# **Radiobiology Overview**

**Lonny Trestrail** 

13 October 2008

## Objectives

- DNA Structure & Strand Breaks
- Ionizing Radiation & Cell Killing
- LET & RBE; Radiation Absorption
- Cell Survival
- Stochastic & Deterministic Effects
- Radiation Carcinogenesis & Latency
- 4 R's of Radiobiology
- Fractionation

#### **DNA Structure**

 DNA is a large molecule with a double-helix structure

- Sugar phosphate backbone with nitrogenous bases (ACTG)
  - Adenine Thymine
  - ◊ Cytosine Guanine



## **DNA Strand Breaks**

A Normal **B** SSB ◊ readily repaired ◊ readily repaired (if well separated) **D** DSB ◊ 0.04x SSBs



## **Classic Radiation Injury Paradigm**



## **Ionizing Radiation – Targeting DNA**

#### Directly Ionizing

- Disrupt the atomic structure, producing chemical and biologic changes
  - $\circ \alpha$  particles, protons
  - ◊ electrons,  $β^-$ ,  $β^+$
- Indirectly Ionizing
  - Give up energy to charged particles, which are able to produce damage.
    - ◊ Neutrons
    - ♦ EM Radiation

# **Cell Killing**

## Cell death defined for:

- Differentiated cells that do not proliferate (nerve, muscle or secretory)
- Proliferating cells
   (stem cells in hematopoietic system)

Loss of reproductive integrity

Dose needed to destroy cell function:

- ◊ Differentiated: 100 Gy
- ◊ Proliferating: < 2 Gy</p>

## LET & RBE

# Linear Energy Transfer (LET)

- Describes the expected value
  - 0
  - f local energy deposition per unit path length
- Relative Biological Effect (RBE)
  - Relates the dose required to cause a specific effect from a particula

type of radiation, to that of a reference dose.

## Linear Energy Transfer (LET)

- Different ionizing particles have different rates of energy deposition.
- Why do we care about the rate?
- Biological effect is hard to measure and quantify either by experiment or by simulations.
- But energy is easy to measure and quantify.
- Can we come up with a relation between energy and biology effect?

## Linear Energy Transfer (LET)

The rate at which energy is deposited as a charged particle travels through matter What would be a good unit for LET? keV / micron
 Lower LET radiation  $\diamond$  X-rays and  $\gamma$ -rays High LET radiation  $\diamond \alpha$  particles and neutrons

## **Relative Biological Effect (RBE)**

- Equal doses of different types of radiation do not produce equal biologic effects.
- The key to the difference lies in the pattern of energy deposition.
  - X-rays vs neutrons
- Relative to what?
  - To a dose of 250 keV x-rays which produce the same biological response

## **Radiation Absorption**

## Direct Action

- Absorbed radiation can interact directly
- ♦ High LET radiation
- Indirect Action
  - Interact with other atoms or molecules to produce free radicals.



- ◊ 80% of cell is composed of water
- ◊ 2/3 of x-ray damage due to hydroxyl radical

# Why do heavy particles have higher energy transfer rates?

### Which one is more damaging?

- ◊ Bows & arrows
- Cannons & bombs



## Cell Survival



## **Stochastic & Deterministic Effects**

- Stochastic
  - Probability increases, not severity



Deterministic (Non-Stochastic)
 Severity increases, not probability
 Sunburn (with a threshold)

## **Radiation Carcinogenesis**

Radiation is a "universal carcinogen" Most tissues, any species, any age Relatively weak Viruses and chemicals are more effective Risk estimates Based on animal and human data  $\sim 1\%$  of induced cancers

#### Latency

- Time interval between irradiation and the appearance of the malignancy
  - ◊ Leukemia, 5-7 years
- Radiation-induced malignancies tend to appear at the same age as spontaneous malignancies of the same type
- Lifelong elevation of the natural agespecific cancer risk.

## **Dose Fractionation**

### What is dose fractionation?

 Divide a prescribed high dose into daily fractions over a period of time

### **Dose Fractionation**



19

#### **Dose Fractionation**

## Factors affecting dose fraction

- Repair of sub-lethal damage
- Reassortment of cells within the cell cycle
- Repopulation
- Reoxygenation
- Why fractionation?
  - Repair of sub-lethal damage and repopulation of the non-cancerous cells
  - Reoxygenation and reassortment of tumor cells into radiosensitive phases

## **Role of Oxygen in Tumor Growth**

Typical tumor architecture:

- a central region of necrosis surrounded by a rim of viable cells
- The gradient of oxygen tension within the tumor
- Hypoxic pose the biggest concern

## Oxygen Tension

Anoxic: Necrotic Hypoxic:WellViable butOxygenated:nonproliferatiGrowth fractionng

Blood Vasculature

Parenchyma

**Stroma** 

Increasing oxygen tension



## Repair

- Repair of intracellular sub-lethal damage occurs within a few hours postirradiation.
- What factors affects repair?
  - Well oxygenated cells are capable of repair
  - Normal cells are well oxygenated
  - ◊ Tumor cells vary

#### Reassortment

Cellular response to radiation

- ◊ Inter-phase death
- Division delay
- ◊ Reproductive failure

 Radiation causes a delay in the progression of cells through the cell cycles, subsequently producing reassortment and synchronous progression of cells in their life cycles.

#### Reassortment

## Why is reassortment important?

 Radio-sensitivity is a function of the position of the cells in cell cycles

#### Question

 Is it possible to administer succeeding fractions when tumor cells are in the most sensitive phase while normal cells are in the most resistent phase?

## Repopulation

- During a multi-fraction treatment, cells in both the tumor and the normal tissue divide and repopulate
- Why is repopulation important?
  - Tumor repopulation risks treatment failure,
     i.e. tumor recurrence.
  - Normal cell repopulation is desirable and necessary in preventing treatment complication.

#### Reoxygenation

 Tumor exhibits a gradient of oxygen tension

 $\diamond$  Normal  $\rightarrow$  Hypoxic  $\rightarrow$  Anoxic

 Hypoxic tumor cells have a sufficient amount of available oxygen to repair sublethal damage, but has a tension low enough to confer a certain degree of radio-resistance may be the determining factor of treatment success.