
ARTICLES

Dependable
Computing

John Rushby
Editor

Evaluation of Safety-
Critical Software
Methods and approaches for testing the reliability and trustworthiness of
software remain among the most controversial issues facing this age of high
technology. The authors present some of the crucial questions faced by

software programmers and eventual users.

David L. Parnas, A. John van Schouwen, and Shu PO Kwan

It is increasingly common to use programmable com-
puters in applications where their failure could be life-
threatening and could result in extensive damage. For
example, computers now have safety-critical functions
in both military and civilian aircraft, in nuclear plants,
and in medical devices. It is incumbent upon those
responsible for programming, purchasing, installing,
and licensing these systems to determine whether or
not the software is ready to be used. This article ad-
dresses questions that are simple to pose but hard to
answer. What standards must a software product satisfy
if it is to be used in safety-critical applications such as
those mentioned? What documentation should be re-
quired? How much testing is needed? How should the
software be structured?

This article differs from others concerned with soft-
ware in safety-critical applications, in that it does not
attempt to identify safety as a property separate from
reliability and trustworthiness. In other words, we do
not attempt to separate safety-critical code from other
code in a product used in a safety-critical application.
In our experience, software exhibits weak-link behavior,
that is failures in even the unimportant parts of the
code can have unexpected repercussions elsewhere.
For a discussion of another viewpoint, we suggest the
work of N. G. Leveson [6, 7, 81.

We favor keeping safety-critical software as small and
simple as possible by moving any functions that are not
safety critical to other computers. This further justifies
our assumption that all parts of a safety-critical soft-
ware product must be considered safety critical.

WHY IS SOFTWARE A SPECIAL CONCERN?
Within the engineering community software systems
have a reputation for being undependable, especially in
the first years of their use. The public is aware of a few
spectacular stories such as the Space Shuttle flight that
was delayed by a software timing problem, or the Ve-

This work was supported by the National Science and Engineering Research
Board of Canada as well as the Atomic Energy Control Board of Canada.

0 1990 ACM OOOl-0782/90/0600-0636 $1.50

nus probe that was lost because of a punctuation error.
In the software community, the problem is known to be
much more widespread.

A few years ago, David Benson, professor of Com-
puter Science at Washington State University, issued a
challenge by way of several electronic bulletin board
systems. He asked for an example of a real-time system
that functioned adequately when used for the first time
by people other than its developers for a purpose other
than testing. Only one candidate for this honor was
proposed, but even that candidate was controversial. It
consisted of approximately 18,000 instructions, most of
which had been used for several years before the “first
use.” The only code that had not been used before that
first use was a simple sequence of 200 instructions that
simulated a simple analogue servomechanism. That in-
struction sequence had been tested extensively against
an analogue model. All who have looked at this pro-
gram regard it as exceptional. If we choose to regard
this small program as one that worked in its first real
application, it is the proverbial “exception that proves
the rule.”

As a rule software systems do not work well until
they have been used, and have failed repeatedly, in
real applications. Generally, many uses and many
failures are required before a product is considered
reliable. Software products, including those that have
become relatively reliable, behave like other products
of evolution-like processes; they often fail, even years
after they were built, when the operating conditions
change.

While there are errors in many engineering products,
experience has shown that errors are more common,
more pervasive, and more troublesome, in software
than in other technologies. This information must be
understood in light of the fact it is now standard prac-
tice among software professionals to have their product
go through an extensive series of carefully planned
tests before real use. The products fail in their first real
use because the situations that were not anticipated by
the programmers were also overlooked by the test plan-
ners. Most major computer-using organizations, both

636 Communications of the ACM rune 1990 Volume 33 Number 6

military and civilian, are investing heavily in searching
for ways to improve the state of the art in software.
The problem remains serious and there is no sign of a
“silver bullet.” The most promising development is the
work of Harlan Mills and his colleagues at IBM on a
software development process known as “clean room”
[3, 9, 121. Mills uses randomly selected tests, carried out
by an independent testing group. The use of randomly
generated test data reduces the likelihood of shared
oversights. We will discuss this approach in more detail
later in this article.

WHY IS SOFTWARE USED?
If software is so untrustworthy, one might ask why en-
gineers do not avoid it by continuing to use hard-wired
digital and analogue hardware. Here, we list the three
main advantages of replacing hardware with software:

Software technology makes it practical to build more
logic into the system. Software-controlled computer
systems can distinguish a large number of situations
and provide output appropriate to each of them.
Hard-wired systems could not obtain such behavior
without prohibitive amounts of hardware. Program-
mable hardware is less expensive than the equiva-
lent hard-wired logic because it is regular in struc-
ture and it is mass produced. The economic aspects
of the situation also allow software-controlled sys-
tems to perform more checking; reliability can be
increased by periodic execution of programs that
check the hardware.
Logic implemented in software is, in theory, easier
to change than logic implemented in hardware.
Many changes can be made without adding new
components. When a system is replicated or located
in a physical position that is hard to reach, it is far
easier to make changes in software than in hard-
ware.
Computer technology and software flexibility make
it possible to provide more information to operators
and to provide that information in a more useful
form. The operator of a modern software-controlled
system can be provided with information that would
be unthinkable in a pure hardware system. All of
this can be achieved using less space and power
than was used by noncomputerized systems.

These factors explain the replacement of hard-wired
systems with software-controlled systems in spite of
software’s reputation as an unreliable technology.

HOW ARE SOFTWARE CONTROLLERS
LIKE OTHER CONTROLLERS?
In the next section we will argue that software tech-
nology requires some refinements in policies and stan-
dards because of differences between software and
hardware technology. However, it is important to rec-
ognize some common properties of software and hard-
ware control systems.

Error Sensitivity: Another notable property of software
is its sensitivity to small errors. In conventional engi-
neering, every design and manufacturing dimension
can be characterized by a tolerance. One is not re-
quired to get things exactly right; being within the
specified tolerance of the right value is good enough.
The use of a tolerance is justified by the assumption
that small errors have small consequences. It is well
known that in software, trivial clerical errors can have
major consequences. No useful interpretation of toler-
ance is known for software. A single punctuation error
can be disastrous, even though fundamental oversights
sometimes have negligible effects.

In the design and specification of control systems, Hard to Test: Software is notoriously difficult to test

Articles

engineers have long known how to use a black box
mathematical model of the controller. In such models,
(1) the inputs to the controller are described as mathe-
matical functions of certain observable environmental
state variables, (2) the outputs of the controller are de-
scribed as mathematical functions of the inputs, (3) the
values of the controlled environmental variables are
described as mathematical functions of the controller’s
outputs, and (4) the required relation between the con-
trolled variables and observed variables is described. It
is then possible to confirm that the behavior of the
controller meets its requirements.

It is important to recognize that, in theory, software-
implemented controllers can be described in exactly
the same way as black box mathematical models. They
can also be viewed as black boxes whose output is a
mathematical function of the input. In practice, they
are not viewed this way. One reason for the distinction
is that their functions are more complex (i.e. harder to
describe) than the functions that describe the behavior
of conventional controllers. However, [a] and [17] pro-
vide ample evidence that requirements for real systems
can be documented in this way. We return to this
theme later.

HOW IS SOFTWARE DIFFERENT FROM
OTHER CONTROLLER TECHNOLOGIES?
Software problems are often considered growing pains
and ascribed to the adolescent nature of the field. Un-
fortunately there are fundamental differences between
software and other approaches that suggest these prob-
lems are here to stay.

Complexity: The most immediately obvious difference
between software and hardware technologies is their
complexity. This can be observed by considering the
size of the most compact descriptions of the software.
Precise documentation, in a reasonably general nota-
tion, for small software systems can fill a bookcase.
Another measure of complexity is the time it takes for
a programmer to become closely familiar with a system.
Even with small software systems, it is common to find
that a programmer requires a year of working with the
program before he/she can be trusted to make im-
provements on his/her own.

June 1990 Volume 33 Number 6 Communications of the ACM 637

Articles

adequately. It is common to find a piece of software
that has been subjected to a thorough and disciplined
testing regime has ser.ious flaws. Testing of analogue
devices is based on interpolation. One assumes that de-
vices that function well at two close points will func-
tion well at points in-between. In software that assump-
tion is not valid. The number of cases that must be
tested in order to engender confidence in a piece
of software is usually extremely large. Moreover, as
Harlan Mills has poimed out, “testing carried out by
selected test cases, no matter how carefully and well-
planned, can provide .nothing but anecdotes” [3, 9, 121.

These properties are fundamental consequences of
the fact that the mathematical functions implemented
by software are not continuous functions, but functions
with an arbitrary number of discontinuities. The lack of
continuity constraints on the functions describing pro-
gram effects makes it difficult to find compact descrip-
tions of the software. The lack of such constraints gives
software its flexibility, but it also allows the complex-
ity. Similarly, the sensitivity to small errors, and the
testing difficulties, can be traced to fundamental math-
ematical properties; we are unlikely to discover a mira-
cle cure. Great discipline and careful scrutiny will al-
ways be required for safety-critical software systems.

Correlnted Failures: Many of the assumptions normally
made in the design of high-reliability hardware are in-
valid for software. Designers of high-reliability hard-
ware are concerned with manufacturing failures and
wear-out phenomena. They can perform their analysis
on the assumption that failures are not strongly corre-
lated and simultaneous failures are unlikely. Those
who evaluate the reliability of hardware systems
should be, and often are, concerned about design errors
and correlated failures; however in many situations the
effects of other types of errors are dominant.

In software there are few errors introduced in the
manufacturing (compiling) phase; when there are such
errors they are systematic, not random. Software does
not wear out. The errors with which software reliabil-
ity experts must be concerned are design errors. These
errors cannot be considered statistically independent.
There is ample evidence that, even when programs for
a given task are written by people who do not know of
each other, they have closely related errors [6, 7, 81.

In contrast to the situation with hardware systems,
one cannot obtain higher reliability by duplication of
software components. One simply duplicates the errors.
Even when programs are written independently, the
oversights made by one programmer are often shared
by others. As a result, one cannot count on increasing
the reliability of software systems simply by having
three computers where one would be sufficient
[6, 7, 81.

Lack of Professional Standards: A severe problem in the
software field is that, strictly speaking, there are no
software engineers. In contrast to older engineering
fields, there is no accrediting agency for professional

software engineers. Those in software engineering have
not agreed on a set of skills and knowledge that should
be possessed by every software engineer. Anyone with
a modicum of programming knowledge can be called a
software engineer. Often, critical programming systems
are built by people with no postsecondary training
about software. Although they may have useful knowl-
edge of the field in which the software will be applied,
such knowledge is not a substitute for understanding
the foundations of software technology.

SOFTWARE TESTING CONCERNS
Some engineers believe one can design black box tests
without knowledge of what is inside the box. This is,
unfortunately, not completely true. If we know that the
contents of a black box exhibit linear behavior, the
number of tests needed to make sure it would function
as specified could be quite small. If we know that the
function can be described by a polynomial of order “N,”
we can use that information to determine how many
tests are needed. If the function can have a large num-
ber of discontinuities, far more tests are needed. That is
why a shift from analogue technology to software
brings with it a need for much more testing.

Built-in test circuitry is often included in hardware
to perform testing while the product is in use. Predeter-
mined values are substituted for inputs, and the out-
puts are compared to normative values. Sometimes this
approach is imitated in software designs and the claim
is made that built-in online testing can substitute for
black box testing. In hardware, built-in testing tests for
decay or damage. Software does not decay and physical
damage is not our concern. Software can be used to test
the hardware, but its value for testing itself is quite
doubtful. Software self-testing does increase the com-
plexity of the product and, consequently, the likelihood
of error. Moreover, such testing does not constitute ade-
quate testing because it usually does not resemble the
conditions of actual use.

The fundamental limitations on testing mentioned
earlier have some very practical implications.

We cannot test software for correctness: Because of the
large number of states (and the lack of regularity in its
structure), the number of states that would have to be
tested to assure that software is correct is preposterous.
Testing can show the presence of bugs, but, except for
toy problems, it is not practical to use testing to show
that software is free of design errors.

It is difficult to make accurate predictions of software relia-
bility and availability: Mathematical models show that
it is practical to predict the reliability of software, pro-
vided that one has good statistical models of the actual
operating conditions. Unfortunately, one usually gains
that information only after the system is installed. Even
when a new system replaces an existing one, differ-
ences in features may cause changes in the input distri-
bution. Nonetheless, in safety-critical situations, one
must attempt to get and use the necessary statistical

636 Communications of the ACM June 1990 Volume 33 Number 6

Articles

data. The use of this data is discussed later in this
article.

Predictions of availability are even more difficult;
estimates of availability depend on predictions of the
time it will take to correct a bug in the software. We
never know what that amount of time will be in ad-
vance; data from earlier bugs is not a good predictor of
the time it will take to find the next bug.

It is not practical to measure the trustworthiness of soft-
ware: We consider a product to be trustworthy if we
believe that the probability of it having a potentially
catastrophic flaw is acceptably low. Whereas reliability
is a measure of the probability of a problem occurring
while the system is in service, trustworthiness is a
measure of the probability of a serious flaw remaining
after testing and review. In fact, inspection and testing
can increase the trustworthiness of a product without
affecting its reliability.

Software does not need to be correct in order to be
trustworthy. We will trust imperfect software if we be-
lieve its probability of having a serious flaw is very low.
Unfortunately, as we will show, the amount of testing
necessary to establish high confidence levels for most
software products is impractically large. The number of
states and possible input sequences is so large that the
probability of an error having escaped our attention
will remain high even after years of testing. Methods
other than testing must be used to increase our trust in
software.

There is a role for testing: A number of computer scien-
tists, aware of the limitations on software testing, would
argue that one should not test software. They would
argue that the effort normally put into testing should,
instead, be put into a form of review known as mathe-
matical verification. A program is a mathematical ob-
ject and can be proven correct. Unfortunately, such
mathematical inspections are based on mathematical
models that may not be accurate. No amount of mathe-
matical analysis will reveal discrepancies between the
model being used and the real situation; only testing
can do that. Moreover, errors are often made in proofs.
In mature engineering fields, mathematical methods
and testing are viewed as complementary and mutually
supportive.

There is a need for an independent validation agency: It is
impossible to test software completely and difficult to
test one’s own design in an unbiased way. A growing
number of software development projects involve
independent verification and validation (V&V). The
V&V contractor is entirely independent of the devel-
opment contractor. Sometimes a competitor of the
development contractor is given the V&V contract. The
testers work from the specification for the software and
attempt to develop tests that will show the software to
be faulty. One particularly interesting variation of this
approach has been used within the IBM Federal Sys-
tems Division. In IBM’s clean room development ap-
proach the authors of the software are not allowed

to execute their programs. All testing is done by an
independent tester and test reports are sent to the
developer’s supervisors. The test cases are chosen using
random number generators and are intended to yield
statistically valid data. It was hypothesized that the
software would be written far more carefully under
these conditions and would be more reliable. Early
reports support the hypothesis [3, 9, 121.

It is important that these validation tests not be made
available to the developers before the software is sub-
mitted for testing. If the developers know what tests
will be performed, they will use those tests in their
debugging. The result is likely to be a program that will
pass the tests but is not reliable in actual use.

SOFTWARE REVIEWABILITY CONCERNS

Why is reviewability a particular concern for software?
Traditionally, engineers have approached software

as if it were an art form. Each programmer has been
allowed to have his own style. Criticisms of software
structure, clarity, and documentation were dismissed as
“matters of taste.”

In the past, engineers were rarely asked to examine
a software product and certify that it would be trust-
worthy. Even in systems that were required to be
trustworthy and reliable, software was often regarded
as an unimportant component, not requiring special
examination.

In recent years, however, manufacturers of a wide
variety of equipment have been substituting computers
controlled by software for a wide variety of more con-
ventional products. We can no longer treat software as
if it were trivial and unimportant.

In the older areas of engineering, safety-critical com-
ponents are inspected and reviewed to assure the de-
sign is consistent with the safety requirements. To
make this review possible, the designers are required to
conform to industry standards for the documentation,
and even the structure, of the product. The documenta-
tion must be sufficiently clear and well organized that
a reviewer can determine whether or not the design
meets safety standards. The design itself must allow
components to be inspected so the reviewer can verify
they are consistent with the documentation. In con-
struction, inspections take place during the process-
while it is still possible to inspect and correct work that
will later be hidden.

When software is a safety-critical component, analo-
gous standards should be applied. In software, there is
no problem of physical visibility but there is a problem
of clarity. Both practical experience and planned exper-
iments have shown that it is common for programs
with major flaws to be accepted by reviewers. In one
particularly shocking experiment, small programs were
deliberately flawed and given to a skilled reviewer
team. The reviewers were unable to find the flaws in
spite of the fact they were certain such flaws were
present. In theory, nothing is invisible in a program-

June 1990 Volume 33 Number 6 Communications of the ACM 639

Articles

it is all in the listing; in practice, poorly structured
programs hide a plethora of problems.

In safety-critical applications we must reject the
“software-as-art-form” approach. Programs and docu-
mentation must conform to standards that allow re-
viewers to feel confident they understand the software
and can predict how it will function in situations
where safety depends on it. However, we must, equally
strongly, reject standards that require a mountain of
paper that nobody can read. The standards must insure
clear, precise, and concise documentation.

It is symptomatic of the immaturity of the software
profession that there are no widely accepted software
standards assuring the reviewability essential to licen-
sing of software products that must be seen as trust-
worthy. The documentation standards name and out-
line certain documents, but they only vaguely define
the contents of those documents. Recent U.S. military
procurement regulations include safety requirements;
while they require that safety checks be done, they
neither describe how to do them nor impose standards
that make those checks practicable. Most standards
for code documentation are so vague and syntactic in
nature that a program can meet those standards in spite
of being incomprehensible.

In the next section we derive some basic standards
by considering the reviews that are needed and the
information required by the reviewers.

What reviews are needed?
Software installed as a safety-critical component in

a large system should be subjected to the following
reviews: i-

a. Review for correct intended function. If the software
works as the programmers intend, will it meet the
actual requirements?

b. Review for maintainable, understandable, well doc-
umented structure. Is it easy to find portions of the
software relevant to a certain issue? Are the respon-
sibilities of the various modules clearly defined? If
all of the modules work as required, will the whole
system work as intended? If changes are needed in
the future, can those changes be restricted to easily
identified portions of the code?

c. Review each module to verify the algorithm and data
structure design are consistent with the specified
behavior. Is the data structure used in the module
appropriate for representing the information main-
tained by that mod.ule? If the programs are correctly
coded, will the modules perform as required? Will
the algorithms selected perform as required? These
reviews must use mathematical methods; one can-
not rely on intuitive approaches. We have found a
formal review based on functional semantics, [lo],
to be practical and effective.

d. Review the code for consistency with the algorithm
and data structure design. Is the actual source code
consistent with the algorithms and data structures
described by the designers? Have the assemblers,

e.

compilers, and other support tools been used
correctly?
Review test adequacy. Was the testing sufficient to
provide sound confidence in the proper functioning
of the software?

The structure of this set of reviews is consistent with
modern approaches to software engineering. Because
we are unable to comprehend all the critical details
about a software product at once, it is necessary to
provide documentation that allows programmers and
reviewers to focus on one aspect at a time and to zoom
in on the relevant details.

Developing and presenting these views in the se-
quence listed is the analogue of providing inspections
during a construction project. Just as construction is
inspected before further work obscures what has been
done, the early specifications should be reviewed be-
fore subsequent coding hides the structure in a sea of
detail.

The set of reviews also reflects the fact that review-
ers of a software product have a variety of skills. Those
who have a deep understanding of the requirements
are not usually skilled software designers. It follows
that the best people to review the functional behavior
of the software are not the ones who should study the
software. Similarly, within the software field we have
people who are good at algorithm design, but not partic-
ularly good finding an architecture for software prod-
ucts. Skilled algorithm designers are not necessarily
experts on a particular compiler or machine language.
Those intimately familiar with a compiler or assembly
language are not always good at organizing large pro-
grams. When the software is safety critical, it is impor-
tant that each of the five reviews be conducted by
those best qualified to review that aspect of the
work.

Within this framework, all code and documentation
supplied must be of a quality that facilitates review and
allows the reviewers to be confident of their conclu-
sions. It is the responsibility of the designers to present
their software in a way that leaves no doubt about their
correctness. It is not the responsibility of the reviewers
to guess the designers’ intent. Discrepancies between
code and documentation must be treated as seriously as
errors in the code. If the designers are allowed to be
sloppy with their documentation, quality control will
be ineffective.

In the following sections of this article, we will de-
scribe the documentation that must be provided for
each of these reviews. This documentation should not
be created merely for review purposes. It should be
used throughout the development to record and propa-
gate design decisions. When separate review documents
are produced, projects experience all the problems of
keeping two sets of books. Because of the complexity of
software products, it is unlikely that both records
would be consistent. Moreover, the documents de-
scribed below from the reviewers’ viewpoint are inval-
uable to the designers as well [5, 13, 161.

640 Communications of the ACM rune 1990 Volume 33 Number 6

Articles

What documentation is required to review the functional gether, constitute a system that meets the functional
requirements? requirements.

The software can be viewed as a control system
whose output values respond to changes in the states
of variables of interest in its environment. For many
real-time systems, the desired outputs approximate
piece-wise continuous functions of time and the history
of the relevant environmental parameters. For other
systems, the outputs are functions of a snapshot of the
environmental parameters taken at some point in time.
Some systems provide both reports and continuous
outputs.

The reviewers at this stage should be engineers and
scientists who understand the situation being moni-
tored and the devices to be controlled. They may not be
computer specialists and should not be expected to
read and understand programs, Because the require-
ments could, in theory, be fulfilled by a completely
hardware design, the description should use the mathe-
matics of control systems, not the jargon and notation
of computer programming. The functional require-
ments can be stated precisely by giving three mathe-
matical relations: (1) The required values of the con-
trolled environmental variables in terms of the values
of the relevant observable environmental parameters,
(2) the computer inputs in terms of those observable
environmental variables, and (3) the values of the con-
trolled environmental variables in terms of the com-
puter outputs.

For this review three types of documents are re-
quired. The first is the requirements specification,
which should have been approved by an earlier review.
The second is an informal document describing the re-
sponsibilities of each module. The purpose of this mod-
ule guide is to allow a reviewer to find all the modules
relevant to a particular aspect of system design [l]. The
third type of document is known as a module specifica-
tion It provides a complete black box description of the
module interface. There should be one specification for
each module mentioned in the module guide [Z, 141.

Reviewers of these documents must be experienced
software engineers. Some of them should have had ex-
perience with similar systems. This experience is nec-
essary to note omissions in the module structure. Dis-
cussions of these documents and how to organize the
reviews are contained in [14, 191.

What documentation is required to review the module‘s
internal design?

The first step in designing the module should be to
describe the data structures that will be used and each
proposed program’s effect on the data. This information
can be described in a way that is, except for the data
types available, independent of the programming lan-
guage being used.

These requirements can be communicated as a set of
tables and formulae describing the mathematical func-
tions to be implemented [4]. We should not describe a
sequence of computations anywhere in this document.
The use of natural language, which inevitably intro-
duces ambiguity, should be minimized. Documents of
this form have been written for reasonably complex
systems and are essential when safety-critical functions
are to be performed. Our experience has shown that
documents written this way can be thoroughly and
effectively reviewed by engineers who are not program-
mers. Some suggestions for organizing the reviews are
contained in [lg]. A complete example of such a
document has been published as a model for other
projects [17].

The design documentation is a description of two
types of mathematical functions: program functions and
abstraction functions. This terminology was used in
IBM’s Federal Systems Division, the IBM branch re-
sponsible for U.S. Government systems. These concepts
are described more fully elsewhere [ll, 131. The pro-
gram functions, one for each module access program,
give the mapping from the state before the program is
executed to the state after the program terminates. The
abstraction functions are used to define the “meaning”
of the data structure; they give the mapping between
the data states and abstract values visible to the users
of the module. It is well-known that these functions
provide sufficient information for a formal review of
correctness of the design before the programs are
implemented.

Programs that cannot be described on a single page
must be presented in a hierarchical way; each page
must present a small program, calling other programs
whose functions are specified on that page. This type of
presentation allows the algorithm to be understood and
verified one page at a time.

What documentation is required to review the software
structure?

For this review we require documents that describe
the breakdown of the program into modules, Each mod-
ule is a unit that should be designed, written and re-
viewed independently of other modules. Each module
is a collection of programs; the programs that can be
invoked from other modules are called access pro-
grams. The purpose of this review is to make sure that:
(1) the structure is one that allows independent devel-
opment and change; (2) all programs that are needed
are included once and only once in the structure;
(3) the interfaces to the modules are precisely de-
fined; (4) the modules are compatible and will, to-

If the module embodies a physical model (i.e., a set of
equations that allows us to compute nonobservables
from observables), the model must be described and its
limitations documented.

If the module performs numerical calculations in
which accuracy will be a concern, numerical analysis
justifying the design must be included.

If the module is hardware-dependent, the documen-
tation must include either a description of the hard-
ware or a reference to such a description.

June 1990 Volume 33 Number 6 Communications of the ACM 641

Articles

If the module is responsible for certain parts of the
functional specification, a cross reference must be
provided.

The reviewers of each internal module design docu-
ment will include experienced software engineers and
other specialists. For example, if a physical model is
involved, a physicist or engineer with expertise in that
area must be included as a reviewer. If the information
is presented in a notation that is independent of the
programming language, none of the reviewers needs to
be an expert in the programming language involved.
Numerical analysts will be needed for some modules,
device specialists for others.

What documentation is required to review the code?
While it is important that the algorithms and data

structures be appropriate to the task, this will be of
little help if the actual code is not faithful to the ab-
stract design. Because of the previous reviews, those
who review the code do not need to examine the global
design of the system. Instead, they examine the corre-
spondence between the algorithms and the actual code.
These reviewers must be experienced users of the
hardware and compilers involved; of course, they
must also understand the notation used to specify
the algorithms.

What documentation is required for the Test Plan Review?
Although these reviews, if carried out rigorously,

constitute a mathematical verification of the code,
testing is still required. Sound testing requires that
a test plan (a document describing the way test cases
will be selected) be developed and approved in ad-
vance. In addition to the usual engineering practice of
normal case and limiting case checks, it is important
that the reliability of safety-critical systems be esti-
mated by statistical methods. Reliability estimation re-
quires statistically valid random testing; careful thought
must be given to the distribution from which the test
cases will be drawn. It is important for the distribution
of inputs to be typical of situations in which the correct
functioning of the system is critical. A more detailed
discussion of statistical testing can be found in the up-
coming section, Reliability Assessment for Safety-
Critical Software.

The test plan should be described in a document that
is not available to the designers. It should be reviewed
by specialists in software testing, and specialists in the
application area, who compare it with the require-
ments specification to make certain the test coverage
is adequate.

Reviewing the relationship between these documents
The hierarchical process described is designed to al-

low reviews to be conducted in an orderly way, focus-
ing on one issue at a time. To make this “separation of
concerns” work, it is important that the required rela-
tionships between the documents be verified.

a. The module guide must show clearly that each of
the mathematical functions described in the re-

quirements specification is the responsibility of a
specific module. There must be no ambiguity about
the responsibilities of the various modules. The
module specifications must be consistent with the
module guide and the requirements specification.

b. Each module design document should include argu-
mentation showing that the internal design satisfies
the module specification. If the module specification
is mathematical [18], mathematical verification of
the design correctness is possible [ll].

c. The module design document, which describes the
algorithms, must be clearly mapped onto the code.
The algorithms may be described in an abstract no-
tation or via hierarchically structured diagrams.

d. The test plan must show how the tests are derived
and how they cover the requirements. The test plan
must include black box module tests as well as
black box system tests.

Why is configuration management essential for rigorous
reviews?

Because of the complexity of software, and the
amount of detail that must be taken into consideration,
there is always a tremendous amount of documenta-
tion. Some of the most troublesome software errors
occur when documents are allowed to get out-of-date
while their authors work with pencil notes on their
own copies.

For the highly structured review process outlined
earlier to succeed, all documents must be kept consis-
tent when changes are made. If a document is changed,
it, and all documents related to it, must be reviewed
again. A careful review of the software may take weeks
or months. Each reviewer must be certain that the doc-
uments given to him are consistent and up-to-date. The
time and energy of reviewers should not be wasted,
comparing different versions of the same document.

A process known in the profession as configuration
management, supported by a configuration control
mechanism, is needed to ensure that every designer
and reviewer has the latest version of the documents
and is informed of every change in a document that
might affect the review.

We should be exploiting computer technology to
make sure that programmers, designers, and reviewers
do not need to retain paper copies of the documents at
all. Instead, they use online documentation. If a change
must be made, all who have used the affected docu-
ment should be notified of the change by the computer
system. When a change is being considered, but is not
yet approved, users of the document should receive a
warning. The online versions must be kept under strict
control so they cannot be changed without authoriza-
tion. Every page must contain a version identifier that
makes it easier for a reviewer to verify that the docu-
ments he has used represent a consistent snapshot.

MODULAR STRUCTURE
Modern software engineering standards call for soft-
ware to be organized in accordance with a principle

642 Communications of the ACM June 1990 Volume 33 Number 6

Articles

known variously as “Information Hiding,” “Object-
Oriented Programming, ‘I “Separation of Concerns,”
“Encapsulation,” ‘I Data Abstraction,” etc. This principle
is designed to increase the cohesion of the modules
while reducing the “coupling” between modules. Sev-
eral new textbooks, well-known programming lan-
guages such as ADA, practical languages such as MESA,
PROTEL, and MODULA, are designed to support such
an organization.

Any large program must be organized into pro-
grammer work assignments known as modules. In
information-hiding designs, each module hides a secret,
a fact, or closely related set of facts, about the design
that does not need to be known by the writers and
reviewers of other modules. Each work assignment be-
comes much simpler than in an old-fashioned design
because it can be completed and understood without
knowing much about the other modules. When changes
are needed, they do not ripple through an unpredicta-
ble number of other modules, as they frequently do in
more conventional software designs.

A number of practical systems illustrate the benefits
of information hiding even when the designers did not
use that abstract principle but depended on their own
intuition. For example, the widely used UNIX operating
system gains much of its flexibility from hiding the
difference between files and devices.

The thought of hiding information from others often
strikes engineers as unnatural and wrong. In engineer-
ing projects, careful scrutiny by others working on the
project is considered an important part of quality con-
trol. However, information hiding occurs naturally in
large multidisciplinary projects. An electrical engineer
may use a transformer without understanding its mo-
lecular structure or knowing the size of the bolts that
fasten it to a chassis. The circuit designer works with a
specification that specifies such abstractions as voltage
ratio, hysteresis curve, and linearity. Designers of large
mechanical structures work with abstract descriptions
of the girders and other components, not with the
detailed molecular structures that are the concern of
materials engineers. Large engineering projects would
be impossible if every engineer on the project had to be
familiar with all the details of every component of the
product.

Large software projects have the complexity of huge
multidisciplinary projects, but there is only one dis-
cipline involved. Consequently, information hiding
does not occur naturally and must be introduced as an
engineering discipline. Software engineers should be
trained to provide and use abstract mathematical speci-
fications of components just as other engineers do.

The criterion of information hiding does not deter-
mine the software structure. Software engineers try to
minimize the information that one programmer must
have about another’s work. They also try to minimize
the expected cost of a system over the period of its use.
Both information and expected cost are probabilistic
measures. For maximum benefit, one should hide those

details most likely to change but does not need to hide
facts that are fundamental and unlikely to change. Fur-
ther, decisions likely to be changed and reviewed to-
gether should be hidden in the same module. This im-
plies that to apply the principle, one must make
assumptions about the likelihood of various types of
changes. If two designers apply the information-hiding
principle, but make different assumptions about the
likelihood of changes, they will come up with different
structures.

RELIABILITY ASSESSMENT FOR
SAFETY-CRITICAL SOFTWARE

Should we discuss the reliability of software at all?
Manufacturers, users, and regulatory agencies are

often concerned about the reliability of systems that
include software. Over many decades, reliability engi-
neers have developed sophisticated methods of estimat-
ing the reliability of hardware systems based upon esti-
mates of the reliability of their components. Software is
often viewed as one of those components and an esti-
mate of the reliability of that component is deemed
essential to estimating the reliability of the overall
system.

Reliability engineers are often misled by their experi-
ence with hardware. They are usually concerned with
the reliability of devices that work correctly when new,
but wear out and fail as they age. In other cases, they
are concerned with mass-produced components where
manufacturing techniques introduce defects that affect
only a small fraction of the devices. Neither of these
situations applies to software. Software does not wear
out, and the errors introduced when software is copied
have not been found to be significant.

As a result of these differences, it is not uncommon
to see reliability assessments for large systems based on
an estimated software reliability of 1.0. Reliability engi-
neers argue that the correctness of a software product is
not a probabilistic phenomenon. The software is either
correct (reliability 1.0) or incorrect (reliability 0). If
they assume a reliability of 0, they cannot get a useful
reliability estimate for the system containing the
software. Consequently, they assume correctness.
Many consider it nonsense to talk about “reliability
of software.”

Nonetheless, our practical experience is that software
appears to exhibit stochastic properties. It is quite use-
ful to associate reliability figures such as MTBF (Mean
Time Between Failures) with an operating system or
other software product. Some software experts attribute
the apparently random behavior to our ignorance. They
believe that all software failures would be predictable if
we fully understood the software, but our failure to
understand our own creations justifies the treatment of
software failures as random. However, we know that if
we studied the software long enough, we could obtain a
complete description of its response to inputs. Even
then, it would be useful to talk about the MTBF of the

]une 1990 Volume 33 Number 6 Communications of the ACM 643

Articles

product. Hence, ignorance should not satisfy us as a sequently, reliability and availability can be quite
philosophical justification. different.

When a program first fails to function properly, it is
because of an input sequence that had not occurred
before. The reason th,at software appears to exhibit ran-
dom behavior, and the reason that it is useful to talk
about the MTBF of software, is because the input se-
quences are unpredictable. When we talk about the
failure rate of a software product, we are predicting the
probability of encountering an input sequence that will
cause the product to fail.

For systems that function correctly only in rare
emergencies, we wish to measure the reliability in
those situations where the system must take corrective
action, and not include data from situations in which
the system is not needed. The input sequence distribu-
tions used in reliability assessment should be those that
one would encounter in emergency situations, and not
those that characterize normal operation.

Strictly speaking, we should not consider software as
a component in systems at all. The software is simply
the initial data in the computer and it is the initialized
computer that is the component in question. However,
in practice, the reliability of the hardware is high and
failures caused by software errors dominate those
caused by hardware problems.

Much of the literature on software reliability is con-
cerned with estimation and prediction of error-rates,
the number of errors per line of code. For safety pur-
poses, such rates are both meaningless and unimpor-
tant. Error counts are meaningless because we cannot
find an objective way to count errors. We can count the
number of lines in the code that are changed to elimi-
nate a problem, but there usually are many ways to
alleviate that problem. If each approach to repairing the
problem involves a different number of lines (which is
usually the case), the number of errors in the code is a
subjective, often arbitrary, judgment. Error counts are
unimportant because a program with a high error count
is not necessarily less reliable than one with a low
error count. In other words, even if we could count the
number of errors, reliability is not a function of the
error count. If asked to evaluate a safety-critical soft-
ware product, there is no point in attempting to esti-
mate or predict the number of errors remaining in a
program.

What should we be measuring?
What we intuitively call “software reliability” is the

probability of not encountering a sequence of inputs
that leads to failure. If we could accurately characterize
the sequences that lead to failure we would simply
measure the distribution of input histories directly. Be-
cause of our ignorance of the actual properties of the
software, we must use the software itself to measure
the frequency with which failure-inducing sequences
occur as inputs.

In safety-critical applications, particularly those for
which a failure would be considered catastrophic, we
may wish to take the position that design errors that
would lead to failure are always unacceptable. In other
technologies we would not put a system with a known
design error in service. The complexity of software, and
its consequent poor track record, means we seldom
have confidence that software is free of serious design
errors. Under those circumstances, we may wish to
evaluate the probability that serious errors have been
missed by our tests. This gives rise to our second proba-
bilistic measure of software quality, trustworthiness.

In the sequel we shall refer to the probability that an
input will not cause a failure as the reliability of the
software. We shall refer to the probability that no seri-
ous design error rema.ins after the software passes a set
of randomly chosen tests as the trustworthiness of the
software. We will discuss how to obtain estimates of
both of these quantities.

Some discussions about software systems use the
terms availability and reliability as if they were inter-
changeable. Availability usually refers to the fraction of
time that the system is running and assumed to be
ready to function. Availability can depend strongly on
the time it takes to return a system to service once it
has failed. If a system is truly safety-critical (e.g., a
shutdown system in a nuclear power station), we would
not depend on it during the time it was unavailable.
The nuclear reactor would be taken out of service
while its shutdown system was being repaired. Con-

Other portions of the literature are concerned with
reliability growth models. These attempt to predict
the reliability of the next (corrected) version on the
basis of reliability data collected from previous ver-
sions. Most assume the failure rate is reduced when-
ever an error is corrected. They also assume the reduc-
tions in failure rates resulting from each correction are
predictable. These assumptions are not justified by
either theoretical or empirical studies of programs. Re-
liability growth models may be useful for management
and scheduling purposes, but for safety-critical applica-
tions one must treat each modification of the program
as a new program. Because even small changes can
have major effects, we should consider data obtained
from previous versions of the program to be irrelevant.

We cannot predict a software failure rate from failure rates
for individual lines or subprograms.

The essence of system-reliability studies is the com-
putation of the reliability of a large system when given
the reliability of the parts. It is tempting to try to do the
same thing for software, but the temptation should be
resisted. The lines or statements of a program are not
analogous to the components of a hardware system.
The components of a hardware system function inde-
pendently and simultaneously. The lines of a computer
program function sequentially and the effect of one ex-
ecution depends on the state that results from the ear-
lier executions. One failure at one part of a program
may lead to many problems elsewhere in the code.

644 Communications of the ACM Iune 1990 Volume 33 Number 6

Articles

When evaluating the reliability of a safety-critical
software product, the only sound approach is to treat
the whole computer, hardware and software, as
a black box.

The finite state machine model of programs
The following discussion is based on the simplest and

oldest model of digital computing. Used for more than
50 years, this model recognizes that every digital com-
puter has a finite number of states and there are only a
finite number of possible input and output signals at
any moment in time. Each machine is described by two
functions: next-state, and output. Both have a domain
consisting of (state, input) pairs. The range of the next-
state function is the set of states. The range of the
output function is a set of symbols known as the output
alphabet. These functions describe the behavior of a
machine that starts in a specified initial state and pe-
riodically selects new states and outputs in accordance
with the functions.

In this model, the software can be viewed as part of
the initial data. It determines the initial state of the
programmed machine. Von Neumann introduced a ma-
chine architecture in which program and data could be
intermixed. Practicing programmers know they can al-
ways replace code with data or vice versa. It does not
make sense to deal with the program and data as if they
were different.

In effect, loading a program in the machine selects a
terminal submachine consisting of all states that can be
reached from the initial state. The software can be
viewed as a finite state machine described by two very
large tables. This model of software allows us to define
what we mean by the number of faults in the software;
it is the number of entries in the table that specify
behavior that would be considered unacceptable. This
fault count has no simple relation to the number of
errors made by the programmer or the number of state-
ments that must be corrected to remove the faults. It
serves only to help us to determine the number of tests
that we need to perform.

Use of hypothesis testing
In most safety-critical applications we do not need to

know the actual probability of failure; we need to con-
firm the failure probability is very likely to be below a
specified upper bound. We propose to run random tests
on the software, checking the result of each test. Since
we are concerned with safety-critical software, if a test
fails (i.e., reveals an error in the software), we will
change the software in a way that we believe will cor-
rect the error. We will again begin random testing. We
will continue such tests until we have sufficient data to
convince us that the probability of a failure is accepta-
bly low. Because we can execute only a very small
fraction of the conceivable tests, we can never be sure
that the probability of failure is low enough. We can,
however, calculate the probability that a product with
unacceptable reliability would have passed the test that
we have carried out.

TABLE I. Probability That a System With Failure Probability of
.OOl Will Pass N Successive Tests

h=lOOO.

1 N 1 M=(l-l/hIN 1

I 4000 I 0.01828 1

Let us assume the probability of a failure in a test
of a program is l/h (i.e., the reliability is 1 - l/h).
Assuming that N randomly selected tests (chosen, with
replacement, from a distribution that corresponds to
the actual usage of the program) are performed, the
probability there will be no failure encountered during
the testing is

(1 - l/h)N = M. (11

In other words, if we want the failure probability to
be less than l/h, and we have run N tests without
failure, the probability that an unacceptable product
would pass our test is no higher than M. We must
continue testing, without failure, until N is large
enough to make M acceptably low. We could then
make statements like, “the probability that a product
with reliability worse than .999 would pass this test is
less than one in a hundred.” Table I provides some
sample values of M for h = 1000 and various values
of N.

Table I shows that, if our design target was to have
the probability of failure be less than 1 in 1000, per-
forming between 4500 and 5000 tests (randomly chosen
from the appropriate test case distribution) without fail-
ure would mean that the probability of an unacceptable
product passing the test was less than 1 in a hundred.

Because the probability of failure in practice is a
function of the distribution of cases encountered in
practice, the validity of this approach depends on the
distribution of cases in the tests being typical of the
distribution of cases encountered in practice.

We can consider using the same approach to obtain a
measure of the trustworthiness of a program. Let the

June 1990 Volume 33 Number 6 Communications of the ACM 645

Articles

total number of cases from which we select tests be C.
Assume we consider it unacceptable if F of those cases
results in faulty behavior; (F might be 1). By substitut-
ing F/C for l/h we obtain

(1 - F/C)N = M. (a

We now assume that we have carried out N ran-
domly selected tests without finding an error. If, during
that testing, we had found an error, we would have
corrected the problem and started again. We can esti-
mate the value of C, and must determine whether to
use F = 1 or some hig:her value. We might pick a higher
number if we thought it unlikely that there would be
only 1 faulty (state, input) pair. In most computer pro-
grams, a programming error would result in many
faulty pairs, and calculations using F = 1 are unneces-
sarily pessimistic. After choosing F, we can determine
M as above. (F, M) pairs provide a measure of trust-
worthiness. Note that systems considered trustworthy
would have relatively low values of M and F.

As a result of such tests we could make statements
like, “The probability that a program with more than
five unacceptable cases would pass this test is one in a
hundred.” Since we are not concerned with the fre-
quency of failure of those cases in practice, the tests
should be chosen from a distribution in which all state
input combinations are equally likely. Because C is al-
most always large and F relatively small, it is not prac-
tical to evaluate trustworthiness by means of testing.
Trustworthiness, in the sense that we have defined it
here, must be obtained by means of formal, rigorous
inspections.

It is common to try to achieve high reliability by
using two or more programs in an arrangement that
will be safe if one of their specified subsets fails. For
example, one could have two safety systems and make
sure that each one could alone take the necessary ac-
tions in an emergency. If the system failures are statisti-
cally independent, the probability of the joint system
failing is the product of the probability of individual
failures. Unfortunately, repeated experiments have
shown that, even when the programs for the two sys-
tems are developed independently, the failures are cor-
related [6, 7, 81. As a result, we should evaluate the
probability of joint failure experimentally.

The hypothesis testing approach can be applied to the
evaluation of the probability of joint failures of two (or
more) systems. Both systems must be subjected to the
same set of test conditions. Joint failures can be de-
tected. However, because the permitted probability of
failures for joint systems is much lower than for single
systems, many more tests will be needed. Table II
shows some typical values.

In this table, we have been quite vague about the
nature of a single test and have focused on how many
tests are needed. Next we will discuss what constitutes
a test and how to select one or more tests.

Three classes of program
The simplest class of programs to test comprises

TABLE II. Probability That a System With Failure Probability of
.OOOOOl Will Pass N Successive Tests

h=lOOOOOO. h = 1000000.

N M= (1 - l/h)N N M= (1 - l/h)N

1000000. 0.36788 4000000. 0.01832

those that terminate after each use and retain no data
from one run to the next. These memoryless batch pro-
grams are provided with data, executed, and return an
answer that is independent of any data provided in
earlier executions.

A second class consists of batch programs that retain
data from one run to the next. The behavior of such
programs on the nth run can depend on data supplied
in any previous run.

A third class contains programs that appear to run
continuously. Often these real-time programs are in-
tended to emulate or replace analogue equipment.
They consist of one or more processes; some of those
processes run periodically, others run sporadically in
response to external events. One cannot identify dis-
crete runs, and the behavior at any time may depend
on events arbitrarily far in the past.

Reliability estimates for memoyless batch programs: For
memoryless batch programs a test consists of a single
run using a randomly selected set of input data. If we
are concerned with a system required to take action in
rare circumstances, and one in which action in other
circumstances is inconvenient rather than unsafe, the
population of possible test cases should be restricted to
those in which the system should take action. It is es-
sential that one know the reliability under those cir-
cumstances. Of course, additional tests can be con-
ducted, using other data, to determine the probability
of action being taken when no action is required.

Reliability estimates for batch programs with memory:
When a batch program has memory, a test consists of a
single run. However, a test case is selected by choosing
both input data and an internal state. For reliability
estimates, the distribution of internal states must match
that encountered in practice. It is often more difficult to
determine the appropriate distribution of internal states
than to find the distribution of inputs. Determining the
distribution of internal states requires an understanding
of, and experience with, the program.

646 Communications of the ACM lune 1990 Volume 33 Number 6

Articles

An alternative to selecting internal states for the test
would be to have each test consist of a sequence of
executions. The system must be reinitialized before
each new sequence. Again, the distribution of these
cases must match that found in practice if the reliabil-
ity estimates are to be meaningful. In addition, it is
difficult to determine the length of those sequences.
The sequences must be longer than the longest se-
quence that would occur in actual use. If the sequences
are not long enough, the distribution of internal states
that occur during the test may be badly skewed. In
effect, this means that in actual use, the system must be
reinitialized frequently so that an upper bound can be
placed on the length of each test.

Reliability estimates for real-time systems: In real-time
systems, the concept of a batch run does not apply.
Because the real-time system is intended to simulate or
replace an analogue system, the concept of an input
sequence must be replaced by a multidimensional tra-
jectory. Each such trajectory gives the input values as
continuous functions of time. Each test involves a sim-
ulation in which the software can sample the inputs for
the length of that trajectory.

The question of the length of the trajectory is critical
in determining whether or not statistical testing is prac-
tical. In many computer systems there are states that
can arise only after long periods of time. Reliability
estimates derived from tests involving short trajectories
will not be valid for systems that have been operating
for longer periods. On the other hand, if one selects
lengthy trajectories, the testing time required is likely
to be impractical.

Statistical testing can be made practical if the system
design is such that one can limit the length of the tra-
jectories without invalidating the tests. To do this, one
must partition the state. A small amount of the memory
is reserved for data that must be retained for arbitrary
amounts of time. The remaining data are reinitialized
periodically. The length of the period becomes the
length of the test trajectory. Testing can then proceed
as if the program were a batch program with (memory-
state, trajectory) pairs replacing input sequences.

If the long-term memory has a small number of
states, it is best to perform statistically significant tests
for each of those states. If that is impractical, one must
select the states randomly in accordance with a pre-
dicted distribution. In many applications, the long-term
memory corresponds to operating modes and a valid
distribution can be determined.

Picking test cases for safety-critical real-time systems
Particular attention must be paid to trajectory selec-

tion if the system is required to act only in rare circum-
stances. Since the reliability is a function of the input
distribution, the trajectories must be selected to provide
accurate estimates under the conditions where perfor-
mance matters. In other words, the population from
which trajectories are drawn must include only trajec-
tories in which the system must take action. Similarly,

the states of the long-term memory should be restricted
to those in which the system will be critical to safety.

Determining the population of trajectories from
which the tests are selected can be the most difficult
part of the process. It is important to use one’s knowl-
edge of the physical situation to define a set of trajecto-
ries that can occur. Tests on impossible trajectories are
not likely to lead to accurate reliability estimates. How-
ever, there is always the danger that the model used to
determine these trajectories overlooks the same situa-
tion overlooked by the programmer who introduced a
serious bug. It is important that any model used to
eliminate impossible trajectories be developed indepen-
dently of the program. Most safety experts would feel
more comfortable if, in addition to the tests using tra-
jectories considered possible, some statistical tests were
conducted with crazy trajectories.

CONCLUSIONS
There is no inherent reason that software cannot be
used in certain safety-critical applications, but extreme
discipline in design, documentation, testing, and review
is needed. It is essential that the operating conditions
and requirements be well understood, and fully doc-
umented. If these conditions are not met, adequate
review and testing are impossible.

The system must be structured in accordance with
information hiding to make it easier to understand, re-
view, and repair. The documentation must be complete
and precise, making use of mathematical notation
rather than natural language. Each stage of the design
must be reviewed by independent reviewers with the
specialized knowledge needed at that stage. Mathemati-
cal verification techniques must be used to make the
review systematic and rigorous.

An independent agency must perform statistically
valid random testing to provide estimates of the relia-
bility of the system in critical situations. Deep knowl-
edge and experience with the application area will be
needed to determine the distribution from which the
test cases should be drawn.

The vast literature on random testing is, for the most
part, not relevant for safety evaluations. Because we are
not interested in estimating the error rates or conduct-
ing reliability growth studies, a very simple model suf-
fices. Hypothesis testing will allow us to evaluate the
probability that the system meets our requirements.
Testing to estimate reliability is only practical if a real-
time system has limited long-term memory.

Testing to estimate trustworthiness is rarely practical
because the number of tests required is usually quite
large. Trustworthiness must be assured by the use
of rigorous mathematical techniques in the review
process.

The safety and trustworthiness of the system will rest
on a tripod made up of testing, mathematical review,
and certification of personnel and process. In this arti-
cle, we have focused on two of those legs, testing and
review based on mathematical documentation. The

June 1990 Volume 33 Number 6 Communications of the ACM 647

Articles

third leg will be the most difficult to implement. While
there are authorities that certify professional engineers
in other areas, there is no corresponding authority in
software engineering. We have found that both classi-
cal engineers and computer science graduates are ill-
prepared for this type of work. In the long term, those
who are concerned about the use of software in safety-
critical applications will have to develop appropriate
educational programs [IS].

Acknowledgments. Conversations with many people
have helped to develop these observations. Among
them are William Howden, Harlan Mills, Jim Kendall,
Nancy Leveson, B. Natvik, and Kurt Asmis. In addition,
we are thankful to the anonymous Communications ref-
erees and the editor for their constructive suggestions.

REFERENCES
1. Britton. K., and Parnas, I). A-7E software module guide. NRL Memo.

Rep. 4702, December 1981.
2. Clemenls, P.. Faulk, S., and Parnas. D. Interface specifications for

the SCR (A-7EJ application data types module. NRL Rep. 8734,
August 23, 1983.

3. Currit, P.A.. Dyer, M., and Mills, H.D. Certifying the reliability of
software. IEEE Trans. Sofk~~. Eng. SE-IL 1 (Jan. 1986).

4. Hcninger, K. Specifying zsoftware requirements for complex systems:
New techniques and their applications. ZEEE Trans. Softw. Eng. SE-6,
(Jan. 1980), Z-13.

5. Hester, SD.. Parnas, D.L., and Utter, D.F. Using documentation as
a software design medium. Bell Syst. Tech. J 60. 8 (Oct. 1981),
1941-1977.

6. Knight, J.C., and Levesor~. N.G. An experimental evaluation of the
assumption of independance in multi-version programming. IEEE
Trans. Softw. Eng. SE-l& 1 (Jan. 19&j), 96-109.

7. Knight. J.C., and Leveson, N.G. An empirical study of failure proba-
bilities in multi-version software. Rep.

8. Leveson, N. Software safety: Why, what and how. ACM Comp. Sur-
veys 18, 2 (June 1986), 125-163.

9. Mills, H.D. Engineering discipline for software procurement. COM-
PASS ‘87-Computer Assurance, June 29-July 3, 1987. Georgetown
University, Washington, D.C.

10. Mills, H.D. The new math of computer programming. Commun. ACM
18, 1 (Jan. 19751, 43-48.

11. Mills, H.D., Basili, V.R., IGannon, I.D., and Hamlet, R.G. Principles of
Computer Programming-A Mathematical Approach. Allyn and Bacon.
Inc., 1987.

12. Mills, H.D., and Dyer, M. A formal approach to software error re-
moval. I. Syst. Softw. (1987).

13. Mills, H.D.. Linger, R.C.. and Witt. B.1. Structured Programming: The-
ory and Practice. Addison-Wesley, Reading, Mass., 1979.

14. Parker. A., Heninger, K., Parnas, D., and Shore, J. Abstract interface
specifications for the A-7E device interface module. NRL Memo.
Rep. 4385, November 20, 1980.

15. Parnas, D.L. Education for computing professionals. IEEE Camp. 23. 1
(Jan. 1990), 17-22.

16. Parnas, D.L., and Clements, PC. A rational design process: How and
why to fake it. IEEE Trans. Softw. Eng. SE-12, 2 (Feb. 1986). 251-257.

17. Parnas. D.L., Heninger, K., Kallander, J., and Shore, J. Software re-
quirements for the A-7E aircraft. NRL Rep. 3876, November 1978.

18. Parnas, D.L., and Wang, Y. The Trace assertion method of module-
interface specification. Tech. Rep. 89261. Queen’s University, TRIO
(Telecommunications Research lnstitute of Ontario). October 1989.

19. Parnas, D.L., and Weiss, D.M. Active design reviews: Principles and
Practices. In Proceedings of the 8th international Conference on Software
Engineering [London, August 1985).

ABOUT THE AUTHORS:

DAVID L. PARNAS is professor of Computing and Information
Science at Queen’s University in Kingston, Ontario. His work
interests involve most aspects of computer system engineering.
His special interests include precise abstract specifications,
real-time systems, safety-critical software, program semantics,
language design, software structure, process structure, and pro-
cess synchronization.

A. JOHN VAN SCHOUWEN, currently completing his master’s
thesis at Queen’s University, is a research associate at the
Telecommunications Research Institute of Ontario. His re-
search interests include formal and precise software documen-
tation.

Authors’ Present Address: Dept. of Computing and Informa-
tion Science, Queen’s University, Kingston, Ontario, Canada
K7L 3N6.

SHU PO KWAN is a specialist in nuclear reaction and nuclear
structure. He has also done research work in computer simula-
tion and modelling. Author’s Present Address: 1118 Avenue
Rd., Toronto, Ontario, Canada M5N 2E6.

21 st Century Conference Highlights
The theme for the 1991 ACM Computer Science Conference is “Prepar-

1991 ACM Nineteenth Annual ing for the 21st Century”. It is appropriate to anticipate the needs and

Computer Science Conference B
opportunities of the 21st Century now because of the long technology
transfe:r pipeline which connects basic computer science research to the

@

day-to-day activities of commerce and government operation. This
year’s programwill emphasize the coupling among the stages in the tech-
nology transfer pipeline by featuring three tracks which are:

l Future Xxhnologies
l Research Results

Q
l Prototype Systems and Case Studies

March 5-7, 1991 Attend:ance Information Exhibits Information
ACM CSC’91 Barbara Corbett

San Antonio Convention Center
11 West 42nd Street Robert T Kenworthy, Inc.
New York, NY 10036 866 United Nations Plaza

San Antonio, TX (212) 869-7440 New York, NY 10017
Meetings@ACMVM.Bitnet (212) 752-0911

648 Communications of the ACM June 1990 Volume 33 Number 6

