
CS 351 Design of Large Programs, Fall 2003 1

Project phase 2 — Exercises in Java and PostScript programming — as-
signed Sunday 14 September, due Thursday 25 September

Reading assignment

Read Chapters 1 through 5 of The Java Programming Language, Third Edition.

Read the following parts of the PostScript Language Reference Manual, Second Edition:

� all of Chapter 1

� all of Chapter 2

� from Chapter 3: Sections 3.1 through 3.6

� from Chapter 3: Section 3.7 (may omit 3.7.2, 3.7.4, 3.7.6, 3.7.7)

� from Chapter 3: Section 3.8 (may omit 3.8.4, 3.8.5)

� from Chapter 3: Section 3.11

� from Chapter 8: Section 8.1

2.1 Exercise in Java programming

Task in brief: Revise the code from your project Phase 0 to comply with more stringent specifications on input
and output. Extend the code so that certain additional commands are recognized.

Input specification:

The calculator accepts commands from the standard input. Each command is a complete line of text.

The following commands need to be recognized (we give their operational semantics in terms of what they pop off
the stack and what they push back onto the stack):

� control commands

– quit: immediately quits the calculator (this is new!)

� stack manipulation commands

– exch: pop y, pop x, push y, push x

– ε (an empty string as command, also known as “just hitting return”): pop x, push x, push x; this is like
the dup operator in PostScript (this is new!)

� numbers: push a number

– both integer and floating-point numbers (including floating-point numbers with exponents) must be
accepted, but all numbers are internally stored and displayed as floating-point numbers (Java type
double)

� binary arithmetic operators

– +: pop y, pop x, push x
�

y

– -: pop y, pop x, push x � y

– *: pop y, pop x, push xy

CS 351 Design of Large Programs, Fall 2003 2

– /: pop y, pop x, push x
y

– ˆ: pop y, pop x, push xy

� unary mathematical functions

– Q: pop x, push � x

– L: pop x, push lnx

– E: pop x, push ex

– S: pop x, push sinx; angle x is accepted in degrees

– C: pop x, push cosx; angle x is accepted in degrees

– T: pop x, push tanx; angle x is accepted in degrees

– IS: pop x, push arcsinx; angle is returned in degrees (this is new!)

– IC: pop x, push arccosx; angle is returned in degrees (this is new!)

� binary mathematical functions

– fT: pop y, pop x, push arctan x
y ; angle is returned in degrees; this two-argument function can be imple-

mented using the Java method Math.atan2 (this is changed from phase 0, to match Emacs Calc
better!)

� fancy geometric functions

– solvetriangle (this is new!):
pop y3, pop x3, pop y2, pop x2, pop y1, pop x1, push α1, push α2, push α3, where the six operands
specify the Cartesian coordinates of the three vertices of a triangle and the results are the three corre-
sponding angles of the triangle (in degrees), as in Figure 1; the behavior of this function is undefined
if the three vertices coincide or are colinear, and you can assume (as part of the specification) that this
case is guaranteed not to happen

(x , y)

(x , y)

(x , y)
1 1

2 2

3 3

α

α1

2

3α

Figure 1: The vertices (inputs) and the angles (outputs) in a solvetriangle command.

Any other input is considered a syntax error, and must be ignored by the calculator: an error message is printed,
but the stack is left intact.

Computation:

If there are not enough operands on the stack for a given operation, the calculator prints "error: stack
underflow" and does not change the stack. Otherwise it performs the indicated computation.

Output specification:

The calculator does not display any kind of prompt.

CS 351 Design of Large Programs, Fall 2003 3

Upon accepting user input and computing the next stack state, the calculator displays the stack as follows: The
string " " is printed first on a separate line. Then each stack element is printed on a separate line,
from the bottom of the stack to the top of the stack. In front of each stack element, its position in the stack is
indicated, counting from the top of the stack, where position 1 corresponds to the top of the stack. In other words,
the entire stack is displayed upside-down, just like in Emacs Calc.

Example:

If the following commands are given in standard input:

1
2
3
4
+
+
+

+
+

S
exch
C
4
*
E
ˆ

0
exch
-
fT
C
IC
S
IS

exch
100
+
exch

3
Q
100
*
+
solvetriangle

CS 351 Design of Large Programs, Fall 2003 4

quit

then the following is printed to standard output:

1: 1.0

2: 1.0
1: 2.0

3: 1.0
2: 2.0
1: 3.0

4: 1.0
3: 2.0
2: 3.0
1: 4.0

3: 1.0
2: 2.0
1: 7.0

2: 1.0
1: 9.0

1: 10.0

2: 10.0
1: 10.0

3: 10.0
2: 10.0
1: 10.0

2: 10.0
1: 20.0

1: 30.0

2: 30.0
1: 30.0

2: 30.0
1: 0.49999999999999994

2: 0.49999999999999994
1: 30.0

2: 0.49999999999999994
1: 0.8660254037844387

CS 351 Design of Large Programs, Fall 2003 5

3: 0.49999999999999994
2: 0.8660254037844387
1: 4.0

2: 0.49999999999999994
1: 3.464101615137755

2: 0.49999999999999994
1: 31.94774550588494

1: 2.414183675246273E-10

2: 2.414183675246273E-10
1: 2.414183675246273E-10

3: 2.414183675246273E-10
2: 2.414183675246273E-10
1: 0.0

3: 2.414183675246273E-10
2: 0.0
1: 2.414183675246273E-10

2: 2.414183675246273E-10
1: -2.414183675246273E-10

1: 135.0

1: -0.7071067811865475

1: 135.0

1: 0.7071067811865476

1: 45.00000000000001

2: 45.00000000000001
1: 45.00000000000001

3: 45.00000000000001
2: 45.00000000000001
1: 45.00000000000001

4: 45.00000000000001
3: 45.00000000000001
2: 45.00000000000001
1: 45.00000000000001

4: 45.00000000000001
3: 45.00000000000001
2: 45.00000000000001

CS 351 Design of Large Programs, Fall 2003 6

1: 45.00000000000001

5: 45.00000000000001
4: 45.00000000000001
3: 45.00000000000001
2: 45.00000000000001
1: 100.0

4: 45.00000000000001
3: 45.00000000000001
2: 45.00000000000001
1: 145.0

4: 45.00000000000001
3: 45.00000000000001
2: 145.0
1: 45.00000000000001

5: 45.00000000000001
4: 45.00000000000001
3: 145.0
2: 45.00000000000001
1: 45.00000000000001

6: 45.00000000000001
5: 45.00000000000001
4: 145.0
3: 45.00000000000001
2: 45.00000000000001
1: 45.00000000000001

7: 45.00000000000001
6: 45.00000000000001
5: 145.0
4: 45.00000000000001
3: 45.00000000000001
2: 45.00000000000001
1: 3.0

7: 45.00000000000001
6: 45.00000000000001
5: 145.0
4: 45.00000000000001
3: 45.00000000000001
2: 45.00000000000001
1: 1.7320508075688772

8: 45.00000000000001
7: 45.00000000000001
6: 145.0
5: 45.00000000000001

CS 351 Design of Large Programs, Fall 2003 7

4: 45.00000000000001
3: 45.00000000000001
2: 1.7320508075688772
1: 100.0

7: 45.00000000000001
6: 45.00000000000001
5: 145.0
4: 45.00000000000001
3: 45.00000000000001
2: 45.00000000000001
1: 173.20508075688772

6: 45.00000000000001
5: 45.00000000000001
4: 145.0
3: 45.00000000000001
2: 45.00000000000001
1: 218.20508075688772

3: 90.0
2: 60.00000000000001
1: 29.999999999999993

Both files are provided to you.

Benchmark: A compiled Java program, Calc.class, is provided to you as a benchmark. This program per-
forms according to the specification above (to the best of our knowledge). Your calculator program should work
exactly the same.

For instance, executing:

java Calc <example.in >example.out

is how we produced the file example.out, and executing

java YourCalcProgram <example.in >example.out

must result in an identical example.out file. (Use diff to check this.)

Testing: It is very important to test your code. Provide extensive tests. Test cases should be designed carefully to
cover all control-flow paths in your code. (The supplied example.in tests a few features, but is far from being
exhaustive.) Provide the results of running your test cases in your README file.

Discussion: The goal of this exercise is to practice code extension and revision. If you were to write the program
from phase 0 again, would you do it differently? Was your design easy to revise and extend? Write about this in
your README file.

Effort: We estimate code size to be about 350 lines of Java, and about an hour of programming beyond Phase 0.

CS 351 Design of Large Programs, Fall 2003 8

2.2 Exercise in PostScript programming

Write a PostScript program that reverses the order of the characters in a text file.

Supposing that the program is in a file reverse.ps, it should be invoked like this:

gs reverse.ps <infile.txt 2>outfile.txt

For reference, you are given an example pair of files infile.txt and outfile.txt.

Explain why we have 2 in the command above.

Note that executing the program above should have roughly the same effect as the Unix command

cat infile.txt | rev | tac >outfile.txt

but it is OK if there is a discrepancy for newline characters at the end of the file.

In the interest of good programming style (see PostScript Language Tutorial and Cookbook and PostScript Lan-
guage Program Design), strive to use the operand stack efficiently and to avoid using def to mimic local variables.

Effort: This can be done in less than 20 lines of PostScript by taking advantage of the PostScript execution model;
or in no more than 80 lines otherwise.

CS 351 Design of Large Programs, Fall 2003 9

2.3 Exercise in PostScript programming

Write a PostScript program that behaves similar to the Java program in section 2.1.

In other words, supposing that your PostScript program is in a file calc.ps, executing

gs calc.ps <example.in 2>example.out

has nearly the same effect as executing

java Calc <example.in >example.out

The difference is that the PostScript version does not need to be able to recognize floating-point numbers in the
input. (Notice that the supplied example file, example.in, does not use floating-point numbers.) All integers in
the input should still be converted internally to floating-point numbers, i.e. PostScript real numbers.

Because of differences in the accuracy of floating-point arithmetic built into Java and into PostScript, it is OK if
the two calculators compute slightly different results (for instance, 29.999999999999993 vs. 30.0).

In the interest of good programming style (see PostScript Language Tutorial and Cookbook and PostScript Lan-
guage Program Design), strive to use the operand stack efficiently and to avoid using def to mimic local variables.

Effort: This can be done in about 650 lines of PostScript. Count on spending at least a full day of programming
beyond the Java version, because you must rewrite a moderate-size program at a rather low level of abstraction. It is
very difficult to debug PostScript code, so you must instead think ahead and write procedures using the techniques
of preconditions, postconditions, and loop invariants (which you learned about in CS251) so that you are sure of
their correctness.

CS 351 Design of Large Programs, Fall 2003 10

How to turn in

Turn in your code by running

˜barrick/handin your-file

on a regular UNM CS machine.

You should use whatever filename is appropriate in place of your-file. You can put multiple files on the command
line, or even directories. Directories will have their entire contents handed in, so please be sure to clean out any
cruft.

