Ihtroduction

The purpose of this introduction to the Design of Experiments (DOE) is to showcase the power and
utility of this statistical tool while teaching the audience how to plan and analyze an experiment. It
is also an attempt to dispel the conception that DOE is reserved only for those with advanced math-
ematics training. It will be demonstrated that DOE is primarily a logic tool that can be easily
grasped and applied, requiring only basic math skills. While software would make the calculations
more painless and provide greater versatility, it is necessary to understand what the software is
doing. To this end, software is not used with this text, but calculators are used instead to insure that
the basics are learned. At the conclusion, software applications will be obvious and some options
among available packages will be described. This is by no means a complete treatment of the broad
field of DOE. The intent is to introduce the basics, persuade the reader of the power of this tool, and
then recommend resources for further study. The material covered will still be sufficient to support
a high proportion of the experiments one may wish to perform.

The prerequisites of this book are familiarity with the concepts of process stability, basic statis-
tical process control (SPC), and measurement analysis. As in any process improvement activity, it is
necessary to recognize that a process is made up of input variables, process variables, and output
measures (see Figure 1.1). The intent is always to improve the output measure, which is labeled as
the response. There is no direct control on the response variable; in the classical cause-and-effect
approach, it is the effect.

The causes are what dictate the response. To control the response, one must control the causes,
which may be input variables and/or process variables involving the five elements shown in Fig-
ure 1.1. (These variables or causes will later be referred to as factors.)

Material Methods Measurement
Response
Inputs ﬁ/ / -

Machines People

Process . Outputs

Ficure 1.1. Cause-and-effect relationship.
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For example, there is no control setting in a sales process that allows one to set a sales level. To
control sales, one must address those variables that cause sales to change, e.g., promotional litera-
ture, call frequency, pricing policies, credit policies, personal sales techniques, etc. A process may be
very simple, or it may be a complex group of processes.

In concert with this cause-and-effect or systems approach to the process, the concepts of process
variation must be understood. Every response demonstrates variation. This variation results from
(a) variation in the known input or process variables, (b) variation in the unknown process vari-
ables, and/or (c) variation in the measurement of the response variable. The combination of these -
sources results in the variation of that response. This variation is categorized by the classic SPC
tools into two categories: (a) special-cause variation—unusual responses compared to previous his-
tory; and (b) inherent variation—variation that has been demonstrated as typical of that process.

A side note is needed here on terminology. Inherent or typical variation has a variety of labels
that are often used interchangeably. In control charting, it is referred to as common-cause variation.
In control systems, it is called process noise. In DOE, it is called experimental error or random variation.
To minimize confusion, it will be referred to in this text as either inherent variation or experimen-
tal error.

Control charts are used to identify special-cause variation and, hopefully, to identify the process
variables or causes that led to such unusual responses. The presence of special causes within an
experiment will create problems in reaching accurate conclusions. For this reason, DOE is more eas-
ily performed after the process has been stabilized using SPC tools. The presence of inherent vari-
ation also makes it difficult to draw conclusions. (In fact, that is one of the definitions of statistics:
decision making in the presence of uncertainty or inherent variation.) If a process variable causes
changes in the response that exceed the inherent variation, we state that the change is significant.

Inherent variation can also be analyzed to determine if the process will consistently meet a spec-
ification. The calculation of process capability is a comparison of the spread of the process with the
specifications, resulting in test statistics such as C and C . Figure 1.2 illustrates the comparison of
a process with its upper and lower specification limits.

LSL USL LSL USL

Acceptable/Capable Unacceptable/Not capable
C, 21.33 C, <1.33

FiGURE 1.2. Process capability.

Design of Experiments is the simultaneous study of several process variables. By combining sev-
eral variables in one study instead of creating a separate study for each, the amount of testing
required will be drastically reduced and greater process understanding will result. This is in direct
contrast to the typical one-factor-at-a-time approach or OFAT, which limits the understanding and
wastes data. Additionally, OFAT studies can not be assured of detecting the unique effects of com-
binations of factors (a condition later to be defined as an interaction).
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Design of Experiments includes the entire scope of experimentation, including defining the out-
put measure(s) that one desires to improve, the candidate process variables that one will change,
procedures for experimentation, actual performance of the experiment, and analysis and interpre-
tation of the results. The objectives of the experimenter in a DOE are

1. to learn how to change a process average in the desired direction
2. to learn how to reduce process variation

3. to learn how to make a process robust (i.e., make the response insensitive to uncontrollable
changes in the process variables)

4. to learn which variables are important to control and which are not

For ease of instruction, small experiments are presented first, followed by large experiments. In
the real world, one would prefer to start with large experiments and progress to smaller ones in
order to identify variables that affect the response variables. Terms and definitions are covered as
they arise. The terminology used in DOE is often different from the equivalent terms in SPC and is
presented to assure that other references are more readable. The initial example is used to define
most of the unique terminology and much of the analytical technique.



Experiments with Two
Factors

It is beneficial at this point to review the logic steps to be followed in planning and implementing a
DOE, even if some of the terminology has not been defined (this is repeated after the first exercise):

/
Define the process to be studied.

Determine the response(s).

Determine the measurement precision and accuracy.
Generate candidate factors.

Determine the levels for the selected factors.

Select the experimental design.

Have a plan to control extraneous variables.

Perform the experiment according to the design.
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Analyze and draw conclusions.

e
o

Verify and document the new process.

11. Propose the next study:.

An experiment with two factors is presented to start the process of defining terms and procedures.
The techniques developed in this small experiment can then be used in experiments with many
more factors.

Example 1: Bond Strength

A manufacturer of laminated papers takes two rolls of kraft paper and extrudes a layer of polymer
in between, simultaneously pressing the three components into a sandwich. The customer has com-
plained about the lack of adherence of the polymer to the two paper layers. Therefore, the objective
of the study is to maximize the bond strength. Note that the objective must be defined up front. The
manufacturer has developed a test for this bonding using a Bond Meter. (Don’t look for this in your
equipment catalog!) This is the key output measure; in DOE, it is called the response variable. The
team working on improving the bond has decided that the best candidate factors for controlling
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bond strength are polymer temperature and paper source. Factors are process variables that can be
controlled at will during the experiment. Think of them as knobs that you can turn as you wish.
(Such factors are also referred to as_independent variables in"some references.) These factors were
selected based on the review of data from the process and on the brainstorming by the team. After
much discussion, the Jevels—the different options or settings for each factor in the experiment—
were set as shown below.

Factor Low Level High Level
A. Polymer Temperature, °F 580 600
B. Paper Source Vendor Y Vendor X

Note that factor A is a guantitative factor since its levels can be set along a relatively continuous
measurement scale. Factor B is qualitative since its levels are discrete; i.e., there are a finite number
of levels available. Where possible, quantitative factors are preferred since that permits the experi-
menter to follow such a factor to an optimum condition with respect to the response.

Next, the experimental design must be defined. The experimental design is the definition of the
collection of trials to be run in the experiment. In this example, the design is all possible combina-
tions of the chosen factor levels, called a full-factorial design. Since each factor has two levels, this is
a 2? design requiring four unique treatments or runs. (The base 2 refers to the number of levels; the
exponent refers to the number of factors.) These four runs are the four combinations of the levels of
the factors using either the labels high and low or plus and minus signs to identify the actual levels:

1. Alow;Blow=AB
2. Alow; B high = AB
3. A high; B low = AB
4. Ahigh; Bhigh =A B,

A run or treatment is the unique combination of the factor levels. Note that each run may be per-
formed more than once. The procedure of performing more than one trial of each run is referred to
as replication when each experimental trial utilizes a completely new setup. A replicate is an inde-
pendent and random application of the run, including the setup. This is considerably different from
a repeat, which is a repetition of a run without going through a new setup. The 2? design defines
four treatments or runs. To reduce the impact of the inherent variation in the process, each run is
replicated for a total of eight trials. These eight trials must be carried out in a random order to min-
imize the risk of bias in the results due to unknown or uncontrolled factors, =~ &

Randomization refers to the order in which the trials of an experiment are performed. Random-
ization can be achieved by numbering the trials and then drawing numbers from a hat, using a table
of random numbers, shuffling numbered cards, etc. This is important to protect against uncon-
trolled and/or unknown influences of variables that are not part of the experiment. As an example,
assume that an experiment has a single factor, pressure. Assume also that, unknown to the experi-
menters, a thermostat reading is drifting steadily downward and that the background temperature
affects the response. If all the low-pressure trials are performed on day one and the high-pressure
trials on day two, is their difference due to the change in pressure or to the change in temperature?
The experimenters cannot be sure and, in fact, may not even know there is a problem. If the tem-
perature impact is major, one could erroneously conclude that pressure is a causative factor. In
order to minimize this risk of unknown influence, the experimenters randomly assign the order of
testing to improve the chances of averaging out this bias or distortion of the responses related to the
factor(s) under study. :
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There are times one cannot randomize due to physical or cost constraints. Such cases generally
lead to blocking of the experiment into sections defined by the factor that cannot be randomized. For
instance, there may not be enough material from one batch of raw material to complete the experi-
ment. Instead, one may block by carrying out a carefully defined set of trials with one batch and the
remaining trials with a second batch. Such blocking minimizes the risk of the nuisance-factor

‘batches creating excessive estimates of the inherent variation. - '

This first part of Chapter 2 is the design part of DOE: factor selection, setting levels, defining

treatments, randomization of the order of performance. Now the eight trials must be performed

exactly as required, keeping all other factors constant. The responses or results that were obtained
are shown in Table 2.1.

TasLE 2.1. Data for Example 1.

A. Polymer Temperature, °F

580 600
(Low) - (High) +
18.6 175
Vendor Y 174 16.5
(Low) — Y =18.00 Y =17.00
B. Vendors
182 22.9
Vendor X 16.7 299 .,
(High) + Y =1745 Y =2255

Notice the use of plus and minus signs as another way to indicate the two levels. Analysis of
these data will be done using the eight-step analytical procedure that follows. These eight steps will
work for experiments with any number of factors, as long as the factors have two levels. At first
glance, the limitation to two levels may seem very restrictive. In actuality, it permits a remarkable
efficiency in the number of trials needed. The primary penalty is that the relationship between a
response and a factor with two levels is assumed to be linear. Techniques for identifying nonlinear
relationships (curvature) are presented later.

The Eight Steps for Analysis of Effects

Calculate effects.

'Make a Pareto chart of effects.

Calculate the standard deviation of the experiment, S,.

Calculate the standard deviation of the effects, 5.

Determine the t-statistic.

Calculate the decision limits and determine the significant effects.

Graph significant effects.

ool (e RO L Ly

Model the significant effects.
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The Analytical Procedure
1. Calculate Effects. .

Main effects are defined as the difference in the average response between the high and low levels

of a factor. The Effect of A is written as E(A). Using plus and minus signs to represent high and low
levels of a factor, main effects are defined as :

= = 22.55+17.00 17.45+18.00
E(A)ZYA+—YA_: 2 s 2

=19.78-17.73=2.05

The main effect of +2.05 means that the average bond strength at the high level of temperature
(600°F) was 2.05 units higher than the average bond strength at the low temperature (580°F). The
same data can now be used to determine the main effect of factor B (vendor) on the process. Note
that a plus sign is used to designate vendor X while a minus sign is used to designate vendor Y.
This is an arbitrary choice that once chosen must be used consistently.

22.55+17.45 17.00+18.00

E(B)=Y;, -Y; =
(B)=Yg, - Y 5 5

=20.00-17.50=2.50

This indicates that the paper supplied by vendor X averaged 2.50 units higher in bond strength
than that supplied by vendor Y. An effect is the difference in averages. Note that in a DOE the same
data are used for more than one factor. This is the fundamental concept of DOE: an experiment is
used to define many effects, rather than performing an experiment for each factor. The graphs in

Figures 2.1 and 2.2 indicate the direction of influence for the factors and communicate the meaning
of the effects very clearly.
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FiGure 2.1. Effect of temperature on bond strength.
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Ficure 2.2. Effect of vendor on bond strength.

The plots of the main effects of temperature and vendor indicate that a higher temperature
results in a stronger bond and that vendor X is superior to vendor Y. Observe the data in Table 2.1.
Are those results always true and to the amount expected? Are there certain combinations of tem-
perature and vendor that don’t seem to provide the expected results? Wa

articular combination of two factors does something unexpected from simply observing their
M’d@nned as one-mg?ence between the effect of A at the

high level of B and the effect of A at the low level of B. Mathematically, this is

E(AB)= %[(YA+ ~Ya)pe ~(Yar- Ya)p-1
Using the data in the table,
E(AB) = %[(22.55 —-17.45) - (17.0 - 18.0)] = %[5.1 -(-1.0)] =3.05

The interaction effect essentially increases or decreases the main effect in the experiment by
3.05 units of strength. For example, the main effect of temperature equals +2.05. However, when
paper from vendor X is used, the effect of temperature is actually 5.10; i.e., (22.55 - 17.45). Con-
versely, when paper from vendor Y is used, the temperature effect is —1.0; i.e., (17.0 — 18.0). This
means that when using paper from vendor Y, higher bond strengths are achieved with lower tem-
perature. The plot reveals what the interaction effect means (see Figures 2.3 and 2.4 on page 10).

Interactions can be plotted as vendor-temperature or as temperature-vendor; both are correct and
are simply two views of the same phenomenon. The two plots do not always look alike. If in doubt
about which is more useful, plot both!

A final precaution on interactions: if an interaction proves to be significant, the interaction chart
is more important than the main effect charts. If there is an interaction, the main effect describes
average results whereas the interaction is more appropriate in describing the joint effect.
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FiGure 2.3. Temperature-vendor interaction.
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Ficure 2.4. Vendor-temperature interaction.
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FIGURE 2.5. Pareto chart of effects.

2. Make a Pareto Chart of Effects.

To show the relative importance of the effects, plot their absolute value as a Pareto chart (see Fig-
ure 2.5). The Pareto chart, which becomes more useful when larger experiments are studied, is often
sufficient to determine what effects are meaningful.

The problem now is to test these effects for significance; i.e., how do we show that the results of
the experiment are beyond the inherent variation to be expected in the experiment? The next four
steps will determine whether these three effects are significant or meaningful.

3. Calculate the Standard Deviation of the Experiment, S..

Determination of significance requires calculation of a standard deviation as a measure of the inher-
ent variation or experimental error in the process. In SPC, this was referred to as sigma and used the
symbol 6. In DOE, the symbol S, is used. To obtain S, the variance (S?) is calculated for each run or
treatment. (Here is where a scientific calculator will be worth its cost! Just be sure to use the key for
a divisor of n—1.) These variances are then averaged and converted to a standard deviation (S,) by
taking the square root.

Let’s have a tutorial on this. A variance is the square of the deviation of each observation of a
sample from the sample average. The formula is

(X -X)?
= n-1

§S2
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Assume three responses: 12, 14, 16. Since the average is 14,
5% = {(12-14)* +(14-14)* + (16-14)2/(3-1) = {(=2)2 + 0% + 22)} /2 = 4.0 -
The standard deviation S is the square root of the variance and is a measure of inherent variation.
§=+/52 =/4=20.

Don't plan on doing this by hand; use a calculator! Variances are averaged even though standard devi-
ations are the statistic used. This is to permit creation of a measure of spread or variation that will
always be a positive number. The variances are calculated for each run and averaged. The average
variance is converted to a standard deviation by taking the square root:

Se =~(XS:* /k)

where 57 is calculated for each of the k runs. In this exercise, the variances of the four runs of Table
2.1 are calculated. For example, the two trials for the run with temperature = 580° F and vendor Y
resulted in 18.6 and 17.4 with an average of 18.0. Then

S2=[(18.6 - 18.0)* + (17.4 — 18.072] /(2-1) = (.36 +.36)/1 = 72

The variances are shown in Table 2.2.

TABLE 2.2. Variances for each run of example 1.

Temperature

580°F 600°F
Vendor Y 720 .500
Vendor X 1125 245

S2=(72+ .50 + 1.125 + .245)/4 = 0.648

and

S, =+/.648 = .80

This estimate of the inherent variation represents (1) measurement variation, plus (2) the inabil-
ity of the experimenter to repeat the conditions, plus (3) the inability of the process to repeat the
same response for the same conditions.

There is more than one way to calculate the standard deviation of the experiment. This tech-
nique is used since it is the classic approach and more closely matches what will later be seen in

software. Range techniques from SPC could also be used with little loss in precision of the estimate,
that is,

where R is the average of the ranges of the runs and d, is a tabular value based on the number of
replicates.
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4. Calculate the Standard Deviation of the Effects, S_,.

Effects are differences between averages, requiring a modified standard deviation. This is called the
standard deviation of the effects and is defined as

Sef :Se \)(4/N)

where N is the total number of trials. This formula will hold for any number of trials as long as the
factors have two levels. In the example,

Syy =.80+/(4/8) =057
5. Determine the t-Statistic.

To use the t-table, the degrees of freedom in the experiment must be determined. Degrees of freedom
(d.f.) measure the amount of information available to estimate the standard deviation. The calcula-
tion is

d.f. = (# of observations per run — 1) X (# of runs) = (2-1)x (4) =4

Next, a reference number must be selected from the t-table on page 66 in the appendix. Ninety-
five percent confidence is customarily considered necessary to claim significance in effects. Confi-
dence is

1 — alpha risk

where the alpha risk is the chance of erroneously claiming significance. The typical alpha risk (also
written with the Greek symbol o) is therefore 5 percent. This table is based on that level of confi-
dence. Referring to the t-table for 4 degrees of freedom and o =5 percent, the tabular value is = 2.78.
6. Calculate the Decision Limits and Determine the Effects.

The decision limits (DL) for the significance of effects in this DOE can now be calculated. The ques-
tion is whether the computed effects are significantly different from zero and, therefore, not due to
random variation. If the effects are outside the zone defined by the decision limits, the effects are
considered real or significant. The decision limits are calculated by

DL=%(t,,) (0,) =% (278) (57) =+ 1.58

The results are shown graphically in Figure 2.6.

DL DL

E(A) E(B) E(AB)
| | |
~1.58 0 +158 205 250 3.05

FiGURE 2.6. Decision limits.
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What is the conclusion here? All three of the effects in the example exceed the limits and are
judged to be real or significant. Since the interaction effect was significant, one must jointly consider
the two factors to determine how to optimize the process. Since the objective was to maximize bond
strength, one should use paper from vendor X and operate at a temperature of 600°F. Refer to Fig-
ures 2.3 and 2.4.

7. Graph Significant Effects.

Actually, graphs need only be made for significant effects. If an effect is not significant, the graph is
of no interest. If an interaction is significant, that graph is more meaningful than those of the indi-
vidual factors since an interaction means that the experimenter must consider the factors jointly.
The graphs for this example have already been shown in Figures 2.1, 2.2, 2.3, and 2.4.

8. Model the Significant Effects.

The model or prediction equation is useful to predict the optimum outcome for future validation
experiments. The model is a linear equation of the following form, using only the significant effects.
However, if an interaction effect is significant, the terms for the two main effects are also included
even if they are not significant. This is due to the hierarchy rule for defining a model. This rule becomes
more important in advanced techniques for optimization. The levels of A, B, and AB are coded by
-1 for the low levels and +1 for the high levels. The term Y represents the average of all the data.

=Y+ E(A)A+ E(ZB) B+ Rt AB

=>

Since our objective is to maximize bond strength, A and B are set at the high ( + ) levels that will
provide maximum strength. Specifically,

¥ = 1875 + (2.05/2) (+1) + (2.50/2)(+1) + (3.05/2) (+1)(+1) = 22.55

If the best combination of temperature and vendor paper is used, bond strength is estimated to
average 22.55. This is better than the results predicted simply from the main effects of A and B due
to the contribution of the interaction term. An interaction either increases the response over that
expected due to main effects alone or it reduces the response below that expected from main effects.

What if one needed to know the expected response for a temperature of 595°F with paper from
vendor X? The model uses coded values for the levels so the temperature of 595°F must be changed
to coded values in order to interpolate the results:

-1 0 s +1

I I | |
580°F 590°F -  595°F  G6UU°F

Since 1 unit = 10° and 595° is 5 degrees from the zero point equivalent to 590°, the coded equivalent
of 595° is 5/10 = + .5. This value is then inserted into the model for A with B = +1:

7 -7, EA) 4 EB) g E(4B) \p
- 2 2
~18.75 + (2.05/2)A + (250/2)B + (3.05/2) AB
— 1875 + 1.03A + 1.25B + 1.53AB

= 18.75 + 1.03(5) + 1.25(1) + 1.53(.5)(1) = 21.28
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This interpolation procedure is useful when there are only a couple of significant factors. Otherwise,
too many assumptions must be made since one would have a single equation in several unknowns:

What further study can be recommended if even higher bond strength is desired? Does the
temperature effect continue beyond 600°F? It is dangerous to extrapolate beyond the range of study
(580° to 600°F). Plan a verification study at 600°F and at 610°F with paper from vendor X. This will
verify the previous conclusions and explore the potential for even better performance.

The objective in this example was to achieve stronger bond strength. Suppose the objective had
been different. What if the bond strength problem was not one of inadequate strength but of too
much variation in the strength since temperature could not be tightly controlled? What conclusions
would be drawn in that circumstance? What conditions would make the process robust or insensi-
tive to changes in the process variables of temperature and vendor? The interaction plots show that
changes in temperature have little effect on bond strength if paper from vendor Y is used. This is
why the objective of the study must be clearly understood before the experiment is finalized.

For demonstration purposes, again assume a different objective. Suppose that, instead of
achieving a maximum or minimum, the experimenter needed to hit a target response of 20. This
would lead one to determine the setting of the quantitative (numeric) factor of temperature. Based
on the interaction graph (Figure 2.4), note that only vendor X material provides a range of
responses that includes the value of 20. If B is set at +1 for vendor X, what setting for factor A (tem-
perature) would provide a forecast of the target value? To determine this, solve the model for A
where B = +1 (vendor X) and Y = 20 (target response):

]L(:?+E(;)A+E(2B)B+E(AB)AB

20 =18.75 + 1.03A + 1.25B + 1.53 AB
=105+ 100A+125+1534
256A =0

A =01in coded units or, by interpolation, A = 590° in actual units.

This completes the analytical procedure. It is very important that the conclusions from this
experiment be verified either by operating at the recommended conditions or by further experi-
mentation. (More advanced techniques are covered in the references on page 63 to more completely
address the subject of optimization.) All reports, graphs, and recommendations should be put in
layman’s terms, not in the statistical terminology that is used in the analysis. Remember that the
average employer may not know what A- means, but he or she understands Pareto charts (the
80/20 rule) and graphs as long as the references are in familiar language. A box with the steps of
the analytical procedure is provided for quick reference.

m THE EIGHT STEPS FOR ANALYSIS OF EFFECTS E

1. Calculate effects.

Make a Pareto chart of effects.

Calculate the standard deviation of the experiment, S,.
Calculate the standard deviation of the effects, S .
Determine the t-statistic.

Calculate the decision limits and determine the effects.

Graph significant effects.

© N o U wN

Model the significant effects.
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These steps are the fundamental analysis techniques for any number of factors at two levels.
Remember that small DOESs such as the previous example are usually used in refining experiments
after larger screening experiments or when some quick troubleshooting is needed. The spacing of
the quantitative levels (temperature in our example) is also important. In a screening design, the
levels should be set as wide or as bold as practical to make it easier to discover significant factors
for later study. In a refining design, the levels would be set more closely and more replication would
be required since the size of the effects would be reduced. Additional data would be needed to
demonstrate significance of the smaller effects.

A final caution is needed on the statistical control of the process. Lack of control increases the
experimental error and can also create false effects. It is important to stabilize the process, i.e., elim-
inate the special causes. Otherwise, replication must be increased to overcome the distortion (over-
estimate) of the estimate of inherent variation (S,) due to the presence of special causes of variation.

Review of the Experimental Procedure

Having completed an experiment and gone through the analytical procedures, one can review the
broader concepts of experimentation. There are a series of logic steps that must be addressed as one
prepares to launch a DOE.

1. What is the process to be studied? How broadly or narrowly is it defined? A flowchart is a
good tool for this analysis.

2. What is the response? What needs to be improved? Should there be more than one response?
Note that additional responses are free, costing only the measurements!

3. What is the measurement precision? Is there bias in the measurement system? Has a measure-
ment analysis been completed? Is it adequate?

4. Generate candidate factors. This is best done with a small team using brainstorming after a
review of all available data and information on the process and response variables. A cause-
and-effect diagram with a flowchart of the process is useful with this brainstorming. The trick
is to be innovative, to think outside usual boundaries, and yet not try to reinvent proven tech-
nology. Provide opportunities for surprises! The team should be knowledgeable about the |
issues and follow the rules for brainstorming.

5. Determine the levels for the factors selected for the DOE. In screening experiments, the rule is
to have levels broadly spaced but not to the point of being foolhardy. In refining experiments,
levels will be much tighter and will require more replication.

6. Select the experimental design. This is the set of treatments or runs that will be performed. This
also includes deciding on the amount of replication. Finally, the randomized order of the trials
is determined. (Randomization is the insurance policy against misleading conclusions due to
outside influence during the experiment.)

7. Establish a plan to control (or at least monitor) extraneous variables.

8. Perform the experiment according to the design. The DOE must be carried out per its design.
Identify trial materials carefully. Keep good notes.

9. Analyze, draw conclusions, and assess process impact. What process variables can be
changed—and how—to improve the process?

10. Verify and document the new process as defined by the experiment.

11. Propose the néxt-study for continuation of this project, or declare the project complete. Make
sure that all reports that go beyond the team are in language and terminology that are easily
understood.



