
Guide to the Java Version of the
Simple Operating System (SOS) Simulator

Charles Crowley
August 1997

Introduction
The book Operating Systems: A Design-Oriented Approach (Charles Crowley, Irwin, 1997) contains code
for a simple operating system called SOS. That code is written in C++. The SOS code in the book assumes
it is running on a hardware platform called the CRA-1. This is a simple RISC machine that was developed
just for the book. A certain amount of the SOS code depends on the details of this hardware architecture.

Two simulators exist that will run (modified versions of) this code.

The C++ Version of the SOS Simulator
The C++ version of the SOS simulator only works on UNIX systems and is available from
http://www.cs.unm.edu/~crowley. This simulator does not implement the CRA-1. To ease the coding
burden, the simulation was based on a MIPS simulator and a simulation architecture used in NACHOS
(http://http.cs.berkeley.edu/~tea/nachos/). One aspect of this simulation architecture is that the operating
system code itself does not run on the simulator, only the user process code does. As a consequence of this,
the view of the hardware is different from that in the book. The details of saving and restoring processor
state, for example, are still present in the simulation but are distinctly different from the code in the book
and different from any code based on a real machine. For example, registers are set with function calls to
the simulator code. As a result, this simulation comes with a special version of the SOS source code. It is
still in C++ but it is changed to conform to the hardware simulation architecture. That simulation comes
with commentary describing the differences from the SOS code in the book.

There are a few problems with this simulation. The main one is that it works only on UNIX systems and
would require considerable effort to port to Windows. A minor problem is that it is text-only to avoid
dependencies with graphics systems. Another problem is that it does not simulate the code in chapters 6
and 8 of Crowley’s Operating Systems because the parallelism cannot be easily simulated using the
simulation architecture it is based on.

The Java Version of the SOS Simulator
To deal with the portability issue I have developed a Java version of the SOS source code and a virtual
machine simulator (in Java) for it to run on. The main advantage of this version is that it works on all
systems that support Java. It will work on a web page with a Java-enabled browser so almost anyone can
run the system.

The source code of the Java version of SOS is based on the book version but many changes were necessary.
Of course, the conversion from C++ to Java required many small changes although the basic look of the
code is quite similar. The change in virtual machine it runs on also required a number of changes in the
code.

This document describes the Java version of the SOS simulator. It documents all the changes that were
necessary for the conversion.

How To Run Java SOS
The Java simulator can be run with a Java interpreter or with a Java-enabled web browser. First I will
describe the Java files necessary to run the simulator and then I will discuss how to run it.

http://www.cs.unm.edu/~crowley

The files
The Java SOS simulation code comprises the following groups of files. All files are written in version 1.0
of Java and the AWT.

• Application files, which implement test applications to run on SOS.

• AppGUICounter.java contains an SOS application that puts up a simple GUI which contains
a counter that you can start and stop with buttons.

• AppTests.java contains several SOS test programs, some of which start AppGUICounters.

• Simulation files, which implement the virtual hardware SOS runs on and the simulation control code,
which runs the simulation and creates the GUI to control the simulation. This is all code that would
not be present in an operating system running on real hardware.

• HWSimulation.java contains to code that simulates the virtual machine used by the
simulation.

• SIM.java contains the main function and the code that runs the simulation. Most of this code is
to implement the user interface using the Java AWT.

• SIMIntHandler.java is an interface definition for interrupt handlers.

• SIMList.java redefined the List AWT component to have the dimensions I need for the GUI.

• SIMPauser.java contains a class that allows SOS to be paused.

• SOS source code files, which is the source code of the system.

• SOSConstants.java contains the constants required by SOS.

• SOSData.java contains the class that defines all the data used by SOS.

• SOSDiskDriver.java is the disk subsystem code.

• SOSDiskIntHandler.java is the disk interrupt handler.

• SOSDiskRequest.java is the class that defines items in the disk request queue.

• SOSMem.java deals with memory management and is not used in the current version of the SOS
simulator.

• SOSProcessDescriptor.java is the class that defines a process descriptor.

• SOSProcessManager.java is the code that handles process management.

• SOSProgIntHandler.java is the program error interrupt handler.

• SOSStart.java contains the code that is called when SOS starts up.

• SOSSyscallIntHandler.java is the system call interrupt handler.

• SOSTimerIntHandler.java is the timer interrupt handler.

• SOSWaitQueueItem.java is the class that defines the items that go into the message wait
queues.

Starting the simulation using a Java interpreter.
To run the simulator you need all these files and you need to compile them into “.class” files. Then you
run the simulation by running the class “SIM” (e.g., Java SIM). The files are all written in version 1.0 of
Java and the AWT.

Starting the simulation from a web browser.
You can also run the simulation from a Java-enabled web browser by loading the file SIM.html. The file
SIM.class and all the other .class files all need to be in the CLASSPATH. Normally it is sufficient to
have them all in the same directory as SIM.html.

Or you can run it from my web page (http://www.cs.unm.edu/~crowley/SIM.html).

Running the simulation
When the simulation starts you will see a single window (or a new web page in your browser). You can
select from several choices before you run the simulation.

1. Pick an application to run among the choices in the radio buttons at the top of the window. You have
the following choices:

• 2 GUI Apps: this will start two of the GUI counter apps. The default time slice is 5 seconds so
you will see one count for five seconds and then the other counts for 5 seconds, etc.

• MsgApp: this will start two processes that send create a message queue and use it to send messages
one to the other. The sender sends 10 messages and then exits. These processes have no GUI but
they do generate trace messages.

• Disk App: this starts a process that writes the disk and then reads it back. It does this 10 times. It
has no GUI but it does generate trace messages.

2. Pick which things you want traced during execution. These trace messages show up in the list boxes
you see in the simulation window. You have the following choices:

• App: show application trace messages. You generally want this on. Applications usually do not
generate all that many trace messages.

• HW: show trace message relating to the hardware simulation. You do not normally want to see
these. There are a fair number of HW trace messages.

• SIM: show trace messages relating to the software simulation. You do not normally want to see
these messages.

• Syscall: show the messages generated by the system call interrupt handler in SOS.

• PM: show the trace messages generated by the process manager component of SOS

• Disk: show trace messages generated by the disk subsystem of SOS.

3. Start the simulation by clicking on the “Start SOS” button.

4. During execution all trace messages will go to the list box under the top row of buttons. You can
pause and resume the simulation with the “Pause SOS” and “Resume SOS” buttons.

5. When you are finished click on the “Exit Simulator” button.

6. The lower list box shows the trace messages divided up based on the current process that was running
when the trace message is created. This is a separate list for each process in the system. These list
boxes are in an AWT “card deck” which means that you can only see one of them at a time. There is a
row of buttons above the lower list box that controls which of the process list boxes you see. The
“Next Process” button goes through all the processes and you can go directly to processes 1, 2, 3, or 4
with buttons. The process 0 list is for trace messages generated when there is no current process.

7. These list boxes have scroll bars if necessary that allow you to look through the messages.

Modifying and testing SOS
You can edit any of the SOS files to make changes in the operation of SOS and run the simulation to see
how they work. Just edit the files, recompile them, and run SIM again. You could run it under the Java

http://www.cs.unm.edu/~crowley/SIM.html)

debugger if you run into exceptions. This will allow you to program all the exercises from the book that
involve modifications to SOS and test them on the simulator.

The Java Virtual Machine
The hardware virtual machine in this simulator is not really too much like a real machine but it does the job
of providing a base for the simulation. All of the simulation code is in HWSimulation.java and
SIM.java. The simulation has several parts:

• Simulation of running processes

• Memory simulation

• Interrupt simulation

• Timer simulation

• Disk simulation

Let’s look at each of these in turn.

Simulation of running processes
There are four calls related to running processes.

• CreateProcess(): This call creates a simulated process. A process will be a Java class that
implements the Runnable interface. This call creates a Java thread for each process. All the threads
run at normal priority. The thread is created and started. We rely on the application to suspend itself
immediately after it is started. In a real machine creating a process would be done by (1) loading the
code for the process into memory and (2) creating and initializing a register save area for the process.
In the Java simulation, the Java interpreter takes care of loading the code and it also handles the
context switching.

• RunProcess(): This call runs a process by resuming the thread that represents it. In a real machine
this would be done by loading the registers from the save area and then executing a special instruction
that loads the program counter and the status word.

• WaitForInterrupt(): This call suspends the calling thread and so causes it to wait for the next
interrupt (usually a disk interrupt).

• SystemCall(int arg): This call simulates a system call. The current thread (of the user process)
is used to execute the operating system code in the system call interrupt handler. This call generates an
interrupt that calls the system call interrupt handler. When the system call interrupt handler returns the
code for this call will suspend the thread of the process making the system call unless that same
process was chosen to run again by the dispatcher.

Interrupt simulation
There are four interrupts: system call, timer, program error, and disk. All interrupt handlers are classes that
implement the SIMIntHandler interface, which consists of one operation (HandleInterrupt(int
arg)). When the system is initialized, handles to each of the four interrupt handlers is placed in specific
memory location reserved for the interrupt vector area. An interrupt is handled by fetching the appropriate
handler and calling its HandleInterrupt function.

Memory simulation
Memory simulation is not as realistic as it is in the book (CRA-1) or the UNIX simulator. Since Java itself
takes care of allocating memory for Java classes and for loading them into memory, the SOS simulator
cannot do that. Instead it only simulates part of the data memory. There is a large array of cells that
represents the physical memory of the virtual machine. Currently it contains 10,000 cells. SOS uses 1000

cells for itself and allocates 1000 cells to each process. In a real machine, each cell would be a byte but in
the simulation each cell is a Java Object. This allows us to store object handles (such as interrupt handlers)
in the simulated memory. Most uses of the memory store integers (actually Java Integer objects) and so
there are special memory access functions that treat the memory cells as integers.

Base/bound memory mapping is simulated. The simulated hardware base and bound registers can be set
and read. There are mapped and unmapped versions of all the memory access functions. The unmapped
versions access the array directing using the memory address provided as an array index. The mapped
versions add the base register to the address provided and also check it against the limit register.

This simulated memory is accessed with the following calls:

• Object GetCellUnmapped(int address): This call goes to index address of the
physical memory array and returns the Object stored there. This is the basic memory fetch operation.

• int GetCellUnmappedAsInt(int address): This is the same as GetCellUnmapped
except that it converts the Object into an integer before it returns it.

• Object GetCell(int address): This call is the same as GetCellUnmapped except it adds
the memory base register to the address before it uses the address to index into the physical memory
array. This simulates a base/limit register memory-mapping scheme. If the original value of address
is equal to or greater than the limit register then a program error interrupt is generated. This simulates a
base/limit register memory-mapping scheme.

• int GetCellAsInt(int address): This is the same as GetCell except it converts the
Object into an integer before returning it. This is a convenience function since integers are the main
thing stored in memory cells.

• void SetCellUnmapped(int address, Object obj): This call stores obj in cell
address of the physical memory array.

• void SetCellUnmappedAsInt(int address, int n): This call converts n to an Integer
object and stores it in cell address of the physical memory array.

• void SetCell(int address, Object obj): This call adds the base register of the current
process to address and then stores obj in cell address of the physical memory array. If the
original value of address is equal to or greater than the limit register then a program error interrupt
is generated.

• void SetCellAsInt(int address, int n): This call is the same as SetCell except it
stores an integer (converted into a Java Integer object) in the cell..

The operating system keeps a number of things in the simulated memory.

• Cells 0-3 contain handler of the four interrupt handlers

• Cells 10-12 contain the three registers of the simulated disk. These addresses are handled specially by
the memory access functions. Stores and fetches to these cells are passed on to the simulated disk.
This is the simulation of memory-mapped I/O. Nothing is ever actually stored in cells 10 through 12.

• Cells 300-427 contain the system disk buffer. The simulated disk reads from the disk into these cells
and writes to the disk from these cells.

• Cells 500-899 contain the 50 system message buffers.

• Cells 1000-1999 are allocated to process 1.

• Cells 2000-2999 are allocated to process 2.

• Cells 3000-3999 are allocated to process 3.

• And so on for processes 4, 5, 6, 7, and 8.

Each process keeps a few things in the simulated physical memory. The simulated memory is the common
memory between processes and the operating system and all data passed between them goes through the
simulated physical memory.

• System call arguments are passed in memory cells and the system call return argument is passed back
in a memory cell.

• Message buffers sent and received are in memory cells.

• Later applications will put other things in system memory when I add virtual memory capabilities to
the simulator.

Right now SOS allocates 1000 cells to each process and only base/limit memory mapping is implemented.
Later versions of the Java SOS simulator will implement paging in the simulated memory and applications
will use the simulated memory for calculations that test the effectiveness of the virtual memory.

Timer simulation
The simulated hardware timer is quite similar to the one defined for the CRA-1 in the book. The operating
system sets the timer with a value and the timer counts the initial value down to 0. When the timer value
gets to 0, a timer interrupt is generated and counting stops. There is only one call:

• int setTimer(int time_to_interrupt): This call sets the timer to the specified value and
returns the value that was left in the timer before it was reset. This has the effect of starting a new time
interval if the timer value was 0 and canceling the time interval (and possibly starting a new one) if the
timer was not 0. If the value set is 0 this turns off the timer (and cancels and pending time interval).

The timer has its own Java thread and ticks continually, even when there is no timer interval.

Disk simulation
The disk simulation is quite simple. It has its own Java thread. It is a loop that continually checks for a
disk request. A disk request is made by storing into the disk’s control register. This is done by storing in
memory cell 10. This then calls the appropriate call in the disk simulation. Once a disk command is issued
the disk simulation delays 500 ms, transfers the data, and then generates the disk interrupt.

The disk class defines two functions:

• int GetStatusRegister(): This function returns a status word that tells if the disk is busy or
not.

• void SetAddressRegister(int address): This function sets the memory address (in the
physical memory array) where the next disk transfer should come from or go to.

• void SetCommandRegister(int address): This function sets the command register which
has the side effect of starting the disk transfer.

These disk functions are never called by SOS but only by the memory simulation code which simulates
memory mapped I/O by treating memory cells 10, 11, and 12 as disk registers.

Later versions of the simulator will use a more sophisticated disk simulation so that disk accesses will take
more or less time depending on where the read head is located when the request is started.

The Simulation
The hardware simulation provides processes (using threads), memory (using an array of Objects), a timer
(using a thread and sleep statements), a disk (also using a thread and sleep statements), and hardware
services (creating processes, running processes, system call, access to memory, access to the disk). The
simulation code builds on this to provide a user interface to the hardware simulation.

The simulation code generates the user interfaces described in the section How To Run Java SOS above.
The user interface mainly displays trace messages sent by SOS and the application processes. Most of the
simulation code is AWT calls to create and manage the user interface.

It also defines a SIMList class which subclasses the AWT List class to be a specific size.

The Test Applications
The file AppGUICounter.java creates a GUI to a simple counter. A counter was chosen because it is
obvious from looking at it when it is running and when it is idle.

The file AppTests.java implements the AppTests class. An AppTests object can be any of four
different applications.

• Application 1 creates two AppGUICounter applications and then exits. This application tests the
process switching code.

• Application 2 creates a message queue, creates an application of type 3 (passing it the message queue
id), and then enter a loop where it sends a message to the message queue every 500 ms. This
application (along with application 3) tests the message passing system calls.

• Application 3 is a loop that reads messages from the message queue created by an application 2
process.

• Application 4 is a loop that writes then reads the same disk block (with a different number in it each
time). This application tests the disk system calls.

These applications use simulated memory cells 101 to 103 for system call arguments, cell 100 for system
call return values, and cells 200-207 for a message buffer. These applications also include calls to the
Trace function to generate trace messages.

Each application suspends itself immediately after it is started. This is necessary because of the way the
SOS simulator using suspend and resume for dispatching.

Difference Between the Book’s SOS and Java SOS
There are three sources of differences between the book version of the SOS code and the version in the
Java SOS.

• Difference due to Java

• Difference due to the change in the underlying virtual machine

• Other differences

Difference due to Java
Java is similar to C++ but there are still many differences between the languages. These differences
required many small changes in the SOS code when it was converted. Here are the main categories of
changes:

Defined constants
In Java we use the static final modifiers to define constants.

Use of Vector
I have used the Vector class from the java.util library to implement queues. In the book we assumed a
Queue class. This changes the declarations and how the queue operations are specified.

Visibility of names
Java does not have a global name space (or rather only class names exist in the global name space) and all
names must exist inside of a class. This means that many names that appeared without any qualification in
the C++ version now require a class qualification. All of the constants are static final variables in some
class. The same is true of many function calls. The C++ version did not require qualification but the Java
version does.

This is probably the most noticeable change in that it affects the most the lines of code.

Construction of objects
Java requires that all the elements of an array be constructed individually. This requires some new code in
the class constructors.

Difference due to the change in virtual machine

Process handling
Processes have to be managed by calls to the hardware simulation. This includes calls to create a process,
run a process, make a system call, and access memory. Java handles process state so no process state needs
to be saved or restored. When a process is started, its base and limit registers need to be loaded into the
simulated hardware base and limit registers.

The Java thread suspend command is used in various places to handle the simulation of processes with
threads.

Memory
Memory access is through function calls (GetCell and SetCell)rather than simply accessing variables.
The simulated hardware base and limit registers must be set explicitly (they are public variables in the
HWSimulation class.

We use a generic MemoryCopy function to transfer data between system and user memory. This replaces
the CopyToSystemSpace and CopyFromSystemSpace functions from the book.

Because the memory array holds Java objects we frequently have to convert between the Integer class and
ints.

System calls
System calls are function calls. System call arguments and return values are passed in memory cells.

Interrupt handling
The interrupt vectors are set up with Java code that puts class handles in the interrupt vector area..

Timer
The timer is set using a function call (SetTimer).

Disk
The disk interface is quite similar.

Other differences

Tracing
I have added extensive tracing of SOS operations. This tracing code does not appear in the book version of
SOS. This code is easy to recognize.

Reformatting and other small changes
I have changed the format of some of the code. In some cases I have stored a value in a local variable and
used that variable rather than repeating the name of the value two or more times. In SOSStart I have
added more functions.

The SOS Files
In this section we will go through each of the files in SOS and describe what they do and how they differ
from the book’s version of the same code.

SOSData.java
The SOSData class contains the data for the operating system. It is a singleton, that is, only one copy of
SOSData will ever be instantiated. The SOSProcessDescriptor class, the SOSWaitQueueItem
class, and the SOSDiskRequest class are defined in their own files since Java requires that classes that
are used by more than one other class be defined in their own files.

SOSDiskDriver.java
The SOSDiskDriver class implements most of the disk subsystem. The rest is implemented in the
DiskIntHandler class.

The disk queue is a Java Vector instead of the book’s Queue class so the usage is a little different.

The DiskBusy function must interface with the Java virtual machine’s disk simulation and so is different
from the version I the book. This is also true of IssueDiskRead and IssueDiskWrite. We still
send the commands and parameters to the disk by setting disk registers but these exist in the address space
of the physical disk array in the Java virtual machine.

SOSDiskIntHandler.java
The SOSDiskIntHandler class implements the SIMIntHandler interface so it can be called by the disk
simulation. Saving the process state and resetting the hardware timer are different due to differences in the
Java virtual machine.

SOSDiskRequest.java
The SOSDiskRequest class must be defined in its own file because Java requires this.

SOSMem.java
The SOSMem class is not completed yet.

SOSProcessDescriptor.java
The SOSProcessDescriptor class defines the process descriptor (naturally) for SOS. The main
change here is that the save area is not required because Java saves the state of the thread when we suspend
it. We have no way to get to this state using Java code.

SOSProcessManager.java
The SOSProcessManager class contains the CreateProcessSysProc function and the
Dispatcher function. These are separated in the book version of SOS.

CreateProcessSysProc is different because of differences in the Java virtual machine. The
CreateProcess function handles the virtual machine process creation. This was not necessary in the
book version of SOS. The Java version does not allocate memory for code since this is handled
automatically by Java. Space in the physical memory array is allocated.

In SelectProcessToRun, the variable next_proc has been moved from being a static local variable
to being a variable in sosData. Other than the addition of tracing, this is the only change to
SelectProcessToRun.

The RunProcess function is totally different because it must interface with the Java virtual machine
instead of the CRA-1 virtual machine. Setting the timer and running a process are done completely
differently.

SOSProgIntHandler.java
The SOSProgIntHandler class implements the SIMIntHandler interface. This is difference from
the book version of SOS. The change was required because of the change to Java.

SOSStart.java
The SOSStart class does system initialization. The interrupt vectors are handled differently in the Java
version. The interrupt vector area is kept in the physical memory array as handles to the interrupt handler
objects. SOSStart initializes the interrupt vector area. I have also restructured the initialization code so
that the I/O system and the process system each have their own initialization procedures. This seemed
more modular. Process manager initialization requires the construction of a number of Java objects in
arrays. The message buffers are in the physical memory array and so are accessed differently as they are
linked up. We use Java Vectors for queues and they are constructed (and used) differently than the
Queue class in the book.

Java requires us to keep more handles, like the one to the disk driver that is initialized in
InitializeIOSystem.

In the Java virtual machine calls to the Dispatcher actually return since we are not manipulating actual
stacks. This means we must explicitly suspend the startup process after it returns from the dispatcher. The
startup thread only does this startup code and then it is no longer used.

SOSSyscallIntHandler.java
The SOSSyscallIntHandler class implements the SIMIntHandler interface. This is how we
cause interrupts in the Java virtual machine. This is required by the stronger typing rules in Java.

The system call argument in the Java virtual machine are handled differently than they were in the CRA-1.
The Java virtual machine has no registers and so system call arguments cannot be passed in register. In the
Java virtual machine we get them out of the physical memory array. The return value of the system call is
also placed in the physical memory array instead of in a register.

Resetting the timer is different in the Java virtual machine.

Process state does not have to be saved in the Java virtual machine.

The message queues are implemented with Java Vectors which are used a bit differently than the Queue
class postulated in the book.

Message buffers in the Java version of SOS are kept in the physical memory array so we use
MemoryCopy instead of calls to transfer data between address spaces. We see this in the
TransferMessage function and the MemoryCopy function.

The GetMessageBuffer and FreeMessageBuffer functions are included in this class instead of
with the global data where the book places them.

SOSTimerIntHandler.java
The SOSTimerIntHandler class handles timeout of time slices allocated to processes. The thread
representing the user process must be suspended explicitly here.

SOSWaitQueueItem.java
The SOSWaitQueueItem class must be defined in its own file because Java requires this. In the book
the structure definition was kept with the global data definitions.

Control Flow in Java SOS
It will help you to understand how the system works if you can see how control flows through the system.
Let’s start with the path of a system call. Each user process has its own thread and it is that thread that will
make the system call. This same thread handles the system call in the kernel and then returns. Here is a
chart of the control flow.

App: User Thread

1. Actions before system call

2. Make system call

HW: SystemCall

1. Raise priority of this thread

2. Call SOS system call interrupt handler

SOS: SyscallIntHandler

1. Save process state (nothing to do in Java SOS)

2. Reset timer (and record how much was left)

3. Handle system call (this varies depending on which system call it is)

4. Call dispatcher

SOS: Dispatcher

1. Pick process to run

2. Set timer

3. Run process

HW: RunProcess

1. Resume the thread of the process to run

2. Return (from RunProcess)

4. Return (from Dispatcher)

5. Return (from SyscallIntHandler)

3. If this process is not next then suspend its thread

4. Return (from SystemCall)(either right away to continue this process or later when this process
is dispatched again)

3. Actions after system call

Note that each call is returned from normally. There are no abrupt shifts of control in a single thread as
there would be in the CRA-1 simulation or in a real machine. The shifts of control are achieved by
switching between threads. If this system call causes the current process to changes then action1 in the
hardware RunProcess function will resume the thread of the new process. The thread of the old process
will continue to run. It will return from RunProcess, return from Dispatcher, return from SyscallIntHandler
and then, in the hardware SystemCall function the thread will be suspended. If the process making the
system call is chosen to run again then the resume in RunProcess will have no affect since the thread is not
suspended and the suspend in SystemCall will not be done. The process will then return from the hardware
system call and the calling process will resume execution.

Now let us look at the flow of control when there is a timer interrupt. Two threads will be running. The
first is the thread of the running process and the second is the thread of the timer. The timer thread will be
sleeping. When the sleep ends it will gain control (because it has higher priority than threads for user
processes). It will then take the following actions:

HW: Timer

1. Sleep for the duration of the timer interval

2. Wake up

3. Call the timer interrupt handler

SOS: TimerIntHandler

1. Save process state (nothing to do in Java SOS)

2. Suspend the thread of the current process

3. Call the dispatcher

SOS: Dispatcher

1. Pick process to run

2. Set timer

3. Run process

HW: RunProcess

1. Resume the thread of the process to run

2. Return (from RunProcess)

4. Return (from Dispatcher)

4. Return (from TimerIntHandler)

4. Loop (back to action 1)

The timer is a continuous loop, sleeping for the timer interval and then signaling the timer interrupt. The
timer interrupt handler is run using the thread of the timer and it always returns to the timer loop.

Disk interrupt handling is similar to timer interrupt handling. The disk interrupt handler is run using the
thread of the disk simulation.

Conclusions
The Java version of SOS has made some compromises to make it run under Java. The hardware simulation
is quite different from the CRA-1. There is no process state to save or restore. The memory simulation is
rough since only a little of the data memory is simulated. The advantage is that it runs anywhere.

Later versions of the Java SOS will have more extensive memory simulation and be able to simulate paging
and virtual memory. They will also emulate the two-processor system from Chapter 6 and the semaphores
of chapter 8.

	Introduction
	The C++ Version of the SOS Simulator
	The Java Version of the SOS Simulator

	How To Run Java SOS
	
	The files
	Starting the simulation using a Java interpreter.
	Starting the simulation from a web browser.
	Running the simulation
	Modifying and testing SOS

	The Java Virtual Machine
	Simulation of running processes
	Interrupt simulation
	Memory simulation
	Timer simulation
	Disk simulation

	The Simulation
	The Test Applications
	Difference Between the Book’s SOS and Java SOS
	Difference due to Java
	Defined constants
	Use of Vector
	Visibility of names
	Construction of objects

	Difference due to the change in virtual machine
	Process handling
	Memory
	System calls
	Interrupt handling
	Timer
	Disk

	Other differences
	Tracing
	Reformatting and other small changes

	The SOS Files
	
	SOSData.java
	SOSDiskDriver.java
	SOSDiskIntHandler.java
	SOSDiskRequest.java
	SOSMem.java
	SOSProcessDescriptor.java
	SOSProcessManager.java
	SOSProgIntHandler.java
	SOSStart.java
	SOSSyscallIntHandler.java
	SOSTimerIntHandler.java
	SOSWaitQueueItem.java

	Control Flow in Java SOS
	Conclusions

