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ABSTRACT
Vulnerabilities that allow worms to hijak the ontrol ow
of eah host that they spread to are typially disovered
months before the worm outbreak, but are also typially dis-
overed by third party researhers. A determined attaker
ould disover vulnerabilities as easily and reate zero-day
worms for vulnerabilities unknown to network defenses. It
is important for an analysis tool to be able to generalize
from a new exploit observed and derive protetion for the
vulnerability.
Many researhers have observed that ertain prediates

of the exploit vetor must be present for the exploit to
work and that therefore these prediates plae a limit on
the amount of polymorphism and metamorphism available
to the attaker. We formalize this idea and subjet it to
quantitative analysis with a symboli exeution tool alled
DACODA. Using DACODA we provide an empirial anal-
ysis of 14 exploits (seven of them atual worms or attaks
from the Internet, aught by Minos with no prior knowledge
of the vulnerabilities and no false positives observed over a
period of six months) for four operating systems.
Evaluation of our results in the light of these two models

leads us to onlude that 1) single ontiguous byte string
signatures are not e�etive for ontent �ltering, and token-
based byte string signatures omposed of smaller substrings
are only semantially rih enough to be e�etive for ontent
�ltering if the vulnerability lies in a part of a protool that
is not ommonly used, and that 2) pratial exploit analysis
must aount for multiple proesses, multithreading, and
kernel proessing of network data neessitating a fous on
primitives instead of vulnerabilities.
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1. INTRODUCTION
Zero-day worms that exploit unknown vulnerabilities are

a very real threat. Typially vulnerabilities are disovered
by \white hat" hakers using fuzz testing [26, 27℄, reverse
engineering, or soure ode analysis and then the software
vendors are noti�ed. The same tehniques for disovering
these vulnerabilities ould be as easily employed by \blak
hat" hakers, espeially now that omputer riminals are
inreasingly seeking pro�t rather than mishief. None of
the 14 exploits analyzed in this paper are for vulnerabilities
disovered by the vendors of the software being attaked.
A vulnerability gives the attaker an important primitive (a
primitive is an ability the attaker has, suh as the ability to
write an arbitrary value to an arbitrary loation in a proess'
address spae), and then the attaker an build di�erent
exploits using this primitive.
The host ontains information about the vulnerability and

primitive that annot be determined from network traÆ
alone. It is impossible to generalize how the attak might
morph in the future without this information. In order to
respond e�etively during an inipient worm outbreak, an
automated analysis tool must be able to generalize one in-
stane of an exploit and derive protetion for the exploited
vulnerability, sine a worm an build multiple exploits for
the same vulnerability from primitives.

1.1 The Need to Be Vulnerability-Specific
If a honeypot or network tehnology generated an

exploit-spei� signature for every exploit, the worm author



ould trivially subvert ontent �ltering by generating a
new exploit for eah infetion attempt. One approah to
ameliorate this is to ompare multiple exploits and �nd
ommon substrings. This an be done in the network [21,37℄
or from TCP dumps of di�erent honeypots [24℄. Our results
in Setion 4 show that ontiguous byte string signatures are
not semantially rih enough for e�etive ontent �ltering
of polymorphi and metamorphi worms. The same on-
lusion was reahed by Newsome et. al. [28℄, in whih three
new kinds of byte-string signatures were proposed that are
sets omposed of tokens (substrings). For more information
see Setion 1.3.1. In this paper we generate these tokens for
14 remote exploits using DACODA and onlude that even
token-based byte strings are only semantially rih enough
to distinguish between worms and valid traÆ if the worm
exploits a vulnerability that is not found in a ommonly
used part of a protool. For example, the signature token
\nx0dnnTransfer-Enoding:nx20hunkednx0dnnnx0dnn"
would have stopped the Salper worm but also would have
dropped valid traÆ if valid traÆ ommonly used hunked
enodings. This is the only token for this partiular exploit
that distinguishes it from ordinary HTTP traÆ.

1.2 DACODA: The Davis Malcode Analyzer

Compliating the problem of deriving the vulnerability
from a single exploit is the fat that many exploits an in-
volve more than one network onnetion, multiple proesses,
multithreading, and a signi�ant amount of proessing of
network data in the kernel. Suh experienes with real
exploits have motivated us to develop two di�erent mod-
els in order to be more perspiuous in disussing polymor-
phism and metamorphism: the Epsilon-Gamma-Pi (�, ,
�) model [14℄ for ontrol ow hijaking attaks and the PD-
Requires-Provides model for exploits. Both of these mod-
els take a \from-the-arhiteture-up" view of the system in
whih ontext swithes and interproess ommuniation are
simply physial transfers of data in registers and memory.
We have developed a tool alled DACODA that analyzes

attaks using full-system symboli exeution [22℄ on every
mahine instrution. In this paper, we use DACODA for a
detailed, quantitative analysis of 14 real exploits. DACODA
traks data from the attaker's network pakets to the hi-
jaking of ontrol ow and disovers strong, expliit equality
prediates about the exploit vetor; strong, expliit equality
prediates are prediates that show equality between labeled
data and an integer that are due to an expliit equality hek
by the protool implementation on the attaked mahine
using a omparison instrution followed by a onditional in-
strution (typially a onditional jump). Using Minos [13℄
as an orale for athing attaks, DACODA honeypots have
been analyzing attaks exploiting vulnerabilities unknown
to Minos or DACODA with zero observed false positives for
the past six months. More details on DACODA's operation
are in Setion 3.

1.3 Related Work
The details of the Epsilon-Gamma-Pi model are in an-

other paper [14℄ and will be summarized in Setion 2. For
ategorizing related work in this setion we will only state
here that, in simple terms, � maps the exploit vetor from
the attaker's network pakets onto the trae of the mahine
being attaked before ontrol ow hijaking ours,  maps
the bogus ontrol data used for hijaking ontrol ow (suh

as the bogus return pointer in a stak-based bu�er overow
attak), and � maps the payload exeuted after ontrol ow
has been hijaked.

1.3.1 Vulnerability Specificity
Vigilante [10,11℄ aptures worms with a mehanism simi-

lar to Minos [13℄, but based on binary rewriting of a single
proess, and uses dynami dataow analysis to generate a
vulnerability signature. The basi idea proposed in Costa
et al. [10℄ is to replay the exeution with an inreasingly
larger suÆx of the log and hek for the error ondition.
Binary rewriting of a single proess does not apture in-
terproess ommuniation, inter-thread ommuniation, or
any data proessing that ours in kernel spae. It also
modi�es the address spae of the proess being analyzed,
whih has the potential of breaking the exploit in its early
stages [3℄. DACODA is a full-system implementation and
does not modify the system being analyzed. Another im-
portant distintion of DACODA is that, beause it is based
on the Epsilon-Gamma-Pi model, DACODA's symboli exe-
ution helps distinguish between what data looks like on the
network and what it looks like at various stages of proess-
ing on the host. Enodings suh as UNICODE enodings or
string to integer onversion annot be aptured by simply
omparing I/O logs to TCP dumps.
TaintChek [29℄ is also based on binary rewriting of a sin-

gle proess and proposed dynami sliing tehniques as fu-
ture work to generate vulnerability-spei� signatures. DA-
CODA is based on symboli exeution of every mahine in-
strution in the entire system. For RIFLE [41℄ an Itanium
arhiteture simulator was augmented with dataow analy-
sis apabilities similar to DACODA, without prediate dis-
overy, but the aim was to enfore on�dentiality poliies
while DACODA's aim is to analyze worm exploits.
Newsome et. al. [28℄ proposed three types of signatures

based on tokens. These tokens an be ordered or assoi-
ated with sores. Polygraph, unlike EarlyBird [37℄, Auto-
graph [21℄, or Honeyomb [24℄, does not automatially ap-
ture worms but instead relies on a ow lassi�er to sort
worm traÆ from benign traÆ with reasonable auray.
The invariant bytes used for tokens were typially from ei-
ther protool framing (�) or the bogus ontrol data (). It
was suggested that the ombination of these ould produe a
signature with a good false positive and false negative rate.
Protool framing desribes a valid part of a protool, suh as
\HTTP GET" in HTTP. Also,  permits too muh polymor-
phism aording to our analysis of exploits aught by Minos
honeypots [14℄, due to register springs.
Register springs are a tehnique whereby the bogus fun-

tion pointer or return pointer overwritten by a bu�er over-
ow points to an instrution in a library (or the stati pro-
gram) that is a jump or all to a register pointing into
the bu�er ontaining �. Newsome et. al. [28℄ orretly
states that for register springs to be stable the address
must be ommon aross multiple Windows versions and ites
Code Red as an example, but Code Red and Code Red II
used an address whih was only e�etive for Windows 2000
with Servie Pak 1 or no servie paks (the instrution at
0x7801bd3 disassembles to \CALL EBX" only for msvrt.dll
version 6.10.8637 [33℄). Even with this limitation Code Red
and Code Red II were suessful by worm standards, so the
hundreds or sometimes thousands of possible register springs
typial of Windows exploits annot be ignored.



One urrent limitation of DACODA is performane. Our
Bohs-based implementation of DACODA ahieves on the
order of hundreds of thousands of instrutions per seond
on a 3.0 GHz Pentium 4 with an 800 MHz front side bus.
Memory bandwidth is the limiting fator, and DACODA
barely ahieves good enough performane to be infeted by
a worm on a 2.8 GHz Pentium 4 with a 533 MHz front side
bus. All that really is required to detet the attak is Minos
[13℄, whih would have virtually no overhead in a hardware
implementation and ould possibly have performane within
an order of magnitude of native exeution if implemented on
a higher performane emulator suh as QEMU [51℄. After
Minos deteted an attak DACODA ould be invoked by
replaying either the TCP traÆ [19,20℄ or the entire attak
trae [16℄.

1.3.2 Modeling Polymorphism
Ideas similar to our PD-Requires-Provides model for ex-

ploit polymorphism and metamorphism are presented in Ru-
bin et. al. [34, 35℄. The PD-Requires-Provides model is at
a muh lower level of abstration. Rubin et. al. [34, 35℄ do
not distinguish between what the exploit looks like on the
network and what it looks like when it is proessed on the
host, as our Epsilon-Gamma-Pi model does. These works
were also intended for generating exploits based on known
vulnerabilities and not for analyzing zero-day exploits to de-
rive protetion for unknown vulnerabilities. A more reent
work [44℄ generates vulnerability-spei� signatures for un-
known exploits but requires a detailed spei�ation of the
protool that the exploit uses (suh as SMB or HTTP). DA-
CODA needs no spei�ation beause of symboli exeution,
at the ost of not having a full spei�ation against whih
to model hek signatures.
In Dreger et. al. [15℄ host-based ontext was used to en-

hane the auray of network-based intrusion detetion but
this was done from within the Apahe HTTP server appli-
ation. Ptaek and Newsham [32℄ over some of the same
ideas as we do but within the ontext of network evasion
of network intrusion detetion systems. Christodoresu and
Jha [7℄ looked at polymorphism of viruses with examples
from real viruses, but polymorphi virus detetion and poly-
morphi worm detetion are two di�erent problems; a worm
needs to be able to hijak ontrol ow of remote hosts be-
ause worms use the network as their main medium of in-
fetion.

1.3.3 Polymorphic Worm Detection
Many researhers have studied polymorphi tehniques

and detetion mehanisms in � [1, 6, 8, 23, 25, 31, 40℄. Sev-
eral of the mehanisms whih have been proposed are based
on the existene of a NOP sled whih simply is not appli-
able to Windows exploits, nearly all of whih use regis-
ter springs [14℄. The exeutable ode itself ould be made
polymorphi and metamorphi with respet to probably any
signature sheme if we are to onsider the relatively long
history of polymorphi omputer viruses [38℄. Other works
have foused exlusively on  [30℄ whih an be polymorphi
beause there are usually hundreds or even thousands of dif-
ferent register springs an attaker might use [14℄. We have
argued in another paper [14℄ that � and  permit too muh
polymorphism, motivating a loser look at � instead. The
fous of this paper is on polymorphism and metamorphism
of �. Other papers have foused on � [10,28,34,35,43,44℄, all

Figure 1: The Epsilon-Gamma-Pi Model.

of whih have already been disussed in this setion exept
for Shield [43℄. Shields are a host-based solution whih are
an alternative to pathes. They are vulnerability-spei�
but only for known vulnerabilities.

1.3.4 Our Main Contributions
The main distintion of our work is that we fous on un-

known vulnerabilities and use models based on our experi-
ene with analyzing 14 real exploits to give a detailed and
quantitative analysis of polymorphism and metamorphism
for the exploit vetor mapped by �. Our main ontributions
are 1) a tool for whole-system symboli exeution of remote
exploits, 2) quantitative data on the amount of polymor-
phism available in � for 14 atual exploits, whih also shows
the importane of whole-system analysis, and 3) a model for
understanding polymorphism and metamorphism of �. A-
tual generation of vulnerability-spei� signatures with low
false positive and false negative rates is left for future work.

1.4 Structure of the Paper
The rest of the paper is strutured as follows. Setion 2

summarizes the Epsilon-Gamma-Pi model for ontrol ow
hijaking attaks from past work [14℄, followed by Setion 3,
whih details how DACODA generated the results from ana-
lyzing real exploits that are in Setion 4. The PD-Requires-
Provides model is desribed in Setion 5 to help understand
polymorphism and metamorphism. After disussing future
work in Setion 6, we give our onlusions about byte string
signature shemes and host-based semanti analysis.

2. THE EPSILON-GAMMA-PI MODEL
The Epsilon-Gamma-Pi model [14℄ is a model of ontrol

ow hijaking attaks based on projeting the attaker's net-
work pakets onto the trae of the mahine being attaked.
The row spae of a projetion is the network data that is
relevant to that projetion, while the range of a projetion
is the physial data used by the attaked mahine for on-
trol ow deisions. The Epsilon-Gamma-Pi model an avoid
onfusion when, for example, the row spae of  for Code
Red II is UNICODE enoded as \0x25 0x75 0x62 0x63
0x64 0x33 0x25 0x75 0x37 0x38 0x30 0x31" oming over
the network but stored in little-endian format in the range
of  as the atual bogus Strutured Exeption Handling



(SEH) pointer \0xd3 0xb 0x01 0x78". These enodings
of 0x7801bd3 are aptured by .
The mappings of a partiular exploit are hosen by the

attaker but onstrained by the protool as implemented
on the attaked mahine. A single projetion is spei� to
an exploit, not to a vulnerability. A vulnerability an be
thought of as a set of projetions for � that will lead to
ontrol ow hijaking, but the term vulnerability may be
too subjetive to de�ne formally. Sometimes vulnerabilities
are a ombination of program errors, suh as the ASN.1
Library Length Heap Overow vulnerability [52, bid 9633℄
whih was a ombination of two di�erent integer overows.
We an say that a system is vulnerable to a remote ontrol
ow hijaking attak if there exists any ombination of IP
pakets that ause bogus ontrol ow transfer to our.
The projetion � maps network data onto ontrol ow de-

isions before ontrol ow hijaking takes plae, while 
maps the bogus ontrol data itself during ontrol ow hi-
jaking and � typially maps the attaker's payload ode
that is diretly exeuted after ontrol ow is hijaked. In
simple terms, � maps the exploit vetor,  maps the bogus
ontrol data, and � maps the payload ode as illustrated by
Figure 1.

2.1 Polymorphism and Metamorphism
The Epsilon-Gamma-Pi model also provides useful ab-

strations for understanding polymorphism and metamor-
phism. Worm signature generation with any partiular teh-
nique an be seen as a haraterization of one or more of the
three mappings possibly ombined with information about
the attak trae on the infeted host. Polymorphism and
metamorphism seek to prevent this haraterization from
enabling the worm defense to distinguish the worm from
other traÆ as it moves over the network. In the extreme
the attaker must, for di�erent infetions, hange these three
mappings and the attak trae on the infeted mahine
enough so that knowledge about the attak trae and har-
aterizations of the three mappings annot permit identi-
�ation of the worm with a low enough error rate to stop
the worm from attaining its objetive. In pratie, however,
the bene�t of surprise goes to the attaker, and polymor-
phism and metamorphism will be with respet to some spe-
i� detetion mehanism that has atually been deployed.
Polymorphism hanges bytes in the row spaes of the three
projetions without hanging the mappings, while metamor-
phism uses di�erent mappings eah time. Unless otherwise
stated, in this paper a signature is a set of byte strings (pos-
sibly ordered) that identify the worm, and polymorphism
and metamorphism are with respet to this set of strings.
The Epsilon-Gamma-Pi model is more general than byte
string signatures, however. One of the main results of this
paper is that simple byte string mathing, even for sets of
small strings or regular expressions, an be inadequate for
worm ontent �ltering for realisti vulnerabilities.

2.2 Motivation for the Model
The Epsilon-Gamma-Pi model is general enough to han-

dle realisti attaks that do not follow the usual proession
of opening a TCP onnetion, adhering to some protool
through the exploit vetor phase until ontrol ow is hi-
jaked, and then exeuting the payload in the thread that
was exploited. IP pakets in the Epsilon-Gamma-Pi model
and in the DACODA implementation are raw data subjet

to interpretation by the host, sine \information only has
meaning in that it is subjet to interpretation" [9℄, a fat
that is at the heart of understanding viruses and worms.
An attaker might use an arbitrary write primitive in one
thread to hijak the ontrol ow of another, or hijak the
ontrol ow of the thread of a legitimate user.
Using symboli exeution, DACODA is able to disover

strong, expliit equality prediates about �. Spei�ally,
DACODA disovers the mapping � and also an use on-
trol ow deisions prediated expliitly on values from the
range of � to disover prediates about the bytes of network
traÆ from whih the values were projeted (the row spae
of �). These prediates an be used for signature generation,
but in this paper we use DACODA to haraterize � quan-
titatively for a wide variety of exploits. This quantitative
analysis plus our experienes with analyzing atual exploit
vetors serve as a guide towards future work in this area.
For all three projetions, DACODA traks the data ow

of individual bytes from the network pakets to any point of
interest. Thus it also is helpful in answering queries about
where the payload ode omes from or how the bogus ontrol
data is enoded within the network traÆ.

2.3 The Need for an Oracle
To distinguish �, , and �, and also to provide the anal-

ysis in a timely manner, DACODA needs an orale to raise
an alert when bogus ontrol ow transfer has ourred. For
the urrent implementation we use Minos [13℄ as an ora-
le to ath low-level ontrol data attaks. Minos is basi-
ally based on taintheking to detet when data from the
network is used as ontrol data. Thus it does not ath
attaks that hijak ontrol ow at a higher level abstra-
tion than low-level exeution, suh as the Santy worm or
the attaks desribed in Chen et. al. [5℄, but DACODA is
equally appliable to any ontrol ow hijaking attak. For
example, in an attak where the �lename of a �le to be ex-
euted, suh as \/usr/bin/ountersript", is overwritten
with \/bin/sh" then exeuted yielding a shell, � would map
the exploit vetor leading to the overwrite,  would map the
string \/bin/sh", and � would map the ommands exeuted
one the shell was obtained. Minos will not ath this attak
but DACODA will still provide an analysis given the proper
orale. Any worm that spreads from host to host must hi-
jak ontrol ow of eah host at one level of abstration or
another.

3. HOW DACODA WORKS
DACODA is urrently being emulated in a full-system

Pentium environment based on the Bohs emulator [46℄.
When a network paket is read from the Ethernet devie
every byte of the paket is labeled with a unique integer.
Reading the paket o� the Ethernet is the last hane to
see all bytes of the paket intat and in order, beause the
NE2000 driver often reads parts of pakets out of order.
During its lifetime this labeled data will be stored in

the NE2000 devie's memory pages, read into the proessor
through port I/O, and moved and used in omputation by
various kernel- and user-spae threads and proesses. DA-
CODA will trak the data through all of this and disover
equality prediates every time the labeled data or a sym-
boli expression is expliitly used in a onditional ontrol
ow transfer. Symboli exeution ours in real-time so that
when an orale (Minos [13℄ in the urrent implementation)



Explanation C++-like Pseudo-ode
MakeNewQuadMem() is used Expression *MakeNewQuadMem(Addr)
for reading four bytes of FirstByte = ReadMemByteExpr(Addr);
memory and making a if (FirstByte!IsAQuadExpr()) return FirstByte;
QuadExpression from them, else return new QuadExpr(
unless we �nd that the ReadMemByteExpr(Addr + 0)
memory word already , ReadMemByteExpr(Addr + 1)
ontains a QuadExpression. , ReadMemByteExpr(Addr + 2)

, ReadMemByteExpr(Addr + 3));
MakeNewQuadRegister() is the Expression *MakeNewQuadRegister(Index)
same as MakeNewQuadMem() FirstByte = ReadRegisterByteExpr(Index, 0);
but for 32-bit register reads. if (FirstByte!IsAQuadExpr()) return FirstByte;

else return new QuadExpr(
ReadRegisterByteExpr(Index, 0)
, ReadRegisterByteExpr(Index, 1)
, ReadRegisterByteExpr(Index, 2)
, ReadRegisterByteExpr(Index, 3));

WriteQuadMem() stores a void WriteQuadMem(Addr, Expr)
QuadExpression in a way WriteMemByteExpr(Addr + 0, Expr);
that MakeNewQuadMem() WriteMemByteExpr(Addr + 1, NULL);
an �nd it. WriteMemByteExpr(Addr + 2, NULL);

WriteMemByteExpr(Addr + 3, NULL);
WriteQuadRegister() is the void WriteQuadRegister(Index, Expr)
same as WriteQuadMem() but WriteRegisterByteExpr(Index, 0, Expr);
for 32-bit register writes. WriteRegisterByteExpr(Index, 1, NULL);

WriteRegisterByteExpr(Index, 2, NULL);
WriteRegisterByteExpr(Index, 3, NULL);

MakeNewQuadConstant() Expression *MakeNewQuadConstant(0xAABBCCDD)
simply uses bit masks and return new QuadExpression(
shifts to split the 32-bit new Constant(0xAA)
onstant into 4 8-bit , new Constant(0xBB)
onstants. , new Constant(0xCC)

, new Constant(0xDD));

Table 1: How QuadExpressions are Handled.

determines that ontrol ow has been hijaked, DACODA
simply summarizes the results of its analysis.
As an example, suppose a byte of network traÆ is labeled

with \Label 1832" when it is read from the Ethernet ard.
This label will follow the byte through the NE2000 devie
into the proessor where the kernel reads it into a bu�er.
Suppose the kernel opies this byte into user spae and a
user proess moves it into the AL register, adds the integer
4 to it, and makes a ontrol ow transfer prediated on the
result being equal to 10.

mov al,[AddressWithLabel1832℄
; AL.expr <- (Label 1832)

add al,4
; AL.expr <- (ADD AL.expr 4)
; /* AL.expr == (ADD (LABEL 1832) 4) */

mp al,10
; ZFLAG.left <- AL.expr
; /* ZFLAG.left == (ADD (Label 1832) 4) */
; ZFLAG.right <- 10

je JumpTargetIfEqualToTen
; P <- new Prediate(EQUAL ZFLAG.left ZFLAG.right)
; /* P == (EQUAL (ADD (Label 1832) 4) 10) */
; if (ZF == 1) AddToSetOfKnownPrediates(P);
; /* Disover prediate if equality branh taken */

This illustrates how DACODA will disover the prediate
(in pre�x notation), \(EQUAL (ADD (Label 1832) 4) 10)".
This prediate from the range of � an be used to infer a
prediate about the row spae of �: that the byte that was
labeled with \Label 1832" is equal to 6.
For 16- or 32-bit operations DACODA onatenates the

labels for two or four bytes into a DoubleExpression or a
QuadExpression, respetively. We de�ne a strong, expliit
equality prediate to be an equality prediate that is exposed
beause of an expliit hek for equality. Thus a omparison

of an unsigned integer that yields the prediate that the
integer is less than 1 is not expliit and will not be disovered
by DACODA (though it implies that this integer is equal to
0).
DACODA also disovers equality prediates when a la-

beled byte or symboli expression is used as a jump or all
target, whih is ommon in ode ompiled for C swith state-
ments and is how DACODA is able to detet important
prediates suh as the �rst data byte in the UDP paket
of the Slammer worm, \0x04", the only real signature this
attak has. When a symboli expression is used in an ad-
dress for an 8- or 16-bit load or store operation the address
beomes part of the symboli expression of the value loaded
or stored (a Lookup expression is reated whih enapsu-
lates both the value and the address used to load or store
it). This type of information ow is important for traking
operations suh as the ASCII to UNICODE onversion of
Code Red II.
There are six kinds of expressions: Labels, Constants,

DoubleExpressions, QuadExpressions, Lookups, and Opera-
tions. Every byte of the main physial memory, the general
purpose registers, and the NE2000 ard's memory are asso-
iated with an expression, whih an be NULL. The Zero
Flag (ZF) is used by the Pentium for indiating equality or
inequality. We assoiate two expressions with ZF, left and
right, to store the expressions for the last two data that were
ompared. ZF an also be set by various arithmeti instru-
tions but only expliit omparison instrutions set the left
and right pointers in our implementation. These pointers
beome an equality prediate if any instrution subsequently
heks ZF and �nds it to be set.
Table 2 summarizes all of the various rules about how

DACODA propagates expressions and disovers prediates.



Explanation Assembly Example What DACODA Does in C++-like Pseudo-ode
Moves from register mov edx,[ECX℄ WriteRegisterByteExpr(INDEXOFEDX, 0, ReadMemByteExpr(ex+0));
to memory, memory to WriteRegisterByteExpr(INDEXOFEDX, 1, ReadMemByteExpr(ex+1));
register, or register WriteRegisterByteExpr(INDEXOFEDX, 2, ReadMemByteExpr(ex+2));
to register just opy WriteRegisterByteExpr(INDEXOFEDX, 3, ReadMemByteExpr(ex+3));
the expressions for
the bytes moved. The mov al,bh WriteRegisterByteExpr(INDEXOFEAX, 0,
same applies to ReadRegisterByteExpr(INDEXOFEBX, 1));
PUSHEs and POPs.

mov [EBP+10℄,l WriteMemByteExpr(ebp+10, ReadRegisterByteExpr(INDEXOFECX, 0));
8- and 16-bit lookups mov dx,[ECX℄ DoubleExprFromMem = MakeNewDoubleMem(ex);
arry their addresses AddrResolved = MakeNewDoubleRegister(INDEXOFECX);
with them. Without ExprForDX = new Lookup(AddrResolved, DoubleExprFromMem);
this the 0x7801bd3 WriteDoubleRegister(INDEXOFEDX, ExprForDX);
bogus SEH pointer of
Code Red II would
have no expression.
Jumps or alls to mov edx,[EBP+��fbf4℄ ExprForEDX = MakeNewQuadMem(ebp+0x��fbf4);
addresses that have WriteQuadRegister(INDEXOFEDX, ExprForEDX);
non-NULL expressions
imply an equality jmp [42fa23b+EDX<<2℄ AddrResolved = new Operation(\ADD",
prediate on that MakeNewQuadConstant(0x42fa23b),
expression; needed new Operation(\SHR", MakeNewQuadRegister(INDEXOFEDX),

new Constant(2)));
for Slammer. AddToListOfKnownPrediates(\EQUAL", AddrResolved,

MakeNewQuadConstant(0x42fa23b+edx<<2));
Strong, expliit equality mp edx,[ESI℄ ZFLAG.left = MakeNewQuadRegister(INDEXOFEDX);
prediates are disovered ZFLAG.right = MakeNewQuadMem(esi);
when a CMP, CMPS, if ((ZFLAG.right != NULL) &&
SCAS, or TEST instrution (ZFLAG.left == NULL)) ZFLAG.left = new Constant(edx);
is followed by any if ((ZFLAG.left != NULL) &&
instrution that heks (ZFLAG.right == NULL)) ZFLAG.right = new Constant([esi℄);
the Zero Flag (ZF) and
ZF indiates equality. je 7123abd P = new Prediate(\EQUAL", ZFLAG.Left, ZFLAG.Right);
Examples are onditional if (ZF == 1 && ((ZFLAG.Left != NULL) jj (ZFLAG.Right != NULL)))
equality jumps suh as AddToListOfKnownPrediates(P);
JE, onditional moves,
or \REP SCAS".
Operations suh as ADDs, add eax,[EBX℄ WriteQuadRegister(INDEXOFEAX, new Operation(
other arithmeti operations, \ADD", MakeNewQuadRegister(INDEXOFEAX),
bit shifts, or logial bit MakeNewQuadMem(ebx));
operations simply reate
a new Operation expression shr eax,3 WriteQuadRegister(INDEXOFEAX, new Operation(
whih an be written into \SHR", MakeNewQuadRegister(INDEXOFEAX),
the slot for QuadExpressions new Constant(3));
and will be enapsulated as
a QuadExpression the next mov [ECX℄,eax WriteQuadMem(ex,
time it is read. The same MakeNewQuadRegister(INDEXOFEAX));
applies to DoubleExpressions,
and 8-bit operations are
straightforward.

Table 2: Speial Rules and Example Instrutions.

Exploit OS Port(s) Class bid [52℄ Vulnerability Disovery
LSASS (Sasser) Windows XP 445 TCP Bu�er Overow 10108 eEye
DCOM RPC (Blaster) Windows XP 135 TCP Bu�er Overow 8205 Last Stage of Delirium
Workstation Servie Windows XP 445 TCP Bu�er Overow 9011 eEye
RPCSS Windows Whistler 135 TCP Bu�er Overow 8459 eEye
SQL Name Resolution (Slammer) Windows Whistler 1434 UDP Bu�er Overow 5311 David Lith�eld
SQL Authentiation Windows Whistler 1433 TCP Bu�er Overow 5411 Dave Aitel
Zotob Windows 2000 445 TCP Bu�er Overow 14513 Neel Mehta
IIS (Code Red II) Windows Whistler 80 TCP Bu�er Overow 2880 eEye
wu-ftpd Format String RedHat Linux 6.2 21 TCP Format String 1387 tf8
rp.statd (Ramen) RedHat Linux 6.2 111 & 918 TCP Format String 1480 Daniel Jaobiwitz
innd RedHat Linux 6.2 119 TCP Bu�er Overow 1316 Mihael Zalewski
Apahe Chunk Handling (Salper) OpenBSD 3.1 80 TCP Integer Overow 5033 N. Mehta, M. Lith�eld
ntpd FreeBSD 4.2 123 TCP Bu�er Overow 2540 Przemyslaw Frasunek
Turkey ftpd FreeBSD 4.2 21 TCP O�-by-one B.O. 2124 Srippie

Table 3: Exploits Analyzed by DACODA.



Table 1 shows how QuadExpressions are handled. A more
straightforward way to handle QuadExpressions would be to
plae a pointer to the QuadExpression into all four bytes'
expressions for that 32-bit word and let the index of eah
byte determine whih of the four bytes in the QuadExpres-
sion it should referene, whih is how DoubleExpressions are
handled. For QuadExpressions, however, this auses numer-
ous performane and memory onsumption problems. The
sheme in Table 1 is more eÆient but may drop some in-
formation if, for example, a QuadExpression is written to a
register, then a labeled byte is written into a higher order
byte of that register, and then the QuadExpression is read
from the register. From our experiene suh ases should be
extremely rare, and it would be relatively straightforward to
�x but Table 1 is the implementation used to generate the
results in Setion 4.

4. EXPLOITS ANALYZED BY DACODA
This setion will summarize the results produed by DA-

CODA, detail Code Red II as a onrete example, and then
enumerate omplexities, hallenges, and fats worth noting
about the exploits analyzed. We adopt the idea of tokens
from Polygraph [28℄ and onsider a byte to be tokenizable if
DACODA disovers some strong, expliit equality prediate
about it.

4.1 Summary
Table 3 summarizes the exploits that DACODA has an-

alyzed. All of the Windows exploits exept one (SQL Au-
thentiation) were atual attaks or worms from the Internet
to DACODA honeypots, while all others were performed by
the authors. Identifying the pakets involved in eah attak
was done manually by inspetion of the dumped network
traÆ. Sine all pakets for eah attak were either UDP or
TCP we used a summary algorithm that used knowledge of
these protools so that the results ould remain more intu-
itive by not inluding prediates about the transport layer
protool header, unless they also inlude labeled bytes from
a data �eld (suh as what happens in reverse DNS lookups).
When DACODA disovers a prediate, the Current Priv-

ilege Level (CPL) of the proessor is heked to determine
whether the prediate is disovered while running kernel-
spae ode or while running user-spae ode. These results
are presented in Table 4. The CR3 register in the Pentium
is used to index the base of the page table of the urrent
task and is therefore a satisfatory replaement for a pro-
ess ID (PID). Table 4 also shows the results generated by
DACODA as to how many di�erent proesses are involved
in prediate disovery and are therefore an integral part of
understanding the attak. This table inludes not only on-
ventional proesses but also proesses that run only in kernel
spae suh as the Windows SYSTEM proess.
Table 5 summarizes the results from preliminary, naive

signature generation using DACODA. Note that we make
no strong laims as to DACODA's ompleteness beause it
is possible that a byte may have a strong equality prediate
that is not due to an expliit hek for equality. It is also
possible that tokens disovered by DACODA are not really
invariant for various reasons desribed later in this setion.
Also, multiple bytes may be involved with a single prediate
and a single byte may be involved with multiple prediates,
so there is not a one-to-one relationship between bytes and
prediates. Surprisingly, some prediates are repeated suh

as the \GET" token from Code Red II whih is heked four
times in four di�erent plaes by the IIS web server. The
numbers for prediates and tokens are provided here as an
approximation to get a sense of the design spae and may
vary slightly from the true invariant signatures for these
exploits. The format for Table 5 is suh that \3(18)" means
that there are three tokens that are 18 bytes in length.
Validation of the results was done, to the extent possible,

by omparing the results to our knowledge of the exploits
and the protools involved.

4.2 Code Red II as a Concrete Example
The UNICODE enoding of the bogus Strutured Exep-

tion Handling pointer and payload are aptured by DA-
CODA's symboli expressions, as is the fat that the row
spaes and ranges of �, , and � are not disjoint sets of
bytes. DACODA also shows that the exploit vetor permits
a great deal of polymorphism.
The exploit vetor for Code Red II is a GET request:

GET /default.ida?XXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX%u9090%u6858%ubd3%u7801
%u9090%u6858%ubd3%u7801%u9090%u6858%ubd3
%u7801%u9090%u9090%u8190%u003%u0003%u8b00
%u531b%u53ff%u0078%u0000%u00=a HTTP/1.0\x0d\n.

DACODA disovers strong equality prediates
for the tokens \GETnx20/", \.ida?", the UNI-
CODE tokens \%u", spaes, new line haraters, and
\%u00=anx20,HTTP/1.0nx0dnn". Only a single \%u" is
neessary to ause ASCII to UNICODE onversion and
overow the bu�er. The \.ida" �le an have any �lename,
real or not, and an also end with \.idq". Thus the
following is a valid exploit vetor for the same vulnerability:

GET /notarealfile.idq?UOIRJVFJWPOIVNBUNIVUWIF
OJIVNNZCIVIVIGJBMOMKRNVEWIFUVNVGFWERIOUNVUNWI
UNFOWIFGITTOOWENVJSNVSFDVIRJGOGTNGTOWGTFGPGLK
JFGOIRWTPOIREPTOEIGPOEWKFVVNKFVVSDNVFDSFNKVFK
GTRPOPOGOPIRWOIRNNMSKVFPOSVODIOREOITIGTNJGTBN
VNFDFKLVSPOERFROGDFGKDFGGOTDNKPRJNJIDH%u1234D
SPPOITEBFBWEJFBHREWJFHFRG=bla HTTP/1.0\x0d\n.

Though it ontains no real bogus ontrol data or payload,
it will ause the bogus ontrol ow transfer to our (from
the return pointer, not the SEH pointer in this ase). The
urrent DACODA implementation treats all operations as
uninterpreted funtions so there is one spurious tokeniza-
tion for this exploit, the one that inludes \00=a", whih
should be just \=". This is beause the \=" harater is
loated by bit shifts instead of diret addressing, and DA-
CODA annot determine that the other three haraters are
dropped before the expliit equality hek without semanti
information about the bit shifts. This is the only example of
suh a problem with uninterpreted funtions we disovered.

4.3 Complexities and Challenges
This setion disusses some of the fats that must be taken

into aount when designing an automated worm analysis
tehnique for deriving protetion for an unknown vulnera-
bility from a zero-day polymorphi and metamorphi worm
exploit.



Exploit Name Total Kernel-spae User-spae Proesses Multiple
Prediates Prediates Prediates Involved Threads

LSASS 305 223 82 SYSTEM and lsass.exe Yes
DCOM RPC 120 0 120 svhost.exe Yes
Workstation Servie 286 181 105 SYSTEM, svhost.exe, Yes

??, ??, and lsass.exe
RPCSS 38 2 36 SYSTEM and svhost.exe Yes
SQL Name Res. (Slammer) 1 0 1 SQL Server Yes
SQL Authentiation 7 0 7 SQL Server Yes
Zotob 271 177 94 SYSTEM, servies.exe, and ?? Yes
IIS (Code Red II) 107 0 107 IIS Web Server No
wu-ftpd Format String 2288 0 2288 wu-ftpd No
rp.statd 44 0 44 portmap and rp.statd No
innd 329 41 288 innd and nnrpd No
Apahe Chunk Handling 3499 4 3495 httpd No
ntpd 17 0 17 ntpd No
Turkey 347 98 249 ftpd No

Table 4: Where exploits are disovered.

Exploit Name Longest Token Token length histogram as \Number(Size in bytes)"
LSASS 36 1(36),1(34),3(18),2(14),1(12),5(9),5(8),2(5),15(4),2(3),39(2),19(1)
DCOM RPC 92 1(92),1(40),1(20),2(18),1(14),5(8),15(4),2(3),13(2),8(1)
Workstation Servie 23 1(23),5(18),1(16),2(14),1(12),4(10),8(8),1(6),5(5),8(4),1(3),42(2),22(1)
RPCSS 18 2(18),2(8),5(4),9(2),8(1)
SQL Name Res. (Slammer) 1 1(1)
SQL Authentiation 4 3(4),3(1)
Zotob 36 1(36),1(34),2(18),1(16),1(14),1(12),2(8),3(5),11(4),2(3),32(2),6(1)
IIS (Code Red II) 17 1(17),3(5),23(2),1(1)
wu-ftpd Format String 283 4(283),4(119),4(11),1(10),1(9),1(6),4(5),3(4),4(3),10(2),41(1)
rp.statd 16 2(16),1(8),2(4),10(2),13(1)
innd 27 1(27),1(21),1(13),1(11),2(10),2(9),2(6),6(5),9(4),12(3)
Apahe Chunk Handling 32 1(32),24(13),23(11),1(8),1(6),2(5),1(3),3(2),3(1)
ntpd 8 1(8),2(4),2(2)
Turkey 21 2(21),1(12),2(6),6(5),16(4),23(2),14(1)

Table 5: Signature Tokens.



4.3.1 Processing of Network Data in the Kernel
The most salient feature of the LSASS exploit is the

amount of protool that the attak must traverse through
in the kernel itself before it even is able to reah the
vulnerable proess, lsass.exe, through the named pipe
\nnPIPEnlsarp". For a step-by-step explanation of the
LSASS exploit see the eEye advisory [48℄. The Windows ker-
nel spae ontains a great deal of exeutable ode that han-
dles network traÆ inluding Transport Devie Interfaes
(TDIs), Remote Proedure Calls (RPC), Anillary Funtion
Driver File System Drivers (AFD FSDs), Named Pipe FSDs,
Mailslot FSDs, NetBIOS emulation drivers, and more [36℄.
Today, even HTTP requests are being proessed in the ker-
nel spae with a network driver ontained in IIS 6.0 [2℄. Thus
attak analysis must inlude the kernel.
Furthermore, it is not neessary for a remote exploit to

ever involve a user-spae proess. A remote memory or-
ruption vulnerability in the kernel may allow an attaker
to exeute arbitrary ode diretly in \CPL==0" (the kernel
spae). Suh an exploit is desribed by Barnaby Jak [2℄ that
exploits a kernel-spae bu�er overow in a popular �rewall
program. Mirosoft reently released an advisory desrib-
ing a heap orruption vulnerability in the kernel-spae SMB
driver that ould allow remote ode exeution [50, MS05-
027℄. Linux and BSD do muh less proessing of network
data in kernel spae but are nonetheless suseptible to the
same problem [52, bid 11695℄.

4.3.2 Multiple Processes Involved
The rp.statd exploit is interesting beause it is possi-

ble that the vulnerable servie, rp.statd, may be listening
on a di�erent port for every vulnerable host. This is only
probable if the di�erent vulnerable hosts are running di�er-
ent operating system distributions. Nonetheless, the initial
onnetion to portmap to �nd the rp.statd servie is an
important part of the exploit to analyze.
The innd exploit works by posting a news message to a

newsgroup, in this ase \test", and then aneling that mes-
sage by posting a anellation message to the group alled
\ontrol". The bu�er overow ours when a log message is
generated by the nnrpd servie, whih is invoked by the innd
proess, beause the e-mail address of the original posting
is longer than the bu�er reserved for it. In this partiu-
lar exploit the entire exploit is arried out through a single
TCP onnetion, but it is possible that the attaker ould
upload the payload and bogus return pointer onto the vul-
nerable host's hard drive using one TCP onnetion from
one remote host and then invoke the bu�er overow via a
di�erent TCP onnetion oming from a di�erent remote
host.

4.3.3 Multithreading and Multiple Ports
In addition to multi-stage attaks like the innd exploit,

many Windows servies are multithreaded and listen on
multiple ports. The SQL Server is multithreaded and listens
on ports 1434 UDP and 1433 TCP. The DCOM RPC, Work-
station Servie, RPCSS, and Zotob exploits have the same
property. The Windows Seurity Bulletin for the LSASS
bu�er overow [50, MS04-011℄ reommends bloking UDP
ports 135, 137, 138, and 445, and TCP ports 135, 139, 445,
and 593; plus, the lsass.exe proess is multithreaded mean-
ing that, for example, the payload and the exploit ould be
introdued into the proess' address spae simultaneously

through two di�erent onnetions on two di�erent ports.
Most exploits allow some form of arbitrary memory or-
ruption suh as writing an arbitrary value to an arbitrary
loation or writing a preditable value to an arbitrary lo-
ation. Even simple stak-based bu�er overows an have
this property, like the RPC DCOM exploit or the Slammer
exploit. In Slammer, a ertain word just beyond the bogus
return pointer an point to any writable address where the
value 0 is written just before the bogus ontrol ow transfer
ours.
Any open TCP port 1433 onnetion an be turned into

what appears to be a port 1433 bu�er overow by exploit-
ing the name resolution vulnerability (used by Slammer) on
UDP port 1434 and using the \write the value zero to any
writable loation" primitive. Suh an attak would open
enough port 1433 TCP onnetions to tie up all but one
thread of the SQL server, load a bogus stak frame om-
plete with exeutable payload on one onnetion, and load
fake junk to all of the others. The staks for these threads
ould be held in a suspended state by not losing the TCP
onnetions.
Then through UDP port 1434 the attaker would send

SQL name resolution exploits that only overwrote the re-
turn pointer with its original value but, more importantly,
hanged the address where the value 0 is written to point
to eah suessive stak. A well plaed zero that overwrites
the least signi�ant byte of a base pointer on a stak en-
ables linking in a bogus stak frame (this is how the Turkey
exploit works). Then by losing the port 1433 TCP onne-
tion with the exploit ode in it, the stak is unwound until
the bogus stak frame hijaks ontrol ow. Beause the in-
oming 0 would not be labeled, and beause the row spaes
of  and � would have been mapped from pakets for TCP
port 1433, it would be easy for DACODA-based analysis to
assume that there had been a bu�er overow on port 1433.
Fortunately, DACODA reords when labeled data is used as
addresses so the onnetion with UDP port 1434 ould be
identi�ed.

4.3.4 Side Channels
The innd exploit shares something in ommon with both

of the ftp exploits presented here in that the proess being
attaked does a reverse DNS entry lookup on the IP address
of the attaker. It is not lear whether DACODA should
inlude this in the analysis of the attak or not beause the
attaker ould use their DNS name to injet part of the
attak into the address spae of the vulnerable proess but
typially will not do so. For all results presented in this
paper the DNS traÆ is inluded in the analysis.
Also, parts of the UDP header for Slammer, the soure

IP address and port, are present in the address spae when
the bogus ontrol ow transfer ours. Thus not all of the
various parts of an attak an be found in the data �elds
of TCP and UDP pakets; they may ome from the paket
headers as well.

4.3.5 Encodings and Encryption
The various ASN.1 vulnerabilities found in Mirosoft Win-

dows over the past two years [52, bids 9633, 9635, 9743,
10118, 13300℄, none of whih were tested with DACODA,
are exposed through several servies. They an be exploited
through Kerberos on UDP port 88, SSL on TCP port 443,
or NTLMv2 authentiation on TCP ports 135, 139, or 445.



The maliious exploit and ode an be enoded or enrypted
with Kerberos, SSL, IPSe, or Base64 enoding (on top of
the maliious ASN.1 enoding) [52, bid 9635℄. A more ad-
vaned exploit for this vulnerability ould enrypt most of �,
and all of  and �, and the deryption would be performed
by the vulnerable host. The fat that not many vulnerabil-
ities have this property should not be taken to mean that
it will be a rare property for zero-day vulnerabilities. Zero-
day vulnerabilities will be found in the plaes that attakers
look for them.
Enodings or enryptions of � and  that are deoded

or derypted by protool implemented on the mahine be-
ing attaked are only a hallenge for DACODA if the sym-
boli expressions beome too large to handle eÆiently or
too omplex to be useful. In either ase DACODA reports
this fat, so that a di�erent response than ontent �ltering
an be mounted. When symboli expressions exeed a er-
tain size they beome idempotent expressions that denote
that a large symboli expression has been dropped.

4.3.6 Undesirable Predicates
The wu-ftpd format string attak helps illustrate what fu-

ture work is needed before DACODA an onsistently an-
alyze real attaks with a high degree of assurane. We
used the Hannibal attak from Crandall and Chong [12℄
where the major portion of the format string is of the form,
\%9f%9f%9f%9f%9f...". DACODA should, and does, dis-
over prediates for \%" and \f" but should not disover a
strong equality prediate for \9" beause the format string
attak ould take the form \%11f%4f%132f...".
The IO default xsputn() funtion from glib sets a vari-

able to 0 and inrements that variable for every harater
printed. When it is done printing the oating point num-
ber it subtrats this ount from the value 9 alulated by
taking the ASCII value 0x39 for \9" and subtrating 0x30
(basially, although, as is often the ase, reverse engineer-
ing by DACODA reveals the atual deoding implementa-
tion to be muh more onvoluted). If this value is equal
to zero a strong, expliit equality prediate is disovered
by DACODA and the IO default xsputn() funtion moves
on (The printf fp() funtion does a similar hek on the
same byte so two prediates are atually disovered). Oth-
erwise the di�erene is used as the number of trailing zeroes
to print and DACODA disovers no prediate. This auses
DACODA to disover strong equality prediates for that in-
dividual \9" if and only if the value on the stak being eaten,
whih for all pratial purposes is random, onsumes 9 har-
aters when interpreted as a oating point number without
trailing zeroes. The long tokens disovered for the wu-ftpd
format string attak in Table 5 are not a good signature but
rather represent the fat that a long sequene of data words
on the stak require 9 haraters to be printed as oating
points (inluding the leading spae).
In the Apahe exploit the hunked enoding tokens an

use any harater allowed by the hunked enoding portion
of the HTTP protool, but DACODA disovers prediates
beause whatever harater is used is onverted to lower
ase and ompared with a whole array of haraters until it
is found.
For the innd exploit DACODA generates a token \test"

as these letters are individually heked against a d entry
in the diretory ontaining the various newsgroups on that
news server. This token is disovered in the kernel spae in

the funtion d lookup(). The \test" newsgroup is guaran-
teed to be there but there is no requirement that the attaker
post the original message to this group. The attaker might
�rst log into the news server to request a list of newsgroups
on that server and hoose a di�erent group every time. Thus
the token \test" generated by DACODA is not guaranteed
to be in every exploit for this vulnerability.
One interesting behavior of the Turkey exploit is that it

reates several �les or diretories with long �lenames and
then uses these �les or diretories in some way. This would
ause DACODA to disover very long tokens for these �le-
names (equality between the �le name used for reation and
the �le name used for aessing), exept that we added a
heuristi that DACODA does not inlude strong, expliit
equality prediates between two labeled symboli expres-
sions that are both from the attaker.

4.3.7 Lack of a Good Signature for Some Exploits
It is diÆult to generalize to a signature for a vulnerability

when there is not even a good signature for the exploit.
For Slammer the only byte string signature not suseptible
to simple polymorphi tehniques is the �rst byte in the
UDP paket, \0x04". This byte is ommon to all SQL name
resolution requests. The bogus return pointer also has to
be a valid register spring and another pointer must point
to any writable memory loation, but these are not strong
prediates. The SQL authentiation exploit does not o�er
muh in terms of a signature, either.
The Apahe hunk handling exploit, like the wu-ftpd

format string exploit, has erroneous prediates in Table 5.
This means that all of the tokens with four bytes or
more, exept the hunked enoding token, are atually
not invariant, leaving mostly dots, slashes, dashes, and
the new line harater, all of whih are not unommon
in HTTP traÆ. This does not o�er a very good in-
variant signature for ontent �ltering; only the token
\nx0dnnTransfer-Enoding:nx20hunkednx0dnnnx0dnn"
whih would blok a valid portion of the HTTP pro-
tool. In the ntpd exploit both 4-byte tokens are
\nx00nx00nx00nx00" whih is not unommon ontent on
any port. The longest token, 8 bytes long, is \stratum="
whih probably is not unommon for traÆ on UDP port
123.
We did not test any ASN.1 vulnerabilities, but these serve

as good examples of just how polymorphi � ould be. The
ASN.1 library length integer overow [52, bid 9633℄ basially
has a signature of \nx04nx84nxFFnxFFnxFF". The rest of �
in this ase is idential to any NTLM request over SMB
arrying an ASN.1 enoded seurity token. In fat, the �rst
445 bytes of all ASN.1 exploits through NTLM [52, bids
9633, 9635, 9743, 10118, 13300℄ and the Workstation Servie
[52, bid 9011℄ exploit are idential. This initial part of the
exploit vetor is not a good signature unless it is desired
that all NTLM requests arrying ASN.1 seurity tokens be
prevented. Furthermore, the Workstation Servie results
from Table 5 show that the longest string of invariant bytes
in this 445-byte sequene is only 23 bytes long. Two other
ASN.1 vulnerabilities [52, bids 9635, 13300℄ have no byte
string signature at all to desribe them.
As far as purely network-based signature generation meth-

ods with no host ontext, whih lak vulnerability informa-
tion for generalizing observed exploits and prediting future
exploits, not a lot of polymorphism is required for a worm



not to be deteted. Disounting the very long wu-ftpd for-
mat string and Turkey tokens whih are errors, only one of
the 14 exploits has a token of more than 40 bytes. The num-
ber 40 is signi�ant sine it is the minimum signature size
that the �rst implementation of EarlyBird [37℄ an disover.
A similar result is shown in Setion 4.2 of Kim and Karp [21℄
where the ability to generate signatures falls dramatially
when less than 32 bytes of ontiguous invariant ontent are
present, whih is true for 10 of the 14 exploits in Table 5.
Thus EarlyBird and Autograph, in their urrent implemen-
tations, would not be e�etive against polymorphi versions
of between 10 and 13 of the 14 exploits analyzed in this
paper.

5. POLY/METAMORPHISM
Based on the results in the previous setion, we would

now like to formalize polymorphism and metamorphism in
�. To be more perspiuous in doing so, and also to guide
future work, we desribe a model to enompass omplexi-
ties suh as multiple proesses, multithreading, and kernel
proessing of network data by viewing ontrol ow hijaking
attaks \from-the-arhiteture-up." In this way interproess
ommuniation and ontext swithes are viewed simply as
physial data transfers in registers and memory. The Physi-
al Data Requires-Provides model, or PD-Requires-Provides
model, is a requires-provides model [39℄ for physial data
transfers where the fous is on primitives, not vulnerabili-
ties, for reasons that will be disussed in this setion.
First we wish to onfute the idea that there is a single

user-spae proess that is vulnerable and the attaker opens
a TCP onnetion diretly to this proess to arry out the
exploit. Of the 14 exploits analyzed in Setion 4, six in-
volve multiple proesses, �ve involve a signi�ant number
of prediates disovered in kernel spae, and seven exploit
proesses that ontain multiple threads and are aessible
through multiple ports.
The purpose of an exploit is to move the system being

attaked from its initial state to a state where ontrol ow
hijaking ours. The series of states the attaker auses the
system to traverse from the initial state to ontrol ow hi-
jaking is the attak trae. The attaker auses this traversal
of states by sending some set of IP pakets that are projeted
onto the trae of the vulnerable mahine as they are inter-
preted by the protool implementation on that mahine.
The attaker must prevent a satisfatory haraterization

of the worm traÆ by varying bytes in the row spaes of the
three projetions that do not have a strong equality predi-
ate required of them (polymorphism) or hanging the map-
pings for eah infetion (metamorphism). In past work [14℄
we showed that there is a high degree of polymorphism and
metamorphism available to the attaker for both  and �,
so we will fous here only on the subjet of this paper: �.

5.1 What are Poly- and Metamorphism?
What do we mean when we say polymorphism and meta-

morphism in �?

5.1.1 Polymorphism of�
Some bytes mapped by � by de�nition are not atually

what one might think of when disussing � but should be
mentioned for ompleteness. Filler bytes that serve no other
purpose than to take up spae, suh as the \XXXXXXX..."
string of bytes in Code Red II, are usually in � but have

no strong equality prediate required of them. Usually their
plaement in � is only beause it is required that they are
not equal to a NULL terminator or an end of line harater,
or that they must be printable ASCII haraters.

5.1.2 Metamorphism of�
We will disuss two kinds of metamorphism: without mul-

tithreading and with multithreading. Metamorphism is the
more fundamental hallenge for DACODA sine DACODA
is based on symboli exeution of one attak trae and meta-
morphism in � hanges the attak trae.
Without multithreading, there are multiple ways to tra-

verse from the initial state to the ontrol ow hijaking. The
three ways of hanging this trae are:

1. Take an equivalent path: In format string attaks \%x"
and \%u" take di�erent paths but onverge so for pra-
tial purposes the traes are the same. A ouple of ex-
amples from the Code Red II exploit are \.ida" versus
\.idq" or the fat that the UNICODE enoding es-
ape sequene \%u" an appear anywhere in the GET
request between \?" and \=".

2. Add paths that are unneessary: In the Hannibal attak
for the wu-ftpd format string vulnerability the attaker
an, after logging in but before arrying out the atual
attak, use valid FTP ommands that are not useful
exept that DACODA will disover prediates for them
as they are parsed. Pipelining in HTTP 1.1 allows
for similar behavior as was pointed out in Vigna et.
al. [42℄.

3. Changing the order: In addition to adding paths that
are not relevant to the exploit, sometimes paths rele-
vant to the exploit an be arranged in a di�erent order.

What we need to understand metamorphism is a partial
ordering on the bytes from the range of �. This partial order-
ing ould help us determine that, for example, the Code Red
II bu�er overow is not reahable exept through a path in
whih the token \%u" is disovered, and that \.ida?" must
ome before this token and \=" must ome after. It would
also show that \GET" must be \GET" and not \GTE" or \TEG".
For generating a signature the partial ordering will reveal
whih tokens are not neessary for ontrol ow hijaking to
our, whih tokens an be replaed with other tokens (this
will require further analysis suh as model heking), and
will identify any ordering onstraints on those tokens that
must our.
The requires-provides model for ontrol ow hijaking at-

taks ould be as simple as a ontrol ow graph for the whole
system. The problem with this is that an attaker with the
ability to orrupt arbitrary memory with two threads in the
same proess an subvert the most basi assumptions (for
example, that if a thread sets a loal variable to a value it
will have the same value until the thread modi�es it again).
We need a model that an handle multithreading, but �rst
we need to try to understand what a vulnerability-spei�
signature would need to enompass. To do this we have to
disuss what a vulnerability is.

5.2 What is a vulnerability?
What auses a sequene of network pakets to be a ontrol

ow hijaking attak, the vulnerability, is very subjetive.



For bu�er overow exploits it is the fat that a partiular
�eld exeeds a ertain length; in the ase of Slammer it
is the length of the UDP paket itself, and for the Turkey
exploit the allowable length is exeeded by only one byte.
For double free() and dangling pointer exploits the exploit is
usually aused beause a ertain token appears twie when
it should appear one or is nested suh as the onstruted
bit strings of the ASN.1 dangling pointer vulnerability [52,
bid 13300℄. Format string write attaks are aused by the
presene of a token \%n". Integer overows our beause a
partiular integer is negative.
One last example puts this problem in perspetive. The

Code Red II bu�er overow only ours when at least one
\%u" token is present whih expands all of the ASCII har-
aters to 2 bytes, and the \u" harater as well as numbers
are ertainly aeptable in a normal URI. Changing a single
bit in the ASCII sequene \eu1234" reates \%u1234", so the
Hamming distane between a valid ASCII GET request of
aeptable length and one with a single UNICODE-enoded
harater that auses a bu�er overow is only one bit! Fur-
thermore, UNICODE enodings in GET requests of normal
length are ertainly valid within the HTTP protool or else
they would not have been implemented.
There are two ways to reate a signature that overs

a wide enough set of exploits to be alled \vulnerability-
spei�." One is to add more preision to the signature
and use heuristis within the signature generator to look at
not only tokens but, for example, also the lengths of �elds.
Slammer ould be stopped by dropping all UDP pakets to
port 1434 that exeed a ertain length. Code Red II ould
be stopped by dropping all HTTP requests with UNICODE
enodings that exeed a ertain length. The problem with
the Code Red II example is that it requires a lot of parsing
of HTTP ommands by the network ontent �lter. This is
even worse in the ase of Salper beause the Apahe hunk
handling exploit only ours when a partiular integer is
negative.
The seond way to generate signatures is to relax the

requirement that no portion of a valid protool be dropped.
In the Code Red II example above, we ould simply
drop all HTTP requests with UNICODE enodings sine
normal HTTP traÆ typially will not use them. For
Salper we ould drop all HTTP traÆ with the token
\nx0dnnTransfer-Enoding:nx20hunkednx0dnnnx0dnn"
whih will not allow any hunked enodings, and is in fat
the rule that Snort [53℄ uses. In other words, it may be
aeptable to blok a valid portion of a protool (or even
an entire protool by bloking its ports) if that portion is
not often used by legitimate traÆ. Most vulnerabilities
are disovered in ode that is not frequently used. These
oarse responses may sometimes be the most e�etive, but
the hallenge is knowing, upon apturing an exploit for an
unknown vulnerability, that the protool involved or the
spei� part of it where the vulnerability lies is rarely used,
something that would need to be pro�led over a long period
of time.
The �rst of these alternatives leaves us \on the horns of

a dilemma" [49℄ in terms of false positives and false nega-
tives without a detailed semanti understanding of how the
exploit works. It also is not amenable to byte string signa-
tures, even those based on small sets of tokens, so something
more semantially rih will have to be devised. This is the
hallenge that we hope to address in future work.

The seond alternative will reate a great number of false
positives if the worm exploits a vulnerability that is in a part
of a protool that is used often. This is beause nearly all
of the tokens in Table 5 are protool framing and not related
to the atual vulnerability. Bu�er overows have been found
in Mirosoft libraries for both JPEG parsing [50, MS04-028℄
and JPEG rendering [50, MS05-038℄. If a worm exploited
suh vulnerabilities, it would reate many false positives if
the worm ontent �ltering mehanism bloked all HTTP
responses ontaining JPEGs.

5.3 The PD-Requires-Provides Model
Metamorphi tehniques that use arbitrary memory or-

ruption primitives in multithreaded appliations to build
omplex exploits require a model that views the system from
the same perspetive as the attaker will: the raw mahine.
This \from-the-arhiteture-up" view of the system will al-
low us to abstrat away system details that lead to assump-
tions that the attaker an invalidate. This is the motivation
behind the PD-Requires-Provides model.

5.3.1 Requirements and What They Provide
An attaker an only ause a state transition along the

attak trae through the exeution of a mahine instrution
that uses data from the range of �. We will assume a Pen-
tium proessor and a sequential onsisteny memory model.
Although the Pentium uses a proessor onsisteny model
and multiproessing is beoming more and more ommon,
it may be too pessimisti at this time to assume that the
attaker ould exploit a rae ondition between the mem-
ory and the write bu�ers of two high speed proessors.
It should be noted, however, that rae onditions between
threads have been demonstrated to permit remote ode ex-
eution [47℄.
Treating eah mahine instrution that is exeuted as an

atomi event, we an say that to provide a side e�et needed
by the exploit there is something required of the inputs. A
side e�et the attaker would like to provide ould be a write
to memory, a write to a register, a write to a ontrol ag, or
a branh prediated on a ontrol ag. It ould be required
that an input to the instrution be a ertain value from the
range of �, that the address used to load an input be from
the range of �, or that a ontrol ag have been prediated
on a omparison of data from the range of � (providing a
write to the program ounter EIP).

5.3.2 Slammer Example
Suppose we want to exploit the vulnerability used by

Slammer to write the value 0 to the virtual address
0x0102aabb in the SQL server proess. It is required that
we get the value 0x0102aabb into the EAX register before
the instrution \MOV [EAX℄,0" is exeuted. This requires
that we send a long UDP paket to port 1434. Spei�ally,
when the Ethernet paket is reeived it is required that the
\IN DX" instrutions that read the paket read a arefully
rafted UDP paket two bytes at a time to provide that the
paket be stored in a bu�er and interpreted by the Windows
kernel in a ertain way. When the Windows kernel heks
the 24th byte of the paket it is required that this memory
loation hold the value 0x11 so that when it is loaded into
a register and ompared to 0x11 the branh will be taken
where the kernel interprets it as a UDP paket. Similar
requirements on the port number and destination address



will provide the state transitions of the kernel reognizing a
paket for the SQL server proess and then ontext swith-
ing into that proess providing us with the ability to read
and write the physial memory of that proess.
The SQL thread hosen to handle the request will then

ontext swith to the kernel and bak twie to obtain the
soure address and port number information and then to
read the paket into its own memory spae. Then it is
required of eah byte that it not be equal to \0x00" or
\0xFF" in order to reah the bu�er overow ondition. It
is also required of the �rst data byte of the UDP paket
to be equal to \0x04" so that the vulnerable funtion is
reahed through the sequene \MOV EDX,[EBP+fffffbf4℄;
JMP [42fa23b+EDX<<2℄". Then before \MOV [EAX℄,0"
the EAX register must hold the attaker's desired arbitrary
address (0x0102aabb), provided by the instrution, \MOV
EAX, [EBP+10℄" whih requires the value 0x0102aabb to be
at \[EBP+10℄". Finally, all of this will provide the primitive
that the value 0 is written to the virtual address 0x0102aabb
of the SQL server proess whih may be required for some
exploit suh as the one suggested in Subsetion 4.3.3.

5.3.3 Should Focus on Primitives, not Vulnerabilities
The goal of a signature generation algorithm based on

DACODA, then, should be to, given the partial ordering
onstruted for a single exploit as analyzed by DACODA,
identify the primitive most valuable to the attaker in gen-
erating new exploits and generate a signature that prevents
that primitive. This will most likely have to be done with
heuristis. A good heuristi is that arbitrary write primi-
tives are valuable to an attaker, whih will be revealed by
a write provided by a requirement that the address used for
the write was data from the range of �. That requirement
was provided by some other requirement, whih in turn was
provided by another requirement, giving us a way to work
bakwards and generate a primitive-spei� signature from
the partial ordering. Another good heuristi is that saved
base pointers and return pointers on the stak should not be
overwritten by long �elds, but this requires knowing whih
�eld is too long whih in turn requires knowing what the de-
limiters between �elds are for that partiular protool (in-
formation that will have to be extrated from the partial
ordering). Similar heuristis ould be made for any sort of
primitive that an attaker might �nd valuable in building
exploits. The point is that an attaker who searhes for a
zero-day vulnerability is not so muh searhing for a vulner-
ability as for a useful primitive for generating exploits.

6. FUTURE WORK
DACODA an be useful toward a variety of objetives,

several of whih we will now disuss. In this paper we have
used DACODA to analyze known exploits as a quantitative,
empirial analysis of the amount of polymorphism available
to an attaker within the exploit vetor. DACODA may also
be used as a honeypot tehnology to perform the same analy-
sis on zero-day worms exploiting unknown vulnerabilities for
signature generation. This same idea was employed in Vig-
ilante [10℄ and suggested as future work for Polygraph [28℄
and TaintChek [29℄.
Other possible future work for DACODA is to use pred-

iates disovered by DACODA and heuristis about di�er-
ent memory orruption errors to narrow the searh spae
of a random \fuzz tester" [26, 27℄. It would be possible to

�nd bu�er overows and other remote vulnerabilities in both
user-spae and the kernel this way. This system would be
similar to two reent papers on automatially generating test
ases [4,18℄ but would operate on a full system without the
soure ode and �nd remote vulnerabilities.
Full system symboli exeution has many other seurity

appliations, but it was pointed out in Cohen's seminal pa-
per on omputer viruses [9℄ that the general problem of pre-
isely marking information ow within a system was shown
to be NP-omplete by Fenton [17℄. DACODA is able to an-
alyze the exploit vetor part of an attak beause the ode
being exeuted is ode hosen by the owner of the host suh
as the operating system and software she hooses to install.
After ontrol ow is hijaked the omputational omplexity
of information ow traking is more than a theoreti problem
beause the attaker an use tehniques suh as phi-hiding
to obfusate information ow in a ryptographially strong
manner [45℄.

7. CONCLUSION
This paper presented DACODA and provided a quanti-

tative look at the exploit vetors mapped by � for 14 real
exploits. These results and our experienes with DACODA
disussed in this paper o�er pratial experiene and sound
theory towards reliable, automati, host-based worm signa-
ture generation. We have shown that 1) single ontiguous
byte string signatures are not e�etive for ontent �ltering,
and token-based byte string signatures omposed of smaller
substrings are only semantially rih enough to be e�etive
for ontent �ltering if the vulnerability lies in a part of a pro-
tool that is not ommonly used, and that 2) whole-system
analysis is ritial in understanding exploits. As a onse-
quene we onlude that the fous of a signature generation
algorithm based on DACODA should be on primitives rather
than vulnerabilities.
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