Development of GPU-based Monte Carlo Simulation Packages for Radiotherapy

Xun Jia xunjia@ucsd.edu 5/23/11

Outline

- Introduction to GPU
- gDPM
 - Motivations
 - Approaches
 - Results
- gCTD/gMCDRR
 - Motivations
 - Approaches
 - Results
- Conclusions

Monte Carlo on GPU

- Speed up MC simulations for radiotherapy on GPU
- Graphics Processing Unit
 - Turn your PC into a supercomputer
 - Tesla C2050
 - 448 processors
 - 575 MHz clock speed
 - 3 GB memory
 - >1Tflops single precision

GPU details

<mark> NVIDIA</mark> .					
GPU card	GeForce 9500 GT	GeForce GTX 480	Tesla C1060	Tesla S1070	Tesla C2050
Price (\$)	~50	~400	~1,400	~8,000	~2,500
Memory (GB)	1	1.5	4	16	3
Computing power (Gflops)	134	1344	936	4147	1288
# of Processors	32	240	240	960	448

CUDA Programming

- Compute Unified Device Architecture
 - Enable us to program GPU via standard programming languages such as C
- An essential conflict between GPU architecture and MC simulation
 - Single Instruction Multiple Data (SIMD)
 - Branching problem in MC simulation
- Optimize memory usage

gDPM project

- Speed up full MC MV dose calculation using GPU
- Dose Planning Method

--- Sempau et al, Phys. Med. Biol., 45, 2263(2000)

- Designed for radiotherapy simulation
- Fast compared to other general purposed MC packages
- Relatively simple simulation process --- easy to program
- Key idea
 - Same physics as in DPM
 - Maintain computation accuracy
 - Obtain speed up by optimizing code for GPU architecture
- Approaches
 - First rewrite DPM in C
 - Write CUDA code on GPU

gDPM v1.0

- Method
 - Treat each computational thread on a GPU as an independent computing unit
 - Multiple thread run simultaneously

Implementation

- Each thread keeps its own RND seed
- Each thread tracks its own particles
- Transfer dose deposition in all threads to a global counter at the end of GPU kernel
- Speed-up factors of about 5.0 ~
 6.6 times have been observed

UC San Diego RADIATION ONCOLOGY

gDPM v2.0

• Separate photon and electron transport

gDPM v2.0

- Improve random number generator efficiency
 - Use CURAND, a light-weight RND generator provided by NVIDIA
- Interpolation of cross section data
 - Linear interpolation is used in gDPM v2.0
 - No loss of accuracy is observed
 - GPU support hardware interpolation
- Optimize GPU memory access
 - Use shared memory

Other Components

- Load DICOM RT format to define patient anatomy (voxel materials and structure information)
- Enable gantry, couch, collimator rotations
- Flexible source function
 - User can supplement with their own realistic Linac source model or phase space file
- Enable simulating fluence map and MLC

Dose caculation in realistic IMRT & VMAT treatment plans

Fluence map

- Fluence map: a set of beamlets I with associated weights p_I
- Metropolis sampling

```
Start with a initial beamlet I_0
for i = 1 \dots N
Generate a trial beamlet J
Generate a random number r
if r < p(J)/p(I_{i-1})
I_i = J
else
I_i = I_{i-1}
endif
Sample a particle inside the
beamlet I_i uniformly
end
```


Electron Cases

TECHNOLOGIES

RADIATION ONCOLOGY

Photon Cases

• Results

RapidArc Cases

- Photon point source, 6 MV spectrum
- 2 arcs

IMRT Case

- Photon point source, 6 MV spectrum
- 8 non-coplanar beams

Uncertainty is amplified by 50 times for clear visualization

15

Results

Average relative uncertainty $\langle \sigma_D / D \rangle$ (computed in region where $D > 0.5D_{max}$), Passing rate P_t .

Source	# of Histories	Case	$\langle \sigma_D / D \rangle$	$\langle \sigma_D / D \rangle$	P_t
type			CPU (%)	GPU (%)	(%)
20MeV Electron	2.5×10 ⁶	water-lung-water	0.99	0.98	99.9
20MeV Electron	2.5×10 ⁶	water-bone-water	0.98	0.99	100.0
6MV Photon	2.5×10 ⁸	water-lung-water	0.71	0.72	98.5
6MV Photon	2.5×10 ⁸	water-bone-water	0.64	0.64	96.9
6MV Photon	2.5×10 ⁸	VMAT HN patient	N/A	0.88	N/A
6MV Photon	2.5×10 ⁸	VMAT Prostate patient	N/A	0.78	N/A
6MV Photon	2.5×10 ⁸	IMRT HN patient	N/A	0.57	N/A

CPU: Intel Xeon processor with 2.27GHz

GPU: NVIDIA Tesla C2050

Results

Execution time T, and speed-up factor T_{CPU}/T_{GPU} for four different testing

Source type	# of Histories	Case	T _{CPU} (sec)	T _{GPU} (sec)	T_{CPU}/T_{GPU}
20MeV Electron	2.5×10 ⁶	water-lung-water	117.5	2.05	57.3
20MeV Electron	2.5×10 ⁶	water-bone-water	127.0	1.97	64.5
6MV Photon	2.5×10 ⁸	water-lung-water	1403.7	18.6	75.5
6MV Photon	2.5×10 ⁸	water-bone-water	1741.0	24.2	71.9
6MV Photon	2.5×10 ⁸	VMAT HN patient	N/A	36.5	N/A
6MV Photon	2.5×10 ⁸	VMAT Prostate patient	N/A	46.7	N/A
6MV Photon	2.5×10 ⁸	IMRT HN patient	N/A	48.0	N/A

CPU: Intel Xeon processor with 2.27GHz GPU: NVIDIA Tesla C2050 UC San Diego RADIATION ONCOLOGY

Results

- Multi-GPU implementation
 - Bash script to submit job to 4 GPUs (2 GTX590)
 - Summation and statistics are performed

Source type	# of Histories	Case	T _{GPU} (sec)	T _{4GPU} (sec)	T _{GPU} /T _{4GPU}
6MV Photon	4×10 ⁹	water-lung-water	312.82	78.4	3.99
6MV Photon	4×10 ⁹	water-bone-water	403.75	101.19	3.99

gCTD/gMCDRR project

- Fast kV MC simulation for CT/CBCT scans
 - gCTD: assess radiation dose received during CT scans

Dose accumulation

CBCT scan

calculation

Medical record

- gMCDRR: simulate x-ray projections
- Developed based on gDPM but with simpler physics
 - Only photon transport
 - Secondary particle is not needed, so no stack
- gCTD: record dose to voxel
- gMCDRR: record photon energy fluence at imager

Source simulation

- Generate source particle energy according to a known spectrum
 - Generate particles in the entire energy range
 - Simulate each energy bin sequentially

TECHNOLOGIES

- Generate source particle direction according to measured air scan
 - Using Metroplis algorithm
 - Example: full fan bowtie filter

gCTD Results

- NCAT phantom
 - CBCT scan, gantry angle: 0~360 degree

Uncertainty is amplified by 50 times for clear visualization

gCTD Results

- Head-and-Neck patient
 - CBCT scan, gantry angle: 0~200 degree

Uncertainty is amplified by 10 times for clear visualization

mean

gCTD Results

Case	Resolution	$egin{array}{c} \langle \sigma_{\!_D}\!/\!D angle \ (\%) \end{array}$	T(sec)
NCAT	128×128×60	0.47	57.5
HN Patient	256×256×160	0.67	128

- Uncertainty is computed in high dose region, D> 0.3D_{max}
- 10⁹ particles simulated using NVIDIA C2050

gMCDRR Results

Head-and-Neck patient

• 10¹⁰ particles simulated, ~10 min on Tesla C2050

gMCDRR Results

• NCAT phantom

• 10¹⁰ particles simulated, ~10 min on Tesla C2050

Conclusion

- gDPM: dose calculation for a realistic plan within 1 min or less (with multi-GPU)
- gCTD/gMCDRR: fast dose calculation and kV image simulation for CBCT
- GPU is powerful for MC simulation in radiotherapy
 - Pros: inexpensive, very powerful
 - Cons:

- Requires careful implementation
- Not as straightforward as using MPI on a cluster
- Rewriting/restructuring code is sometimes needed

Acknowledgement

- Supervisor: Steve Jiang
- Carrie Jiang, Mike Folkerts
- All group members
- SDSC: Dongju Choi, Amit Majumdar

CENTER FOR

RADIOTHERAPY

TECHNOLOGIES

ADVANCED