen
 - Distance from center controls angle, position, scale depending on mouse button depressed