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ABSTRACT

We are always patching our systems against specific instances of
whatever the latest new, hot, trendy vulnerability type is. First it
was time-of-check-to-time-of-use, then buffer overflows, then SQL
injection, then cross-site scripting. Vulnerability studies are sup-
posed to accomplish two main goals: to classify vulnerabilities into
general classes so that unknown vulnerabilities of that class can be
discovered in a proactive way, and to enable us to understand the
fundamental nature of vulnerabilities so that when we build new
systems we know how to make them secure. In this paper we pro-
pose a new paradigm for vulnerability studies: we view vulnera-
bilities as fractures in the interpretation of information as the infor-
mation flows across the boundaries of different abstractions. We
argue that categorizing vulnerabilities based on this view, as op-
posed to the types of categories that have been used in past vulner-
ability studies, makes vulnerability types more easily generalizable
and avoids problems where vulnerabilities could be put in multiple
categories.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection

General Terms

Security
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flow.

1. INTRODUCTION
In his seminal paper on computer viruses [15], Cohen said, “in-

formation only has meaning in that it is subject to interpretation.”
This fact is at the crux of vulnerabilities in systems. As information
flows from one process to another and influences the receiving pro-
cess, interpretations of that information can lead to the receiving
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process doing things on the sending process’ behalf that the system
designer did not intend to allow as per the security model.

Consider buffer overflows [6]. At the level of abstraction of the
application, an input is just a set of bytes that might be interpreted
as a request formatted in a particular protocol. If some of the in-
formation goes beyond the bounds of a buffer at the compiler and
architecture level, part of the information may be interpreted as
control data. Attackers exploit this fact to corrupt the receiving
process and cause it to execute machine code of their choosing.

Consider also SQL injection [27, 52]. Because the attacker puts
escape characters in their inputs the inputs become not just leaves
in the parse tree when the SQL query is generated, but part of the
structure and semantics of the SQL query itself [27, 52]. It is as
if the designers of the system intended a flat interpretation of the
remote user’s inputs, but an unexpected code path causes the user
input to be fractured at a higher level of interpretation. Cross-site
scripting [58] works in a similar way from this perspective.

Information, when viewed from the different perspectives for the
various levels of abstraction that make up the system (OS, appli-
cation, compiler, architecture, etc.), should still basically have the
same interpretation. Fractures in interpretation as the information
crosses abstraction boundaries are therefore precipitous changes in
how the untrustworthy input can control the system, i.e., probably
vulnerabilities. We propose viewing vulnerabilities as fractured
holograms. The Merriam Webster dictionary defines a hologram
as, “a three-dimensional image produced from a pattern of inter-

ference.” Interference is the key word in our discussions about the
origins of vulnerabilities. Interference can be seen as the way that
untrusted inputs affect a system through information flow. Imag-
ine a hologram of a rabbit. As the hologram is rotated and viewed
from different perspectives, the image changes but is still an image
of a rabbit. If the hologram, when viewed from a specific angle,
becomes instead a picture of a cat, we can say the hologram is frac-
tured. Similarly, data such as an HTTP request input should have
different interpretations from the perspectives of the various levels
of abstraction (as a string of bytes, as an HTTP request, partly as
a filename, etc.). But when one level of abstraction interprets the
information as a filename and another as a return pointer we can
say that there has been a precipitous fracture in interpretation.

We propose a new paradigm that views vulnerabilities as frac-
tures in interpretation as information flows. Specifically, at the
boundaries between layers of abstraction there should always be
differences in interpretation, but these differences should be rela-
tively continuous (e.g., a raw string of bytes vs. a string of bytes
that is parsed as an HTTP GET request) rather than precipitous
fractures (e.g., a raw string of bytes vs. a string of bytes containing



a mixture of an HTTP GET request, a return pointer, a stored stack
pointer, and so forth).

Past vulnerability studies have suffered from two problems that
we will focus on specifically in this paper. One problem is that
vulnerability classifications are not easily generalizable, leading to
the addition of many new classifications to cover new types of vul-
nerabilities. The second problem is that a single vulnerability type
can fall under many different classifications, leading to ambiguity.
In this paper we argue that viewing vulnerabilities as fractures in
interpretation as information flows across abstraction boundaries
leads to classifications that are more easily generalizable and less
ambiguous.

This paper is structured as follows. First, in Section 2, we give
concrete examples of fractures in interpretation for buffer overflows
and SQL injection, and discuss the generality of viewing vulnera-
bilities in terms of information flow. Then, Section 3 gives a brief
background of time-of-check-to-time-of-use vulnerabilities with a
simple example that is used as a running example throughout the
rest of the paper. This is followed by Section 4, which analyzes
this type of vulnerability from the perspective of different levels of
abstraction, and Section 5 which focuses on information flow. Then
we conclude with related work and a list of questions we would like
to pose to workshop attendees.

2. THE NATURE OF VULNERABILITIES
In this section we first make the view of vulnerabilities being

fractures in interpretation as information flows across boundaries
more concrete by giving more details on two vulnerability types
mentioned in the Introduction (buffer overflows and SQL injec-
tion). Then we discuss the generalizability of this view for a broad
range of vulnerabilities. Finally, we discuss how our new pro-
posed paradigm for vulnerability studies is positioned with respect
to common mitigation strategies, with a focus on memory corrup-
tion attacks.

2.1 Buffer overflow and SQL injections exam-
ples

Consider a simple buffer overflow, where a GET request is stored
on the stack in a buffer that is only 512 bytes long. A normal GET
request such as the following will be parsed correctly and the pro-
gram will return and move on:

GET /x.ida?q=N HTTP/1.1

A malicious GET request such as the following (where the
byte N is repeated over 500 times to overflow the buffer) will
cause a return pointer on the stack to be overwritten by the value
0x7801cbd3:

GET /x.ida?q=NNNNNNNN...NNNNN\xd3\xcb\x01\x78

Any quantification of information flow for this web server pro-
gram must be based on some a priori probability distribution over
the possible code paths (which for a deterministic program is equiv-
alent to a probability distribution over the possible inputs). From
the system designer’s perspective, this probability distribution is bi-
ased towards the inputs they have thought about and tested, namely
shorter inputs.

As long as the probability of a longer input is not assumed to be
zero, then for either of the inputs above, information flows from
the input into the 32-bit return pointer on the stack. This is most
obvious for the second input that triggers the buffer overflow, since
the return pointer is saturated with 32 bits of input directly. It is less

obvious, though, how information flows from the first input into the
program counter on the stack, since the program counter is never
changed and has its original value. To see why information flows,
consider what the unchanged return pointer on the stack implies
about the input. It implies that at least one of the first 512 bytes of
the input is a newline character or NULL terminator.

Consider also that, if the function that is being called that has
the buffer overflow in it is a function that parses GET requests,
information had probably already flowed from the input into that
return pointer. This is because that function is probably only called
if the first three bytes of the input are “GET”.

So, as the information flows across the boundaries of different
levels of abstraction (the operating system, the HTTP protocol,
filesystem abstractions that are specific to this web server or oper-
ating system, scripting languages, the program counter register in
the architecture layer, etc.) the information is broken up into pieces
that are interpreted differently at the different levels of abstraction.
One of these flows of information has a precipitous fracture at the
boundary between the C implementation of the protocol and the
computer architecture’s stack conventions. For one large subset of
the full set of possible inputs a small fraction of a bit of information
flows across this abstraction boundary. For another large subset of
the possible inputs 32 bits flows across the boundary. So, if we
picture the amount of information flow as a landscape covering the
entire space of possible inputs, the vulnerability is a large precipice.
A precipice in this paper means that in the space of possible inputs
the information flow associated with an interpretation of the inputs
has what can be visualized as a steep cliff. (Note that this precipice
has terraces, where slightly more than 8, 16, or 24 bits flows be-
cause the buffer is only overflowed by 1, 2, or 3 bytes.)

A good illustration of this type of fracture is SQL injection. Con-
sider the following SQL query that is built using user input for
$name and $password:

SELECT * FROM users WHERE name=’$name’

and password=’$password’

The single quote (’) is a special delimiter in the SQL language.
The attacker can leave the password blank, and enter this as their
username:

’; DROP TABLE users -- comment...

This causes the SQL server to execute the following SQL code
that it receives from the Web server, with the effect of the entire
table of users in the database being deleted:

SELECT * FROM users WHERE name=’’;

DROP TABLE users -- comment...

Under normal operation, when there is no attack, the delimiter
(’) marks clearly where the user input is and how it should be in-
terpreted at different levels of abstraction, but when delimiters ap-
pear in the input this causes a precipitous fracture in how the input
is interpreted at the boundary between the web scripting language
and SQL.

2.2 Generalizability
One important question is, how does the holographic view of

vulnerabilities generalize across many different types of vulnera-
bilities?

Let us consider an abstract model that captures a wide range of
different vulnerability types. Suppose Alice and Bob have two sep-
arate systems with a network connection, with Eve eavesdropping



in the middle. Alice and Eve have various levels of access to Bob’s
services, which include HTTP, SSH, and a wide range of other ab-
stractions and protocols. The same is true for Bob and Eve with
respect to Alice’s services. Alice and Bob each have confidential
information, are concerned about the integrity of their system and
information, want their system to be available, and use SSL and
other cryptography implementations whenever they can.

From Bob’s perspective (and therefore the same is true of Alice’s
perspective by reflection), all interactions of his system are of the
form that his system is in some state, he receives some informa-
tion that may be from Alice or from Eve (he does not know which,
but he shares a secret with Alice), and he has information that he
assumes neither Alice nor Eve can know or predict (his pool of en-
tropy from, e.g., hard drive timings). Information flows not just
over the network but within Bob’s system, according to his soft-
ware, which has vulnerabilities. The information flows according
to the rules set forth by the software, and the state is changed based
on the flow of information (plus the software can often be overwrit-
ten if its integrity is compromised). So there is a dual relationship
between the state of the system and the information flow. Any soft-
ware vulnerability that can be specified in terms of states in this
system (which should include a very broad range of vulnerabili-
ties) could also be specified in terms of information flow.

Practically any vulnerability can be seen as a violation of one
of: Confidentiality, Integrity, Availability, Authentication, or Non-
repudiation [35, 37]. Confidentiality is the most natural to think
of in terms of information flow, in this case information is not sup-
posed to flow from high security objects to low security objects. In-
tegrity states that information must not flow from untrusted sources
into trusted objects such as return pointers or system files. Note
that confidentiality and integrity requirements are often quantita-
tive, e.g., the attacker should not have “undue influence” [41, 5] but
a small amount of information must be able to flow for the system
to operate. Availability can be viewed as stating that information
must flow1. Also, with respect to availability, denial of service can
be cast as an attack on the integrity of the information the system
needs for its operation.

From a systems perspective, authentication is based on what a
subject has, knows, or is. The subject carries this information with
them and then it is supposed to flow into the system immediately
preceding any commands that come into the system that should be
interpreted as coming from that subject (e.g., the subject enters their
password over SSH and then is given a command shell that persists
for the life of the rest of that connection). That information that
identified a specific subject should never flow into the system when
that specific subject is not present at the terminal that commands
will be interpreted from. Take, for example, replay attacks. The
information is being copied and then replayed later, so it flows in a
way that is not part of the design of the security system.

Another view of authentication is the cryptographic view. In this
case the system is using mathematical properties to know what a
subject has, knows, or is, rather than physical properties. Cryptog-
raphy can be seen as being used in this case as a separation mech-
anism that controls how information flows. Flaws in cryptography
are therefore flaws in a separation mechanism that allow informa-
tion to flow when it should not. Non-repudiation is a special case
of authentication where the party performing authentication cannot
independently reproduce what the subject being authenticated has,
knows, or is, so that they cannot forge authenticated messages.

The purpose of the abstract model above is to illustrate how a
broad range of vulnerabilities can be cast as information flow. From

1This idea was suggested to one of the authors by Stephen Chong.

Bob’s perspective, information flows into his system and changes
its state, where some states are safe states and others are states
where a security policy has been violated. Since Bob’s system can
only change states based on the flow of information into the sys-
tem, any vulnerability that can be described as an unsafe state can
also be described in terms of information flow.

A full vulnerability study is outside the scope of this position pa-
per, but what would a vulnerability study based on the holographic
view of vulnerabilities look like? Here are three examples of vul-
nerability classes stated in terms of information flowing across ab-
straction boundaries:

1. Vulnerabilities where information flows from the security
metadata of one object into a security decision about another.

2. Vulnerabilities where information flows from the input to a
process into the control flow of the process.

3. Vulnerabilities where information flows from something a
subject knows, has, or is into an authentication decision via

another subject.

Note that all of these information flows occur when there is not
a vulnerability; what makes the information flow a vulnerability
is when it causes a precipitous fracture in the way the informa-
tion is interpreted at abstraction boundaries. Without this notion of
precipices, there could be ambiguity between vulnerability types.

The example classifications above illustrate two potential ad-
vantages of vulnerability studies based on the holographic view:
each classification is broad enough to cover many different types
of vulnerabilities (i.e., is generalizable), and each vulnerability
type should fit into at most one classification (i.e., the classifi-
cations are unambiguous). Time-of-check-to-time-of-use (TOCT-
TOU) and confused deputy vulnerabilities clearly fall into vulner-
ability type #1. Type #2 covers all control flow hijacking attacks,
where the precipitous change in interpretation of the information is
illustrated by the Epsilon-Gamma-Pi model [19, 18]. Type #3 cov-
ers a wide range of authentication vulnerabilities, from hard-coded
passwords to brute force attacks to poorly designed password hash
functions. The precipice in these cases is that information from one
subject is interpreted and used as an authentication decision for a
different subject.

2.3 Mitigation strategies
A common approach taken by the security community in the

face of certain vulnerability types are patch-like mitigation solu-
tions. Here we will focus on memory corruption vulnerabilities
(e.g. heap overflows), and discuss the mitigation strategies: return
address protection schemes, ASLR (Address Space Layout Ran-
domization), and W ⊗X .

The classical example of return address protection scheme is
StackGuard [16]. It protects the stack by inserting additional in-
structions into the function entry and exit code where the goal is to
protect the stack by checking if it is corrupted. Additional function
entry code writes a canary value below the saved frame pointer on
the stack. Upon exiting, the function exit code checks that the ca-
nary was not corrupted, as in the case of a simple stack-based buffer
overflow the attacker will need to corrupt the canary to tamper with
the return address. Other examples are StackShield [2], ProPo-
lice [1], and SmashGuard [42]. This particular mitigation strategy
of protecting the return address on the stack is specific to stack-
based buffer overflows that are exploited by overwriting the return
pointer, it cannot protect against the many other forms of memory
corruption attacks, nor can it protect other data on the stack (such
as the structured exception handler function pointer that Code Red
overwrote [17]).



ASLR randomly arranges the memory positions of key areas
such as the heap, stack, and libraries to make the prediction of
hard-coded addresses more difficult for the attacker. This idea is
implemented in PAX ASLR [44] and is supported by many OSes.
The intuition is that in order to exploit a buffer overflow, an at-
tacker needs to predict the location of a return address or know the
exact location of a library function. However, ASLR has its own
limitations [39, 30].

The W ⊗ X defense [53] ensures that no memory location in
a process address space can be marked both as writable (W) and
executable (X) at the same time. The assumption is that executable
code is supposed to be located in the code portion of a process
address space and not on the stack, heap, or data areas. Solar De-
signer’s StackPatch [23] modifies the address space of a process to
make the stack non-executable. Most OSes now offer such protec-
tion. Any defense that prevents the execution of injected code in
memory, including W ⊗X , can be defeated by code-reuse attacks
that exploit existing system code to perform malicious computa-
tions. These attacks are based on the technique of return-oriented
programming [13, 50, 10], which generalizes return-to-lib-c at-
tacks [39] by chaining short new instructions, called gadgets, that
end with a control flow instruction such as ret. Several instruc-
tions can be combined to form a code-reuse program. Recent re-
search has shown that such exploits can create their own stack with-
out corrupting the system stack and leverage other types of control
flow instructions such as jump or call instead of ret [34].

We believe mitigation strategies (and more narrowly focused
vulnerability studies) are very important and even essential to in-
crease the level of security of a system. However, we argue that
they often target specific exploit techniques or classes of vulnera-
bilities, and not general classes of vulnerabilities. Another purpose
of vulnerability studies should be to classify vulnerabilities in a
way that suggests very general mitigations that cover many vulner-
ability types, even unknown types.

3. TOCTTOU VULNERABILITIES
Time-of-check-to-time-of-use (TOCTTOU) vulnerabilities are

one of the oldest and most well-studied types of vulnerabilities.
Perhaps the earliest mention of a TOCTTOU vulnerability is the
1976 RISOS study [3], which referred to this type of vulnerability
as “asynchronous validation/inadequate serialization”. The 1978
Protection Analysis study [28] describes an example of TOCTTOU
and has two relevant categories: data consistency over time and se-
rialization. Aslam [7] subdivided all flaw classes into either “syn-
chronization errors” or “condition validation errors.”

This kind of vulnerability occurs when privileged processes
are provided with some mechanism to check whether a lower-
privileged process should be allowed to access an object before the
privileged process does so on the lower-privileged process’ behalf.
If the object or its attribute can change between this check and the
actual access that the privileged process makes, attackers can ex-
ploit this fact to cause privileged processes to make accesses on
their behalf that subvert security.

The classic example of TOCTTOU is the sequence of system
calls of access() followed by open(). The access() system call
was introduced to UNIX systems as a way for privileged processes
(particularly those with an effective user ID of root) to check if the
user who owned the process that invoked them (the real user ID)
has permissions on a file before the privileged process accesses the
file on the real user ID’s behalf. For example:

if (access("/home/bob/symlink", R_OK | W_OK) != -1)
{

// Symbolic link can change here
f = fopen("/home/bob/symlink", "rw");
...

}

What makes this a vulnerability is the fact that the invoker of
the privileged process can cause a race condition where something
about the filesystem changes in between the call to access() and
the call to open(). For example, the file /home/bob/symlink

can be a symbolic link that points to a file the attacker is
allowed to access during the access() check (e.g., the file
/home/bob/bobsfile.txt that bob can read and write), but at
a critical moment is changed to point to a different file that needs
elevated privileges for access (e.g., /etc/shadow).

TOCTTOU vulnerabilities are a much broader class of vulner-
abilities and are much more of a serious concern for secure sys-
tem designers than might be suggested by this simple and well-
understood example. Not all TOCTTOU vulnerabilities are related
to UNIX filesystem atomicity issues. For example, TOCTTOU vul-
nerabilities in web applications can allow customers to add items
to their cart after paying but before shipping, so that they get the
items for free [57]. We only use the classical TOCTTOU example
because it is easy to understand and demonstrates our points about
layers of abstraction and information flow clearly.

How does TOCTTOU fit into our proposed view of vulnerabil-
ities, where a vulnerability is a fracture in interpretation as infor-
mation flows across layers of abstraction? Consider that the secu-
rity checks for /home/bob/bobsfile.txt (including stat()ing
each of the dentry’s and checking the inode’s access control list)
get compressed into a return value for the access() system call
that is returned in a register. This information is interpreted
to mean that bob is allowed to access the file referred to by
/home/bob/symlink. The information crosses the boundary be-
tween an OS abstraction (the kernel) and a user-level abstraction
in the return value register (architecture layer abstraction). Then
a conditional control flow transfer is conditioned on this regis-
ter, so that through a control flag (potentially) and the program
counter the information is now transformed into a decision to open
the file pointed to by /home/bob/symlink. It is this informa-
tion flow between the return value and the open() system call,
which occurs at the level of abstraction of the computer archi-
tecture, where the interpretation of the information becomes frac-
tured. To the OS, the value returned was a security property of
/home/bob/bobsfile.txt. At the architectural level the pro-
gram counter, which contains the exact same information, is im-
plied to be a security property of /etc/shadow. The information
is the same, but when viewed from different perspectives for the
different layers of abstraction that make up the system the interpre-
tation has been fractured.

Here it is important to make a distinction between vulnerability
and exploit. When the access()...open() sequence of system
calls in the example is executed and there is no attacker to change
the symlink, it is still implied in the information contained in the
access control check that the security information can be about any
file that bob can stat() and the file that is opened can be any
file that the process has privileges to open. What was said about
/home/bob/bobsfile.txt vs. /etc/shadow is only precisely
true when an exploit occurs and an attacker points the symbolic
link at both files for the two system calls access() and open(),
respectively. But, the whole point of a vulnerability study is to gen-
eralize the vulnerability, so in terms of the flow and interpretation
of information if we consider everything that could have happened



the vulnerable flow and interpretation is implied by the vulnerable
system call sequence even when there is not an exploit.

4. LAYERS OF ABSTRACTION
The problem of classifying vulnerabilities is difficult. Bishop

and Bailey [8] analyzed many vulnerability taxonomies [3, 28, 32,
7] and showed that they are imperfect because, depending on the
layer of abstraction that a vulnerability is being considered in, it
can be classified in multiple ways. What makes this classification
problem hard is the fact that vulnerabilities cross multiple layers
of abstraction and these taxonomies do not take this into account.
This cross-layer existence not only makes the problem of classify-
ing vulnerabilities hard but also hinders the development of strong
and flexible solutions to remove or mitigate them.

In this paper we argue that even though we may never be able
to devise a perfect taxonomy system to study vulnerabilities, the
research community should re-think the problem of understanding
and mitigating vulnerabilities from a new angle: (i) software sys-
tems cannot be guaranteed to be free from vulnerabilities because
designers and programmers make mistakes and current verification
and testing techniques cannot assure that a significantly complex
piece of software meets its specification in the presence of errors or
bad inputs; (ii) we can do a much better job of understanding vul-
nerabilities and defending our computer system assets against them
when we accept that their causes and effects cross multiple layers of
abstractions (application, compiler, operating system, architecture
and network), and (iii) we should devise our defense approaches
taking this into account.

Our main point in this section is that even if we can view the
problem of vulnerabilities as security information flowing to where
it is not supposed to flow, this comes into play exactly because
the non-authorized flows cross layers of abstraction. Studies about
the nature of vulnerabilities can be fruitful if we consider the role
played by the intertwinement of layers of abstraction.

4.1 TOCTTOU crossing layers of abstraction
One of the taxonomies analyzed by Bishop and Bailey [8] was

the Protection Analysis study [28]. It contains ten security flaws,
where some of them are described below [40]:

1. Improper protection domain initialization and enforcement:
vulnerabilities related to the initialization of a system and its
programs and the enforcement of the security requirements.

(a) Improper choice of initial protection domain: vulnera-
bilities related to an initial incorrect assignment of priv-
ileges.

(b) Improper isolation of implementation detail: vulnera-
bilities that allow users to bypass a layer of abstraction
(e.g., the OS or the architecture) and write directly into
protected data structures or memory areas, for instance,
I/O memory and CPU registers.

(c) Improper change: vulnerabilities that allow an unpriv-
ileged subject to change the binding of a name or a
pointer to a sensitive object so that it can bypass sys-
tem permissions.

2. Improper validation: vulnerabilities related to improper
checking of operands or function parameters.

3. Improper synchronization: vulnerabilities arising when a
processes fails to coordinate concurrent activities that might
access a shared resource.

(a) Improper indivisibility: interruption of a sequence of
instructions that should execute atomically.

(b) Improper sequencing: failure to properly order concur-
rent read and write operations on a shared resource.

From the vulnerable process’ perspective TOCTTOU can be
classified as 3a (improper indivisibility) as the operation for check-
ing the access permissions and opening the file should have been
executed atomically. It can be also viewed as 3b (improper se-
quencing), as the operations that accessed a specific file object were
not properly ordered. From the OS perspective it could be clas-
sified as 1c (improper change) as the state of the symbolic link
was changed while in use. Further, TOCTTOU can be classified
as 1b (improper isolation of implementation detail). For example,
Borisov et al. [11] described a TOCTTOU attack where the attacker
increased their chances to win the race by slowing down file system
operations (interfering with the OS).

4.2 Why we cross multiple layers
To understand how this cross-layer existence exacerbates the

problem of studying vulnerabilities, let us consider the simplest se-
curity model: the gatekeeper. An analogy to the gatekeeper model
is a bank teller. Suppose a bank customer needs to use a bank ser-
vice or access their account. They will walk up to the bank teller’s
window and give them instructions about what they would like to
be done (e.g., withdraw money, deposit, transfer, obtain a cashier’s
check, etc.). The bank teller is a trusted entity that actually carries
out these actions on behalf of the customer, while at the same time,
ensuring that the bank’s policies are being followed. For example,
in the case of money withdrawal, the bank policy is to never give
out money to a customer before subtracting the same amount from
their account. The bank teller ensures that this is done properly
when doing transactions on the customers’ behalf.

This abstraction represents the gatekeeper concept from an early
OS called MULTICS [20, 26]. In MULTICS processes were sep-
arated into 64 rings and the lower the ring number some code is
executing in, the greater its privileges. The system must be aware
of ring crossing at the architecture layer. When code in ring i at-
tempts to transfer control to code in ring j, for the code in ring j

to do something on its behalf, a fault occurs and control is given
to the OS. The gatekeeper is the software abstraction that handles
this fault. Ideally the gatekeeper should be as simple as possible.
Simplicity allows for ease of inspection, testing and verification.
The design is streamlined and the likelihood of an error is reduced.
On the other hand, if the gatekeeper is complex, involving a set of
abstractions where many high-level, more complex abstractions are
built on top of simpler, lower-level ones in multiple tiers, the possi-
bility of the introduction of an avenue for deceiving the gatekeeper
is greatly increased.

Most modern information systems are designed with complex
and cross-layered security abstractions. For example, for security
reasons a process can only access memory inside its address space.
However, the implementation of the abstraction of functions uses
the process address space (the stack region) at the user level. This
abstraction should be under strict OS control, but processes have
access to their address space. Further, sensitive low-level control
information (a function return pointer) belonging to the architecture
level (value of the program counter register) can be accessed by the
OS and processes because it is stored on the stack.

In TOCTTOU, the resource that we would like to be protected
by the gatekeeper is the mapping between a symbolic link and a
file object. A symbolic link contains a reference to a file object in
the form of a path name. Addressing a file object through a path



name is an indirect operation, as the UNIX file system is tree-based
and a path name specifies the path taken through the tree to reach
a file object [9]. In this case the gatekeeper (or the security policy)
does not control which subjects have possession of a link to a file
object, neither when nor how they make changes in this reference.

Also security principles, such as the much-referenced Saltzer and
Schroeder [47] can conflict with each other and add to the complex-
ity of the gatekeeper. For example, the principle of least common

mechanism states that the amount of mechanisms that are common
to more than one user used to access resources should be mini-
mized. Ideally, access to resources should not be shared by two or
more users or should be accomplished through separate channels
to prevent unintentional security compromises. One can see the
application of this principle in the way UNIX symbolic links are
implemented. The accesses to files are not shared by two or more
users and can be accomplished through separate channels (differ-
ent symbolic links referencing the same file object). And, ironi-
cally, that is exactly when the unintentional security compromise
occurs. The application of this principle is also at odds with the
principle of economy of mechanism (which states that the design of
a secure system or security mechanism should be as simple and as
small as possible) and also increases the size, and consequently, the
complexity of the gatekeeper.

4.3 Is there a problem when vulnerabilities
are put into multiple categories?

Vulnerability classification studies have three main goals [8]:
(i) allow systems to be specified, designed and implemented free
of vulnerabilities, (ii) allow a computer system to be analyzed to
detect vulnerabilities and attempted exploitation, and (iii) allow a
system to react against vulnerabilities during its normal operation.
When vulnerabilities can be classified in multiple ways or crossing
multiple layers of abstraction this implies that the way systems are
designed and vulnerabilities are addressed should take this into ac-
count, otherwise vulnerabilities cannot be completely prevented or
stopped. So, existing vulnerability studies that allow ambiguities in
classification can work well for goals (ii) and (iii), but a more gen-
eral notion of vulnerabilities that identifies root causes is necessary
for goal (i).

For example, Dean and Hu [21] provided a probabilistic solution
for file system TOCTTOU that relied on decreasing the chances
of an attacker to win all races. In this solution, the invocation of
the access() ... open() sequence of system calls are followed by
a certain number k of strengthening rounds, which consists of an
additional calls to the access() followed by open(). Analyzing
the solution and the problem from the application layer viewpoint,
this solution addresses the concurrency issue. Borisov et al [11],
however, observed that this vulnerability crossed the boundary be-
tween the application and OS layers and leveraged this to allow
an attacker to easily win the race. They described an attack where
an adversary increased their chances to win the race by slowing
down file system operations (interfering with the OS). The attacker
managed to periodically flush the buffer cache by creating a great
number of file objects. In this case, the victim process is very likely
suspended after executing the access() system call, giving the at-
tacker the opportunity to change the file system. The reason we use
TOCTTOU as a running example in this paper is to demonstrate
how the holographic view of vulnerabilities can suggest the root
cause of any given vulnerability type.

Figure 1: Cross-layered vulnerability.

4.4 A cross-layered approach to understand
and mitigate vulnerabilities

Given that vulnerabilities involve more than one layer of abstrac-
tion, defending against them should involve some form of collab-
oration between layers of abstraction to bridge the semantic gap
between them.

Most current security solutions operate at one particular level of
abstraction. For example, they operate at the application-level as
a user level process [43], at the compiler level so that safer binary
code is generated [16], at the system level as an OS security exten-
sion [4] and also at the architecture level, usually involving a virtual
machine layer [25]. This traditional model comes with a cost: the
semantic gap problem. There are significant differences between
the abstractions or state observed at two distinct layers of abstrac-
tion. For example, a user level program deals with abstractions such
as functions, parameters, variables and data structures, the operat-
ing system works on abstractions such as processes, system calls,
kernel data structures, files, and context switches, while at archi-
tecture level the abstractions perceived are instructions, CPU, main
memory and I/O devices (see Figure 1). The semantic gap hinders
the development and widespread deployment of security solutions
because these approaches need to inspect and manipulate objects at
various levels of abstraction to function correctly.

An approach to mitigate TOCTTOU vulnerabilities should in-
volve an interaction between a user level program and the operating
system so that the mapping between the symbolic link object and
the file object it references are protected at both levels of abstrac-
tion.

5. INFORMATION FLOW
Information flow is fundamental to computer security. A broad

range of vulnerabilities can be stated as information flowing from
one place to another when it is not supposed to (see Section 2).
What we argue in this section is that for TOCTTOU describing
the vulnerability in a general way that can help us to address large
classes of vulnerabilities in a wholesale fashion entails a deeper
understanding of quantitative information flow than the research
community currently has. Serious thought must be put into how
vulnerability studies can generalize beyond the specific code paths
that are attacks.



5.1 TOCTTOU as an information flow prob-
lem

For the example TOCTTOU vulnerability and ex-
ploit in Section 3, security information about the file
/home/bob/bobsfile.txt flows into a decision for the
privileged process to open the restricted file /etc/shadow on an
unprivileged user’s behalf. This is a vulnerability of type #1 from
Section 2.

The information starts on non-volatile storage on the filesys-
tem in the inode for /home/bob/bobsfile.txt. This informa-
tion probably originated largely from bob when he created the file.
The inode describes information about the file, including its access
controls. An example of an inode as shown by debugfs (with bob
assumed to have the user ID and group ID of 1000) is:

Inode: 1703953 Type: regular Mode: 0644 Flags: 0x80000
Generation: 1627390337 Version: 0x00000000:00000001
User: 1000 Group: 1000 Size: 21
File ACL: 0 Directory ACL: 0
Links: 1 Blockcount: 8
Fragment: Address: 0 Number: 0 Size: 0
ctime: 0x4f86e402:4f12b4dc -- Thu Apr 12 08:17:38 2012
atime: 0x4f86e384:28ed64d0 -- Thu Apr 12 08:15:32 2012
mtime: 0x4f86e384:28ed64d0 -- Thu Apr 12 08:15:32 2012

crtime: 0x4f86e402:4f12b4dc -- Thu Apr 12 08:17:38 2012
Size of extra inode fields: 28
EXTENTS:
(0): 6852607

It is imprecise to say that security information is flowing just
from the inode, since bob also needed execute permissions to stat
all of the dentry’s to get to the inode in the directory structure, but
for the sake of simplicity just consider the inode itself. The security
information in this inode says that bob owns the file, the owner may
read and write to it, and others may read it. When the access()

system call is invoked by the privileged process in the example in
Section 3, the semantics of the access system call cause a security
check based on the real user ID of the privileged process, which
is bob. Since, according to the inode, bob is allowed to read from
and write to this file the access system call returns zero to indicate
success.

This zero word that gets returned in a register by the access()

system call is key. It is just a zero word, no different from any other
integer stored in a word of memory. It is interpreted to mean that
bob can access the /home/bob/bobsfile.txt file. But, where
is this information headed? If an attacker changes the symbolic
link, then through a conditional control flow transfer conditioned
on the zero word (the if statement in the example) the information
contained in this zero word flows into a decision to open a different
file (/etc/shadow in the example). The access control information
for the decision to open /etc/shadow using the effective user ID
privileges of the setuid process should have come from the inode
for /etc/shadow, which might look like this:

node: 66584725 Type: regular Mode: 0640 Flags: 0x80000
Generation: 1627370579 Version: 0x00000000:00000001
User: 0 Group: 42 Size: 1196
File ACL: 0 Directory ACL: 0
Links: 1 Blockcount: 8
Fragment: Address: 0 Number: 0 Size: 0
ctime: 0x4f79dafd:0c7409cc -- Mon Apr 2 10:59:41 2012
atime: 0x4f85bc8d:8fbe89c0 -- Wed Apr 11 11:17:01 2012
mtime: 0x4f79dafd:05309030 -- Mon Apr 2 10:59:41 2012
crtime: 0x4f79dafd:05309030 -- Mon Apr 2 10:59:41 2012
Size of extra inode fields: 28
EXTENTS:
(0): 73005385

This inode says that user bob has no permission to read from or
write to /etc/shadow, since the file is owned by root and other

users who are not root and not in root’s group are given no permis-
sions. The kernel checks the proper inode for the effective user ID
(which is root in the example), but the open() system call is only
invoked because of an access check for a different file that flows
through user space where it has a different meaning than an access
check in the kernel actually has.

One interpretation of this vulnerable flow of information is that
the zero word becomes outdated because the security information it
describes might change. However, UNIX systems have never made
guarantees about the atomicity of filesystem operations between
two different processes. If two processes have a file open and one
overwrites it, this poor synchronization is the fault of the processes
and not a semantic bug in UNIX. If a process has a file open with
an entry in its file descriptor table and the permissions of the file
change, the open file descriptor still allows access but this is not
a bug, it is the well-known semantics of UNIX. Thus the lack of
atomicity in the access()...open() sequence of system calls is
a red herring, the real vulnerability lies in the flow of access control
information about one file into a decision to open another.

5.2 Why information flow is hard
Information flow is a useful way to think about vulnerabilities,

but almost 40 years of research show that tracking all of the mean-
ingful flows of information in a practical system is an intractable
problem. In his 1973 Ph.D. thesis Fenton said about information
flow systems, “it must be emphasized that the possibility of proving

the correctness of a practical system seems remote. Such a system

would need, as a base, a correct address protection system and,

in addition, a highly structured operating system” [24]. The Cam-
bridge CAP [38, 33], to which Fenton was referring, had arguably
a richer address protection system and a more structured operating
system than modern Pentium-based Windows and Linux systems.

The fundamental problem that prevents us from making progress
toward being able to reason about the information flow of a prac-
tical system is that everything that could have happened carries
more information than what did happen. In Shannon’s informa-
tion theory [51], a value assigned to a random variable carries no
information itself, the information one can learn by measuring the
random variable is a function only of what could have happened.
What did happen affects the information only by extension of the
fact that what did happen came from the set of things that could
have happened.

The fact that, for an unknown vulnerability, the attacker’s ma-
licious input that causes a precipitous change in information flow
is unknown to us is a challenge for any vulnerability study. If we
consider all possible inputs (to be conservative and quantitatively
measure the information flow in a way that captures all possible
vulnerabilities), then the flow of information associated with any
vulnerability is very small unless conditioned on the attack input
(which we do not know). Consider the following example:

if (z == MAGIC)

{

y = x;

}

else

{

y = x & 1;

}

Here, x, y, and z are 32-bit integers, and are assumed to be dis-
tributed equally over the 232 possible integers. x & 1 is the bit-
wise AND of x and 1, i.e., the least significant bit of x. In general,
slightly over a bit flows from x to y. Conditioned on the common



case that z != MAGIC, exactly one bit flows from x to y. If the
attacker can cause z == MAGIC to be true (by exploiting a vulner-
ability), though, then 32 bits of information flow from x to y con-
ditioned on that code path. This is the nature of most vulnerabili-
ties when you look at them from an information flow perspective.
Information usually does not flow at high rates in ways that sug-
gest vulnerabilities in the common case or in general. The attacker
makes the specific code path happen that causes a precipitous in-
crease in the flow of information. Attackers make uncommon code
paths happen, whereas system designers focus on the common code
paths that they know about and are often not aware of the attack
code path until the carefully crafted input that causes it is presented
to them.

This makes it challenging (but not impossible) to find a vul-
nerability based on information flow measurements of the system
when you do not already know the code path of the exploit. The
holographic view of vulnerabilities helps in terms of generalizabil-
ity and unambiguity in vulnerability classes, but any vulnerability
study faces the challenge that vulnerabilities are hidden beneath
very specific code paths.

Static analysis methods, such as Denning’s lattice model [22],
overcome this limitation by analyzing all possible code paths. This
can be effective (despite being formally undecidable in the general
case), but static analysis methods that can reason about live kernels
running on real hardware with interrupts, etc., are typically applied
to a limited set of vulnerability types for highly structured operating
systems such as seL4 [29].

For a TOCTTOU vulnerability, the tell-tale information flow
of access control information about one file leading to a decision
to open a different file does occur every time the vulnerable se-
quence of system calls is executed, even if there is no exploit.
The fact that a symbolic link can create concurrent code paths in-
terleaved through the kernel and several userspace processes that
would cause the erroneous flow of access control information is im-
plicit in the common case, since information flows based on what
could have happened. For a general class of vulnerabilities in the
holographic view, reasoning about unknown vulnerabilities of that
type in a system amounts to a very detailed understanding of the
quantitative information flow of the system. Quantitative infor-
mation flow has seen some recent research, for both static meth-
ods [36] and dynamic [5], but much more research into quantita-
tive information flow will be necessary before it can be used to find
precipitous fractures in the interpretation of information as it flows
across abstraction boundaries, however.

6. RELATED WORK
Bishop and Dilger [9] present a formal language for describing

vulnerabilities and a tool to analyze programs for a possible race
condition in file accesses. Given a specific vulnerability, they de-
fine its signature as the set of minimal attack signatures that exploit
it. The tool parses a C program looking for pairs of system calls
with the same file name as an argument and builds a dependency
graph. From the graph they determine suspicious sequences of sys-
tem calls. Their assumption was that a race condition is possible
when two calls access a file through a file name, which is resolved
by indirection and is not directly bound to a file object.

Eraser [49] is a tool for automatic detection of data races in lock-
based multithreaded programs which improves Lamport’s happens-

before relation [31]. The happens-before order is a partial order on
all events of all threads executing concurrently. Within any single
thread, events are ordered in the order in which they occurred. Be-
tween threads, events are ordered according to the properties of the
synchronization objects they access. Eraser uses binary rewriting to

monitor every shared-memory reference and verify that all shared
memory accesses follow a consistent locking discipline. Eraser
monitors all reads and writes as the program executes. For each
shared variable v, Eraser maintains the set C(v) of candidate locks
for v, or the locks that have protected v for the computation so far.
A lock l is in C(v) if in the computation up to that point, every
thread that has accessed v was holding l at the moment of the ac-
cess. When a new variable v is initialized C(v) is initialized to all
possible locks and when the variable is accessed C(v) is updated
with the intersection between C(v) and the set of locks held by the
current thread. The main idea is that if some lock consistently pro-
tects v it will remain in C(v) and if C(v) becomes empty a warn-
ing is issued indicating that no lock consistently protects v, with
detailed information about thread and detection location within the
thread. Eraser instruments each load/store in the program and uses
a shadow memory for all variables allocated in the heap and global
data area to store lock set information.

Although the context of Eraser is not directly security related,
Eraser is relevant to the current discussion because it finds race con-
dition bugs without it being necessary for the specific interleaving
of threads that causes the bug to occur. If it were possible to de-
fine the layers of abstraction and information flow for a large class
of TOCTTOU bugs, could we find many such bugs in a system
through some kind of analysis that, like Eraser, generalizes beyond
specific code paths?

There have been many efforts to detect or prevent race condition
attacks [21, 54, 55, 56]. Rouzaud-Cornabas et al. [46] is notable
because their definition of a TOCTTOU attack is based on informa-
tion flow. Detecting or preventing attacks is fundamentally differ-
ent from (and much easier than) detecting vulnerabilities because
in the case of the former the attacker has revealed the violating
code path to the system. Also, many of the proposed methods for
detection or prevention do not have definitions of the vulnerability
that are precise enough and are therefore not effective against more
advanced attacks [11, 14].

Some defense solutions against TOCTTOU employ the concept
of transactions in varying degrees. Tsyrklevich et al [55] monitors
pseudo transactions during processes execution and suspends one
of the processes if a race condition is identified. A pseudo transac-
tion is defined as a sequence of system calls that should be free from
vulnerabilities. TxOS [45] provides transactions at the OS level.
The concept of transaction is very intuitive and powerful when we
think about a strategy to defeat TOCTTOU vulnerabilities. How-
ever, transactions only work if one knows the vulnerable sequence
of system calls and wrap them in a transaction. One would need to
know how to specify and find the vulnerabilities before they could
wrap them all in transactions.

Discussions about the theoretical and computational science of
exploit techniques and proposals to do explicit parsing and normal-
ization of inputs fit nicely into the discussion of this paper. Bratus
et al. [12] discuss “weird machines” and the view that the theoreti-
cal language aspects of computer science lie at the heart of practical
computer security problems, especially exploitable vulnerabilities.
Samuel and Erlingsson [48] propose that data confusion vulnerabil-
ities can be effectively prevented by normalizing inputs via parsing.

7. WORKSHOP DISCUSSION
The lively discussion at the workshop focused mainly on three

topics: (i) the generalizability of the holographic model, (ii) the
definition of a layer or boundary of abstraction, and (iii) how we
can move forward from this initial model to actual implementation
and applications.



Bob Blakley questions whether all vulnerabilities can fit our
model. Richard Ford, Anthony Morton, and Ed Talbot discussed
the concept of layer of abstraction in the context of our proposed
model. Prof. Blakley thinks that layer of abstraction boundaries
are not the only type of boundary crossing which can create holo-
graphic fractures; crossing domains of semantic interpretation at
the same layer of abstraction can also cause a fracture. He sug-
gests a broader class of boundaries than just those between ab-
straction levels. Prof. Ford agrees and adds that our notion of
abstraction layers implies that we need boundaries to get vulner-
abilities. Ed Talbot believes layers arise from our own perception
of, as Michael Locasto phrases, “boundaries of competence” (e.g.,
a network, compiler, operating system or hardware competence).
According to Ed Talbot we have become highly skilled in hori-
zontal layers but increasingly unaware of vertical problems, which
create the opportunity for holographic fractures. Anthony suggests
analyzing the problem non-hierarchically where information also
flows across boundaries at the same abstraction level and also ques-
tions how we define a boundary of abstraction.

Michael Locasto views this as a language problem: we have two
components on opposite sides of a boundary where the designer on
one side does not understand the language of the designer on the
other side. Prof. Blakley suggests that the fracture in interpretation
is in fact superimposed states: in terms of the frame problem, we
have a situation where the defender has a narrower frame than the
attacker, so the defender thinks there is only one interpretation of
a particular set of data, but the attacker realizes that there are other
interpretations, some of which can be exploited.

Sven Tuerpe and Vaibhav Garg suggest more general applica-
tions of the model. For example, can we use fractures as a security
mechanism? Can we create fractures in the attacker’s structures
as a way of interfering with their attacks? Vaibhav Garg suggests
applying a similar information flow visualization technique to pri-
vacy, so that people can better understand whether there’s a holo-
graphic fracture in their view of what is happening to their private
information.

Finally, Prof. Blakley thinks that maybe we do not need to solve
the information flow problem, which might be intractable. One
direction is to decrease the language difference on the two sides of
the boundary, which can eliminate many hidden paths and make
information flows safe even if we do not analyze them.

8. CONCLUSIONS
In this paper we discussed a re-evaluation of vulnerability stud-

ies, which have suffered in the past from problems of generaliz-
ability and ambiguity. We have argued that vulnerabilities should
be seen as fractures in interpretation as information flows across
abstraction boundaries. Vulnerabilities occur when information
cross boundaries of abstraction and is interpreted differently at each
layer. This view explains why current vulnerability studies, which
do not take this into account, fail to classify vulnerabilities unam-
biguously.
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