Self-Healing of Byzantine Faults in Computation Networks

George Saad Jared Saia

Abstract

In our previous work, we provided algorithms that self-heal communication networks in the presence of adversarial attacks. In this paper, we extend these algorithms to self-heal computation networks in the presence of such attacks.

In particular, we describe a tree-based computation network over \(n \) nodes that ensures the following properties, even when an adversary controls up to \(t \leq (1/4 - \epsilon)n \) nodes, for any non-negative \(\epsilon \). First, the network provides a computation with bandwidth and latency costs that are asymptotically optimal. Second, the expected total number of message corruptions is \(O(t(\log^* n)^2) \) before the adversarially controlled nodes are effectively quarantined so that they cause no more corruptions. Moreover, we study extending our computational model to be for any acyclic computational circuit.