
CS 251
Intermediate Programming

Java Basics

Brooke Chenoweth

University of New Mexico

Spring 2025

Prerequisites
These are the topics that I assume that you have
already seen:

• Variables

• Boolean expressions (Conditions)

• If and switch statements

• Loops (for/while)

• Arrays

• Methods / Functions / Procedures

In any language (C, C++, Matlab, Java)

How to program

• Program Design Decisions

• Write / Compile / Execute
• Test your program

• Find errors!!!

• Read manuals
• The book (or other reference books)
• Java Tutorials
• Java API

http://docs.oracle.com/javase/tutorial/index.html
http://docs.oracle.com/javase/7/docs/api/

Programming Style

• Keep it Short and Simple

• Be consistent

• Comment your code (javadoc)!

• Use meaningful variable names

• Use proper indentation (editor can help you)

• Java code conventions

• Javadoc conventions

http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

Program Design
• Break down the program in parts that you can
handle

• Identify parts of a program
• How to solve various parts (algorithms)

• Sketch out what the program should look like
• Draw an object diagram
• Write some pseudo code

Java for non-java progammers
If you have not previously seen Java, the start of
this class will be a bit steep. Remember, there’s
plenty of help available - use it!

Here are a few things to remember:

• Java is not an interpreted language

• Java contains thousands of predefined classes

• The syntax may be different, but the concepts
listed above still apply

The very basics

• Comments (one-line?, multi-line?)

• Program Statements (valid?, invalid?)

• Blocks (braces?, no braces?)

• Variables (simple?, instantiations?), Variable
names

• Loops (for, while, do. . . while)

• Initializations?

• Assignments (valid?, invalid?)

• Constants

Comments
Why comment your code?

• Explain tricky code passages

• Put notes for yourself

• In large projects, comments are paramount
(Why?)

• Java provides a facility called Javadoc – We’ll
be using it.

• No need to comment every line (Why?)

Java Comments
Java has three different types of comments:

• One liner - // Here’s my one line comment

Used to make notes and explain local variables

• Multi liner - /* Several lines of comments */

When using more than one line, this is often
done

• Javadoc - /** Javadoc formatted comment here */

Much more on this later

Program statements
A program statement is usually a line of code that
may be (or not) followed by a delimiter of some
sort, that indicates one step in program execution.

Several statements make a program.

Java Statements

• Most Java statements are followed by a
semicolon – ’;’

• Example 1: int x = 5;

• Example 2: System.out.println("Hello!");

• Some statements (like if statements and
loops), are not followed with a semicolon

Program blocks
A program block is a number of statements that
have somehow been grouped together, this might
be in a method, in a loop, or by themselves.

Java blocks are surrounded by curly braces { }, or
in case where there’s just one line in a block, the
braces can be left out. (Be careful with that!)

Variables

• Are used to hold pieces of information

• Refers to a location in memory

• Should have descriptive names

• Can have different data types

Java Variables
Java is what’s called a strictly typed language. It’s
like math where you have to have all units match up
in a calculation. Java types have to match up as
well.

• All java variables have a specific type

• Converting between the types can be done with
type casting (if allowed)

• Can have arbitrarily long variable names (use
with caution)

• Must be declared before usage

Bits, Bytes, and Prefixes

• 1 bit = 1 or 0, on or off, true or false

• 1 byte = 8 bits (28 = 256 states)

• Prefixes: k = 103, M = 106, G = 109, T =
1012, P = 1015

• Computers: k = 210, M = 220, G = 230, T =
240, P = 250

Cheating companies: 80GB harddrive = 76.3GB
Hard drive specs are given in decimal MB. . .
New set of binary prefix may help with ambiguity:
kibibyte, mebibyte, gibibyte (KiB, MiB, GiB)
(. . . if they ever catch on)

Java Data Types
There are two different types of data types:

• Primitive - These contain only the data they
indicate. There are 8 primitive data types:
boolean, char, byte, short, int,

long, float, double. They vary in the
amount of information they can keep.

• Reference types - Are all other types of
variables, they hold references to objects,
similar to pointers in C and C++.

Java Primitive Data Types
• boolean - Truth values, i.e., true or false -
1 bit

• char - Unicode Characters (2 bytes)
• byte - One byte
• short - Short integer (2 bytes)
• int - Regular integer (4 bytes)

(−231 =⇒ (231 − 1))

• long - Large integer (8 bytes)
• float - Floating point (4 bytes)
• double - Floating point (8 bytes)

(2−1074 =⇒ (2− 2−52) · 21023)

Declaring Java Variables
On the general form it’s:
<data type> <name>;

Some examples:

int x = 10;

double pi = 3.14159265;

char c;

Type casting
Means to “promote” or “demote” one type to
another, but exercise caution because you can lose
precision, hence there are two types of casts:

• Implicit – Safe casts, Java takes care of it
automatically, ex. casting a byte to an int

• Explicit – Unsafe casts, Programmer must
specify the cast.

Examples (supposing variables on prev page):

• Implicit: pi = x; //Ok since int fits in double

• Explicit: x = (int)pi; //Explicit, decimals lost

Java boolean datatype

boolean isOpen = true;

boolean isClosed = false;

true and false are reserved keywords in Java.

Boolean Expressions and Conditions
Often need truth values, i.e.,

• If some condition is satisfied, do this

• Programming representation of a flow chart

• Loop conditions

• Exists in all programming languages

Boolean Expressions
Basic operations such as:

• And – &&

• Or – ||

• Not – !

Truth tables! What do they look like?

A B A and B A or B
F F F F
F T F T
T F F T
T T T T

A not A
F T
T F

Java Flow Control
If and switch statements, and three (or four) types
of loops:

• while

• do. . . while

• for

• Enhanced for loops

An if statement

public class IfExample {

public static void main (String [] args) {

int myNumber = 10;

if (myNumber < 0 || myNumber > 100) {

System.out.println ("Invalid Number");

} else {

System.out.println ("You chose " + myNumber);

}

}

}

The switch statement

public class SwitchExample {

public static void main (String [] args) {

int myNumber = 10;

switch (myNumber) {

case 1: case 2: case 3:

System.out.println ("You got 1, 2, or 3");

break;

case 5:

System.out.println ("You got 5");

break;

default:

System.out.println ("Some other number");

}

}

}

Example while loop

public class WhileLoopExample {

public static void main (String [] args) {

int j = 100, sum = 0;

while (j > 0) {

sum += j;

}

System.out.println ("Sum is: " + sum);

}

}

• But. . . There’s something wrong here?

Example while loop

public class WhileLoopExample {

public static void main (String [] args) {

int j = 100, sum = 0;

while (j > 0) {

sum += j;

}

System.out.println ("Sum is: " + sum);

}

}

• But. . . There’s something wrong here?

Example while loop. . .
We probably want to change the variable we are
testing.
public class WhileLoopExample {

public static void main (String [] args) {

int j = 100, sum = 0;

while (j > 0) {

sum += j--;

}

System.out.println ("Sum is: " + sum);

}

}

Brings us to post/pre decrement/increment
operators
• j++, --j

• How do these work?

Example while loop. . .
We probably want to change the variable we are
testing.
public class WhileLoopExample {

public static void main (String [] args) {

int j = 100, sum = 0;

while (j > 0) {

sum += j--;

}

System.out.println ("Sum is: " + sum);

}

}

Brings us to post/pre decrement/increment
operators
• j++, --j

• How do these work?

Increment and Decrement

• The ++ and -- operators add/subtract 1 from a
variable and reassign the variable to that value.

• x++ or ++x are shorter to type than x += 1 or
x = x + 1

• What’s the difference between ++x and x++ ?

• The difference is noticable when using the value of
the expression.

• Preincrement: ++x

Increments x, returns the new value
• Postincrement: x++

Saves value of x, increments x, returns the old
value

• Use as separate statement and it won’t matter.

Increment and Decrement

• The ++ and -- operators add/subtract 1 from a
variable and reassign the variable to that value.

• x++ or ++x are shorter to type than x += 1 or
x = x + 1

• What’s the difference between ++x and x++ ?
• The difference is noticable when using the value of

the expression.
• Preincrement: ++x

Increments x, returns the new value
• Postincrement: x++

Saves value of x, increments x, returns the old
value

• Use as separate statement and it won’t matter.

Example do-while loop

public class DoWhileLoopExample {

public static void main (String [] args) {

Scanner sc = new Scanner (System.in);

int num = 0;

do {

System.out.print ("Enter a number [1 -100]: ");

num = sc.nextInt ();

} while (num < 1 || num > 100);

}

}

Example for loop

public class ForLoopExample {

public static void main (String [] args) {

for (int i = 0; i < 10; i++) {

System.out.println ("i = " + i);

}

}

}

Note, the curly braces on the loop can be left out if
there’s only one statement in the loop. (This is also
true for other loops and if statements.)
Please don’t! It will come back to bite you when
you add a second statement.

Example enhanced for loop

public class ForLoopExample {

public static void main(String [] args) {

for(String arg : args) {

System.out.println(arg);

}

}

}

Enhanced for loops let you iterate over a collection
or array without manually managing an index
variable. Very handy!

Why Arrays?

• Do you remember your math?

σ =

∑N
i=1 (xi − x)

N − 1

What is this?

• Right... The standard deviation. . .

• So, if you have N variables, of the same type,
but different values, you need N variable
declarations in order to store those values.

• And in a loop, a way of accessing all those
variables in order

Why Arrays?

• Do you remember your math?

σ =

∑N
i=1 (xi − x)

N − 1

What is this?

• Right... The standard deviation. . .

• So, if you have N variables, of the same type,
but different values, you need N variable
declarations in order to store those values.

• And in a loop, a way of accessing all those
variables in order

What is an array?

• An array is basically an indexed variable, just
like the formula on previous slide.

• Array indices always start at 0 (zero). Java
array are 0-based arrays.

• The number of elements in the array can be
accessed through by reading the length
variable in the object.

• That’s right, a Java array is an object

Array declaration

• The standard form is:
<type>[] <variableName>;

• You can declare arrays of any type you want

But. . . The above doesn’t tell you how many
elements there should be in the array

Array declaration
• The standard form is:

<type>[] <variableName> = new <type>[<size>];
• The size tells us how many elements are in
that array

• Arrays are initialized by default (on creation),
this means:

• Arrays of numbers contain all 0’s
• Arrays of reference types contains all null

• If you didn’t create the array, you can still find
out the length of it by using the
<variableName>.length expression

• This means, access the length instance variable in
the array object referred to by the variable
<variableName>.

Array declaration

int[] a;

int[] b = new int [4];

String [] c = new String [3];

a

null

b 0 0 0 0
0 1 2 3

c
0 1 2

Array declaration

int[] a;

int[] b = new int [4];

String [] c = new String [3];

a

null

b 0 0 0 0
0 1 2 3

c
0 1 2

Array declaration

int[] a;

int[] b = new int [4];

String [] c = new String [3];

a

null

b 0 0 0 0
0 1 2 3

c
0 1 2

Array declaration

int[] a;

int[] b = new int [4];

String [] c = new String [3];

a

null

b 0 0 0 0
0 1 2 3

c
0 1 2

Accessing array values

• Just like in math, we can read and assign to
different indices of our variables.

• In the following example, I’m assuming that
indexed variables in math are 1-based, and that
appropriate Java arrays (of the right type) have
already been created.
Math Java
xi x[i-1]

y = x3 y = x[2];

x5 = 15.67 x[4] = 15.67;

k = x1−x2
y1−y2 k = (x[0]-x[1])/(y[0]-y[1]);

Array Initialization
• Arrays can be directly initialized to values by
using what’s called “Array Initializers”:

• int[] arr = {5, 3, 8, 4};

Creates an int array of length 4 with above values.
• String[] sArr = {"Hello", "World"};

Creates a String array of length 2 with the above
values

• Note! Java arrays are immutable once created.
This means:

• You can change values of the elements
• You can not change the length of the array once

it’s been created.

Assigning arrays to each other
Since Java arrays are reference types we have to
take some special considerations when trying to
assign one to another:

String [] arr1 = { "Hello", "World" };

String [] arr2 = { "Goodbye", "World" };

arr1 = arr2; // Array assignment

• In the above example both variables arr1 and
arr2 now refer to the array ["Goodbye", "World"],
and no variable refers to the original arr1.

• When an object (in this case an array) no
longer has any variables referring to it, its
memory is eventually recycled by means of the
“garbage collector”.

Assigning arrays to each other
String [] arr1 = { "Hello", "World" };

String [] arr2 = { "Goodbye", "Cruel", "World" };

arr1 = arr2; // Array assignment

Before
assignment

arr1 Hello World

arr2 Goodbye Cruel World

After
assignment

arr1 Hello World

arr2 Goodbye Cruel World

Array of Objects

String [] arr1 = { "Hello", "World" };

String [] arr2 = { "Goodbye", "Cruel", "World" };

Hello Goodbye Cruel World

arr1

arr2

Array Example
public class ArrayExample1 {

public static void main (String [] args) {

int[] x = new int [15]; // Array with 15 elements

int[] y = new int [15];

// Give each element a value

for (int i = 0; i < x.length; i++) {

x[i] = i;

y[i] = x.length - i - 1;

}

// Print out every element in the array

for (int element: x) {

System.out.println (element);

}

// Copy values from one array to the other

for (int i = 0; i < x.length; i++) {

y[i] = x[i];

}

}

}

