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Copyright (© 1990, 1991 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided also that the section entitled “GNU General Public License” is
included exactly as in the original, and provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that the section entitled “GNU General
Public License” may be included in a translation approved by the author instead of in the original
English.
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GNU GENERAL PUBLIC LICENSE

Version 1, February 1989

Copyright (©) 1989 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The license agreements of most software companies try to keep users at the mercy of those
companies. By contrast, our General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. The General Public
License applies to the Free Software Foundation’s software and to any other program whose authors
commit to using it. You can use it for your programs, too.

When we speak of free software, we are referring to freedom, not price. Specifically, the General
Public License is designed to make sure that you have the freedom to give away or sell copies of
free software, that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you
if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of a such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or can
get the source code. And you must tell them their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors’ reputations.

The precise terms and conditions for copying, distribution and modification follow.
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TERMS AND CONDITIONS

1.

2.

3.

4.

This License Agreement applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General Public
License. The “Program”, below, refers to any such program or work, and a “work based on
the Program” means either the Program or any work containing the Program or a portion of
it, either verbatim or with modifications. Each licensee is addressed as “you”.

You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this General Public License and to the absence of any warranty; and give any other
recipients of the Program a copy of this General Public License along with the Program. You
may charge a fee for the physical act of transferring a copy.

You may modify your copy or copies of the Program or any portion of it, and copy and
distribute such modifications under the terms of Paragraph 1 above, provided that you also
do the following;:

e cause the modified files to carry prominent notices stating that you changed the files and
the date of any change; and

e cause the whole of any work that you distribute or publish, that in whole or in part
contains the Program or any part thereof, either with or without modifications, to be
licensed at no charge to all third parties under the terms of this General Public License
(except that you may choose to grant warranty protection to some or all third parties, at
your option).

e [f the modified program normally reads commands interactively when run, you must cause
it, when started running for such interactive use in the simplest and most usual way, to
print or display an announcement including an appropriate copyright notice and a notice
that there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy
of this General Public License.

e You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

Mere aggregation of another independent work with the Program (or its derivative) on a volume
of a storage or distribution medium does not bring the other work under the scope of these
terms.

You may copy and distribute the Program (or a portion or derivative of it, under Paragraph
2) in object code or executable form under the terms of Paragraphs 1 and 2 above provided
that you also do one of the following:

e accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Paragraphs 1 and 2 above; or,

e accompany it with a written offer, valid for at least three years, to give any third party
free (except for a nominal charge for the cost of distribution) a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Paragraphs 1
and 2 above; or,
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10.

e accompany it with the information you received as to where the corresponding source code
may be obtained. (This alternative is allowed only for noncommercial distribution and
only if you received the program in object code or executable form alone.)

Source code for a work means the preferred form of the work for making modifications to
it. For an executable file, complete source code means all the source code for all modules it
contains; but, as a special exception, it need not include source code for modules which are
standard libraries that accompany the operating system on which the executable file runs, or
for standard header files or definitions files that accompany that operating system.

You may not copy, modify, sublicense, distribute or transfer the Program except as expressly
provided under this General Public License. Any attempt otherwise to copy, modify, sublicense,
distribute or transfer the Program is void, and will automatically terminate your rights to use
the Program under this License. However, parties who have received copies, or rights to use
copies, from you under this General Public License will not have their licenses terminated so
long as such parties remain in full compliance.

By copying, distributing or modifying the Program (or any work based on the Program) you
indicate your acceptance of this license to do so, and all its terms and conditions.

Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein.

The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of the license which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published by
the Free Software Foundation. If the Program does not specify a version number of the license,
you may choose any version ever published by the Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WAR-
RANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
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DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-
SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES
OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.
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1 Getting Started

This chapter provides a general overview of Calc, the GNU Emacs Calculator: What it is, how to
start it and how to exit from it, and what are the various ways that it can be used.

1.1 What is Calc?

Calc is an advanced calculator and mathematical tool that runs as part of the GNU Emacs envi-
ronment. Very roughly based on the HP-28/48 series of calculators, its many features include:

Choice of algebraic or RPN (stack-based) entry of calculations.
Arbitrary precision integers and floating-point numbers.

Arithmetic on rational numbers, complex numbers (rectangular and polar), error forms with
standard deviations, open and closed intervals, vectors and matrices, dates and times, infinities,
sets, quantities with units, and algebraic formulas.

Mathematical operations such as logarithms and trigonometric functions.

Programmer’s features (bitwise operations, non-decimal numbers).

Financial functions such as future value and internal rate of return.

Number theoretical features such as prime factorization and arithmetic modulo M for any M.
Algebraic manipulation features, including symbolic calculus.

Moving data to and from regular editing buffers.

“Embedded mode” for manipulating Calc formulas and data directly inside any editing buffer.
Graphics using GNUPLOT, a versatile (and free) plotting program.

Easy programming using keyboard macros, algebraic formulas, algebraic rewrite rules, or
extended Emacs Lisp.

Calc tries to include a little something for everyone; as a result it is large and might be in-

timidating to the first-time user. If you plan to use Calc only as a traditional desk calculator,
all you really need to read is the “Getting Started” chapter of this manual and possibly the first
few sections of the tutorial. As you become more comfortable with the program you can learn its
additional features. In terms of efficiency, scope and depth, Calc cannot replace a powerful tool
like Mathematica. But Calc has the advantages of convenience, portability, and availability of the
source code. And, of course, it’s free!
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1.2 About This Manual

This document serves as a complete description of the GNU Emacs Calculator. It works both as
an introduction for novices, and as a reference for experienced users. While it helps to have some
experience with GNU Emacs in order to get the most out of Calc, this manual ought to be readable
even if you don’t know or use Emacs regularly.

The manual is divided into three major parts: the “Getting Started” chapter you are reading
now, the Calc tutorial (chapter 2), and the Calc reference manual (the remaining chapters and
appendices).

If you are in a hurry to use Calc, there is a brief “demonstration” below which illustrates the
major features of Calc in just a couple of pages. If you don’t have time to go through the full

tutorial, this will show you everything you need to know to begin. See XXX [Demonstration of
Calc], page XXX.

The tutorial chapter walks you through the various parts of Calc with lots of hands-on examples
and explanations. If you are new to Calc and you have some time, try going through at least the
beginning of the tutorial. The tutorial includes about 70 exercises with answers. These exercises
give you some guided practice with Calc, as well as pointing out some interesting and unusual ways
to use its features.

The reference section discusses Calc in complete depth. You can read the reference from start
to finish if you want to learn every aspect of Calc. Or, you can look in the table of contents or the
Concept Index to find the parts of the manual that discuss the things you need to know.

Every Calc keyboard command is listed in the Calc Summary, and also in the Key Index.
Algebraic functions, M-x commands, and variables also have their own indices. Each paragraph
that is referenced in the Key or Function Index is marked in the margin with its index entry.

You can access this manual on-line at any time within Calc by pressing the h i key sequence.
Outside of the Calc window, you can press M-# i to read the manual on-line. Also, you can jump
directly to the Tutorial by pressing h t or M-# t, or to the Summary by pressing h s or M-# s.
Within Calc, you can also go to the part of the manual describing any Calc key, function, or
variable using h k, h f, or h v, respectively. See XXX [Help Commands]|, page XXX.

Printed copies of this manual are also available from the Free Software Foundation.

1.3 Notations Used in This Manual

This section describes the various notations that are used throughout the Calc manual.

In keystroke sequences, uppercase letters mean you must hold down the shift key while typing
the letter. Keys pressed with Control held down are shown as C-x. Keys pressed with Meta held
down are shown as M-x. Other notations are RET for the Return key, SPC for the space bar, TAB for
the Tab key, DEL for the Delete key, and LFD for the Line-Feed key.

(If you don’t have the LFD or TAB keys on your keyboard, the C-j and C-i keys are equivalent
to them, respectively. If you don’t have a Meta key, look for Alt or Extend Char. You can also
press ESC or C-[ first to get the same effect, so that M-x, ESC x, and C-[ x are all equivalent.)

Sometimes the RET key is not shown when it is “obvious” that you must press RET to proceed.
For example, the RET is usually omitted in key sequences like M-x calc-keypad RET.
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Commands are generally shown like this: p (calc-precision) or M-# k (calc-keypad). This
means that the command is normally used by pressing the p key or M-# k key sequence, but it also
has the full-name equivalent shown, e.g., M-x calc-precision.

Commands that correspond to functions in algebraic notation are written: C (calc-cos) [cos].
This means the C key is equivalent to M-x calc-cos, and that the corresponding function in an
algebraic-style formula would be ‘cos(x)’.

A few commands don’t have key equivalents: calc-sincos [sincos].

1.4 A Demonstration of Calc

This section will show some typical small problems being solved with Calc. The focus is more on
demonstration than explanation, but everything you see here will be covered more thoroughly in
the Tutorial.

To begin, start Emacs if necessary (usually the command emacs does this), and type M-# c (or
ESC # c) to start the Calculator. (See XXX [Starting Calc|, page XXX, if this doesn’t work for
you.)

Be sure to type all the sample input exactly, especially noting the difference between lower-case
and upper-case letters. Remember, RET, TAB, DEL, and SPC are the Return, Tab, Delete, and Space
keys.

RPN calculation. In RPN, you type the input number(s) first, then the command to operate
on the numbers.

Type 2 RET 3 + @ to compute /2 + 3 = 2.2360679775.
Type P 2 ~ to compute 72 = 9.86960440109.
Type TAB to exchange the order of these two results.

Type - I HS to subtract these results and compute the Inverse Hyperbolic sine of the difference,
2.72996136574.

Type DEL to erase this result.

Algebraic calculation. You can also enter calculations using conventional “algebraic” notation.
To enter an algebraic formula, use the apostrophe key.

Type ’ sqrt (2+3) RET to compute /2 + 3.
Type ’ pi~2 RET to enter 2. To evaluate this symbolic formula as a number, type =.

Type ’ arcsinh($ - $$) RET to subtract the second-most-recent result from the most-recent and
compute the Inverse Hyperbolic sine.

Keypad mode. If you are using the X window system, press M-# k to get Keypad mode. (If you
don’t use X, skip to the next section.)

Click on the 2, ENTER, 3, +, and SQRT “buttons” using your left mouse button.
Click on PI, 2, and y~x.

Click on INV, then ENTER to swap the two results.

Click on -, INV, HYP, and SIN.

Click on <- to erase the result, then click OFF to turn the Keypad Calculator off.
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Grabbing data. Type M-# x if necessary to exit Calc. Now select the following numbers as an
Emacs region: “Mark” the front of the list by typing control-SPC or control-@ there, then move to
the other end of the list. (Either get this list from the on-line copy of this manual, accessed by
M-# i, or just type these numbers into a scratch file.) Now type M-# g to “grab” these numbers
into Calc.

1.23 1.97
1.6 2
1.19 1.08

The result ‘[1.23, 1.97, 1.6, 2, 1.19, 1.08]’ is a Calc “vector.” Type VR + to compute the
sum of these numbers.

Type U to Undo this command, then type V R * to compute the product of the numbers.

You can also grab data as a rectangular matrix. Place the cursor on the upper-leftmost ‘1’ and set
the mark, then move to just after the lower-right ‘8’ and press M-# r.

Type v t to transpose this 3 X 2 matrix into a 2 x 3 matrix. Type v u to unpack the rows into
two separate vectors. Now type VR + TAB V R + to compute the sums of the two original columns.
(There is also a special grab-and-sum-columns command, M-# :.)

Units conversion. Units are entered algebraically. Type ’ 43 mi/hr RET to enter the quantity
43 miles-per-hour. Type u ¢ km/hr RET. Type u ¢ m/s RET.

Date arithmetic. Type t N to get the current date and time. Type 90 + to find the date 90 days
from now. Type ’ <25 dec 87> RET to enter a date, then - 7 / to see how many weeks have passed
since then.

Algebra. Algebraic entries can also include formulas or equations involving variables. Type
’ [x+ y=a, xy=1] RET to enter a pair of equations involving three variables. (Note the leading
apostrophe in this example; also, note that the space between ‘x y’ is required.) Type a S x,y RET
to solve these equations for the variables z and y.
Type d B to view the solutions in more readable notation. Type d C to view them in C language
notation, and d T to view them in the notation for the TEX typesetting system. Type d N to return
to normal notation.
Type 7.5, then s 1 a RET to let a = 7.5 in these formulas. (That’s a letter 1, not a numeral 1.)
Help functions. You can read about any command in the on-line manual. Type M-# c to return
to Calc after each of these commands: h k t N to read about the t N command, h f sqrt RET to
read about the sqrt function, and h s to read the Calc summary.

Press DEL repeatedly to remove any leftover results from the stack. To exit from Calc, press g
or M-# c again.

1.5 Using Calc

Calc has several user interfaces that are specialized for different kinds of tasks. As well as Calc’s
standard interface, there are Quick Mode, Keypad Mode, and Embedded Mode.

Calc must be installed before it can be used. See XXX [Installation|, page XXX, for instructions
on setting up and installing Calc. We will assume you or someone on your system has already
installed Calc as described there.



Chapter 1: Getting Started 9

1.5.1 Starting Calc

On most systems, you can type M-# to start the Calculator. The notation M-# is short for Meta-#.
On most keyboards this means holding down the Meta (or Alt) and Shift keys while typing 3.

Once again, if you don’t have a Meta key on your keyboard you can type ESC first, then #, to
accomplish the same thing. If you don’t even have an ESC key, you can fake it by holding down
Control or CTRL while typing a left square bracket (that’s C-[ in Emacs notation).

M-#is a prefix key; when you press it, Emacs waits for you to press a second key to complete the
command. In this case, you will follow M-# with a letter (upper- or lower-case, it doesn’t matter
for M-#) that says which Calc interface you want to use.

To get Calc’s standard interface, type M-# c. To get Keypad Mode, type M-# k. Type M-# ? to
get a brief list of the available options, and type a second ? to get a complete list.

To ease typing, M-# M-# (or M-# # if that’s easier) also works to start Calc. It starts the same
interface (either M-# c or M-# k) that you last used, selecting the M-# c¢ interface by default. (If
your installation has a special function key set up to act like M-#, hitting that function key twice
is just like hitting M-# M-#.)

If M-# doesn’t work for you, you can always type explicit commands like M-x calc (for the
standard user interface) or M-x calc-keypad (for Keypad Mode). First type M-x (that’s Meta with
the letter x), then, at the prompt, type the full command (like calc-keypad) and press Return.

If you type M-x calc and Emacs still doesn’t recognize the command (it will say ‘[No match]’
when you try to press RET), then Calc has not been properly installed.

The same commands (like M-# ¢ or M-# M-#) that start the Calculator also turn it off if it is
already on.

1.5.2 The Standard Calc Interface

Calc’s standard interface acts like a traditional RPN calculator, operated by the normal Emacs
keyboard. When you type M-# c to start the Calculator, the Emacs screen splits into two windows
with the file you were editing on top and Calc on the bottom.

--x*-Emacs: myfile (Fundamental)----Al1l----—————————————————o
—-- Emacs Calculator Mode —--- |Emacs Calc Mode v2.00...
2: 17.3 [ 17.3
1: -5 | 3

I 2

I 4

| =8

| ->-5

I
--%%-Calc: 12 Deg (Calculator)----A11----- -- %h-Emacs: *Calc Trailx

In this figure, the mode-line for ‘myfile’ has moved up and the “Calculator” window has
appeared below it. As you can see, Calc actually makes two windows side-by-side. The lefthand
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one is called the stack window and the righthand one is called the trail window. The stack holds
the numbers involved in the calculation you are currently performing. The trail holds a complete
record of all calculations you have done. In a desk calculator with a printer, the trail corresponds
to the paper tape that records what you do.

In this case, the trail shows that four numbers (17.3, 3, 2, and 4) were first entered into the
Calculator, then the 2 and 4 were multiplied to get 8, then the 3 and 8 were subtracted to get
—5. (The ‘>’ symbol shows that this was the most recent calculation.) The net result is the two
numbers 17.3 and —5 sitting on the stack.

Most Calculator commands deal explicitly with the stack only, but there is a set of commands
that allow you to search back through the trail and retrieve any previous result.

Calc commands use the digits, letters, and punctuation keys. Shifted (i.e., upper-case) letters
are different from lowercase letters. Some letters are prefix keys that begin two-letter commands.
For example, e means “enter exponent” and shifted E means e®. With the d (“display modes”)
prefix the letter “e” takes on very different meanings: d e means “engineering notation” and d E
means “eqn language mode.”

There is nothing stopping you from switching out of the Calc window and back into your editing
window, say by using the Emacs C-x o (other-window) command. When the cursor is inside a
regular window, Emacs acts just like normal. When the cursor is in the Calc stack or trail windows,
keys are interpreted as Calc commands.

When you quit by pressing M-# c a second time, the Calculator windows go away but the actual
Stack and Trail are not gone, just hidden. When you press M-# c once again you will get the same
stack and trail contents you had when you last used the Calculator.

The Calculator does not remember its state between Emacs sessions. Thus if you quit Emacs
and start it again, M-# ¢ will give you a fresh stack and trail. There is a command (m m) that lets
you save your favorite mode settings between sessions, though. One of the things it saves is which
user interface (standard or Keypad) you last used; otherwise, a freshly started Emacs will always
treat M-# M-# the same as M-# c.

The q key is another equivalent way to turn the Calculator off.

If you type M-# b first and then M-# c, you get a full-screen version of Calc (full-calc) in
which the stack and trail windows are still side-by-side but are now as tall as the whole Emacs
screen. When you press q or M-# ¢ again to quit, the file you were editing before reappears. The
M-# b key switches back and forth between “big” full-screen mode and the normal partial-screen
mode.

Finally, M-# o (calc-other-window) is like M-# c except that the Calc window is not selected.
The buffer you were editing before remains selected instead. M-# o is a handy way to switch out of
Calc momentarily to edit your file; type M-# c to switch back into Calc when you are done.

1.5.3 Quick Mode (Overview)

Quick Mode is a quick way to use Calc when you don’t need the full complexity of the stack and
trail. To use it, type M-# q (quick-calc) in any regular editing buffer.

Quick Mode is very simple: It prompts you to type any formula in standard algebraic notation
(like ‘4 - 2/3’) and then displays the result at the bottom of the Emacs screen (3.33333333333 in
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this case). You are then back in the same editing buffer you were in before, ready to continue
editing or to type M-# g again to do another quick calculation. The result of the calculation will
also be in the Emacs “kill ring” so that a C-y command at this point will yank the result into your
editing buffer.

Calc mode settings affect Quick Mode, too, though you will have to go into regular Calc (with
M-# c) to change the mode settings.

See XXX [Quick Calculator]|, page XXX, for further information.

1.5.4 Keypad Mode (Overview)

Keypad Mode is a mouse-based interface to the Calculator. It is designed for use with the X
window system. If you don’t have X, you will have to operate keypad mode with your arrow keys
(which is probably more trouble than it’s worth). Keypad mode is currently not supported under
Emacs 19.

Type M-# k to turn Keypad Mode on or off. Once again you get two new windows, this time on
the righthand side of the screen instead of at the bottom. The upper window is the familiar Calc
Stack; the lower window is a picture of a typical calculator keypad.

Keypad Mode is much easier for beginners to |--- Emacs Calculator Mode —---
learn, because there is no need to memorize lots of |2: 17.3
obscure key sequences. But not all commands in |1: -5
regular Calc are available on the Keypad. You can | )
always switch the cursor into the Calc stack window |--%%-Calc: 12 Deg (Calcul
to use standard Calc commands if you need. Seri- [--——+-———- Calc 2.00----- +-——-1
ous Calc users, though, often find they prefer the |FLR |CEIL|RND |TRNC|CLN2|FLT |
standard interface over Keypad Mode. R s e e it
To operate the Calculator, just click on the “but- | LN |EXP | |ABS |IDIV|MOD |
tons” of the keypad using your left mouse button. |""+""+""+""+_:"+""|
To enter the two numbers shown here you would :SIN lCOS LTAN LSQRTLY x Li/ x ||

click 1 7. 3 ENTER 5 +/- ENTER; to add them to-

. - <-
gether you would then click + (to get 12.3 on the | ENTER [+/- |EEX |UNDO| l

[ e s et TR S S A |

stack). w7 1 8 | 9 | / |

If you click the right mouse button, the top three |----- fo—— o Fom—— I |
rows of the keypad change to show other setsofcom- | gyp | 4 | 5 | 6 | * |
mands, such as advanced math functions, vector op- |----- - - - = [
erations, and operations on binary numbers. [EXEC| 1 | 2 | 3 | - |

Because Keypad Mode doesn’t use the regular keyblard; Calc leades the tursoi i your briginal
editing buffer. You can type in this buffer in the usudl QES Whif ako clicklirr%lon khetCalculator
keypad. One advantage of Keypad Mode is that you|dont #ieed anitexplicit commiand o switch
between editing and calculating.

If you press M-# b first, you get a full-screen Keypad Mode (full-calc-keypad) with three
windows: The keypad in the lower left, the stack in the lower right, and the trail on top.

See XXX [Keypad Mode], page XXX, for further information.
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1.5.5 Standalone Operation

If you are not in Emacs at the moment but you wish to use Calc, you must start Emacs first. If
all you want is to run Calc, you can give the commands:

emacs -f full-calc
or

emacs -f full-calc-keypad
which run a full-screen Calculator (as if by M-# b M-# c) or a full-screen X-based Calculator (as if
by M-# b M-# k). In standalone operation, quitting the Calculator (by pressing q or clicking on the
keypad EXIT button) quits Emacs itself.

1.5.6 Embedded Mode (Overview)

Embedded Mode is a way to use Calc directly from inside an editing buffer. Suppose you have a
formula written as part of a document like this:

The derivative of
In(In(x))

is
and you wish to have Calc compute and format the derivative for you and store this derivative in
the buffer automatically. To do this with Embedded Mode, first copy the formula down to where

you want the result to be:

The derivative of
1n(1n(x))
is

In(1n(x))

Now, move the cursor onto this new formula and press M-# e. Calc will read the formula (using
the surrounding blank lines to tell how much text to read), then push this formula (invisibly) onto
the Calc stack. The cursor will stay on the formula in the editing buffer, but the buffer’s mode line
will change to look like the Calc mode line (with mode indicators like ‘12 Deg’ and so on). Even
though you are still in your editing buffer, the keyboard now acts like the Calc keyboard, and any
new result you get is copied from the stack back into the buffer. To take the derivative, you would
type a d x RET.

The derivative of
In(1n(x))
is

1/ 1n(x) x
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To make this look nicer, you might want to press d = to center the formula, and even d B to use
“big” display mode.

The derivative of

1In(1n(x))
is
% [calc-mode: justify: center]
% [calc-mode: language: big]
1
In(x) x

Calc has added annotations to the file to help it remember the modes that were used for this
formula. They are formatted like comments in the TEX typesetting language, just in case you are
using TEX. (In this example TEX is not being used, so you might want to move these comments up
to the top of the file or otherwise put them out of the way.)

As an extra flourish, we can add an equation number using a righthand label: Type d } (1)
RET.

% [calc-mode: justify: center]
% [calc-mode: language: big]
% [calc-mode: right-label: " (1)"]

——————— (1)
In(x) x
To leave Embedded Mode, type M-# e again. The mode line and keyboard will revert to the
way they were before. (If you have actually been trying this as you read along, you’ll want to press
M-# 0 [with the digit zero] now to reset the modes you changed.)

The related command M-# w operates on a single word, which generally means a single number,
inside text. It uses any non-numeric characters rather than blank lines to delimit the formula it
reads. Here’s an example of its use:

A slope of one-third corresponds to an angle of 1 degrees.

Place the cursor on the ‘1’, then type M-# w to enable Embedded Mode on that number. Now
type 3 / (to get one-third), and I T (the Inverse Tangent converts a slope into an angle), then
M-# w again to exit Embedded mode.

A slope of one-third corresponds to an angle of 18.4349488229 degrees.

See XXX [Embedded Mode], page XXX, for full details.
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1.5.7 Other M-# Commands

Two more Calc-related commands are M-# g and M-# r, which “grab” data from a selected region
of a buffer into the Calculator. The region is defined in the usual Emacs way, by a “mark” placed
at one end of the region, and the Emacs cursor or “point” placed at the other.

The M-# g command reads the region in the usual left-to-right, top-to-bottom order. The result
is packaged into a Calc vector of numbers and placed on the stack. Calc (in its standard user
interface) is then started. Type v u if you want to unpack this vector into separate numbers on the
stack. Also, C-u M-# g interprets the region as a single number or formula.

The M-# r command reads a rectangle, with the point and mark defining opposite corners of
the rectangle. The result is a matrix of numbers on the Calculator stack.

Complementary to these is M-# y, which “yanks” the value at the top of the Calc stack back
into an editing buffer. If you type M-# y while in such a buffer, the value is yanked at the current
position. If you type M-# y while in the Calc buffer, Calc makes an educated guess as to which
editing buffer you want to use. The Calc window does not have to be visible in order to use this
command, as long as there is something on the Calc stack.

Here, for reference, is the complete list of M-# commands. The shift, control, and meta keys are
ignored for the keystroke following M-#.

Commands for turning Calc on and off:
# Turn Calc on or off, employing the same user interface as last time.

c Turn Calc on or off using its standard bottom-of-the-screen interface. If Calc is already
turned on but the cursor is not in the Calc window, move the cursor into the window.

0 Same as C, but don’t select the new Calc window. If Calc is already turned on and the
cursor is in the Calc window, move it out of that window.

B Control whether M-# ¢ and M-# k use the full screen.

Q Use Quick Mode for a single short calculation.

K Turn Calc Keypad mode on or off.

E Turn Calc Embedded mode on or off at the current formula.

J Turn Calc Embedded mode on or off, select the interesting part.

W Turn Calc Embedded mode on or off at the current word (number).

Z Turn Calc on in a user-defined way, as defined by a Z I command.

X Quit Calc; turn off standard, Keypad, or Embedded mode if on. (This is like g or OFF

inside of Calc.)
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Commands for moving data into and out of the Calculator:

G

R

Grab the region into the Calculator as a vector.

Grab the rectangular region into the Calculator as a matrix.

Grab the rectangular region and compute the sums of its columns.
Grab the rectangular region and compute the sums of its rows.

Yank a value from the Calculator into the current editing buffer.

Commands for use with Embedded Mode:

A

4 bl

“Activate” the current buffer. Locate all formulas that contain ‘:=" or ‘=>’ symbols
and record their locations so that they can be updated automatically as variables are

changed.
Duplicate the current formula immediately below and select the duplicate.
Insert a new formula at the current point.

Move the cursor to the next active formula in the buffer.

Move the cursor to the previous active formula in the buffer.
Update (i-e., as if by the = key) the formula at the current point.

Edit (as if by calc-edit) the formula at the current point.
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Miscellaneous commands:

I Run the Emacs Info system to read the Calc manual. (This is the same as h i inside
of Calc.)

T Run the Emacs Info system to read the Calc Tutorial.

S Run the Emacs Info system to read the Calc Summary.

L Load Calc entirely into memory. (Normally the various parts are loaded only as they

are needed.)

M Read a region of written keystroke names (like ‘C-n a b ¢ RET’) and record them as the
current keyboard macro.

0 (This is the “zero” digit key.) Reset the Calculator to its default state: Empty stack,
and default mode settings. With any prefix argument, reset everything but the stack.

1.6 History and Acknowledgements

Calc was originally started as a two-week project to occupy a lull in the author’s schedule. Basically,
a friend asked if I remembered the value of 232. I didn’t offhand, but I said, “that’s easy, just call
up an xcalc.” Xcalc duly reported that the answer to our question was ‘4.294967e+09—with no
way to see the full ten digits even though we knew they were there in the program’s memory! I
was so annoyed, I vowed to write a calculator of my own, once and for all.

I chose Emacs Lisp, a) because I had always been curious about it and b) because, being only
a text editor extension language after all, Emacs Lisp would surely reach its limits long before the
project got too far out of hand.

To make a long story short, Emacs Lisp turned out to be a distressingly solid implementation
of Lisp, and the humble task of calculating turned out to be more open-ended than one might have
expected.

Emacs Lisp doesn’t have built-in floating point math, so it had to be simulated in software.
In fact, Emacs integers will only comfortably fit six decimal digits or so—not enough for a decent
calculator. So I had to write my own high-precision integer code as well, and once I had this I
figured that arbitrary-size integers were just as easy as large integers. Arbitrary floating-point
precision was the logical next step. Also, since the large integer arithmetic was there anyway it
seemed only fair to give the user direct access to it, which in turn made it practical to support
fractions as well as floats. All these features inspired me to look around for other data types that
might be worth having.

Around this time, my friend Rick Koshi showed me his nifty new HP-28 calculator. It allowed
the user to manipulate formulas as well as numerical quantities, and it could also operate on
matrices. I decided that these would be good for Calc to have, too. And once things had gone this
far, I figured I might as well take a look at serious algebra systems like Mathematica, Macsyma,
and Maple for further ideas. Since these systems did far more than I could ever hope to implement,
I decided to focus on rewrite rules and other programming features so that users could implement
what they needed for themselves.
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Rick complained that matrices were hard to read, so I put in code to format them in a 2D style.
Once these routines were in place, Big mode was obligatory. Gee, what other language modes
would be useful?

Scott Hemphill and Allen Knutson, two friends with a strong mathematical bent, contributed
ideas and algorithms for a number of Calc features including modulo forms, primality testing, and
float-to-fraction conversion.

Units were added at the eager insistence of Mass Sivilotti. Later, Ulrich Mueller at CERN and
Przemek Klosowski at NIST provided invaluable expert assistance with the units table. As far as I
can remember, the idea of using algebraic formulas and variables to represent units dates back to
an ancient article in Byte magazine about muMath, an early algebra system for microcomputers.

Many people have contributed to Calc by reporting bugs and suggesting features, large and small.
A few deserve special mention: Tim Peters, who helped develop the ideas that led to the selection
commands, rewrite rules, and many other algebra features; Francois Pinard, who contributed an
early prototype of the Calc Summary appendix as well as providing valuable suggestions in many
other areas of Calc; Carl Witty, whose eagle eyes discovered many typographical and factual errors
in the Calc manual; Tim Kay, who drove the development of Embedded mode; Ove Ewerlid, who
made many suggestions relating to the algebra commands and contributed some code for polynomial
operations; Randal Schwartz, who suggested the calc-eval function; Robert J. Chassell, who
suggested the Calc Tutorial and exercises; and Juha Sarlin, who first worked out how to split Calc
into quickly-loading parts. Bob Weiner helped immensely with the Lucid Emacs port.

Among the books used in the development of Calc were Knuth’s Art of Computer Programming
(especially volume II, Seminumerical Algorithms); Numerical Recipes by Press, Flannery, Teukol-
sky, and Vetterling; Bevington’s Data Reduction and Error Analysis for the Physical Sciences;
Concrete Mathematics by Graham, Knuth, and Patashnik; Steele’s Common Lisp, the Language;
the CRC Standard Math Tables (William H. Beyer, ed.); and Abramowitz and Stegun’s venerable
Handbook of Mathematical Functions. 1 consulted the user’s manuals for the HP-28 and HP-48
calculators, as well as for the programs Mathematica, SMP, Macsyma, Maple, MathCAD, Gnuplot,
and others. Also, of course, Calc could not have been written without the excellent GNU Emacs
Lisp Reference Manual, by Bil Lewis and Dan LaLiberte.

Final thanks go to Richard Stallman, without whose fine implementations of the Emacs editor,
language, and environment, Calc would have been finished in two weeks.
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2 Tutorial

This chapter explains how to use Calc and its many features, in a step-by-step, tutorial way. You
are encouraged to run Calc and work along with the examples as you read (see XXX [Starting
Calc], page XXX). If you are already familiar with advanced calculators, you may wish to skip on
to the rest of this manual.

This tutorial describes the standard user interface of Calc only. The “Quick Mode” and “Key-
pad Mode” interfaces are fairly self-explanatory. See XXX [Embedded Mode], page XXX, for a
description of the “Embedded Mode” interface.

The easiest way to read this tutorial on-line is to have two windows on your Emacs screen, one
with Calc and one with the Info system. (If you have a printed copy of the manual you can use
that instead.) Press M-# ¢ to turn Calc on or to switch into the Calc window, and press M-# i to
start the Info system or to switch into its window.

This tutorial is designed to be done in sequence. But the rest of this manual does not assume
you have gone through the tutorial. The tutorial does not cover everything in the Calculator, but
it touches on most general areas.

The Calc Summary at the end of the reference manual includes some blank space for your own
use. You may wish to keep notes there as you learn Calc.

2.1 Basic Tutorial

In this section, we learn how RPN and algebraic-style calculations work, how to undo and redo an
operation done by mistake, and how to control various modes of the Calculator.

2.1.1 RPN Calculations and the Stack

Calc normally uses RPN notation. You may be familiar with the RPN system from Hewlett-
Packard calculators, FORTH, or PostScript. (Reverse Polish Notation, RPN, is named after the
Polish mathematician Jan Lukasiewicz.)

The central component of an RPN calculator is the stack. A calculator stack is like a stack of
dishes. New dishes (numbers) are added at the top of the stack, and numbers are normally only
removed from the top of the stack.

In an operation like 2 + 3, the 2 and 3 are called the operands and the + is the operator. In
an RPN calculator you always enter the operands first, then the operator. Each time you type a
number, Calc adds or pushes it onto the top of the Stack. When you press an operator key like +,
Calc pops the appropriate number of operands from the stack and pushes back the result.

Thus we could add the numbers 2 and 3 in an RPN calculator by typing: 2 RET 3 RET +. (The
RET key, Return, corresponds to the ENTER key on traditional RPN calculators.) Try this now if
you wish; type M-# c to switch into the Calc window (you can type M-# c again or M-# o to switch
back to the Tutorial window). The first four keystrokes “push” the numbers 2 and 3 onto the stack.
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The + key “pops” the top two numbers from the stack, adds them, and pushes the result (5) back
onto the stack. Here’s how the stack will look at various points throughout the calculation:

1: 2 2: 2 1: b5
1: 3
M-# c 2 RET 3 RET + DEL

The ‘.’ symbol is a marker that represents the top of the stack. Note that the “top” of the
stack is really shown at the bottom of the Stack window. This may seem backwards, but it turns
out to be less distracting in regular use.

The numbers ‘1:’ and ‘2:’ on the left are stack level numbers. Old RPN calculators always had
four stack levels called z, y, z, and t. Calc’s stack can grow as large as you like, so it uses numbers
instead of letters. Some stack-manipulation commands accept a numeric argument that says which
stack level to work on. Normal commands like + always work on the top few levels of the stack.

The Stack buffer is just an Emacs buffer, and you can move around in it using the regular
Emacs motion commands. But no matter where the cursor is, even if you have scrolled the ‘.’
marker out of view, most Calc commands always move the cursor back down to level 1 before doing
anything. It is possible to move the ‘.’ marker upwards through the stack, temporarily “hiding”
some numbers from commands like +. This is called stack truncation and we will not cover it in

this tutorial; see XXX [Truncating the Stack], page XXX, if you are interested.

You don’t really need the second RET in 2 RET 3 RET +. That’s because if you type any operator
name or other non-numeric key when you are entering a number, the Calculator automatically
enters that number and then does the requested command. Thus 2 RET 3 + will work just as well.

Examples in this tutorial will often omit RET even when the stack displays shown would only
happen if you did press RET:

1: 2 2: 2 1: b
1: 3
2 RET 3 +

Here, after pressing 3 the stack would really show ‘1: 2’ with ‘Calc: 3’ in the minibuffer. In these
situations, you can press the optional RET to see the stack as the figure shows.

() Exercise 1. (This tutorial will include exercises at various points. Try them if you wish.
Answers to all the exercises are located at the end of the Tutorial chapter. Each exercise will
include a cross-reference to its particular answer. If you are reading with the Emacs Info system,
press f and the exercise number to go to the answer, then the letter 1 to return to where you were.)

Here’s the first exercise: What will the keystrokes 1 RET 2 RET 3 RET 4 + * - compute? (‘*’ is the
symbol for multiplication.) Figure it out by hand, then try it with Calc to see if you're right. See
XXX [RPN Answer 1], page XXX. (o)

() Exercise 2. Compute (2 x 4) + (7 x 9.4) + 2 using the stack. See XXX [RPN Answer 2],
page XXX. (o)

The DEL key is called Backspace on some keyboards. It is whatever key you would use to correct
a simple typing error when regularly using Emacs. The DEL key pops and throws away the top
value on the stack. (You can still get that value back from the Trail if you should need it later
on.) There are many places in this tutorial where we assume you have used DEL to erase the results



Chapter 2: Tutorial

of the previous example at the beginning of a new example. In the few places where it is really
important to use DEL to clear away old results, the text will remind you to do so.

(It won’t hurt to let things accumulate on the stack, except that whenever you give a display-
mode-changing command Calc will have to spend a long time reformatting such a large stack.)

Since the - key is also an operator (it subtracts the top two stack elements), how does one enter
a negative number? Calc uses the _ (underscore) key to act like the minus sign in a number. So,
typing -5 RET won’t work because the - key will try to do a subtraction, but _5 RET works just
fine.

You can also press n, which means “change sign.” It changes the number at the top of the stack
(or the number being entered) from positive to negative or vice-versa: 5 n RET.

If you press RET when you’re not entering a number, the effect is to duplicate the top number
on the stack. Consider this calculation:

1: 3 2: 3 1: 9 2: 9 1: 81
1: 3 . 1: 9
3 RET RET * RET *

(Of course, an easier way to do this would be 3 RET 4 ~, to raise 3 to the fourth power.)
The space-bar key (denoted SPC here) performs the same function as RET; you could replace all
three occurrences of RET in the above example with SPC and the effect would be the same.

Another stack manipulation key is TAB. This exchanges the top two stack entries. Suppose you
have computed 2 RET 3 + to get 5, and then you realize what you really wanted to compute was
20/(2 + 3).

1: 5 2: b 2: 20 1: 4
1: 20 1: 5
2 RET 3 + 20 TAB /
Planning ahead, the calculation would have gone like this:
1: 20 2: 20 3: 20 2: 20 1: 4
1 2 2: 2 1: 5
1: 3
20 RET 2 RET 3 + /

A related stack command is M-TAB (hold META and type TAB). It rotates the top three elements
of the stack upward, bringing the object in level 3 to the top.

1: 10 2: 10 3: 10 3: 20 3: 30
1: 20 2: 20 2: 30 2: 10
1: 30 1: 10 1: 20

10 RET 20 RET 30 RET M-TAB M-TAB
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() Exercise 3. Suppose the numbers 10, 20, and 30 are on the stack. Figure out how to add
one to the number in level 2 without affecting the rest of the stack. Also figure out how to add one
to the number in level 3. See XXX [RPN Answer 3|, page XXX. (o)

Operations like +, =, *, /, and ~ pop two arguments from the stack and push a result. Operations
like n and @ (square root) pop a single number and push the result. You can think of them as
simply operating on the top element of the stack.

1: 3 1: 9 2: 9 1: 25 1: b5
1: 16
3 RET RET x* 4 RET RET * + Q

(Note that capital @ means to hold down the Shift key while typing q. Remember, plain unshifted
q is the Quit command.)

Here we've used the Pythagorean Theorem to determine the hypotenuse of a right triangle.
Calc actually has a built-in command for that called £ h, but let’s suppose we can’t remember the
necessary keystrokes. We can still enter it by its full name using M-x notation:

1: 3 2: 3 1: b
1: 4
3 RET 4 RET M-x calc-hypot

All Calculator commands begin with the word ‘calc-’. Since it gets tiring to type this, Calc
provides an x key which is just like the regular Emacs M-x key except that it types the ‘calc-’
prefix for you:

1: 3 2: 3 1: 5
1: 4
3 RET 4 RET x hypot
What happens if you take the square root of a negative number?
1: 4 1: -4 1: (0, 2)
4 RET n Q

The notation (a, b) represents a complex number. Complex numbers are more traditionally written
a + bi; Calc can display in this format, too, but for now we’ll stick to the (a, b) notation.

If you don’t know how complex numbers work, you can safely ignore this feature. Complex
numbers only arise from operations that would be errors in a calculator that didn’t have complex
numbers. (For example, taking the square root or logarithm of a negative number produces a
complex result.)

Complex numbers are entered in the notation shown. The ( and , and ) keys manipulate
“incomplete complex numbers.”
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1: (... 2: (... 1: (2, ... 1: (2, ... 1: (2, 3)
1: 2 3
( 2 s 3 )

You can perform calculations while entering parts of incomplete objects. However, an incomplete
object cannot actually participate in a calculation:

1: (... 2: (... 3: (... 1: (... 1: (...
1: 2 2: 2
1 3
(error)
2 RET 3 + +

Adding 5 to an incomplete object makes no sense, so the last command produces an error message
and leaves the stack the same.

Incomplete objects can’t participate in arithmetic, but they can be moved around by the regular
stack commands.

2: 2 3: 2 3: 3 1: ( 1: (2, 3)
1: 3 2: 3 2: (. 2

1: ( 1: 2 3
2 RET 3 RET ( M-TAB M-TAB )

Note that the , (comma) key did not have to be used here. When you press ) all the stack entries
between the incomplete entry and the top are collected, so there’s never really a reason to use the
comma. It’s up to you.

(e) Exercise 4. To enter the complex number (2, 3), your friend Joe typed ( 2 , SPC 3 ). What
happened? (Joe thought of a clever way to correct his mistake in only two keystrokes, but it didn’t
quite work. Try it to find out why.) See XXX [RPN Answer 4], page XXX. (o)

Vectors are entered the same way as complex numbers, but with square brackets in place of
parentheses. We’ll meet vectors again later in the tutorial.

Any Emacs command can be given a numeric prefix argument by typing a series of META-digits
beforehand. If META is awkward for you, you can instead type C-u followed by the necessary digits.
Numeric prefix arguments can be negative, as in M-- M-3 M-5 or C-u - 3 5. Calc commands use
numeric prefix arguments in a variety of ways. For example, a numeric prefix on the + operator
adds any number of stack entries at once:

1: 10 2: 10 3: 10 3: 10 1: 60
1: 20 2: 20 2: 20
1: 30 1: 30

10 RET 20 RET 30 RET C-u 3 +

For stack manipulation commands like RET, a positive numeric prefix argument operates on
the top n stack entries at once. A negative argument operates on the entry in level n only. An
argument of zero operates on the entire stack. In this example, we copy the second-to-top element
of the stack:
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1 10 2: 10 3: 10 3: 10 4: 10
1: 20 2: 20 2: 20 3: 20

1: 30 1: 30 2: 30

1: 20

10 RET 20 RET 30 RET C-u -2 RET

Another common idiom is M-0 DEL, which clears the stack. (The M-0 numeric prefix tells DEL
to operate on the entire stack.)

2.1.2 Algebraic-Style Calculations

If you are not used to RPN notation, you may prefer to operate the Calculator in “algebraic mode,”
which is closer to the way non-RPN calculators work. In algebraic mode, you enter formulas in
traditional 2 + 3 notation.

You don’t really need any special “mode” to enter algebraic formulas. You can enter a formula
at any time by pressing the apostrophe (?) key. Answer the prompt with the desired formula, then
press RET. The formula is evaluated and the result is pushed onto the RPN stack. If you don’t
want to think in RPN at all, you can enter your whole computation as a formula, read the result
from the stack, then press DEL to delete it from the stack.

Try pressing the apostrophe key, then 2+3+4, then RET. The result should be the number 9.

Algebraic formulas use the operators ‘+’, ‘=, ‘¢’ ‘/’ and ‘~’. You can use parentheses to make
the order of evaluation clear. In the absence of parentheses, ‘~’ is evaluated first, then ‘*’, then ‘/’,
then finally ‘+’ and ‘-’. For example, the expression

2 + 3%4x5 / 6%7°8 - 9
is equivalent to
2 + ((3%4x5) / (6%(7°8)) - 9
or, in large mathematical notation,
Ix4xb
2+ 6xT 9
The result of this expression will be the number —6.99999826533.

Calc’s order of evaluation is the same as for most computer languages, except that ‘*’ binds
more strongly than ‘/’, as the above example shows. As in normal mathematical notation, the ‘*’
symbol can often be omitted: ‘2 a’ is the same as ‘2*a’.

Operators at the same level are evaluated from left to right, except that ‘~’ is evaluated from
right to left. Thus, ‘2-3-4’ is equivalent to ‘(2-3)-4’ or —5, whereas ‘27374’ is equivalent to
‘27(374)’ (a very large integer; try it!).

If you tire of typing the apostrophe all the time, there is an “algebraic mode” you can select
in which Calc automatically senses when you are about to type an algebraic expression. To enter
this mode, press the two letters m a. (An ‘Alg’ indicator should appear in the Calc window’s mode
line.)

Press m a, then 2+3+4 with no apostrophe, then RET.
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In algebraic mode, when you press any key that would normally begin entering a number (such
as a digit, a decimal point, or the _ key), or if you press ( or [, Calc automatically begins an
algebraic entry.

Functions which do not have operator symbols like ‘+’ and ‘*’ must be entered in formulas using
function-call notation. For example, the function name corresponding to the square-root key @ is
sqrt. To compute a square root in a formula, you would use the notation ‘sqrt(x)’.

Press the apostrophe, then type sqrt (6%2) - 3. The result should be 0.16227766017.
Note that if the formula begins with a function name, you need to use the apostrophe even if

you are in algebraic mode. If you type arcsin out of the blue, the a r will be taken as an Algebraic
Rewrite command, and the csin will be taken as the name of the rewrite rule to use!

Some people prefer to enter complex numbers and vectors in algebraic form because they find
RPN entry with incomplete objects to be too distracting, even though they otherwise use Calc as
an RPN calculator.

Still in algebraic mode, type:

1: (2, 3) 2: (2, 3) 1: (8, -1) 2: (8, -1) 1: (9, -1)
1: (1, -2) . 1: 1
(2,3) RET (1,-2) RET * 1 RET +

Algebraic mode allows us to enter complex numbers without pressing an apostrophe first, but
it also means we need to press RET after every entry, even for a simple number like 1.

(You can type C-um a to enable a special “incomplete algebraic mode” in which the (and [
keys use algebraic entry even though regular numeric keys still use RPN numeric entry. There is
also a “total algebraic mode,” started by typing m t, in which all normal keys begin algebraic entry.
You must then use the META key to type Calc commands: M-m t to get back out of total algebraic
mode, M-q to quit, etc. Total algebraic mode is not supported under Emacs 19.)

If you're still in algebraic mode, press m a again to turn it off.

Actual non-RPN calculators use a mixture of algebraic and RPN styles. In general, operators of
two numbers (like + and *) use algebraic form, but operators of one number (like n and Q) use RPN
form. Also, a non-RPN calculator allows you to see the intermediate results of a calculation as you
go along. You can accomplish this in Calc by performing your calculation as a series of algebraic
entries, using the $ sign to tie them together. In an algebraic formula, $ represents the number on
the top of the stack. Here, we perform the calculation v/2 x 4 4+ 1, which on a traditional calculator
would be done by pressing 2 * 4 + 1 = and then the square-root key.

1: 8 1: 9 1: 3

? 2x4 RET $+1 RET Q
Notice that we didn’t need to press an apostrophe for the $+1, because the dollar sign always begins
an algebraic entry.

(e) Exercise 1. How could you get the same effect as pressing § but using an algebraic entry
instead? How about if the @ key on your keyboard were broken? See XXX [Algebraic Answer 1],
page XXX. (o)
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The notations $$, $$$, and so on stand for higher stack entries. For example, > $$+$ RET is just
like typing +.

Algebraic formulas can include variables. To store in a variable, press s s, then type the variable
name, then press RET. (There are actually two flavors of store command: s s stores a number in a
variable but also leaves the number on the stack, while s t removes a number from the stack and
stores it in the variable.) A variable name should consist of one or more letters or digits, beginning
with a letter.

1: 17 . 1: a + a"2 1: 306

17 s t a RET ’ a+a”2 RET =
The = key evaluates a formula by replacing all its variables by the values that were stored in them.

For RPN calculations, you can recall a variable’s value on the stack either by entering its name
as a formula and pressing =, or by using the s r command.

1: 17 2: 17 3: 17 2: 17 1: 306
1: 17 2: 17 1: 289
1: 2
s r a RET > a RET = 2 - +

If you press a single digit for a variable name (as in s t 3, you get one of ten quick variables q0
through 9. They are “quick” simply because you don’t have to type the letter q or the RET after
their names. In fact, you can type simply s 3 as a shorthand for s s 3, and likewise for t 3 and
r 3.

Any variables in an algebraic formula for which you have not stored values are left alone, even
when you evaluate the formula.

1: 2a+2bD 1: 34 +2b

? 2a+2b RET =
Calls to function names which are undefined in Calc are also left alone, as are calls for which

the value is undefined.

1: 2 + 1ogl0(0) + loglO(x) + loglO(5, 6) + foo(3)

> 1log10(100) + logl0(0) + loglO(x) + logl0(5,6) + foo(3) RET

In this example, the first call to 1og10 works, but the other calls are not evaluated. In the second
call, the logarithm is undefined for that value of the argument; in the third, the argument is
symbolic, and in the fourth, there are too many arguments. In the fifth case, there is no function
called foo. You will see a “Wrong number of arguments” message referring to ‘1og10(5,6)’. Press
the w (“why”) key to see any other messages that may have arisen from the last calculation. In
this case you will get “logarithm of zero,” then “number expected: x”. Calc automatically displays
the first message only if the message is sufficiently important; for example, Calc considers “wrong
number of arguments” and “logarithm of zero” to be important enough to report automatically,
while a message like “number expected: x” will only show up if you explicitly press the w key.
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(e) Exercise 2. Joe entered the formula ‘2 x y’, stored 5 in x, pressed =, and got the expected
result, ‘10 y’. He then tried the same for the formula ‘2 x (1+y)’, expecting ‘10 (1+y)’, but it
didn’t work. Why not? See XXX [Algebraic Answer 2|, page XXX. (o)

(e) Exercise 3. What result would you expect 1 RET 0 / to give? What if you then type 0 *?
See XXX [Algebraic Answer 3|, page XXX. (o)

One interesting way to work with variables is to use the evaluates-to (‘=>’) operator. It works
like this: Enter a formula algebraically in the usual way, but follow the formula with an ‘=>’ symbol.
(There is also an s = command which builds an ‘=>’ formula using the stack.) On the stack, you
will see two copies of the formula with an ‘=>’ between them. The lefthand formula is exactly like
you typed it; the righthand formula has been evaluated as if by typing =.

2: 2+ 3=>5 2: 2+3=5
1: 2a+2b=>34+20bD 1: 2a+2b=>20+20D
? 243 => RET ’ 2a+2b RET s = 10 s t a RET

Notice that the instant we stored a new value in a, all ‘=>’ operators already on the stack that
referred to a were updated to use the new value. With ‘=>’; you can push a set of formulas on the
stack, then change the variables experimentally to see the effects on the formulas’ values.

You can also “unstore” a variable when you are through with it:

2: 2+ 5 =>05
1: 2a+2b=>2a+2b

s u a RET
We will encounter formulas involving variables and functions again when we discuss the algebra
and calculus features of the Calculator.

2.1.3 Undo and Redo

If you make a mistake, you can usually correct it by pressing shift-U, the “undo” command. First,
clear the stack (M-0 DEL) and exit and restart Calc (M-# M-# M-# M-#) to make sure things start
off with a clean slate. Now:

1: 2 2: 2 1: 8 2: 2 1: 6
1 3 . 1: 3
2 RET 3 - U *

You can undo any number of times. Calc keeps a complete record of all you have done since
you last opened the Calc window. After the above example, you could type:

1: 6 2: 2 1: 2

(error)
U U U U
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You can also type D to “redo” a command that you have undone mistakenly.

1: 2 2: 2 1: 6 1: 6
1 3
(error)
D D D D

It was not possible to redo past the 6, since that was placed there by something other than an undo
command.

b2l

You can think of undo and redo as a sort of “time machine.” Press U to go backward in time,
D to go forward. If you go backward and do something (like *) then, as any science fiction reader
knows, you have changed your future and you cannot go forward again. Thus, the inability to redo
past the 6 even though there was an earlier undo command.

You can always recall an earlier result using the Trail. We’ve ignored the trail so far, but it
has been faithfully recording everything we did since we loaded the Calculator. If the Trail is not
displayed, press t d now to turn it on.

Let’s try grabbing an earlier result. The 8 we computed was undone by a U command, and was
lost even to Redo when we pressed *, but it’s still there in the trail. There should be a little ‘>’
arrow (the trail pointer) resting on the last trail entry. If there isn’t, press t ] to reset the trail
pointer. Now, press t p to move the arrow onto the line containing 8, and press t y to “yank” that
number back onto the stack.

If you press t ] again, you will see that even our Yank command went into the trail.

Let’s go further back in time. Earlier in the tutorial we computed a huge integer using the
formula ‘2~374’. We don’t remember what it was, but the first digits were “241”. Press t r (which
stands for trail-search-reverse), then type 241. The trail cursor will jump back to the next previous
occurrence of the string “241” in the trail. This is just a regular Emacs incremental search; you
can now press C-s or C-r to continue the search forwards or backwards as you like.

To finish the search, press RET. This halts the incremental search and leaves the trail pointer
at the thing we found. Now we can type t y to yank that number onto the stack. If we hadn’t
remembered the “241”, we could simply have searched for 2°3~4, then pressed RET t n to halt and
then move to the next item.

You may have noticed that all the trail-related commands begin with the letter t. (The store-
and-recall commands, on the other hand, all began with s.) Calc has so many commands that
there aren’t enough keys for all of them, so various commands are grouped into two-letter sequences
where the first letter is called the prefix key. If you type a prefix key by accident, you can press
C-g to cancel it. (In fact, you can press C-g to cancel almost anything in Emacs.) To get help on
a prefix key, press that key followed by ?. Some prefixes have several lines of help, so you need to
press ? repeatedly to see them all. This may not work under Lucid Emacs, but you can also type
h h to see all the help at once.

Try pressing t ? now. You will see a line of the form,
trail/time: Display; Fwd, Back; Next, Prev, Here, [, ]; Yank: [MORE] t-
The word “trail” indicates that the t prefix key contains trail-related commands. Each entry on
the line shows one command, with a single capital letter showing which letter you press to get that
command. We have used t n, t p, t 1, and t y so far. The ‘[MORE]’ means you can press ? again
to see more t-prefix comands. Notice that the commands are roughly divided (by semicolons) into
related groups.
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When you are in the help display for a prefix key, the prefix is still active. If you press another
key, like y for example, it will be interpreted as a t y command. If all you wanted was to look at
the help messages, press C-g afterwards to cancel the prefix.

One more way to correct an error is by editing the stack entries. The actual Stack buffer is
marked read-only and must not be edited directly, but you can press ¢ (the backquote or accent
grave) to edit a stack entry.

Try entering ‘3.141439’ now. If this is supposed to represent , it’s got several errors. Press
¢ to edit this number. Now use the normal Emacs cursor motion and editing keys to change the
second 4 to a 5, and to transpose the 3 and the 9. When you press RET, the number on the stack
will be replaced by your new number. This works for formulas, vectors, and all other types of values
you can put on the stack. The ¢ key also works during entry of a number or algebraic formula.

2.1.4 Mode-Setting Commands

Calc has many types of modes that affect the way it interprets your commands or the way it
displays data. We have already seen one mode, namely algebraic mode. There are many others,
too; we’ll try some of the most common ones here.

Perhaps the most fundamental mode in Calc is the current precision. Notice the ‘12’ on the
Calc window’s mode line:

--%%-Calc: 12 Deg (Calculator)----A11------

Most of the symbols there are Emacs things you don’t need to worry about, but the ‘12’ and
the ‘Deg’ are mode indicators. The ‘12’ means that calculations should always be carried to 12
significant figures. That is why, when we type 1 RET 7 /, we get 0.142857142857 with exactly 12
digits, not counting leading and trailing zeros.

You can set the precision to anything you like by pressing p, then entering a suitable number.
Try pressing p 30 RET, then doing 1 RET 7 / again:

1: 0.142857142857
2: 0.142857142857142857142857142857

Although the precision can be set arbitrarily high, Calc always has to have some value for the
current precision. After all, the true value 1/7 is an infinitely repeating decimal; Calc has to stop
somewhere.

Of course, calculations are slower the more digits you request. Press p 12 now to set the precision
back down to the default.

Calculations always use the current precision. For example, even though we have a 30-digit
value for 1/7 on the stack, if we use it in a calculation in 12-digit mode it will be rounded down to
12 digits before it is used. Try it; press RET to duplicate the number, then 1 +. Notice that the RET
key didn’t round the number, because it doesn’t do any calculation. But the instant we pressed +,
the number was rounded down.

1: 0.142857142857
2: 0.142857142857142857142857142857
3: 1.14285714286
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In fact, since we added a digit on the left, we had to lose one digit on the right from even the
12-digit value of 1/7.

How did we get more than 12 digits when we computed ‘2734’7 The answer is that Calc
makes a distinction between integers and floating-point numbers, or floats. An integer is a number
that does not contain a decimal point. There is no such thing as an “infinitely repeating fraction
integer,” so Calc doesn’t have to limit itself. If you asked for ‘2710000’ (don’t try this!), you would
have to wait a long time but you would eventually get an exact answer. If you ask for ‘2. 100007,
you will quickly get an answer which is correct only to 12 places. The decimal point tells Calc that
it should use floating-point arithmetic to get the answer, not exact integer arithmetic.

You can use the F (calc-floor) command to convert a floating-point value to an integer, and
¢ f (calc-float) to convert an integer to floating-point form.

Let’s try entering that last calculation:

1: 2. 2: 2. 1: 1.99506311689e3010
1: 10000
2.0 RET 10000 RET -

Notice the letter ‘e’ in there. It represents “times ten to the power of,” and is used by Calc
automatically whenever writing the number out fully would introduce more extra zeros than you
probably want to see. You can enter numbers in this notation, too.

1: 2. 2: 2. 1: 1.99506311678e3010
1: 10000.
2.0 RET le4 RET -

Hey, the answer is different! Look closely at the middle columns of the two examples. In the first,
the stack contained the exact integer 10000, but in the second it contained a floating-point value
with a decimal point. When you raise a number to an integer power, Calc uses repeated squaring
and multiplication to get the answer. When you use a floating-point power, Calc uses logarithms
and exponentials. As you can see, a slight error crept in during one of these methods. Which one
should we trust? Let’s raise the precision a bit and find out:

1: 2. 2: 2, 1: 1.995063116880828e3010
1: 10000.
p 16 RET 2. RET led - p 12 RET

Presumably, it doesn’t matter whether we do this higher-precision calculation using an integer or
floating-point power, since we have added enough “guard digits” to trust the first 12 digits no
matter what. And the verdict is. .. Integer powers were more accurate; in fact, the result was only
off by one unit in the last place.

Calc does many of its internal calculations to a slightly higher precision, but it doesn’t always
bump the precision up enough. In each case, Calc added about two digits of precision during its
calculation and then rounded back down to 12 digits afterward. In one case, it was enough; in the
the other, it wasn’t. If you really need x digits of precision, it never hurts to do the calculation
with a few extra guard digits.
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What if we want guard digits but don’t want to look at them? We can set the float format.
Calc supports four major formats for floating-point numbers, called normal, fixed-point, scientific
notation, and engineering notation. You get them by pressing d n, d f, d s, and d e, respectively.
In each case, you can supply a numeric prefix argument which says how many digits should be
displayed. As an example, let’s put a few numbers onto the stack and try some different display
modes. First, use M-0 DEL to clear the stack, then enter the four numbers shown here:

4: 12345 4: 12345 4: 12345 4: 12345 4: 12345

3: 12345. 3: 12300. 3: 1.2345e4 3: 1.23e4 3: 12345.000

2: 123.45 2: 123. 2: 1.234b5e2 2: 1.23e2 2: 123.450

1: 12.345 1: 12.3 1: 1.2345el 1: 1.23el 1: 12.345
dn M-3dn ds M-3 d s M-3 d £

Notice that when we typed M-3 d n, the numbers were rounded down to three significant digits,
but then when we typed d s all five significant figures reappeared. The float format does not affect
how numbers are stored, it only affects how they are displayed. Only the current precision governs
the actual rounding of numbers in the Calculator’s memory.

Engineering notation, not shown here, is like scientific notation except the exponent (the power-
of-ten part) is always adjusted to be a multiple of three (as in “kilo,” “micro,” etc.). As a result
there will be one, two, or three digits before the decimal point.

Whenever you change a display-related mode, Calc redraws everything in the stack. This may
be slow if there are many things on the stack, so Calc allows you to type shift-H before any mode
command to prevent it from updating the stack. Anything Calc displays after the mode-changing
command will appear in the new format.

4: 12345 4: 12345 4: 12345 4: 12345 4: 12345
3: 12345.000 3: 12345.000 3: 12345.000 3: 1.2345e4 3: 12345.
2: 123.450 2: 123.450 2: 1.2345e1 2: 1.2345el1 2: 123.45
1: 12.345 1 1.2345e1 1: 1.2345e2 1: 1.2345e2 1: 12.345
Hd s DEL U TAB d SPC dn

Here the H d s command changes to scientific notation but without updating the screen. Deleting
the top stack entry and undoing it back causes it to show up in the new format; swapping the top
two stack entries reformats both entries. The d SPC command refreshes the whole stack. The d n
command changes back to the normal float format; since it doesn’t have an H prefix, it also updates
all the stack entries to be in d n format.

Notice that the integer 12345 was not affected by any of the float formats. Integers are integers,
and are always displayed exactly.

Large integers have their own problems. Let’s look back at the result of 273" 4.
2417851639229258349412352
Quick—how many digits does this have? Try typing d g:
2,417,851,639,229,258,349,412,352

Now how many digits does this have? It’s much easier to telll We can actually group digits into
clumps of any size. Some people prefer M-5 d g:
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24178,51639,22925,83494,12352

Let’s see what happens to floating-point numbers when they are grouped. First, type p 25 RET
to make sure we have enough precision to get ourselves into trouble. Now, type 1e13 /:

24,17851,63922.9258349412352
The integer part is grouped but the fractional part isn’t. Now try M-- M-5 d g (that’s meta-minus-
sign, meta-five):

24,17851,63922.92583,49412,352

If you find it hard to tell the decimal point from the commas, try changing the grouping character
to a space with d , SPC:

24 17851 63922.92583 49412 352

Type d , , to restore the normal grouping character, then d g again to turn grouping off. Also,
press p 12 to restore the default precision.

Press U enough times to get the original big integer back. (Notice that U does not undo each
mode-setting command; if you want to undo a mode-setting command, you have to do it yourself.)
Now, type d r 16 RET:

16#200000000000000000000

The number is now displayed in hexadecimal, or “base-16” form. Suddenly it looks pretty simple;
this should be no surprise, since we got this number by computing a power of two, and 16 is a
power of 2. In fact, we can use d r 2 RET to see it in actual binary form:

2#1000000000000000000000000000000000000000000000000000000 . ..

We don’t have enough space here to show all the zeros! They won’t fit on a typical screen, either,
so you will have to use horizontal scrolling to see them all. Press < and > to scroll the stack window
left and right by half its width. Another way to view something large is to press ¢ (back-quote) to
edit the top of stack in a separate window. (Press M-# M-# when you are done.)

You can enter non-decimal numbers using the # symbol, too. Let’s see what the hexadecimal
number ‘6FE’ looks like in binary. Type 16#5FE (the letters can be typed in upper or lower case;
they will always appear in upper case). It will also help to turn grouping on with d g:

2#101,1111,1110

Notice that d g groups by fours by default if the display radix is binary or hexadecimal, but by
threes if it is decimal, octal, or any other radix.

Now let’s see that number in decimal; type d r 10:
1,534

Numbers are not stored with any particular radix attached. They’re just numbers; they can
be entered in any radix, and are always displayed in whatever radix you've chosen with d r. The
current radix applies to integers, fractions, and floats.

(e) Exercise 1. Your friend Joe tried to enter one-third as ‘3#0.1’ in d r 3 mode with a precision
of 12. He got ‘3#0.0222222...° (with 25 2’s) in the display. When he multiplied that by three,
he got ‘3#0.222222. .. instead of the expected ‘3#1’. Next, Joe entered ‘3#0.2’ and, to his great
relief, saw ‘3#0.2’ on the screen. But when he typed 2 /, he got ‘3#0.10000001’ (some zeros
omitted). What’s going on here? See XXX [Modes Answer 1], page XXX. (o)

(e) Exercise 2. Scientific notation works in non-decimal modes in the natural way (the exponent

is a power of the radix instead of a power of ten, although the exponent itself is always written in
decimal). Thus ‘8#1.23e3 = 8#1230.0’. Suppose we have the hexadecimal number ‘f.e8f’ times
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16 to the 15th power: We write ‘16#f .e8felb’. What is wrong with this picture? What could we
write instead that would work better? See XXX [Modes Answer 2], page XXX. (o)

The m prefix key has another set of modes, relating to the way Calc interprets your inputs and
does computations. Whereas d-prefix modes generally affect the way things look, mprefix modes
affect the way they are actually computed.

The most popular m-prefix mode is the angular mode. Notice the ‘Deg’ indicator in the mode
line. This means that if you use a command that interprets a number as an angle, it will assume
the angle is measured in degrees. For example,

1: 45 1: 0.707106781187 1: 0.500000000001 1: 0.5

45 S 2" cl1
The shift-S command computes the sine of an angle. The sine of 45 degrees is v/2/2; squaring
this yields 2/4 = 0.5. However, there has been a slight roundoff error because the representation
of v/2/2 wasn’t exact. The ¢ 1 command is a handy way to clean up numbers in this case; it
temporarily reduces the precision by one digit while it re-rounds the number on the top of the
stack.

(e) Exercise 3. Your friend Joe computed the sine of 45 degrees as shown above, then, hoping
to avoid an inexact result, he increased the precision to 16 digits before squaring. What happened?
See XXX [Modes Answer 3|, page XXX. (o)

To do this calculation in radians, we would type m r first. (The indicator changes to ‘Rad’.) 45

degrees corresponds to T radians. To get , press the P key. (Once again, this is a shifted capital

P. Remember, unshifted p sets the precision.)

1: 3.14159265359 1: 0.785398163398 1: 0.707106781187

P 4 / mr S
Likewise, inverse trigonometric functions generate results in either radians or degrees, depending
on the current angular mode.

1: 0.707106781187 1: 0.785398163398 1: 45.

.5 Q mr IS m d UTIS
Here we compute the Inverse Sine of /0.5, first in radians, then in degrees.

Use ¢ d and ¢ r to convert a number from radians to degrees and vice-versa.

1: 45 1: 0.785398163397 1: 45,

45 cr cd
Another interesting mode is fraction mode. Normally, dividing two integers produces a floating-
point result if the quotient can’t be expressed as an exact integer. Fraction mode causes integer
division to produce a fraction, i.e., a rational number, instead.
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2: 12 1: 1.33333333333 1: 4:3
1: 9
12 RET 9 / m f U/ m f

In the first case, we get an approximate floating-point result. In the second case, we get an exact
fractional result (four-thirds).

You can enter a fraction at any time using : notation. (Calc uses : instead of / as the fraction
separator because / is already used to divide the top two stack elements.) Calculations involving
fractions will always produce exact fractional results; fraction mode only says what to do when
dividing two integers.

(e) Exercise 4. If fractional arithmetic is exact, why would you ever use floating-point numbers
instead? See XXX [Modes Answer 4], page XXX. (o)

Typing m £ doesn’t change any existing values in the stack. In the above example, we had to
Undo the division and do it over again when we changed to fraction mode. But if you use the
evaluates-to operator you can get commands like m £ to recompute for you.

1: 12 / 9 => 1.33333333333 1: 12 / 9 => 1.333 1: 12/ 9 => 4:3

> 12/9 => RET p 4 RET m f
In this example, the righthand side of the ‘=>’ operator on the stack is recomputed when we change
the precision, then again when we change to fraction mode. All ‘=>" expressions on the stack are
recomputed every time you change any mode that might affect their values.

2.2 Arithmetic Tutorial

In this section, we explore the arithmetic and scientific functions available in the Calculator.

The standard arithmetic commands are +, -, *, /, and ~. Each normally takes two numbers
from the top of the stack and pushes back a result. The n and & keys perform change-sign and
reciprocal operations, respectively.

1: b 1: 0.2 1: 5. 1: -=5. 1: 5.

5 & & n n
You can apply a “binary operator” like + across any number of stack entries by giving it a

numeric prefix. You can also apply it pairwise to several stack elements along with the top one if
you use a negative prefix.

3: 2 1: 9 3: 2 4: 2 3: 12

2: 3 . 2: 3 3: 3 2: 13

1: 4 1: 4 2: 4 1: 14
1: 10

2 RET 3 RET 4 M-3 + U 10 M-- M-3 +
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You can apply a “unary operator” like & to the top n stack entries with a numeric prefix, too.

3: 2 3: 0.5 3: 0.5
2: 3 2: 0.333333333333 2: 3.
1: 4 1: 0.25 1: 4.
2 RET 3 RET 4 M-3 & M-2 &

Notice that the results here are left in floating-point form. We can convert them back to integers
by pressing F, the “floor” function. This function rounds down to the next lower integer. There is
also R, which rounds to the nearest integer.

7 2. 7: 2 7 2
6: 2.4 6: 2 6 2
5: 2.5 5: 2 5: 3
4: 2.6 4: 2 4: 3
3: -2. 3: -2 3 -2
2: -2.4 2: -3 2 -2
1: -2.6 1 -3 1 -3
M-7 F U M-7 R

Since dividing-and-flooring (i.e., “integer quotient”) is such a common operation, Calc provides
a special command for that purpose, the backslash \. Another common arithmetic operator is
%, which computes the remainder that would arise from a \ operation, i.e., the “modulo” of two
numbers. For example,

2: 1234 1: 12 2: 1234 1: 34
1: 100 . 1: 100
1234 RET 100 \ U h

These commands actually work for any real numbers, not just integers.
2: 3.1415 1: 3 2: 3.1415 1: 0.1415
1: 1 . 1: 1
3.1415 RET 1 \ U h

(e) Exercise 1. The \ command would appear to be a frill, since you could always do the same
thing with / F. Think of a situation where this is not true—/ F would be inadequate. Now think of
a way you could get around the problem if Calc didn’t provide a \ command. See XXX [Arithmetic
Answer 1], page XXX. (o)

We've already seen the § (square root) and S (sine) commands. Other commands along those
lines are C (cosine), T (tangent), E (¢*) and L (natural logarithm). These can be modified by the I
(inverse) and H (hyperbolic) prefix keys.

Let’s compute the sine and cosine of an angle, and verify the identity sin’® z 4 cos®> z = 1. We’ll
arbitrarily pick —64 degrees as a good value for z. With the angular mode set to degrees (type
m d), do:
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2: -64 2: -64 2: -0.89879 2: -0.89879 1: 1.
1. -64 1: -0.89879 1: -64 1: 0.43837
64 n RET RET S TAB C fh

(For brevity, we're showing only five digits of the results here. You can of course do these calcula-
tions to any precision you like.)
Remember, f h is the calc-hypot, or square-root of sum of squares, command.
sinx

Another identity is tanz = .
coS T

2: -0.89879 1: -2.0503 1: -64.
1: 0.43837

U / IT
A physical interpretation of this calculation is that if you move 0.89879 units downward and
0.43837 units to the right, your direction of motion is —64 degrees from horizontal. Suppose we
move in the opposite direction, up and to the left:

2: -0.89879 2: 0.89879 1: -2.0503 1: -64.
1: 0.43837 1: -0.43837

Uuvu M-2 n / IT
How can the angle be the same? The answer is that the / operation loses information about the
signs of its inputs. Because the quotient is negative, we know exactly one of the inputs was negative,
but we can’t tell which one. There is an f T [arctan2| function which computes the inverse tangent
of the quotient of a pair of numbers. Since you feed it the two original numbers, it has enough
information to give you a full 360-degree answer.

2: 0.89879 1. 116. 3: 116. 2: 116. 1: 180.
1: -0.43837 . 2: -0.89879 1: -64.
1: 0.43837
Uuvu £fT M-RET M-2 n £fT -

The resulting angles differ by 180 degrees; in other words, they point in opposite directions, just
as we would expect.

The META-RET we used in the third step is the “last-arguments” command. It is sort of like
Undo, except that it restores the arguments of the last command to the stack without removing
the command’s result. It is useful in situations like this one, where we need to do several operations
on the same inputs. We could have accomplished the same thing by using M-2 RET to duplicate
the top two stack elements right after the U U, then a pair of M-TAB commands to cycle the 116 up
around the duplicates.

A similar identity is supposed to hold for hyperbolic sines and cosines, except that it is the
difference cosh® z — sinh® z that always equals one. Let’s try to verify this identity.
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2: -64 2: -64 2: -64 2: 9.7192e54 2: 9.7192eb4
1: -64 1: -3.1175e27 1: 9.7192e54 1: -64 1: 9.7192e54
64 n RET RET HC 2 TAB HS 2~

Something’s obviously wrong, because when we subtract these numbers the answer will clearly be
zero! But if you think about it, if these numbers did differ by one, it would be in the 55th decimal
place. The difference we seek has been lost entirely to roundoff error.

We could verify this hypothesis by doing the actual calculation with, say, 60 decimal places of
precision. This will be slow, but not enormously so. Try it if you wish; sure enough, the answer is
0.99999, reasonably close to 1.

Of course, a more reasonable way to verify the identity is to use a more reasonable value for z!

Some Calculator commands use the Hyperbolic prefix for other purposes. The logarithm and
exponential functions, for example, work to the base e normally but use base-10 instead if you use
the Hyperbolic prefix.

1: 1000 1: 6.9077 1: 1000 1: 3

1000 L U HL
First, we mistakenly compute a natural logarithm. Then we undo and compute a common logarithm

instead.
The B key computes a general base-b logarithm for any value of b.

2: 1000 1: 3 1: 1000. 2: 1000. 1: 6.9077
1: 10 . . 1. 2.71828
1000 RET 10 B HE HP B

Here we first use B to compute the base-10 logarithm, then use the “hyperbolic” exponential as a
cheap hack to recover the number 1000, then use B again to compute the natural logarithm. Note
that P with the hyperbolic prefix pushes the constant e onto the stack.

You may have noticed that both times we took the base-10 logarithm of 1000, we got an exact
integer result. Calc always tries to give an exact rational result for calculations involving rational
numbers where possible. But when we used HE, the result was a floating-point number for no
apparent reason. In fact, if we had computed 10 RET 3 ~ we would have gotten an exact integer
1000. But the H E command is rigged to generate a floating-point result all of the time so that
1000 H E will not waste time computing a thousand-digit integer when all you probably wanted
was ‘1e1000’.

(e) Exercise 2. Find a pair of integer inputs to the B command for which Calc could find an
exact rational result but doesn’t. See XXX [Arithmetic Answer 2], page XXX. (o)

The Calculator also has a set of functions relating to combinatorics and statistics. You may be
familiar with the factorial function, which computes the product of all the integers up to a given
number.

1: 100 1: 93326215443... 1: 100. 1: 9.3326e157

100 ! Ucft !
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Recall, the ¢ f command converts the integer or fraction at the top of the stack to floating-point
format. If you take the factorial of a floating-point number, you get a floating-point result accurate
to the current precision. But if you give ! an exact integer, you get an exact integer result (158
digits long in this case).

If you take the factorial of a non-integer, Calc uses a generalized factorial function defined in
terms of Euler’s Gamma function I'(n) (which is itself available as the f g command).

3: 4. 3: 24. 1: 5.5 1: 52.342777847
2: 4.5 2: 52.3427777847
1: b5. 1: 120.

M-3 ! M-0 DEL 5.5 fg

Here we verify the identity n! = I'(n + 1).

n!
(n —m)
The intermediate results in this formula can become quite large even if the final result is small; the
k ¢ command computes a binomial coefficient in a way that avoids large intermediate values.

The binomial coefficient n-choose-m or (Z) is defined by - ' for all reals n and m.

The k prefix key defines several common functions out of combinatorics and number theory.
Here we compute the binomial coefficient 30-choose-20, then determine its prime factorization.

2: 30 1: 30045015 1: [3, 3, 5, 7, 11, 13, 23, 29]
1: 20
30 RET 20 k c k f

You can verify these prime factors by using v u to “unpack” this vector into 8 separate stack entries,
then M-8 * to multiply them back together. The result is the original number, 30045015.

Suppose a program you are writing needs a hash table with at least 10000 entries. It’s best to
use a prime number as the actual size of a hash table. Calc can compute the next prime number
after 10000:

1: 10000 1: 10007 1: 9973

10000 kn I kn
Just for kicks we’ve also computed the next prime Iess than 10000.

See XXX [Financial Functions], page XXX, for a description of the Calculator commands that
deal with business and financial calculations (functions like pv, rate, and sln).

See XXX [Binary Functions], page XXX, to read about the commands for operating on binary
numbers (like and, xor, and 1sh).
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2.3 Vector/Matrix Tutorial

A vector is a list of numbers or other Calc data objects. Calc provides a large set of commands
that operate on vectors. Some are familiar operations from vector analysis. Others simply treat a
vector as a list of objects.

2.3.1 Vector Analysis

If you add two vectors, the result is a vector of the sums of the elements, taken pairwise.

1: [1, 2, 3] 2: [1, 2, 3] 1: [8, 8, 3]
1: [7, 6, 0]
[1,2,3] s 1 [76 0] s 2 +

Note that we can separate the vector elements with either commas or spaces. This is true whether
we are using incomplete vectors or algebraic entry. The s 1 and s 2 commands save these vectors
so we can easily reuse them later.

If you multiply two vectors, the result is the sum of the products of the elements taken pairwise.
This is called the dot product of the vectors.

2: [1, 2, 3] 1: 19
1. [7, 6, 0]
rir?2 *

The dot product of two vectors is equal to the product of their lengths times the cosine of the
angle between them. (Here the vector is interpreted as a line from the origin (0,0, 0) to the specified
point in three-dimensional space.) The 4 (absolute value) command can be used to compute the
length of a vector.

3: 19 3: 19 1: 0.550782 1: 56.579
2: [1, 2, 3] 2: 3.741657
1: [7, 6, 0] 1: 9.219544

M-RET M-2 A *x / IC

First we recall the arguments to the dot product command, then we compute the absolute values
of the top two stack entries to obtain the lengths of the vectors, then we divide the dot product by
the product of the lengths to get the cosine of the angle. The inverse cosine finds that the angle
between the vectors is about 56 degrees.

The cross product of two vectors is a vector whose length is the product of the lengths of the
inputs times the sine of the angle between them, and whose direction is perpendicular to both input
vectors. Unlike the dot product, the cross product is defined only for three-dimensional vectors.
Let’s double-check our computation of the angle using the cross product.
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2: [t1, 2, 3] 3. [-18, 21, -8] 1: [-0.52, 0.61, -0.23] 1: 56.579
1: [7, 6, 01 2: I[1, 2, 3]
1. [7, 6, 0]

rlr?2 VC s 3 M-RET M-2 A * / AIS
First we recall the original vectors and compute their cross product, which we also store for later
reference. Now we divide the vector by the product of the lengths of the original vectors. The
length of this vector should be the sine of the angle; sure enough, it is!

Vector-related commands generally begin with the v prefix key. Some are uppercase letters and
some are lowercase. To make it easier to type these commands, the shift-V prefix key acts the same
as the v key. (See XXX [General Mode Commands], page XXX, for a way to make all prefix keys
have this property.)

If we take the dot product of two perpendicular vectors we expect to get zero, since the cosine
of 90 degrees is zero. Let’s check that the cross product is indeed perpendicular to both inputs:

2: [1, 2, 3] 1: O 2: [7, 6, 0] 1: O
1: [-18, 21, -8] . 1. [-18, 21, -8]
ri1r3 * DELr 2 r 3 *

(e) Exercise 1. Given a vector on the top of the stack, what keystrokes would you use to
normalize the vector, i.e., to reduce its length to one without changing its direction? See XXX
[Vector Answer 1], page XXX. (o)

(e) Exercise 2. Suppose a certain particle can be at any of several positions along a ruler. You
have a list of those positions in the form of a vector, and another list of the probabilities for the
particle to be at the corresponding positions. Find the average position of the particle. See XXX
[Vector Answer 2], page XXX. (o)

2.3.2 Matrices

A matrix is just a vector of vectors, all the same length. This means you can enter a matrix using
nested brackets. You can also use the semicolon character to enter a matrix. We’ll show both
methods here:

1: [[1,2,38] 1. [[1,2,3]
[4,5,61] [4,5,61]
[[1 23] [45 6]] > [1 23; 45 6] RET

We’ll be using this matrix again, so type s 4 to save it now.
Note that semicolons work with incomplete vectors, but they work better in algebraic entry.
That’s why we use the apostrophe in the second example.

When two matrices are multiplied, the lefthand matrix must have the same number of columns
as the righthand matrix has rows. Row ¢, column j of the result is effectively the dot product of
row % of the left matrix by column j of the right matrix.
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If we try to duplicate this matrix and multiply it by itself, the dimensions are wrong and the
multiplication cannot take place:

1: [ , 2, 31 * [

[1
[ 4,5,61]1]

-
o N
D W
—

RET =*
Though rather hard to read, this is a formula which shows the product of two matrices. The ‘¥’

function, having invalid arguments, has been left in symbolic form.

We can multiply the matrices if we transpose one of them first.

2: [[1,2,3] 1: [ [ 14, 321 1: [ [ 17, 22, 27 ]
[ 4, 5,611 [ 32, 771 ] [ 22, 29, 36 ]
1: [ [1, 41 [ 27, 36, 45 1] 1]
[ 2, 5]
[3,61]1
Uvt * U TAB *

Matrix multiplication is not commutative; indeed, switching the order of the operands can even
change the dimensions of the result matrix, as happened here!

If you multiply a plain vector by a matrix, it is treated as a single row or column depending on
which side of the matrix it is on. The result is a plain vector which should also be interpreted as a
row or column as appropriate.

2: [[1, 2, 3] 1: [14, 32]
[ 4, 5, 611

1: [1, 2, 3]
rdri *

Multiplying in the other order wouldn’t work because the number of rows in the matrix is
different from the number of elements in the vector.

(e) Exercise 1. Use ‘*’ to sum along the rows of the above 2 x 3 matrix to get [6,15]. Now use
‘¢’ to sum along the columns to get [5,7,9]. See XXX [Matrix Answer 1], page XXX. (o)

An identity matrix is a square matrix with ones along the diagonal and zeros elsewhere. It has
the property that multiplication by an identity matrix, on the left or on the right, always produces
the original matrix.

1: [ [1,2,3]1 2: [[1,2,3] 1 [ L1, 2, 3]
[ 4,5,61]1 [ 4,5,61] [ 4,5,61]1

1: [[1,0,0]

[0, 1,01

[0,0,11]

r 4 v i 3 RET *
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If a matrix is square, it is often possible to find its inverse, that is, a matrix which, when
multiplied by the original matrix, yields an identity matrix. The & (reciprocal) key also computes
the inverse of a matrix.

1: [ [1, 2, 3] 1: [ [ -2.4, 1.2, 0.2 1]
[ 4, 5, 6] [ 2.8, -1.4, 0.4 1]
[7,6, 011 [ -0.73333, 0.53333, -0.2 1 1]

rd4r2 | s5 &

The vertical bar | concatenates numbers, vectors, and matrices together. Here we have used it to
add a new row onto our matrix to make it square.
We can multiply these two matrices in either order to get an identity.

1: [ [ ] 1: [[1.,0 ]
L . [0,1.,0.]
[ .11 [0.,0.,1.1]1

M-RET x* U TAB =*
Matrix inverses are related to systems of linear equations in algebra. Suppose we had the

following set of equations:

a+2b+3c=6
4a + 5b + 6¢ = 2
Ta + 6b =3
This can be cast into the matrix equation,
1 2 3 a 6
4 5 6| x|b]=1]2
7 6 0 c 3

We can solve this system of equations by multiplying both sides by the inverse of the matrix.
Calc can do this all in one step:

2: [6, 2, 3] 1: [-12.6, 15.2, -3.93333]
1: [[1, 2, 3]
[ 4, 5, 61
L7,6,01]1]
[6,2,31 r 5 /

The result is the [a, b, c|] vector that solves the equations. (Dividing by a square matrix is equivalent
to multiplying by its inverse.)
Let’s verify this solution:

2: [

b

1, 2
4, 5
7, 6

b

-

31
[ 6 ]
[7,6,01]1
1: [-12.6, 15.2, -3.93333]

r 5 TAB *
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Note that we had to be careful about the order in which we multiplied the matrix and vector. If
we multiplied in the other order, Calc would assume the vector was a row vector in order to make
the dimensions come out right, and the answer would be incorrect. If you don’t feel safe letting
Calc take either interpretation of your vectors, use explicit N x 1 or 1 x N matrices instead. In
this case, you would enter the original column vector as ‘[[6]1, [2], [3]1]" or ‘[6; 2; 3]’ .

(e) Exercise 2. Algebraic entry allows you to make vectors and matrices that include variables.
Solve the following system of equations to get expressions for z and y in terms of a and b.

z+ay=2=6
z+by =10
See XXX [Matrix Answer 2], page XXX. (o)

(e) Exercise 3. A system of equations is “over-determined” if it has more equations than
variables. It is often the case that there are no values for the variables that will satisfy all the
equations at once, but it is still useful to find a set of values which “nearly” satisfy all the equations.
In terms of matrix equations, you can’t solve AX = B directly because the matrix A is not square
for an over-determined system. Matrix inversion works only for square matrices. One common
trick is to multiply both sides on the left by the transpose of A: ATA X = AT B, where A7 is the
transpose ‘trn(A)’. Now AT A is a square matrix so a solution is possible. It turns out that the
X vector you compute in this way will be a “least-squares” solution, which can be regarded as the
“closest” solution to the set of equations. Use Calc to solve the following over-determined system:

a+2b+3c=6
4a + 5b+ 6¢c = 2
Ta + 6b =3

2a +4b+ 6¢ =11
See XXX [Matrix Answer 3], page XXX. (o)

2.3.3 Vectors as Lists

Although Calc has a number of features for manipulating vectors and matrices as mathematical
objects, you can also treat vectors as simple lists of values. For example, we saw that the k f
command returns a vector which is a list of the prime factors of a number.

You can pack and unpack stack entries into vectors:

3: 10 1: [10, 20, 30] 3: 10
2: 20 . 2: 20
1: 30 1: 30

M-3 v p vu

You can also build vectors out of consecutive integers, or out of many copies of a given value:

1: [1, 2, 3, 4] 2: [1, 2, 3, 4] 2: [1, 2, 3, 4]
1: 17 1 [17, 17, 17, 171

v x 4 RET 17 v b 4 RET
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You can apply an operator to every element of a vector using the map command.

1: [17, 34, 51, 68] 1: [289, 1156, 2601, 4624] 1: [17, 34, 51, 68]

VM x* 2VM-~© VMQ
In the first step, we multiply the vector of integers by the vector of 17’s elementwise. In the second
step, we raise each element to the power two. (The general rule is that both operands must be
vectors of the same length, or else one must be a vector and the other a plain number.) In the final
step, we take the square root of each element.

(o) Exercise 1. Compute a vector of powers of two from 27* to 2¢. See XXX [List Answer 1],
page XXX. (o)

You can also reduce a binary operator across a vector. For example, reducing ‘*’ computes the
product of all the elements in the vector:

1: 123123 1: [3, 7, 11, 13, 41] 1. 123123

123123 k £ VR *
In this example, we decompose 123123 into its prime factors, then multiply those factors together

again to yield the original number.

We could compute a dot product “by hand” using mapping and reduction:

2: [1, 2, 3] 1. [7, 12, 0] 1: 19
1. [7, 6, 0]
rir?2 VM * VR +

Recalling two vectors from the previous section, we compute the sum of pairwise products of the
elements to get the same answer for the dot product as before.

A slight variant of vector reduction is the accumulate operation, V U. This produces a vector of
the intermediate results from a corresponding reduction. Here we compute a table of factorials:

1: [1, 2, 3, 4, 5, 6] 1: [1, 2, 6, 24, 120, 720]

v x 6 RET VU *

Calc allows vectors to grow as large as you like, although it gets rather slow if vectors have more
than about a hundred elements. Actually, most of the time is spent formatting these large vectors
for display, not calculating on them. Try the following experiment (if your computer is very fast
you may need to substitute a larger vector size).

1: [1, 2, 3, 4, ... 1: [2, 3, 4, 5,

v x 500 RET 1 VM+
Now press v . (the letter v, then a period) and try the experiment again. In v . mode, long
vectors are displayed “abbreviated” like this:
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1: [1, 2, 3, ..., 500] 1: [2, 3, 4, ..., 501]

v x 500 RET 1VM+
(where now the ‘...’ is actually part of the Calc display). You will find both operations are now

much faster. But notice that even in v . mode, the full vectors are still shown in the Trail. Type
t . to cause the trail to abbreviate as well, and try the experiment one more time. Operations on
long vectors are now quite fast! (But of course if you use t . you will lose the ability to get old
vectors back using the t y command.)

An easy way to view a full vector when v . mode is active is to press ¢ (back-quote) to edit the
vector; editing always works with the full, unabbreviated value.

As a larger example, let’s try to fit a straight line to some data, using the method of least
squares. (Calc has a built-in command for least-squares curve fitting, but we’ll do it by hand here
just to practice working with vectors.) Suppose we have the following list of values in a file we have
loaded into Emacs:

x y
1.34  0.234
1.41  0.298
1.49  0.402
1.56  0.412
1.64  0.466
1.73  0.473
1.82  0.601
1.91  0.519
2.01  0.603
2.11  0.637
2.22  0.645
2.33  0.705
2.45  0.917
2.58  1.009
2.71  0.971
2.85  1.062
3.00 1.148
3.15  1.157
3.32  1.354

If you are reading this tutorial in printed form, you will find it easiest to press M-# i to enter the
on-line Info version of the manual and find this table there. (Press g, then type List Tutorial, to
jump straight to this section.)

Position the cursor at the upper-left corner of this table, just to the left of the 1.34. Press C-@
to set the mark. (On your system this may be C-2, C-SPC, or NUL.) Now position the cursor to the
lower-right, just after the 1.354. You have now defined this region as an Emacs “rectangle.” Still
in the Info buffer, type M-# r. This command (calc-grab-rectangle) will pop you back into the
Calculator, with the contents of the rectangle you specified in the form of a matrix.

1: [ [ 1.34, 0.234 ]
[ 1.41, 0.298 ]
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(You may wish to use v . mode to abbreviate the display of this large matrix.)

We want to treat this as a pair of lists. The first step is to transpose this matrix into a pair of
rows. Remember, a matrix is just a vector of vectors. So we can unpack the matrix into a pair of
row vectors on the stack.

1: [ [1.34, 1.41, 1.49, ... 1] 2: [1.34, 1.41, 1.49, ... 1]
[ 0.234, 0.298, 0.402, ... ] ] 1: [0.234, 0.298, 0.402, ... ]

vt Vv u
Let’s store these in quick variables 1 and 2, respectively.

1: [1.34, 1.41, 1.49, ... 1]

t 2 t 1
(Recall that t 2 is a variant of s 2 that removes the stored value from the stack.)

In a least squares fit, the slope m is given by the formula
o N2zy—3zdy
NY a?— (Y )’

where Y z represents the sum of all the values of z. While there is an actual sum function in Calc,
it’s easier to sum a vector using a simple reduction. First, let’s compute the four different sums

that this formula uses.

1: 41.63 1: 98.0003

r1VR+ +t3 r12VM~"VR+ t4
1: 13.613 1: 33.36554

r2VR+ t5 r1r2VM*xVR+ t6

These are Y.z, Y 2%, Y y, and Y_ zy, respectively. (We could have used * to compute > z*

and > zy.)
Finally, we also need N, the number of data points. This is just the length of either of our lists.

1: 19

rivl t7
(That’s v followed by a lower-case 1.)

Now we grind through the formula:

1: 633.94526 2: 633.94526 1: 67.23607
1: 566.70919

r7r6 % r 3r b5 * -
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2: 67.23607 3: 67.23607 2: 67.23607 1: 0.52141679
1: 1862.0057 2: 1862.0057 1: 128.9488
1: 1733.0569

r7ré4dx* r32° - / t 8
That gives us the slope m. The y-intercept b can now be found with the simple formula,

po Y —mdT

N
1: 13.613 2: 13.613 1: -8.09358 1: -0.425978
1: 21.70658
rb r8r 3 % - r7/ t9
Let’s “plot” this straight line approximation, y = mx + b, and compare it with the original data.
1: [0.699, 0.735, ... ] 1: [0.273, 0.309, ... ]
ril1r8=x* r 9+ s 0

Notice that multiplying a vector by a constant, and adding a constant to a vector, can be done
without mapping commands since these are common operations from vector algebra. As far as
Calc is concerned, we’ve just been doing geometry in 19-dimensional space!

We can subtract this vector from our original y vector to get a feel for the error of our fit. Let’s
find the maximum error:

1: [0.0387, 0.0112, ... ] 1: [0.0387, 0.0112, ... ] 1: 0.0897

r 2 - VMA VRX
First we compute a vector of differences, then we take the absolute values of these differences, then
we reduce the max function across the vector. (The max function is on the two-key sequence f x;
because it is so common to use max in a vector operation, the letters X and N are also accepted for
max and min in this context. In general, you answer the VM or V R prompt with the actual key
sequence that invokes the function you want. You could have typed VR f x or even V R x max RET
if you had preferred.)

If your system has the GNUPLOT program, you can see graphs of your data and your straight
line to see how well they match. (If you have GNUPLOT 3.0, the following instructions will work
regardless of the kind of display you have. Some GNUPLOT 2.0, non-X-windows systems may
require additional steps to view the graphs.)

Let’s start by plotting the original data. Recall the “z” and “y” vectors onto the stack and press
g f. This “fast” graphing command does everything you need to do for simple, straightforward
plotting of data.
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2: [1.34, 1.41, 1.49, ... ]
1: [0.234, 0.298, 0.402, ... ]

rilir?2 gf
If all goes well, you will shortly get a new window containing a graph of the data. (If not, contact
your GNUPLOT or Calc installer to find out what went wrong.) In the X window system, this
will be a separate graphics window. For other kinds of displays, the default is to display the graph
in Emacs itself using rough character graphics. Press g when you are done viewing the character
graphics.
Next, let’s add the line we got from our least-squares fit:

2: [1.34, 1.41, 1.49, ... ]
1: [0.273, 0.309, 0.351, ... ]

DEL r O ga gp
It’s not very useful to get symbols to mark the data points on this second curve; you can type g S

g p to remove them. Type g g when you are done to remove the X graphics window and terminate
GNUPLOT.

(e) Exercise 2. An earlier exercise showed how to do least squares fitting to a general system of
equations. Our 19 data points are really 19 equations of the form y; = ma; + b for different pairs of
(4,9;). Use the matrix-transpose method to solve for m and b, duplicating the above result. See
XXX [List Answer 2], page XXX. (o)

(o) Exercise 3. If the input data do not form a rectangle, you can use M-# g (calc-grab-region)
to grab the data the way Emacs normally works with regions—it reads left-to-right, top-to-bottom,
treating line breaks the same as spaces. Use this command to find the geometric mean of the
following numbers. (The geometric mean is the nth root of the product of n numbers.)

2.3 6 22 15.1 7
16 14 7.5
2.5

The M-# g command accepts numbers separated by spaces or commas, with or without surrounding
vector brackets. See XXX [List Answer 3], page XXX. (o)

As another example, a theorem about binomial coefficients tells us that the alternating sum of

binomial coefficients (z) -M+@G)-—=£ (Z) always comes out to zero. Let’s verify this for n = 6.
1: [1, 2, 3, 4, 5, 6, 7] 1. [o, 1, 2, 3, 4, 5, 6]
v x 7 RET 1 -
1: [1, -6, 15, -20, 15, -6, 1] 1: 0
VM’ (-1)"$ choose(6,$) RET VR +

The VM ’ command prompts you to enter any algebraic expression to define the function to
map over the vector. The symbol ‘$’ inside this expression represents the argument to the function.
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The Calculator applies this formula to each element of the vector, substituting each element’s value
for the ‘$’ sign(s) in turn.

To define a two-argument function, use ‘$$’ for the first argument and ‘$’ for the second: VM °
$$-$ RET is equivalent to V M -. This is analogous to regular algebraic entry, where ‘$$’ would refer
to the next-to-top stack entry and ‘$’ would refer to the top stack entry, and ’> $$-$ RET would act
exactly like -.

Notice that the VM ? command has recorded two things in the trail: The result, as usual, and
also a funny-looking thing marked ‘oper’ that represents the operator function you typed in. The
function is enclosed in ‘< >’ brackets, and the argument is denoted by a ‘#’ sign. If there were several
arguments, they would be shown as ‘#1’, ‘#2’, and so on. (For example, VM > $$-$ will put the
function ‘<#1 - #2>’ on the trail.) This object is a “nameless function”; you can use nameless ‘< >’
notation to answer the V M ’ prompt if you like. Nameless function notation has the interesting,
occasionally useful property that a nameless function is not actually evaluated until it is used. For
example, VM ’> $+random(2.0) evaluates ‘random(2.0)’ once and adds that random number to
all elements of the vector, but V M > <#+random(2.0)> evaluates the ‘random(2.0)’ separately for
each vector element.

Another group of operators that are often useful with V M are the relational operators: a =, for
example, compares two numbers and gives the result 1 if they are equal, or 0 if not. Similarly, a <
checks for one number being less than another.

Other useful vector operations include v v, to reverse a vector end-for-end; V S, to sort the
elements of a vector into increasing order; and v r and v ¢, to extract one row or column of a
matrix, or (in both cases) to extract one element of a plain vector. With a negative argument, v r
and v c instead delete one row, column, or vector element.

(o) Exercise 4. The kth divisor function o1 (n) is the sum of the kth powers of all the divisors of
an integer n. Figure out a method for computing the divisor function for reasonably small values
of n. As a test, the Oth and 1st divisor functions of 30 are 8 and 72, respectively. See XXX [List
Answer 4], page XXX. (o)

(e) Exercise 5. The k f command produces a list of prime factors for a number. Sometimes it
is important to know that a number is square-free, i.e., that no prime occurs more than once in its
list of prime factors. Find a sequence of keystrokes to tell if a number is square-free; your method
should leave 1 on the stack if it is, or 0 if it isn’t. See XXX [List Answer 5|, page XXX. (o)

(e) Exercise 6. Build a list of lists that looks like the following diagram. (You may wish to use
the v / command to enable multi-line display of vectors.)

1: [ [1]:
[1, 21,
[1, 2, 31,
[1, 2, 3, 41,
[1, 2, 3, 4, 5],
[1, 2, 3, 4, 5, 6] 1]
See XXX [List Answer 6], page XXX. (o)

(e) Exercise 7. Build the following list of lists.
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1. [ [o],
1, 21,
[3, 4’ 5]’
6, 7, 8, 9,
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19, 20] ]
See XXX [List Answer 7], page XXX. (o)

(e) Exercise 8. Compute a list of values of Bessel’s J; (z) function ‘besJ(1,x)’ for z from 0 to
5 in steps of 0.25. Find the value of z (from among the above set of values) for which ‘besJ(1,x)’
is a maximum. Use an “automatic” method, i.e., just reading along the list by hand to find the
largest value is not allowed! (There is an a X command which does this kind of thing automatically;
see XXX [Numerical Solutions], page XXX.) See XXX [List Answer 8], page XXX. (o)

(e) Exercise 9. You are given an integer in the range 0 < N < 10™ for m = 12 (i.e., an integer
of less than twelve digits). Convert this integer into a vector of m digits, each in the range from 0
to 9. In vector-of-digits notation, add one to this integer to produce a vector of m + 1 digits (since
there could be a carry out of the most significant digit). Convert this vector back into a regular
integer. A good integer to try is 25129925999. See XXX [List Answer 9], page XXX. (o)

(e) Exercise 10. Your friend Joe tried to use VR a = to test if all numbers in a list were equal.
What happened? How would you do this test? See XXX [List Answer 10], page XXX. (o)

() Exercise 11. The area of a circle of radius one is 7. The area of the 2 x 2 square that
encloses that circle is 4. So if we throw N darts at random points in the square, about 7/4 of them
will land inside the circle. This gives us an entertaining way to estimate the value of 7. The k r
command picks a random number between zero and the value on the stack. We could get a random
floating-point number between —1 and 1 by typing 2.0 k r 1 -. Build a vector of 100 random (z, y)
points in this square, then use vector mapping and reduction to count how many points lie inside
the unit circle. Hint: Use the v b command. See XXX [List Answer 11], page XXX. (o)

() Exercise 12. The matchstick problem provides another way to calculate w. Say you have
an infinite field of vertical lines with a spacing of one inch. Toss a one-inch matchstick onto the
field. The probability that the matchstick will land crossing a line turns out to be 2/m. Toss 100
matchsticks to estimate w. (If you want still more fun, the probability that the GCD (k g) of two
large integers is one turns out to be 6/7*. That provides yet another way to estimate 7.) See XXX
[List Answer 12], page XXX. (o)

(e) Exercise 13. An algebraic entry of a string in double-quote marks, ‘"hello"’, creates a
vector of the numerical (ASCII) codes of the characters (here, [104,101,108,108,111]). Sometimes
it is convenient to compute a hash code of a string, which is just an integer that represents the value
of that string. Two equal strings have the same hash code; two different strings probably have
different hash codes. (For example, Calc has over 400 function names, but Emacs can quickly find
the definition for any given name because it has sorted the functions into “buckets” by their hash
codes. Sometimes a few names will hash into the same bucket, but it is easier to search among a
few names than among all the names.) One popular hash function is computed as follows: First set
h = 0. Then, for each character from the string in turn, set h = 3h + ¢; where ¢; is the character’s
ASCII code. If we have 511 buckets, we then take the hash code modulo 511 to get the bucket
number. Develop a simple command or commands for converting string vectors into hash codes.
The hash code for ‘"Testing, 1, 2, 3" is 1960915098, which modulo 511 is 121. See XXX [List
Answer 13|, page XXX. (o)
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(e) Exercise 14. The H VR and H V U commands do nested function evaluations. H V U takes a
starting value and a number of steps n from the stack; it then applies the function you give to the
starting value 0, 1, 2, up to n times and returns a vector of the results. Use this command to create
a “random walk” of 50 steps. Start with the two-dimensional point (0,0); then take one step a
random distance between —1 and 1 in both z and y; then take another step, and so on. Use the g
f command to display this random walk. Now modify your random walk to walk a unit distance,
but in a random direction, at each step. (Hint: The sincos function returns a vector of the cosine
and sine of an angle.) See XXX [List Answer 14], page XXX. (o)

2.4 Types Tutorial

Calc understands a variety of data types as well as simple numbers. In this section, we’ll experiment
with each of these types in turn.

The numbers we’'ve been using so far have mainly been either integers or floats. We saw that
floats are usually a good approximation to the mathematical concept of real numbers, but they are
only approximations and are susceptible to roundoff error. Calc also supports fractions, which can
exactly represent any rational number.

1: 3628800 2: 3628800 1: 518400:7 1: 518414:7 1: 7:518414
1: 49

10 ! 49 RET : 2 +
The : command divides two integers to get a fraction; / would normally divide integers to get

a floating-point result. Notice we had to type RET between the 49 and the : since the : would
otherwise be interpreted as part of a fraction beginning with 49.

You can convert between floating-point and fractional format using ¢ f and ¢ F:

1: 1.35027217629e-5 1: 7:518414

cf cF
The ¢ F command replaces a floating-point number with the “simplest” fraction whose floating-

point representation is the same, to within the current precision.

1: 3.14159265359 1: 1146408:364913 1: 3.1416 1: 355:113

P cF DEL p 5 RET P cF
(e) Exercise 1. A calculation has produced the result 1.26508260337. You suspect it is the

square root of the product of m and some rational number. Is it? (Be sure to allow for roundoff
error!) See XXX [Types Answer 1], page XXX. (o)

Complex numbers can be stored in both rectangular and polar form.

1: -9 1: (0, 3) 1: (3; 90.) 1: (6; 90.) 1: (2.4495; 45.)
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The square root of —9 is by default rendered in rectangular form (0 + 37), but we can convert it to
polar form (3 with a phase angle of 90 degrees). All the usual arithmetic and scientific operations
are defined on both types of complex numbers.

Another generalized kind of number is infinity. Infinity isn’t really a number, but it can some-
times be treated like one. Calc uses the symbol inf to represent positive infinity, i.e., a value
greater than any real number. Naturally, you can also write ‘~inf’ for minus infinity, a value less
than any real number. The word inf can only be input using algebraic entry.

2: inf 2: -inf 2: -inf 2: -inf 1: nan
1: -17 1: -inf 1: -inf 1: inf
> inf RET 17 n * RET 72 + A +

Since infinity is infinitely large, multiplying it by any finite number (like —17) has no effect, except
that since —17 is negative, it changes a plus infinity to a minus infinity. (“A huge positive number,
multiplied by —17, yields a huge negative number.”) Adding any finite number to infinity also
leaves it unchanged. Taking an absolute value gives us plus infinity again. Finally, we add this
plus infinity to the minus infinity we had earlier. If you work it out, you might expect the answer
to be —72 for this. But the 72 has been completely lost next to the infinities; by the time we
compute ‘inf - inf’ the finite difference between them, if any, is indetectable. So we say the result
is indeterminate, which Calc writes with the symbol nan (for Not A Number).

Dividing by zero is normally treated as an error, but you can get Calc to write an answer in
terms of infinity by pressing m i to turn on “infinite mode.”

3: mnan 2: mnan 2: mnan 2: nan 1: nan
2: 1 1: 1/ 0 1: uinf 1: uinf
1 0

1 RET 0O / m i u/ 17 n * +

Dividing by zero normally is left unevaluated, but after m i it instead gives an infinite result. The
answer is actually uinf, “undirected infinity.” If you look at a graph of 1/x around x = 0, you’ll
see that it goes toward plus infinity as you approach zero from above, but toward minus infinity as
you approach from below. Since we said only 1/0, Calc knows that the answer is infinite but not
in which direction. That’s what uinf means. Notice that multiplying uinf by a negative number
still leaves plain uinf; there’s no point in saying ‘-uinf’ because the sign of uinf is unknown
anyway. Finally, we add uinf to our nan, yielding nan again. It’s easy to see that, because nan
means “totally unknown” while uinf means “unknown sign but known to be infinite,” the more
mysterious nan wins out when it is combined with uinf, or, for that matter, with anything else.

(e) Exercise 2. Predict what Calc will answer for each of these formulas: ‘inf / inf’, ‘exp(inf)’,
‘exp(-inf)’, ‘sqrt(-inf)’, ‘sqrt(uinf)’, ‘abs(uinf)’, ‘In(0)’. See XXX [Types Answer 2|,
page XXX. (o)

() Exercise 3. We saw that ‘inf - inf = nan’, which stands for an unknown value. Can nan
stand for a complex number? Can it stand for infinity? See XXX [Types Answer 3], page XXX.

()

HMS forms represent a value in terms of hours, minutes, and seconds.
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1: 2@ 30’ 0" 1: 3@ 30’ 0" 2: 30 30’ 0" 1: 2.
1: 1@ 45’ 0."
2@ 30’ RET 1+ RET 2 / /
HMS forms can also be used to hold angles in degrees, minutes, and seconds.
1: 0.5 1: 26.56505 1: 260 33’ 54.18" 1: 0.44721
0.5 IT ch S

First we convert the inverse tangent of 0.5 to degrees-minutes-seconds form, then we take the sine
of that angle. Note that the trigonometric functions will accept HMS forms directly as input.

() Exercise 4. The Beatles’ Abbey Road is 47 minutes and 26 seconds long, and contains 17
songs. What is the average length of a song on Abbey Road? If the Extended Disco Version of
Abbey Road added 20 seconds to the length of each song, how long would the album be? See XXX
[Types Answer 4], page XXX. (o)

A date form represents a date, or a date and time. Dates must be entered using algebraic entry.
Date forms are surrounded by ‘< >’ symbols; most standard formats for dates are recognized.

2: <Sun Jan 13, 1991> 1: 2.25
1: <6:00pm Thu Jan 10, 1991>

? <13 Jan 1991>, <1/10/91, 6pm> RET -
In this example, we enter two dates, then subtract to find the number of days between them. It is
also possible to add an HMS form or a number (of days) to a date form to get another date form.

1: <4:45:59pm Mon Jan 14, 1991> 1: <2:50:59am Thu Jan 17, 1991>

t N 2 + 10@ 5’ +
The t N (“now”) command pushes the current date and time on the stack; then we add two days,
ten hours and five minutes to the date and time. Other date-and-time related commands include
t J, which does Julian day conversions, t W, which finds the beginning of the week in which a date
form lies, and t I, which increments a date by one or several months. See XXX [Date Arithmetic],
page XXX, for more.

(e) Exercise 5. How many days until the next Friday the 13th? See XXX [Types Answer 5|,
page XXX. (o)

(e) Exercise 6. How many leap years will there be between now and the year 10001 A.D.? See
XXX [Types Answer 6], page XXX. (o)

An error form represents a mean value with an attached standard deviation, or error estimate.
Suppose our measurements indicate that a certain telephone pole is about 30 meters away, with an
estimated error of 1 meter, and 8 meters tall, with an estimated error of 0.2 meters. What is the
slope of a line from here to the top of the pole, and what is the equivalent angle in degrees?
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1: 8 +/- 0.2 2: 8+/-0.2 1: 0.266 +/- 0.011 1: 14.93 +/- 0.594
1: 30 +/- 1

8 p .2 RET 30p 1 / IT
This means that the angle is about 15 degrees, and, assuming our original error estimates were valid
standard deviations, there is about a 60% chance that the result is correct within 0.59 degrees.

(o) Exercise 7. The volume of a torus (a donut shape) is 27 Rr? where R is the radius of the
circle that defines the center of the tube and r is the radius of the tube itself. Suppose R is 20 cm
and r is 4 cm, each known to within 5 percent. What is the volume and the relative uncertainty of
the volume? See XXX [Types Answer 7], page XXX. (o)

An interval form represents a range of values. While an error form is best for making statistical
estimates, intervals give you exact bounds on an answer. Suppose we additionally know that our
telephone pole is definitely between 28 and 31 meters away, and that it is between 7.7 and 8.1
meters tall.

1. [7.7 .. 8.11 2: [7.7 .. 8.1] 1: [0.24 .. 0.28] 1: [13.9 .. 16.1]
1: [28 .. 31]

[7.7 ..8.1] [ 28 .. 31] / IT
If our bounds were correct, then the angle to the top of the pole is sure to lie in the range shown.

The square brackets around these intervals indicate that the endpoints themselves are allowable
values. In other words, the distance to the telephone pole is between 28 and 31, inclusive. You
can also make an interval that is exclusive of its endpoints by writing parentheses instead of square
brackets. You can even make an interval which is inclusive (“closed”) on one end and exclusive
(“open”) on the other.

1: [1 .. 10) 1: (0.1 .. 1] 2: (0.1 .. 1] 1: (0.2 .. 3)
1: [2 .. 3)

[1..10) & [2..3) *
The Calculator automatically keeps track of which end values should be open and which should be

closed. You can also make infinite or semi-infinite intervals by using ‘-inf’ or ‘inf’ for one or both
endpoints.

() Exercise 8. What answer would you expect from ‘1 / (0 .. 10)’? What about ‘1 /
(=10 .. 0)’? What about ‘1 / [0 .. 10]’ (where the interval actually includes zero)? What
about ‘1 / (-10 .. 10)’? See XXX [Types Answer 8], page XXX. (o)

(e) Exercise 9. Two easy ways of squaring a number are RET * and 2 ~. Normally these produce
the same answer. Would you expect this still to hold true for interval forms? If not, which of these
will result in a larger interval? See XXX [Types Answer 9], page XXX. (o)

A modulo form is used for performing arithmetic modulo M. For example, arithmetic involving
time is generally done modulo 12 or 24 hours.

1: 17 mod 24 1: 3 mod 24 1: 21 mod 24 1: 9 mod 24

17 M 24 RET 10 + n 5/
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In this last step, Calc has found a new number which, when multiplied by 5 modulo 24, produces
the original number, 21. If M is prime it is always possible to find such a number. For non-prime
M like 24, it is only sometimes possible.

1: 10 mod 24 1: 16 mod 24 1: 1000000... 1: 16

10 M 24 RET 100 - 10 RET 100 ~ 24 9,
These two calculations get the same answer, but the first one is much more efficient because it
avoids the huge intermediate value that arises in the second one.

(e) Exercise 10. A theorem of Pierre de Fermat says that z”~! mod n = 1 if n is a prime number
and z is an integer less than n. If n is not a prime number, this will not be true for most values
of z. Thus we can test informally if a number is prime by trying this formula for several values of
z. Use this test to tell whether the following numbers are prime: 811749613, 15485863. See XXX
[Types Answer 10], page XXX. (o)

It is possible to use HMS forms as parts of error forms, intervals, modulo forms, or as the phase
part of a polar complex number. For example, the calc-time command pushes the current time
of day on the stack as an HMS/modulo form.

1: 170 34° 45" mod 24Q@ 0’ 0" 1: 6@ 22’ 15" mod 24@ 0’ 0"

X time RET n
This calculation tells me it is six hours and 22 minutes until midnight.
(e) Exercise 11. A rule of thumb is that one year is about 7 x 107 seconds. What time will it
be that many seconds from right now? See XXX [Types Answer 11], page XXX. (o)

(e) Exercise 12. You are preparing to order packaging for the CD release of the Extended Disco
Version of Abbey Road. You are told that the songs will actually be anywhere from 20 to 60
seconds longer than the originals. One CD can hold about 75 minutes of music. Should you order
single or double packages? See XXX [Types Answer 12], page XXX. (o)

Another kind of data the Calculator can manipulate is numbers with units. This isn’t strictly
a new data type; it’s simply an application of algebraic expressions, where we use variables with
suggestive names like ‘cm’ and ‘in’ to represent units like centimeters and inches.

1: 2 in 1: 5.08 cm 1: 0.027778 fath 1: 0.0508 m

? 2in RET u ¢ cm RET u ¢ fath RET ub
We enter the quantity “2 inches” (actually an algebraic expression which means two times the
variable ‘in’), then we convert it first to centimeters, then to fathoms, then finally to “base” units,
which in this case means meters.

1: 9 acre 1: 3 sqrt(acre) 1: 190.84 m 1: 190.84 m + 30 cm

> 9 acre RET Q us > $+30 cm RET



Chapter 2: Tutorial

1: 191.14 m 1: 36536.3046 m~2 1: 365363046 cm~2

u s 2 - u c cgs
Since units expressions are really just formulas, taking the square root of ‘acre’ is undefined. After
all, acre might be an algebraic variable that you will someday assign a value. We use the “units-
simplify” command to simplify the expression with variables being interpreted as unit names.

In the final step, we have converted not to a particular unit, but to a units system. The “cgs”
system uses centimeters instead of meters as its standard unit of length.

There is a wide variety of units defined in the Calculator.

1: 55 mph 1: 88.5139 kph 1: 88.5139 km / hr 1: 8.201407e-8 ¢

’ 55 mph RET u ¢ kph RET u ¢ km/hr RET u ¢ ¢ RET
We express a speed first in miles per hour, then in kilometers per hour, then again using a slightly
more explicit notation, then finally in terms of fractions of the speed of light.

Temperature conversions are a bit more tricky. There are two ways to interpret “20 degrees
Fahrenheit”—it could mean an actual temperature, or it could mean a change in temperature. For
normal units there is no difference, but temperature units have an offset as well as a scale factor
and so there must be two explicit commands for them.

1: 20 degF 1: 11.1111 degC 1: -20:3 degC 1: -6.666 degC

> 20 degF RET u ¢ degC RET U u t degC RET c f

First we convert a change of 20 degrees Fahrenheit into an equivalent change in degrees Celsius (or
Centigrade). Then, we convert the absolute temperature 20 degrees Fahrenheit into Celsius. Since
this comes out as an exact fraction, we then convert to floating-point for easier comparison with
the other result.

For simple unit conversions, you can put a plain number on the stack. Then u ¢ and u t will
prompt for both old and new units. When you use this method, you’re responsible for remembering
which numbers are in which units:

1: 55 1: 88.5139 1: 8.201407e-8

55 u ¢ mph RET kph RET u ¢ km/hr RET c RET
To see a complete list of built-in units, type u v. Press M-# ¢ again to re-enter the Calculator
when you’re done looking at the units table.

(e) Exercise 13. How many seconds are there really in a year? See XXX [Types Answer 13|,
page XXX. (o)

() Exercise 14. Supercomputer designs are limited by the speed of light (and of electricity,
which is nearly as fast). Suppose a computer has a 4.1 ns (nanosecond) clock cycle, and its cabinet

is one meter across. Is speed of light going to be a significant factor in its design? See XXX [Types
Answer 14], page XXX. (o)
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(e) Exercise 15. Sam the Slug normally travels about five yards in an hour. He has obtained
a supply of Power Pills; each Power Pill he eats doubles his speed. How many Power Pills can he
swallow and still travel legally on most US highways? See XXX [Types Answer 15|, page XXX.

()

2.5 Algebra and Calculus Tutorial

This section shows how to use Calc’s algebra facilities to solve equations, do simple calculus prob-
lems, and manipulate algebraic formulas.

2.5.1 Basic Algebra

If you enter a formula in algebraic mode that refers to variables, the formula itself is pushed onto
the stack. You can manipulate formulas as regular data objects.

1: 2x"2 -6 1: 6 -2 x72 1: (6 -2x"2) (3x72 +y)

? 2x72-6 RET n ? 3x"2+y RET =*
(o) Exercise 1. Do > x RET Q@ 2 ~ and ’ x RET 2 ~ @ both wind up with the same result (‘x’)?
Why or why not? See XXX [Algebra Answer 1], page XXX. (o)

There are also commands for doing common algebraic operations on formulas. Continuing with
the formula from the last example,

1: 18 x"2+6y-6x"4-2x"2y 1: (18 -2y) x"2-6x"4+6y

ax a ¢ x RET
First we “expand” using the distributive law, then we “collect” terms involving like powers of .

Let’s find the value of this expression when z is 2 and y is one-half.

1: 17 x"2 -6 x74 + 3 1: -25

1:2 s 1 y RET 2 s 1 x RET
The s 1 command means “let”; it takes a number from the top of the stack and temporarily assigns
it as the value of the variable you specify. It then evaluates (as if by the = key) the next expression
on the stack. After this command, the variable goes back to its original value, if any.

(An earlier exercise in this tutorial involved storing a value in the variable x; if this value is still
there, you will have to unstore it with s u x RET before the above example will work properly.)

Let’s find the maximum value of our original expression when y is one-half and = ranges over
all possible values. We can do this by taking the derivative with respect to x and examining values
of z for which the derivative is zero. If the second derivative of the function at that value of z is
negative, the function has a local maximum there.
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1: 17 x"2 -6 x"4 + 3 1: 34 x - 24 x°3

UDEL s 1 a d x RET s 2
Well, the derivative is clearly zero when z is zero. To find the other root(s), let’s divide through
by z and then solve:

1: (34 x - 24 x°3) / x 1: 34 x/ x-24x"3/ x 1: 34 - 24 x°2

> x RET / ax as
1: 34 - 24 x"2=0 1: x =1.19023
0Oa= 83 a S x RET

Notice the use of a s to “simplify” the formula. When the default algebraic simplifications don’t
do enough, you can use a s to tell Calc to spend more time on the job.

Now we compute the second derivative and plug in our values of z:

1: 1.19023 2: 1.19023 2: 1.19023
1: 34 x - 24 x°3 1: 34 - 72 x~2

a . r 2 adx RET s 4
(The a . command extracts just the righthand side of an equation. Another method would have
been to use v u to unpack the equation ‘x = 1.19’ to ‘x’ and ‘1.19’, then use M-- M-2 DEL to delete
the ‘x’.)

2: 34 -72 x"2 1: -68. 2: 34 -72 x72 1: 34
1: 1.19023 . 1: O
TAB s 1 x RET U DEL O s 1 x RET

The first of these second derivatives is negative, so we know the function has a maximum value at
z = 1.19023. (The function also has a local minimum at z = 0.)

When we solved for x, we got only one value even though 34 — 2422 = 0 is a quadratic equation
that ought to have two solutions. The reason is that a S normally returns a single “principal”
solution. If it needs to come up with an arbitrary sign (as occurs in the quadratic formula) it picks
+. If it needs an arbitrary integer, it picks zero. We can get a full solution by pressing H (the
Hyperbolic flag) before a S.

1: 34 -24x"2=0 1: x =1.19023 s1 1: x =-1.19023

r 3 HaS xRET s b 1n s 1 slRET
Calc has invented the variable ‘s1’ to represent an unknown sign; it is supposed to be either
+1 or —1. Here we have used the “let” command to evaluate the expression when the sign is
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negative. If we plugged this into our second derivative we would get the same, negative, answer,
so £ = —1.19023 is also a maximum.

To find the actual maximum value, we must plug our two values of z into the original formula.

2: 17 x"2 -6 x"4 + 3 1: 24.08333 s172 - 12.04166 s174 + 3
1: x =1.19023 s1

rilrb s 1 RET
(Here we see another way to use s 1; if its input is an equation with a variable on the lefthand side,
then s 1 treats the equation like an assignment to that variable if you don’t give a variable name.)

It’s clear that this will have the same value for either sign of s1, but let’s work it out anyway,
just for the exercise:

2: [-1, 1] 1: [15.04166, 15.04166]
1: 24.08333 s172 ...

[1n, 1] TAB V M $ RET

Here we have used a vector mapping operation to evaluate the function at several values of ‘s1’ at
once. VM $is like V M > except that it takes the formula from the top of the stack. The formula is
interpreted as a function to apply across the vector at the next-to-top stack level. Since a formula
on the stack can’t contain ‘$’ signs, Calc assumes the variables in the formula stand for different
arguments. It prompts you for an argument list, giving the list of all variables in the formula in
alphabetical order as the default list. In this case the default is ‘(s1)’, which is just what we want
so we simply press RET at the prompt.

If there had been several different values, we could have used V R X to find the global maximum.

Calc has a built-in a P command that solves an equation using H a S and returns a vector of
all the solutions. It simply automates the job we just did by hand. Applied to our original cubic
polynomial, it would produce the vector of solutions [1.19023, —1.19023,0]. (There is also an a X
command which finds a local maximum of a function. It uses a numerical search method rather
than examining the derivatives, and thus requires you to provide some kind of initial guess to show
it where to look.)

(e) Exercise 2. Given a vector of the roots of a polynomial (such as the output of an a P
command), what sequence of commands would you use to reconstruct the original polynomial?
(The answer will be unique to within a constant multiple; choose the solution where the leading
coefficient is one.) See XXX [Algebra Answer 2], page XXX. (o)

The m s command enables “symbolic mode,” in which formulas like ‘sqrt (5)’ that can’t be
evaluated exactly are left in symbolic form rather than giving a floating-point approximate answer.
Fraction mode (m f) is also useful when doing algebra.

2: 34 x - 24 x°3 2: 34 x - 24 x°3
1: 34 x - 24 x°3 1: [sqrt(51) / 6, sqrt(s51) / -6, 0]
r 2 RET ms mf a P x RET

One more mode that makes reading formulas easier is “Big mode.”
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3
2: 34 x - 24 x
V51 V51
1 [ _____ sy T T T ’ O]
6 -6
d B

Here things like powers, square roots, and quotients and fractions are displayed in a two-
dimensional pictorial form. Calc has other language modes as well, such as C mode, FORTRAN
mode, and TEX mode.

2: 34xx - 24xpow(x, 3) 2:  34%x - 24%x**3
1: {sqrt(51) / 6, sqrt(51) / -6, 0} 1: /sqrt(b1l) / 6, sqrt(b1l) / -6, 0/

dC d F

3: 34 x - 24 x~3
[{\sqrt{51} \over 6}, {\sqrt{51} \over -6}, 0]
1: {2 \over 3} \sqrt{5}

N

dT °’ 2 \sqrt{5} \over 3 RET
As you can see, language modes affect both entry and display of formulas. They affect such things
as the names used for built-in functions, the set of arithmetic operators and their precedences, and
notations for vectors and matrices.

Notice that ‘sqrt(51)’ may cause problems with older implementations of C and FORTRAN,
which would require something more like ‘sqrt (561.0)°. It is always wise to check over the formulas
produced by the various language modes to make sure they are fully correct.

Type m s, m £, and d N to reset these modes. (You may prefer to remain in Big mode, but all
the examples in the tutorial are shown in normal mode.)

What is the area under the portion of this curve from = = 1 to 27 This is simply the integral of
the function:

1: 17 x"2 - 6 x"4 + 3 1: 5.6666 x"3 - 1.2 x5 + 3 x

ri aix
We want to evaluate this at our two values for £ and subtract. One way to do it is again with

vector mapping and reduction:

2: [2, 1] 1: [12.93333, 7.46666] 1: 5.46666
1: 5.6666 x"3 ...

[2, 1] TAB VM $ RET VR -
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(e) Exercise 3. Find the integral from 1 to y of z sinmx (where the sine is calculated in radians).
Find the values of the integral for integers y from 1 to 5. See XXX [Algebra Answer 3], page XXX.
(o)

Calc’s integrator can do many simple integrals symbolically, but many others are beyond its
capabilities. Suppose we wish to find the area under the curve sinx Ilnx over the same range of x.
If you entered this formula and typed a i x RET (don’t bother to try this), Calc would work for a
long time but would be unable to find a solution. In fact, there is no closed-form solution to this
integral. Now what do we do?

One approach would be to do the integral numerically. It is not hard to do this by hand using
vector mapping and reduction. It is rather slow, though, since the sine and logarithm functions
take a long time. We can save some time by reducing the working precision.

3: 10 1. [1, 1.1, 1.2, ... , 1.8, 1.9]
2: 1

1: 0.1

10 RET 1 RET .1 RET C-u v x

(Note that we have used the extended version of v x; we could also have used plain v x as follows:
vx 10RET 9+ .1 %)

2: [1, 1.1, ... 1] 1: [0., 0.084941, 0.16993, ... ]
1: sin(x) 1n(x)

? sin(x) 1In(x) RET s 1 mr p5RET VM$ RET

1: 3.4195 0.34195

VR + 0.1 =
(If you got wildly different results, did you remember to switch to radians mode?)

Here we have divided the curve into ten segments of equal width; approximating these segments
as rectangular boxes (i.e., assuming the curve is nearly flat at that resolution), we compute the
areas of the boxes (height times width), then sum the areas. (It is faster to sum first, then multiply
by the width, since the width is the same for every box.)

The true value of this integral turns out to be about 0.374, so we’re not doing too well. Let’s
try another approach.

1: sin(x) 1n(x) 1: 0.84147 x - 0.84147 + 0.11957 (x - 1)72 - ...

r1 a t x=1 RET 4 RET
Here we have computed the Taylor series expansion of the function about the point z = 1. We can
now integrate this polynomial approximation, since polynomials are easy to integrate.
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1: 0.42074 x"2 + ... 1: [-0.0446, -0.42073] 1: 0.3761

a i x RET [2, 1] TAB VM$ RET VR -
Better! By increasing the precision and/or asking for more terms in the Taylor series, we can get a
result as accurate as we like. (Taylor series converge better away from singularities in the function
such as the one at 1n(0), so it would also help to expand the series about the points x = 2 or
z = 1.5 instead of z = 1.)

(o) Exercise 4. Our first method approximated the curve by stairsteps of width 0.1; the total
area was then the sum of the areas of the rectangles under these stairsteps. Our second method
approximated the function by a polynomial, which turned out to be a better approximation than
stairsteps. A third method is Simpson’s rule, which is like the stairstep method except that the
steps are not required to be flat. Simpson’s rule boils down to the formula,

g(f(a) +4f(a+h)+2f(a+2h)+4f(a+3h) +---
+2f(a+ (n—2)h) +4f(a+ (n—1)h) + f(a+ nh))

where n (which must be even) is the number of slices and h is the width of each slice. These are 10
and 0.1 in our example. For reference, here is the corresponding formula for the stairstep method:

h(f(a) + fla+h)+ f(a+2h)+ f(a+3h)+ -+ fla+ (n—2)h) + f(a+ (n — 1)h))

Compute the integral from 1 to 2 of sinz Inz using Simpson’s rule with 10 slices. See XXX
[Algebra Answer 4], page XXX. (o)

Calc has a built-in a T command for doing numerical integration. It uses Romberg’s method,
which is a more sophisticated cousin of Simpson’s rule. In particular, it knows how to keep refining
the result until the current precision is satisfied.

Aside from the commands we’ve seen so far, Calc also provides a large set of commands for
operating on parts of formulas. You indicate the desired sub-formula by placing the cursor on any
part of the formula before giving a selection command. Selections won’t be covered in the tutorial;
see XXX [Selecting Subformulas|, page XXX, for details and examples.

2.5.2 Rewrite Rules

No matter how many built-in commands Calc provided for doing algebra, there would always be
something you wanted to do that Calc didn’t have in its repertoire. So Calc also provides a rewrite
rule system that you can use to define your own algebraic manipulations.

Suppose we want to simplify this trigonometric formula:

1: 1 / cos(x) - sin(x) tan(x)

> 1/cos(x) - sin(x) tan(x) RET s 1
If we were simplifying this by hand, we’d probably replace the ‘tan’ with a ‘sin/cos’ first, then
combine over a common denominator. There is no Calc command to do the former; the a n algebra
command will do the latter but we’ll do both with rewrite rules just for practice.
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Rewrite rules are written with the ‘:=" symbol.

1: 1 / cos(x) - sin(x)"2 / cos(x)

a r tan(a) := sin(a)/cos(a) RET
(The “assignment operator” ‘:=’ has several uses in Calc. All by itself the formula ‘tan(a) :=
sin(a)/cos(a)’ doesn’t do anything, but when it is given to the a r command, that command
interprets it as a rewrite rule.)

The lefthand side, ‘tan(a)’, is called the pattern of the rewrite rule. Calc searches the formula
on the stack for parts that match the pattern. Variables in a rewrite pattern are called meta-
variables, and when matching the pattern each meta-variable can match any sub-formula. Here,
the meta-variable ‘a’ matched the actual variable ‘x’.

When the pattern part of a rewrite rule matches a part of the formula, that part is replaced by
the righthand side with all the meta-variables substituted with the things they matched. So the
result is ‘sin(x) / cos(x)’. Calc’s normal algebraic simplifications then mix this in with the rest
of the original formula.

To merge over a common denominator, we can use another simple rule:

1: (1 - sin(x)"2) / cos(x)

ar a/x + b/x := (at+b)/x RET

This rule points out several interesting features of rewrite patterns. First, if a meta-variable
appears several times in a pattern, it must match the same thing everywhere. This rule detects
common denominators because the same meta-variable ‘x’ is used in both of the denominators.

Second, meta-variable names are independent from variables in the target formula. Notice that
the meta-variable ‘x’ here matches the subformula ‘cos (x)’; Calc never confuses the two meanings
of ‘x’.

And third, rewrite patterns know a little bit about the algebraic properties of formulas. The
pattern called for a sum of two quotients; Calc was able to match a difference of two quotients by
matching ‘a = 1’, ‘b = -sin(x) "2’, and ‘x = cos(x)’.

We could just as easily have written ‘a/x - b/x := (a-b)/x’ for the rule. It would have worked
just the same in all cases. (If we really wanted the rule to apply only to ‘+’ or only to ‘', we could
have used the plain symbol. See XXX [Algebraic Properties of Rewrite Rules], page XXX, for
some examples of this.)

One more rewrite will complete the job. We want to use the identity ‘sin(x) "2 + cos(x) "2 = 1’,
but of course we must first rearrange the identity in a way that matches our formula. The obvious
rule would be ‘1 - sin(x) "2 := cos(x) "2, but a little thought shows that the rule ‘sin(x) "2 :=
1 - cos(x) "2’ will also work. The latter rule has a more general pattern so it will work in many
other situations, too.

1: (1 + cos(x)"2 - 1) / cos(x) 1: cos(x)

ar sin(x)"2 := 1 - cos(x)"2 RET as
You may ask, what’s the point of using the most general rule if you have to type it in every
time anyway? The answer is that Calc allows you to store a rewrite rule in a variable, then give
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the variable name in the a r command. In fact, this is the preferred way to use rewrites. For one,
if you need a rule once you’ll most likely need it again later. Also, if the rule doesn’t work quite
right you can simply Undo, edit the variable, and run the rule again without having to retype it.

? tan(x) := sin(x)/cos(x) RET s t tsc RET
’ a/x + b/x := (a+b)/x RET s t merge RET
? sin(x)"2 := 1 - cos(x)"2 RET s t sinsqr RET
1: 1/ cos(x) - sin(x) tan(x) 1: cos(x)
ri ar tsc RET a r merge RET a r sinsqr RET a s

To edit a variable, type s e and the variable name, use regular Emacs editing commands as
necessary, then type M-# M-# or C-c C-c to store the edited value back into the variable. You can
also use s e to create a new variable if you wish.

Notice that the first time you use each rule, Calc puts up a “compiling” message briefly. The
pattern matcher converts rules into a special optimized pattern-matching language rather than
using them directly. This allows a r to apply even rather complicated rules very efficiently. If the
rule is stored in a variable, Calc compiles it only once and stores the compiled form along with the
variable. That’s another good reason to store your rules in variables rather than entering them on
the fly.

(e) Exercise 1. Type m s to get symbolic mode, then enter the formula ‘(2 + sqrt(2)) /
(1 + sqrt(2))’. Using a rewrite rule, simplify this formula by multiplying both sides by the
conjugate ‘1 - sqrt(2)’. The result will have to be expanded by the distributive law; do this with
another rewrite. See XXX [Rewrites Answer 1], page XXX. (o)

The a r command can also accept a vector of rewrite rules, or a variable containing a vector of
rules.

1: [tsc, merge, sinsqr] 1: [tan(x) := sin(x) / cos(x), ... ]

> [tsc,merge,sinsqr] RET =

1: 1 / cos(x) - sin(x) tan(x) 1: cos(x)

st trig RET r 1 ar trig RET a s
Calc tries all the rules you give against all parts of the formula, repeating until no further change
is possible. (The exact order in which things are tried is rather complex, but for simple rules like

the ones we’ve used here the order doesn’t really matter. See XXX [Nested Formulas with Rewrite
Rules], page XXX.)

Calc actually repeats only up to 100 times, just in case your rule set has gotten into an infinite
loop. You can give a numeric prefix argument to a r to specify any limit. In particular, M-1 a r
does only one rewrite at a time.
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1: 1 / cos(x) - sin(x)"2 / cos(x) 1: (1 - sin(x)"2) / cos(x)

r1 M-1ar trig RET M-1 a r trig RET
You can type M-0 a r if you want no limit at all on the number of rewrites that occur.

Rewrite rules can also be conditional. Simply follow the rule with a ‘: :” symbol and the desired
condition. For example,

1: exp(2 pi i) + exp(3 pi i) + exp(4 pi i)

? exp(2 pi i) + exp(3 pi i) + exp(4 pi i) RET

1: 1 + exp(3 pi i) +1

arexp(k pi i) :=1 :: k % 2 = 0 RET
(Recall, ‘k % 2’ is the remainder from dividing ‘k’ by 2, which will be zero only when ‘k’ is an even
integer.)

An interesting point is that the variables ‘pi’ and ‘i’ were matched literally rather than acting as
meta-variables. This is because they are special-constant variables. The special constants ‘e’, ‘phi’,
and so on also match literally. A common error with rewrite rules is to write, say, ‘f(a,b,c,d,e)
:= g(a+b+c+d+e)’, expecting to match any ‘f’ with five arguments but in fact matching only when
the fifth argument is literally ‘e’!

Rewrite rules provide an interesting way to define your own functions. Suppose we want to
define ‘fib(n)’ to produce the nth Fibonacci number. The first two Fibonacci numbers are each
1; later numbers are formed by summing the two preceding numbers in the sequence. This is easy
to express in a set of three rules:

> [£ib(1) := 1, fib(2) := 1, fib(n) := fib(n-1) + fib(n-2)] RET s t fib

1: £ib(7) 1: 13

> £ib(7) RET a r fib RET

One thing that is guaranteed about the order that rewrites are tried is that, for any given
subformula, earlier rules in the rule set will be tried for that subformula before later ones. So even
though the first and third rules both match ‘fib(1)’, we know the first will be used preferentially.

This rule set has one dangerous bug: Suppose we apply it to the formula ‘fib(x)’? (Don’t actu-
ally try this.) The third rule will match ‘fib(x)’ and replace it with ‘fib(x-1) + fib(x-2)’. Each
of these will then be replaced to get ‘fib(x-2) + 2 fib(x-3) + fib(x-4)’, and so on, expanding
forever. What we really want is to apply the third rule only when ‘n’ is an integer greater than
two. Type s e fib RET, then edit the third rule to:

fib(n) := fib(n-1) + fib(n-2) :: integer(m) :: n > 2

Now:
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1: fib(6) + fib(x) + fib(0) 1: 8 + fib(x) + £ib(0)

> fib(6)+fib(x)+fib(0) RET a r fib RET
We’ve created a new function, fib, and a new command, a r fib RET, which means “evaluate
all £ib calls in this formula.” To make things easier still, we can tell Calc to apply these rules
automatically by storing them in the special variable EvalRules.

1: [fib(1) := ...] . 1: [8, 13]

s r fib RET s t EvalRules RET > [fib(6), fib(7)] RET
It turns out that this rule set has the problem that it does far more work than it needs to when
‘n’ is large. Consider the first few steps of the computation of ‘fib(6)’:

fib(6) =
fib(5) + fib(4) =
fib(4) + £ib(3) + fib(3) + fib(2) =

fib(3) + fib(2) + fib(2) + fib(1) + fib(2) + fib(1) + 1 = ...
Note that ‘fib(3)’ appears three times here. Unless Calc’s algebraic simplifier notices the multiple
‘fib(3)’s and combines them (and, as it happens, it doesn’t), this rule set does lots of needless
recomputation. To cure the problem, type s e EvalRules to edit the rules (or just s E, a shorthand
command for editing EvalRules) and add another condition:

fib(n) := fib(n-1) + fib(n-2) :: integer(m) :: n > 2 :: remember

If a ‘:: remember’ condition appears anywhere in a rule, then if that rule succeeds Calc will add
another rule that describes that match to the front of the rule set. (Remembering works in any rule
set, but for technical reasons it is most effective in EvalRules.) For example, if the rule rewrites
‘fib(7)’ to something that evaluates to 13, then the rule ‘fib(7) := 13’ will be added to the rule
set.

Type ’ fib(8) RET to compute the eighth Fibonacci number, then type s E again to see what
has happened to the rule set.

With the remember feature, our rule set can now compute ‘fib(n)’ in just n steps. In the
process it builds up a table of all Fibonacci numbers up to n. After we have computed the result
for a particular n, we can get it back (and the results for all smaller n) later in just one step.

All Calc operations will run somewhat slower whenever EvalRules contains any rules. You
should type s u EvalRules RET now to un-store the variable.

() Exercise 2. Sometimes it is possible to reformulate a problem to reduce the amount of
recursion necessary to solve it. Create a rule that, in about n simple steps and without recourse
to the remember option, replaces ‘fib(n, 1, 1)’ with ‘fib(1, x, y)’ where x and y are the nth
and n+1st Fibonacci numbers, respectively. This rule is rather clunky to use, so add a couple more
rules to make the “user interface” the same as for our first version: enter ‘fib(n)’, get back a plain
number. See XXX [Rewrites Answer 2], page XXX. (o)

There are many more things that rewrites can do. For example, there are ‘&&&’ and ‘| | |’ pattern
operators that create “and” and “or” combinations of rules. As one really simple example, we could
combine our first two Fibonacci rules thusly:

[fib(1 ||| 2) := 1, fib(n) := ... ]
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That means “fib of something matching either 1 or 2 rewrites to 1.”

You can also make meta-variables optional by enclosing them in opt. For example, the pattern
‘a + b x’ matches ‘2 + 3 x’ but not ‘2 + x’ or ‘3 x’ or ‘x’. The pattern ‘opt(a) + opt(b) x’ matches
all of these forms, filling in a default of zero for ‘a’ and one for ‘b’.

(e) Exercise 3. Your friend Joe had ‘2 + 3 x’ on the stack and tried to use the rule ‘opt(a) +
opt(b) x :=f(a, b, x)’. What happened? See XXX [Rewrites Answer 3], page XXX. (o)

(e) Exercise 4. Starting with a positive integer a, divide a by two if it is even, otherwise compute
3a + 1. Now repeat this step over and over. A famous unproved conjecture is that for any starting
a, the sequence always eventually reaches 1. Given the formula ‘seq(a, 0)’, write a set of rules
that convert this into ‘seq(1, n)’ where n is the number of steps it took the sequence to reach the
value 1. Now enhance the rules to accept ‘seq(a)’ as a starting configuration, and to stop with
just the number n by itself. Now make the result be a vector of values in the sequence, from a to
1. (The formula ‘x|y’ appends the vectors x and y.) For example, rewriting ‘seq(6)’ should yield
the vector [6,3,10,5,16,8,4,2,1]. See XXX [Rewrites Answer 4], page XXX. (o)

(o) Exercise 5. Define, using rewrite rules, a function ‘nterms(x)’ that returns the number of
terms in the sum x, or 1 if x is not a sum. (A sum for our purposes is one or more non-sum terms
separated by ‘+’ or ‘=’ signs, so that 2 —3(x +y) + xy is a sum of three terms.) See XXX [Rewrites
Answer 5], page XXX. (o)

(e) Exercise 6. Calc considers the form 0° to be “indeterminate,” and leaves it unevaluated
(assuming infinite mode is not enabled). Some people prefer to define 0° = 1, so that the identity
z° = 1 can safely be used for all z. Find a way to make Calc follow this convention. What happens
if you now type m i to turn on infinite mode? See XXX [Rewrites Answer 6], page XXX. (o)

(e) Exercise 7. A Taylor series for a function is an infinite series that exactly equals the value

of that function at values of z near zero.

A A

cosmzl—g—kﬂ—a—l----
The a t command produces a truncated Taylor series which is obtained by dropping all the
terms higher than, say, z°>. Calc represents the truncated Taylor series as a polynomial in z.
Mathematicians often write a truncated series using a “big-O” notation that records what was the

lowest term that was truncated.
2

cosz=1— % + O(z?)

The meaning of O(z®) is “a quantity which is negligibly small if z* is considered negligibly small
as x goes to zero.”

The exercise is to create rewrite rules that simplify sums and products of power series represented
as ‘polynomial + 0(var~n)’. For example, given ‘1 - x~2 / 2+ 0(x"3)’and ‘x - x~3 /6 + 0(x~4)’
on the stack, we want to be able to type * and get the result ‘x - 2:3 x~3 + 0(x~4)’. Don’t worry
if the terms of the sum are rearranged or if a s needs to be typed after rewriting. (This one is
rather tricky; the solution at the end of this chapter uses 6 rewrite rules. Hint: The ‘constant (x)’
condition tests whether ‘x’ is a number.) See XXX [Rewrites Answer 7], page XXX. (o)

See XXX [Rewrite Rules|, page XXX, for the whole story on rewrite rules.
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2.6 Programming Tutorial

The Calculator is written entirely in Emacs Lisp, a highly extensible language. If you know Lisp,
you can program the Calculator to do anything you like. Rewrite rules also work as a powerful
programming system. But Lisp and rewrite rules take a while to master, and often all you want to
do is define a new function or repeat a command a few times. Calc has features that allow you to
do these things easily.

(Note that the programming commands relating to user-defined keys are not yet supported
under Lucid Emacs 19.)

One very limited form of programming is defining your own functions. Calc’s Z F command
allows you to define a function name and key sequence to correspond to any formula. Programming
commands use the shift-Z prefix; the user commands they create use the lower case z prefix.

1: 1 +x+x"2/2+x"3/6 1: 1 +x+x"2/2+x"3/6

>’ 1 +x + x72/2! + x°3/3! RET Z F e myexp RET RET RET y
This polynomial is a Taylor series approximation to ‘exp(x)’. The Z F command asks a number
of questions. The above answers say that the key sequence for our function should be z e; the M-x
equivalent should be calc-myexp; the name of the function in algebraic formulas should also be
myexp; the default argument list ‘(x)’ is acceptable; and finally y answers the question “leave it in
symbolic form for non-constant arguments?”

1: 1.3495 2: 1.3495 3: 1.3495
1: 1.34986 2: 1.34986
1: myexp(a + 1)

.3z e .3 E > a+l RET z e
First we call our new exp approximation with 0.3 as an argument, and compare it with the true
exp function. Then we note that, as requested, if we try to give z e an argument that isn’t a
plain number, it leaves the myexp function call in symbolic form. If we had answered n to the final
question, ‘myexp(a + 1)’ would have evaluated by plugging in ‘a + 1’ for ‘x’ in the defining formula.

(e) Exercise 1. The “sine integral” function Si(z) is defined as the integral of ‘sin(t)/t’ for
t = 0 to z in radians. (It was invented because this integral has no solution in terms of basic
functions; if you give it to Calc’s a i command, it will ponder it for a long time and then give up.)
We can use the numerical integration command, however, which in algebraic notation is written
like ‘ninteg(£f(t), t, 0, x)’ with any integrand ‘f£(t)’. Define a z s command and Si function
that implement this. You will need to edit the default argument list a bit. As a test, ‘Si (1)’ should
return 0.946083. (Hint: ninteg will run a lot faster if you reduce the precision to, say, six digits
beforehand.) See XXX [Programming Answer 1], page XXX. (o)

The simplest way to do real “programming” of Emacs is to define a keyboard macro. A keyboard
macro is simply a sequence of keystrokes which Emacs has stored away and can play back on
demand. For example, if you find yourself typing H a S x RET often, you may wish to program a
keyboard macro to type this for you.

Si
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1: y = sqrt(x) 1: x=7y72
? y=sqrt(x) RET C-x (HaS x RET C-x )

1: y = cos(x) 1: x = sl arccos(y) + 2 pi nl
? y=cos(x) RET X

When you type C-x (, Emacs begins recording. But it is also still ready to execute your keystrokes,
so you're really “training” Emacs by walking it through the procedure once. When you type C-x ),
the macro is recorded. You can now type X to re-execute the same keystrokes.

You can give a name to your macro by typing Z K.

1: . 1: y=x"4 1: x = s2 sqrt(sl sqrt(y))

Z K x RET ’ y=x"4 RET z X
Notice that we use shift-Z to define the command, and lower-case z to call it up.

Keyboard macros can call other macros.

1: abs(x) 1: x=sly 1: 2/ x 1: x=2/y

’ abs(x) RET C-x (> y RET a = z x C-x ) > 2/x RET X
() Exercise 2. Define a keyboard macro to negate the item in level 3 of the stack, without
disturbing the rest of the stack. See XXX [Programming Answer 2], page XXX. (o)

(e) Exercise 3. Define keyboard macros to compute the following functions:

sin
1. Compute

, where z is the number on the top of the stack.
2. Compute the base-b logarithm, just like the B key except the arguments are taken in the
opposite order.

3. Produce a vector of integers from 1 to the integer on the top of the stack.

See XXX [Programming Answer 3], page XXX. (o)

(e) Exercise 4. Define a keyboard macro to compute the average (mean) value of a list of
numbers. See XXX [Programming Answer 4], page XXX. (o)

In many programs, some of the steps must execute several times. Calc has looping commands
that allow this. Loops are useful inside keyboard macros, but actually work at any time.

1: x°6 2: x6 1: 360 x°2
1: 4
7 x°6 RET 4 Z <adzxRET Z >

Here we have computed the fourth derivative of 2% by enclosing a derivative command in a “repeat
loop” structure. This structure pops a repeat count from the stack, then executes the body of the
loop that many times.
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If you make a mistake while entering the body of the loop, type Z C-g to cancel the loop
command.

Here’s another example:

3: 1 2: 10946

2: 1 1. 17711

1: 20

1 RET RET 20 Z <TAB C-j + Z >

The numbers in levels 2 and 1 should be the 21st and 22nd Fibonacci numbers, respectively. (To
see what’s going on, try a few repetitions of the loop body by hand; C-j, also on the Line-Feed or
LFD key if you have one, makes a copy of the number in level 2.)

A fascinating property of the Fibonacci numbers is that the nth Fibonacci number can be
found directly by computing ¢" /+/5 and then rounding to the nearest integer, where ¢ (“phi”), the
“golden ratio,” is (14 +/5)/2. (For convenience, this constant is available from the phi variable, or
the I H P command.)

1: 1.61803 1: 24476.0000409 1: 10945.9999817 1: 10946

IHP 21 - 5Q / R
(e) Exercise 5. The continued fraction representation of ¢ is 1 +1/(1 +1/(1 +1/(...))). We
can compute an approximate value by carrying this however far and then replacing the innermost
1/(...) by 1. Approximate ¢ using a twenty-term continued fraction. See XXX [Programming
Answer 5], page XXX. (o)

() Exercise 6. Linear recurrences like the one for Fibonacci numbers can be expressed in
terms of matrices. Given a vector [a,b] determine a matrix which, when multiplied by this vector,
produces the vector [b,c|, where a, b and c are three successive Fibonacci numbers. Now write a
program that, given an integer n, computes the nth Fibonacci number using matrix arithmetic.
See XXX [Programming Answer 6], page XXX. (o)

A more sophisticated kind of loop is the for loop. Suppose we wish to compute the 20th
“harmonic” number, which is equal to the sum of the reciprocals of the integers from 1 to 20.

3: 0 1: 3.597739

2: 1

1: 20

0 RET 1 RET 20 Z(&+12Z2)

The “for” loop pops two numbers, the lower and upper limits, then repeats the body of the loop
as an internal counter increases from the lower limit to the upper one. Just before executing the
loop body, it pushes the current loop counter. When the loop body finishes, it pops the “step,”
i.e., the amount by which to increment the loop counter. As you can see, our loop always uses a
step of one.

This harmonic number function uses the stack to hold the running total as well as for the various
loop housekeeping functions. If you find this disorienting, you can sum in a variable instead:
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1: O 2: 1 . 1: 3.597739
1: 20
0t7 1 RET 20 Z(&s+717Z) r7

The s + command adds the top-of-stack into the value in a variable (and removes that value from
the stack).

It’s worth noting that many jobs that call for a “for” loop can also be done more easily by Calc’s
high-level operations. Two other ways to compute harmonic numbers are to use vector mapping
and reduction (v x 20, then V M &, then VR +), or to use the summation command a +. Both of
these are probably easier than using loops. However, there are some situations where loops really
are the way to go:

(o) Exercise 7. Use a “for” loop to find the first harmonic number which is greater than 4.0.
See XXX [Programming Answer 7], page XXX. (o)

Of course, if we’re going to be using variables in our programs, we have to worry about the
programs clobbering values that the caller was keeping in those same variables. This is easy to fix,
though:

1: 0.6667 1: 0.6667 3: 0.6667
2: 3.597739
1: 0.6667

Z ¢ p4RET 2 RET 3/ s 7 s s aRET Z?’ r7sraRET
When we type Z ¢ (that’s a back-quote character), Calc saves its mode settings and the contents of
the ten “quick variables” for later reference. When we type Z ’ (that’s an apostrophe now), Calc
restores those saved values. Thus the p 4 and s 7 commands have no effect outside this sequence.
Wrapping this around the body of a keyboard macro ensures that it doesn’t interfere with what
the user of the macro was doing. Notice that the contents of the stack, and the values of named
variables, survive past the Z ’° command.

The Bernoulli numbers are a sequence with the interesting property that all of the odd Bernoulli
numbers are zero, and the even ones, while difficult to compute, can be roughly approximated by

—. Let’s write a keyboard macro to compute (approximate) Bernoulli numbers.
™

(Calc has a command, k b, to compute exact Bernoulli numbers, but this command is very slow
for large n since the higher Bernoulli numbers are very large fractions.)

the formula

1: 10 1: 0.0756823

10 C-x (RET 2 % Z [DELOZ :’>2¢!/ (2pi)"$ RET =Z ] C-x )
You can read Z [ as “then,” Z : as “else,” and Z ] as “end-if.” There is no need for an explicit “if”
command. For the purposes of Z [, the condition is “true” if the value it pops from the stack is a
nonzero number, or “false” if it pops zero or something that is not a number (like a formula). Here
we take our integer argument modulo 2; this will be nonzero if we’re asking for an odd Bernoulli
number.

The actual tenth Bernoulli number is 5/66.
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3: 0.0756823 1: 0 1: 0.25305 1: 0 1: 1.16659
2: b5:66
1: 0.0757575

10 k¥ b RET ¢ £ M-0 DEL 11 X DEL 12 X DEL 13 X DEL 14 X
Just to exercise loops a bit more, let’s compute a table of even Bernoulli numbers.
3: [1 1: [0.10132, 0.03079, 0.02340, 0.033197, ...]
2: 2
1: 30
[ ] 2 RET 30 Z (X | 22Z)

The vertical-bar | is the vector-concatenation command. When we execute it, the list we are
building will be in stack level 2 (initially this is an empty list), and the next Bernoulli number will
be in level 1. The effect is to append the Bernoulli number onto the end of the list. (To create
a table of exact fractional Bernoulli numbers, just replace X with k b in the above sequence of
keystrokes.)

With loops and conditionals, you can program essentially anything in Calc. One other command
that makes looping easier is Z /, which takes a condition from the stack and breaks out of the
enclosing loop if the condition is true (non-zero). You can use this to make “while” and “until”
style loops.

If you make a mistake when entering a keyboard macro, you can edit it using Z E. First, you
must attach it to a key with Z K. One technique is to enter a throwaway dummy definition for the
macro, then enter the real one in the edit command.

1: 3 1: 3 Keyboard Macro Editor.
Original keys: 1 RET 2 +

type " 1\I‘"

type n 2 n

calc-plus
C-x ( 1 RET 2 + C-x ) Z K h RET ZEh

This shows the screen display assuming you have the ‘macedit’ keyboard macro editing package
installed, which is usually the case since a copy of ‘macedit’ comes bundled with Calc.

A keyboard macro is stored as a pure keystroke sequence. The ‘macedit’ package (invoked by
Z E) scans along the macro and tries to decode it back into human-readable steps. If a key or keys
are simply shorthand for some command with a M-x name, that name is shown. Anything that
doesn’t correspond to a M-x command is written as a ‘type’ command.

Let’s edit in a new definition, for computing harmonic numbers. First, erase the three lines of
the old definition. Then, type in the new definition (or use Emacs M-w and C-y commands to copy
it from this page of the Info file; you can skip typing the comments that begin with ‘#’).

calc-kbd-push # Save local values (Z )
type "0" # Push a zero
calc-store-into # Store it in variable 1

type n 1 n
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type "1" # Initial value for loop
calc-roll-down # This is the TAB key; swap initial & final
calc-kbd-for # Begin "for" loop...

calc-inv # Take reciprocal

calc-store-plus # Add to accumulator

type n 1 n

type "1" # Loop step is 1

calc-kbd-end-for # End "for" loop

calc-recall # Now recall final accumulated value
type n 1 n

calc-kbd-pop # Restore values (Z )

Press M-# M-# to finish editing and return to the Calculator.

1: 20 1: 3.597739

20 z h
If you don’t know how to write a particular command in ‘macedit’ format, you can always write

it as keystrokes in a type command. There is also a keys command which interprets the rest of
the line as standard Emacs keystroke names. In fact, ‘macedit’ defines a handy read-kbd-macro
command which reads the current region of the current buffer as a sequence of keystroke names, and
defines that sequence on the X (and C-x e) key. Because this is so useful, Calc puts this command
on the M-# m key. Try reading in this macro in the following form: Press C-@ (or C-SPC) at one end
of the text below, then type M-# m at the other.

Z‘“0t1
1 TAB
Z( &s+1 12Z)
ri
Z J
(e) Exercise 8. A general algorithm for solving equations numerically is Newton’s Method.
Given the equation f(z) = 0 for any function f, and an initial guess z, which is reasonably close
to the desired solution, apply this formula over and over:
f(z)
f'(x)
where f'(z) is the derivative of f. The z values will quickly converge to a solution, i.e., eventually
Tnew and x will be equal to within the limits of the current precision. Write a program which takes
a formula involving the variable z, and an initial guess z,, on the stack, and produces a value of
x for which the formula is zero. Use it to find a solution of sin(cosz) = 0.5 near z = 4.5. (Use
angles measured in radians.) Note that the built-in a R (calc-find-root) command uses Newton’s
method when it is able. See XXX [Programming Answer 8], page XXX. (o)
(o) Exercise 9. The digamma function 9 (z) (“psi”) is defined as the derivative of InT'(z). For
large values of z, it can be approximated by the infinite sum

1 X bern(2n)
~lnz— — — — 7
¥(z) % Inz 2z ~ 2nz2n

Tnew = T —

where > represents the sum over n from 1 to infinity (or to some limit high enough to give the
desired accuracy), and the bern function produces (exact) Bernoulli numbers. While this sum is
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not guaranteed to converge, in practice it is safe. An interesting mathematical constant is Euler’s
gamma, which is equal to about 0.5772. One way to compute it is by the formula, v = —(1).
Unfortunately, 1 isn’t a large enough argument for the above formula to work (5 is a much safer
value for z). Fortunately, we can compute (1) from ¢ (5) using the recurrence ¢(z+1) = (z) + 1.
Your task: Develop a program to compute t(z); it should “pump up” z if necessary to be greater
than 5, then use the above summation formula. Use looping commands to compute the sum. Use
your function to compute 7y to twelve decimal places. (Calc has a built-in command for Euler’s
constant, I P, which you can use to check your answer.) See XXX [Programming Answer 9],
page XXX. (o)

(e) Exercise 10. Given a polynomial in z and a number m on the stack, where the polynomial
is of degree m or less (i.e., does not have any terms higher than ™), write a program to convert
the polynomial into a list-of-coefficients notation. For example, 5z* + (z + 1) with m = 6 should
produce the list [1,2,1,0,5,0,0]. Also develop a way to convert from this form back to the standard
algebraic form. See XXX [Programming Answer 10], page XXX. (o)

(e) Exercise 11. The Stirling numbers of the first kind are defined by the recurrences,
s(n,n) =1 for n > 0,
s(n,0) =0  forn >0,

s(n+1,m) = s(n,m —1) —ns(n,m) forn>m > 1.

. . n
(These numbers are also sometimes written [ ] )
m

This can be implemented using a recursive program in Calc; the program must invoke itself in
order to calculate the two righthand terms in the general formula. Since it always invokes itself with
“simpler” arguments, it’s easy to see that it must eventually finish the computation. Recursion is
a little difficult with Emacs keyboard macros since the macro is executed before its definition is
complete. So here’s the recommended strategy: Create a “dummy macro” and assign it to a key
with, e.g., ZK s. Now enter the true definition, using the z s command to call itself recursively,
then assign it to the same key with Z K s. Now the z s command will run the complete recursive
program. (Another way is to use Z E or M-# m (read-kbd-macro) to read the whole macro at once,
thus avoiding the “training” phase.) The task: Write a program that computes Stirling numbers
of the first kind, given n and m on the stack. Test it with small inputs like s(4,2). (There is a
built-in command for Stirling numbers, k s, which you can use to check your answers.) See XXX
[Programming Answer 11], page XXX. (o)

The programming commands we’ve seen in this part of the tutorial are low-level, general-purpose
operations. Often you will find that a higher-level function, such as vector mapping or rewrite rules,
will do the job much more easily than a detailed, step-by-step program can:

(e) Exercise 12. Write another program for computing Stirling numbers of the first kind,
this time using rewrite rules. Once again, n and m should be taken from the stack. See XXX
[Programming Answer 12], page XXX. (o)

This ends the tutorial section of the Calc manual. Now you know enough about Calc to use it
effectively for many kinds of calculations. But Calc has many features that were not even touched
upon in this tutorial. The rest of this manual tells the whole story.
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2.7 Answers to Exercises

This section includes answers to all the exercises in the Calc tutorial.

2.7.1 RPN Tutorial Exercise 1

1 RET 2 RET 3 RET 4 + * -
The result is 1 — (2 x (3 +4)) = —13.

2.7.2 RPN Tutorial Exercise 2

2x4+7x95+2="7575

After computing the intermediate term 2 x4 = 8, you can leave that result on the stack while you
compute the second term. With both of these results waiting on the stack you can then compute
the final term, then press + + to add everything up.

2: 2 1: 8 3: 8 2: 8
1: 4 . 2: 7 1: 66.5
1 9.5
2 RET 4 * 7 RET 9.5 *
4 8 3: 8 2: 8 1: 75.75
3: 66.5 2: 66.5 1: 67.75
2 5 1 1.25
1 4
5 RET 4 / + +
Alternatively, you could add the first two terms before going on with the third term.
2: 8 1: 74.5 3: T74.5 2: T74.5 1: 75.75
1: 66.5 . 2: b 1: 1.26
1: 4
+ 5 RET 4 / +

On an old-style RPN calculator this second method would have the advantage of using only
three stack levels. But since Calc’s stack can grow arbitrarily large this isn’t really an issue. Which
method you choose is purely a matter of taste.
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2.7.3 RPN Tutorial Exercise 3

The TAB key provides a way to operate on the number in level 2.

3: 10 3: 10 4: 10 3: 10 3: 10
2: 20 2: 30 3: 30 2: 30 2: 21
1: 30 1: 20 2: 20 1: 21 1: 30
1: 1
TAB 1 + TAB
Similarly, M-TAB gives you access to the number in level 3.
3: 10 3: 21 3: 21 3: 30 3: 11
2: 21 2: 30 2: 30 2: 11 2: 21
1: 30 1: 10 1: 11 1: 21 1: 30
M-TAB 1+ M-TAB M-TAB

2.7.4 RPN Tutorial Exercise 4

Either (2, 3) or ( 2 SPC 3 ) would have worked, but using both the comma and the space at
once yields:

1: (... 2: (... 1: (2, ... 2: (2, ... 2: (2,
1: 2 . 1: (2, ... 1: (2, 3)
( 2 SPC 3)

Joe probably tried to type TAB DEL to swap the extra incomplete object to the top of the stack
and delete it. But a feature of Calc is that DEL on an incomplete object deletes just one component
out of that object, so he had to press DEL twice to finish the job.

2: (2, ... 2: (2, 3) 2: (2, 3) 1: (2, 3)
1: (2, 3) 1: (2, ... 1: (...
TAB DEL DEL

(As it turns out, deleting the second-to-top stack entry happens often enough that Calc provides
a special key, M-DEL, to do just that. M-DEL is just like TAB DEL, except that it doesn’t exhibit the
“feature” that tripped poor Joe.)
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2.7.5 Algebraic Entry Tutorial Exercise 1

Type ’ sqrt($) RET.
If the @ key is broken, you could use ’> $~0.5 RET. Or, RPN style, 0.5 ~.

(Actually, ‘$~1:2’, using the fraction one-half as the power, is a closer equivalent, since ‘970.5’
yields 3.0 whereas ‘sqrt (9)’ and ‘9~1:2’ yield the exact integer 3.)

2.7.6 Algebraic Entry Tutorial Exercise 2

In the formula ‘2 x (1+y)’, ‘x’ was interpreted as a function name with ‘1+y’ as its argument.
Assigning a value to a variable has no relation to a function by the same name. Joe needed to use
an explicit ‘*’ symbol here: ‘2 x*(1+y)’.

2.7.7 Algebraic Entry Tutorial Exercise 3

The result from 1 RET 0 / will be the formula 1/0. The “function” ¢/’ cannot be evaluated when
its second argument is zero, so it is left in symbolic form. When you now type 0 *, the result will
be zero because Calc uses the general rule that “zero times anything is zero.”

The m i command enables an infinite mode in which 1/0 results in a special symbol that
represents “infinity.” If you multiply infinity by zero, Calc uses another special new symbol to
show that the answer is “indeterminate.” See XXX [Infinities], page XXX, for further discussion
of infinite and indeterminate values.

2.7.8 Modes Tutorial Exercise 1

Calc always stores its numbers in decimal, so even though one-third has an exact base-3 repre-
sentation (‘3#0.1°), it is still stored as 0.3333333 (chopped off after 12 or however many decimal
digits) inside the calculator’s memory. When this inexact number is converted back to base 3 for
display, it may still be slightly inexact. When we multiply this number by 3, we get 0.999999, also
an inexact value.

When Calc displays a number in base 3, it has to decide how many digits to show. If the current
precision is 12 (decimal) digits, that corresponds to ‘12 / 1og10(3) = 25.15’ base-3 digits. Because
25.15 is not an exact integer, Calc shows only 25 digits, with the result that stored numbers carry
a little bit of extra information that may not show up on the screen. When Joe entered ‘3#0.2’,
the stored number 0.666666 happened to round to a pleasing value when it lost that last 0.15 of
a digit, but it was still inexact in Calc’s memory. When he divided by 2, he still got the dreaded
inexact value 0.333333. (Actually, he divided 0.666667 by 2 to get 0.333334, which is why he got
something a little higher than 3#0.1 instead of a little lower.)

If Joe didn’t want to be bothered with all this, he could have typed M-24 d n to display with
one less digit than the default. (If you give d n a negative argument, it uses default-minus-that,
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so M--d n would be an easier way to get the same effect.) Those inexact results would still be
lurking there, but they would now be rounded to nice, natural-looking values for display purposes.
(Remember, ‘0.022222’ in base 3 is like ‘0.099999’ in base 10; rounding off one digit will round
the number up to ‘0.1’.) Depending on the nature of your work, this hiding of the inexactness may
be a benefit or a danger. With the d n command, Calc gives you the choice.

Incidentally, another consequence of all this is that if you type M-30 d n to display more digits
than are “really there,” you’ll see garbage digits at the end of the number. (In decimal display
mode, with decimally-stored numbers, these garbage digits are always zero so they vanish and you
don’t notice them.) Because Calc rounds off that 0.15 digit, there is the danger that two numbers
could be slightly different internally but still look the same. If you feel uneasy about this, set the
d n precision to be a little higher than normal; you’ll get ugly garbage digits, but you’ll always be
able to tell two distinct numbers apart.

An interesting side note is that most computers store their floating-point numbers in binary,
and convert to decimal for display. Thus everyday programs have the same problem: Decimal 0.1
cannot be represented exactly in binary (try it: 0.1 d 2), so ‘0.1 * 10’ comes out as an inexact
approximation to 1 on some machines (though they generally arrange to hide it from you by
rounding off one digit as we did above). Because Calc works in decimal instead of binary, you can
be sure that numbers that look exact are exact as long as you stay in decimal display mode.

It’s not hard to show that any number that can be represented exactly in binary, octal, or
hexadecimal is also exact in decimal, so the kinds of problems we saw in this exercise are likely to
be severe only when you use a relatively unusual radix like 3.

2.7.9 Modes Tutorial Exercise 2

If the radix is 15 or higher, we can’t use the letter ‘e’ to mark the exponent because ‘e’ is
interpreted as a digit. When Calc needs to display scientific notation in a high radix, it writes
‘16#F.E8F*16.715’. You can enter a number like this as an algebraic entry. Also, pressing e
without any digits before it normally types 1e, but in a high radix it types 16.~ and puts you in
algebraic entry: 16#f.e8f RET e 15 RET * is another way to enter this number.

The reason Calc puts a decimal point in the ‘16.7’ is to prevent huge integers from being
generated if the exponent is large (consider ‘16#1.23*16~1000’, where we compute ‘16~1000’ as a
giant exact integer and then throw away most of the digits when we multiply it by the floating-point
‘16#1.23’). While this wouldn’t normally matter for display purposes, it could give you a nasty
surprise if you copied that number into a file and later moved it back into Calc.

2.7.10 Modes Tutorial Exercise 3

The answer he got was 0.5000000000006399.

The problem is not that the square operation is inexact, but that the sine of 45 that was already
on the stack was accurate to only 12 places. Arbitrary-precision calculations still only give answers
as good as their inputs.

The real problem is that there is no 12-digit number which, when squared, comes out to 0.5
exactly. The f [ and £ J commands decrease or increase a number by one unit in the last place
(according to the current precision). They are useful for determining facts like this.
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1: 0.707106781187 1: 0.500000000001
45 S 2"

1: 0.707106781187 1: 0.707106781186 1: 0.499999999999
U DEL f[ 2 -

A high-precision calculation must be carried out in high precision all the way. The only number
in the original problem which was known exactly was the quantity 45 degrees, so the precision
must be raised before anything is done after the number 45 has been entered in order for the higher
precision to be meaningful.

2.7.11 Modes Tutorial Exercise 4

Many calculations involve real-world quantities, like the width and height of a piece of wood or the
volume of a jar. Such quantities can’t be measured exactly anyway, and if the data that is input
to a calculation is inexact, doing exact arithmetic on it is a waste of time.

Fractions become unwieldy after too many calculations have been done with them. For example,
the sum of the reciprocals of the integers from 1 to 10 is 7381:2520. The sum from 1 to 30 is
9304682830147:2329089562800. After a point it will take a long time to add even one more term
to this sum, but a floating-point calculation of the sum will not have this problem.

Also, rational numbers cannot express the results of all calculations. There is no fractional form
for the square root of two, so if you type 2 @, Calc has no choice but to give you a floating-point
answer.

2.7.12 Arithmetic Tutorial Exercise 1

Dividing two integers that are larger than the current precision may give a floating-point result
that is inaccurate even when rounded down to an integer. Consider 123456789/2 when the current
precision is 6 digits. The true answer is 61728394.5, but with a precision of 6 this will be rounded
to 12345700.0/2.0 = 61728500.0. The result, when converted to an integer, will be off by 106.

Here are two solutions: Raise the precision enough that the floating-point round-off error is
strictly to the right of the decimal point. Or, convert to fraction mode so that 123456789/2
produces the exact fraction 123456789:2, which can be rounded down by the F command without
ever switching to floating-point format.
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2.7.13 Arithmetic Tutorial Exercise 2

27 RET 9 B could give the exact result 3:2, but it does a floating-point calculation instead and
produces 1.5.

Calc will find an exact result for a logarithm if the result is an integer or the reciprocal of an
integer. But there is no efficient way to search the space of all possible rational numbers for an
exact answer, so Calc doesn’t try.

2.7.14 Vector Tutorial Exercise 1

Duplicate the vector, compute its length, then divide the vector by its length: RET 4 /.

1: [1, 2, 31 2: [1, 2, 3] 1: [0.27, 0.53, 0.80] 1: 1.
1: 3.74165738677 .

ri RET A / A
The final A command shows that the normalized vector does indeed have unit length.

2.7.15 Vector Tutorial Exercise 2

The average position is equal to the sum of the products of the positions times their corresponding
probabilities. This is the definition of the dot product operation. So all you need to do is to put
the two vectors on the stack and press *.

2.7.16 Matrix Tutorial Exercise 1

The trick is to multiply by a vector of ones. Use r 4 [1 1 1] * to get the row sum. Similarly, use
[1 1] r 4 * to get the column sum.



Chapter 2: Tutorial

2.7.17 Matrix Tutorial Exercise 2

z+ay=2=6
z+by =10
Just enter the righthand side vector, then divide by the lefthand side matrix as usual.
1: [6, 10] 2: [6, 10] 1: [6-4a/ (b-a,4/ (b-a2a)]l
1: [ [ 1’ a ] .
[1,b 1]
> [6 10] RET > [1 a; 1 b] RET /
This can be made more readable using d B to enable “big” display mode:
4 a 4
1: [6 - -—--- , - ]

b-a b-a
Type d N to return to “normal” display mode afterwards.

2.7.18 Matrix Tutorial Exercise 3

To solve ATAX = ATB, first we compute A’ = ATA and B’ = AT B; now, we have a system
A’'X = B’ which we can solve using Calc’s ¢/’ command.

a+2b+3c=6
4a + 5b+ 6¢c = 2
Ta + 6b =3

2a +4b+ 6¢c =11
The first step is to enter the coefficient matrix. We’ll store it in quick variable number 7 for
later reference. Next, we compute the B’ vector.

1: [ ] 2: [ 1: [57, 84, 96]

-

[
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] 1: [6,

-

>’ [123; 456; 7T60; 246] RET s7 vt [62311] *
Now we compute the matrix A’ and divide.

2: [57, 84, 96] 1: [-11.64, 14.08, -3.64]
1: [ [ 70, 72, 39 ]

[ 72, 81, 60 ]

[ 39, 60, 811 1

r7vtr7x* /
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(The actual computed answer will be slightly inexact due to round-off error.)

Notice that the answers are similar to those for the 3 x 3 system solved in the text. That’s
because the fourth equation that was added to the system is almost identical to the first one
multiplied by two. (If it were identical, we would have gotten the exact same answer since the 4 x 3
system would be equivalent to the original 3 x 3 system.)

Since the first and fourth equations aren’t quite equivalent, they can’t both be satisfied at once.
Let’s plug our answers back into the original system of equations to see how well they match.

2: [-11.64, 14.08, -3.64] 1: [5.6, 2., 3., 11.2]
1: [ [1, 2, 3]
[ 4, 5, 6]
[7,6, 01
[ 2, 4,611
r7 TAB *

This is reasonably close to our original B vector, [6,2,3,11].

2.7.19 List Tutorial Exercise 1

We can use v x to build a vector of integers. This needs to be adjusted to get the range of integers
we desire. Mapping ‘=’ across the vector will accomplish this, although it turns out the plain ‘-’
key will work just as well.

2: 2 2: 2
1: [1, 2, 3, 4, 5, 6, 7, 8, 9] 1. [-4, -3, -2, -1, 0, 1, 2, 3, 4]

2 v x 9 RET 5VM- or 5 -
Now we use VM ~ to map the exponentiation operator across the vector.

1: [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]

VM-~

2.7.20 List Tutorial Exercise 2

Given z and y vectors in quick variables 1 and 2 as before, the first job is to form the matrix that
describes the problem.

mXxXzr+bxl=y

Thus we want a 19 X 2 matrix with our z vector as one column and ones as the other column.
So, first we build the column of ones, then we combine the two columns to form our A matrix.
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2: [1.34, 1.41, 1.49, ... 1] 1: [[1.34,1]
1: [1, 1,1, ...] [ 1.41, 1]
[ 1.49, 11

r11vb1l9 RET M-2 vpvt s 3

Now we compute ATy and AT A and divide.

1: [33.36554, 13.613] 2: [33.36554, 13.613]
1: [ [ 98.0003, 41.63 ]
[ 41.63, 19 11

vtr2* r3vtr3=x*
(Hey, those numbers look familiar!)

1: [0.52141679, -0.425978]

/

Since we were solving equations of the form m x x + b x 1 = y, these numbers should be m and
b, respectively. Sure enough, they agree exactly with the result computed using V M and V R!

The moral of this story: V M and V R will probably solve your problem, but there is often an
easier way using the higher-level arithmetic functions!

In fact, there is a built-in a F command that does least-squares fits. See XXX [Curve Fitting],
page XXX.

2.7.21 List Tutorial Exercise 3

Move to one end of the list and press C-@ (or C-SPC or whatever) to set the mark, then move to
the other end of the list and type M-# g.

1: [2.3, 6, 22, 15.1, 7, 15, 14, 7.5, 2.5]

To make things interesting, let’s assume we don’t know at a glance how many numbers are in
this list. Then we could type:

2: [2.3, 6, 22, ... ] 2: [2.3, 6, 22, ... ]
1: [2.3, 6, 22, ... ] 1: 126356422.5
RET VR *
2: 126356422.5 2: 126356422.5 1: 7.94652913734
1: [2.3, 6, 22, ... ] 1: 9

TAB vl I-
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(The I~ command computes the nth root of a number. You could also type & ~ to take the
reciprocal of 9 and then raise the number to that power.)

2.7.22 List Tutorial Exercise 4

A number j is a divisor of n if n% 7 = 0. The first step is to get a vector that identifies the divisors.

2: 30 2: [0, 0,0, 2, ...] 1: 1,1, 1,0, ...]
1: [1,2,3,4, ...1 1: 0 .

30 RET v x 30 RET s 1 VMY% O VMa= s 2
This vector has 1’s marking divisors of 30 and 0’s marking non-divisors.

The zeroth divisor function is just the total number of divisors. The first divisor function is the
sum of the divisors.

1: 8 3: 8 2: 8 2: 8
2: [1, 2, 3, 4, ...] 1: [1, 2, 3, 0, ] 1: 72
1: [1’ 13 1’ Os ]
VR + rilr?2 VM x* VR +

Once again, the last two steps just compute a dot product for which a simple * would have worked
equally well.

2.7.23 List Tutorial Exercise 5

The obvious first step is to obtain the list of factors with k f. This list will always be in sorted
order, so if there are duplicates they will be right next to each other. A suitable method is to
compare the list with a copy of itself shifted over by one.

1: [3, 7,7, 7, 19] 2: [8, 7,7, 7, 19] 2: [8, 7,7, 7, 19, 0]
1. [3, 7, 7,7, 19, 0] 1: [0, 3,7, 7, 7, 19]

19551 k f RET O | TAB O TAB |
i: [0, 0, 1, 1, 0, O] 1: 2 1: 0
VMa-= VR + 0 a-=

Note that we have to arrange for both vectors to have the same length so that the mapping operation
works; no prime factor will ever be zero, so adding zeros on the left and right is safe. From then

on the job is pretty straightforward.
Incidentally, Calc provides the Mébius p function which is zero if and only if its argument is
square-free. It would be a much more convenient way to do the above test in practice.
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2.7.24 List Tutorial Exercise 6

First use v x 6 RET to get a list of integers, then V M v x to get a list of lists of integers!

2.7.25 List Tutorial Exercise 7

Here’s one solution. First, compute the triangular list from the previous exercise and type 1 - to
subtract one from all the elements.

1: [ [o],
(o, 11,
o, 1, 21,

1 -
The numbers down the lefthand edge of the list we desire are called the “triangular numbers”
(now you know why!). The nth triangular number is the sum of the integers from 1 to n, and can
n(n+1)

be computed directly by the formula =5

2: [ [o], [0, 11, ... ] 2: [ [o], [0, 11, ... ]

1: [0, 1, 2, 3, 4, 5] 1: [0, 1, 3, 6, 10, 15]
v x 6 RET 1 - VM’ $ ($+1)/2 RET
Adding this list to the above list of lists produces the desired result:
1: [ [o],
[1, 2] ’
[3, 4, 5],

6, 7, 8, 91,
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19, 20] ]

VM+
If we did not know the formula for triangular numbers, we could have computed them using a
V U+ command. We could also have gotten them the hard way by mapping a reduction across the
original triangular list.

2: [ [o1, [0, 11, ... ] 2: [ [o1, [0, 11, ... ]
i: [ [0], [0, 11, ... 1] i: [o, 1, 3, 6, 10, 15]

RET VMVR+
(This means “map a V R + command across the vector,” and since each element of the main vector
is itself a small vector, V R + computes the sum of its elements.)
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2.7.26 List Tutorial Exercise 8

The first step is to build a list of values of x.

1: [1, 2, 3, ..., 21] 1: [0, 1, 2, ..., 20] 1: [0, 0.25, 0.5, ..., 5]

v x 21 RET 1 - 4/ s1
Next, we compute the Bessel function values.

1: [0., 0.124, 0.242, ..., -0.328]

VM’ besJ(1,$) RET
(Another way to do this would be 1 TABV M £ j.)

A way to isolate the maximum value is to compute the maximum using V R X, then compare all
the Bessel values with that maximum.

2: [0., 0.124, 0.242, ... ] 1: [0, 0, O, ... ] 2: [0, 0, 0, ... ]
1: 0.5801562 . 1: 1
RET VR X VMa-= RET V R + DEL

It’s a good idea to verify, as in the last step above, that only one value is equal to the maximum.
(After all, a plot of sinz might have many points all equal to the maximum value, 1.)

The vector we have now has a single 1 in the position that indicates the maximum value of z.
Now it is a simple matter to convert this back into the corresponding value itself.

2: [0, 0, O, ... ] 1: [0, 0., O., ... ] 1: 1.75
1: [0, 0.25, 0.5, ... ]
ri VM =* VR +

If a = had produced more than one 1 value, this method would have given the sum of all
maximum z values; not very useful! In this case we could have used v m (calc-mask-vector)
instead. This command deletes all elements of a “data” vector that correspond to zeros in a
“mask” vector, leaving us with, in this example, a vector of maximum z values.

The built-in a X command maximizes a function using more efficient methods. Just for illustra-
tion, let’s use a X to maximize ‘besJ(1,x)’ over this same interval.

2: besJ(1, x) 1: [1.84115, 0.581865]
1: [0 .. 5]
>’ besJ(1,x), [0..5] RET a X x RET

The output from a X is a vector containing the value of z that maximizes the function, and the
function’s value at that maximum. As you can see, our simple search got quite close to the right
answer.
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2.7.27 List Tutorial Exercise 9

Step one is to convert our integer into vector notation.

1: 25129925999 3: 25129925999
2: 10
1. [11, 10, 9, ..., 1, 0]

25129925999 RET 10 RET 12 RET v x 12 RET -
1: 25129925999 1: [0, 2, 25, 251, 2512, ... ]
2: [100000000000, ... ]

VM-~ s 1 VM\

(Recall, the \ command computes an integer quotient.)

1: [0, 2, 56,1, 2,9, 9, 2,5, 9, 9, 9]

10 VMY s 2
Next we must increment this number. This involves adding one to the last digit, plus handling
carries. There is a carry to the left out of a digit if that digit is a nine and all the digits to the
right of it are nines.

i: [0, 0, 0, O, O, 1, 1, O, O, 1, 1, 1] 1: [1, 1,1, 0, 0, 1, ... ]
9V Ma-= vV

1: [1, 1,1, 0, 0, 0, ... 1] i. [0, O, O, O, O, O, O, O, O, 1, 1, 1, 1]
VU * vvi1]|

Accumulating * across a vector of ones and zeros will preserve only the initial run of ones. These
are the carries into all digits except the rightmost digit. Concatenating a one on the right takes
care of aligning the carries properly, and also adding one to the rightmost digit.

2: [0, 0, 0, 0, ... ] i. [0, 0, 2, 5, 1, 2, 9, 9, 2, 6, 0, 0, 0]
1: [0, 0, 2, 5, ... ]
O0r 2 | VM+ 10V MY

Here we have concatenated 0 to the left of the original number; this takes care of shifting the carries
by one with respect to the digits that generated them.

Finally, we must convert this list back into an integer.
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3: [0,0, 2,5, ...1 2: [0, 0, 2,5, ...1]
2: 1000000000000 1: [1000000000000, 100000000000, ... ]
1: [100000000000, ... 1
10 RET 12 = r 1 |
1: [0, 0, 20000000000, 5000000000, ... ] 1: 25129926000

VM =* VR +
Another way to do this final step would be to reduce the formula ‘10 $$ + $’ across the vector of

digits.
1: [0, 0, 2, 5, ... ] 1: 25129926000

VR > 10 $$ + $ RET

2.7.28 List Tutorial Exercise 10

For the list [a, b, c,d], the result is ((a = b) = ¢) = d, which will compare a and b to produce a 1 or
0, which is then compared with ¢ to produce another 1 or 0, which is then compared with d. This

is not at all what Joe wanted.
Here’s a more correct method:

1: [7, 7,7, 8, 7] 2: [7,7,7,8,7]
1: 7
> [7,7,7,8,7] RET RET v r 1 RET
1: [1, 1, 1, 0, 1] 1: 0
VMa-= VR *

2.7.29 List Tutorial Exercise 11

The circle of unit radius consists of those points (x,y) for which z? +y* < 1. We start by generating
a vector of z? and a vector of y>.
We can make this go a bit faster by using the v . and t . commands.
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2: [2., 2., , 2.1 2: [2., 2., ..., 2.]
1: [2., 2., , 2.1 1: [1.16, 1.98, ..., 0.81]
v .t . 2.vDb 100 RET RET VMEkr
2: [2., 2., ..., 2.] 1: [0.026, 0.96, ..., 0.036]
1: [0.026, 0.96, ..., 0.036] 2: [0.53, 0.81, ..., 0.094]
1- 2VM~ TAB VMkr 1- 2VM-
2

Now we sum the z? and y? values, compare with 1 to get a vector of 1/0 truth values, then sum
the truth values.

1: [0.56, 1.78, ..., 0.13] 1: [1, 0, ..., 1] 1: 84

+ 1 VMac< VR +
The ratio 84/100 should approximate the ratio 7 /4.
1: 0.84 1: 3.36 2: 3.36 1: 1.0695
1: 3.14159
100 / 4 * P /

Our estimate, 3.36, is off by about 7%. We could get a better estimate by taking more points (say,
1000), but it’s clear that this method is not very efficient!

(Naturally, since this example uses random numbers your own answer will be slightly different
from the one shown here!)

If you typed v . and t . before, type them again to return to full-sized display of vectors.

2.7.30 List Tutorial Exercise 12

This problem can be made a lot easier by taking advantage of some symmetries. First of all, after
some thought it’s clear that the ¢ axis can be ignored altogether. Just pick a random x component
for one end of the match, pick a random direction 6, and see if z and x + cos@ (which is the z
coordinate of the other endpoint) cross a line. The lines are at integer coordinates, so this happens
when the two numbers surround an integer.

Since the two endpoints are equivalent, we may as well choose the leftmost of the two endpoints
as z. Then theta is an angle pointing to the right, in the range -90 to 90 degrees. (We could use
radians, but it would feel like cheating to refer to 7/2 radians while trying to estimate 7!)

In fact, since the field of lines is infinite we can choose the coordinates 0 and 1 for the lines on
either side of the leftmost endpoint. The rightmost endpoint will be between 0 and 1 if the match
does not cross a line, or between 1 and 2 if it does. So: Pick random z and 6, compute z + cos#,
and count how many of the results are greater than one. Simple!

We can make this go a bit faster by using the v . and t . commands.
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1: [0.52, 0.71, ..., 0.72] 2: [0.52, 0.71, ..., 0.72]
1: [78.4, 64.5, ..., -42.9]

v.t.1. vb 100 RET VMkr 180. v b 100 RET VMkr 90 -
(The next step may be slow, depending on the speed of your computer.)

2: [0.52, 0.71, ..., 0.72] 1: [0.72, 1.14, ..., 1.45]
1: [0.20, 0.43, ..., 0.73]

md VMC +
1. [0, 1, ..., 1] 1: 0.64 1: 3.125
1 VMa> VR + 100 / 2 TAB /

Let’s try the third method, too. We’ll use random integers up to one million. The k r command
with an integer argument picks a random integer.

2: [1000000, 1000000, ..., 1000000] 2: [78489, 527587, ..., 814975]
1: [1000000, 1000000, ..., 1000000] 1: [324014, 358783, ..., 955450]

1000000 v b 100 RET RET VMkr TAB VMkr
1: [1, 1, ..., 25] 1: [1, 1, ..., 0] 1: 0.56

VMkg 1VMa-= VR + 100 /
1: 10.714 1: 3.273

6 TAB / Q

For a proof of this property of the GCD function, see section 4.5.2, exercise 10, of Knuth’s Art
of Computer Programming, volume II.
If you typed v . and t . before, type them again to return to full-sized display of vectors.

2.7.31 List Tutorial Exercise 13

First, we put the string on the stack as a vector of ASCII codes.

1: [84, 101, 115, ..., 51]

"Testing, 1, 2, 3 RET
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Note that the " key, like $, initiates algebraic entry so there was no need to type an apostrophe.
Also, Calc didn’t mind that we omitted the closing ". (The same goes for all closing delimiters like
) and ] at the end of a formula.

We’ll show two different approaches here. In the first, we note that if the input vector is
la, b, c,d], then the hash code is 3(3(3a +b) +¢) +d = 27a 4+ 9b+ 3c + d. In other words, it’s a sum
of descending powers of three times the ASCII codes.

2: [84, 101, 115, ..., 51] 2: [84, 101, 115, ..., 51]
1: 16 1: [15, 14, 13, ..., 0]

RET v 1 v x 16 RET -

2: [84, 101, 115, ..., 51] 1: 1960915098  1: 121
1: [14348907, ..., 1]

3TABV M-~ * 511 %
Once again, * elegantly summarizes most of the computation. But there’s an even more elegant
approach: Reduce the formula 3 $$ + $ across the vector. Recall that this represents a function of
two arguments that computes its first argument times three plus its second argument.

1: [84, 101, 115, ..., b51] 1: 1960915098

"Testing, 1, 2, 3 RET VR’ 33$+$ RET
If you did the decimal arithmetic exercise, this will be familiar. Basically, we're turning a base-3
vector of digits into an integer, except that our “digits” are much larger than real digits.

Instead of typing 511 / again to reduce the result, we can be cleverer still and notice that rather
than computing a huge integer and taking the modulo at the end, we can take the modulo at
each step without affecting the result. While this means there are more arithmetic operations, the
numbers we operate on remain small so the operations are faster.

1: [84, 101, 115, ..., 51] 1: 121

"Testing, 1, 2, 3 RET VR’ (3$$+$)%511 RET
Why does this work? Think about a two-step computation: 3(3a + b) + c¢. Taking a result
modulo 511 basically means subtracting off enough 511’s to put the result in the desired range. So
the result when we take the modulo after every step is,

3(3a +b—511m) +c—511ln
for some suitable integers m and n. Expanding out by the distributive law yields
9a +3b+ ¢ — 511 x 3m — 511n

The m term in the latter formula is redundant because any contribution it makes could just as
easily be made by the n term. So we can take it out to get an equivalent formula with n’ = 3m+mn,

9a + 3b+ ¢ — 511n’
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which is just the formula for taking the modulo only at the end of the calculation. Therefore the
two methods are essentially the same.

Later in the tutorial we will encounter modulo forms, which basically automate the idea of
reducing every intermediate result modulo some value M.

2.7.32 List Tutorial Exercise 14

We want to use H V U to nest a function which adds a random step to an (z,y) coordinate. The
function is a bit long, but otherwise the problem is quite straightforward.

2: [0, 0] 1: [ [ 0, 0 1
1: 50 [ 0.4288, -0.1695 ]
. [ -0.4787, -0.9027 1]
[0,0] 50 HV U’ <# + [random(2.0)-1, random(2.0)-1]> RET

Just as the text recommended, we used ‘< >’ nameless function notation to keep the two random
calls from being evaluated before nesting even begins.

We now have a vector of [z,y] sub-vectors, which by Calc’s rules acts like a matrix. We can
transpose this matrix and unpack to get a pair of vectors,  and ¥, suitable for graphing.

2: [0, 0.4288, -0.4787, ... ]
1: [ 0, -0.1696, -0.9027, ... ]

vt vu gf
Incidentally, because the z and y are completely independent in this case, we could have done
two separate commands to create our x and y vectors of numbers directly.

To make a random walk of unit steps, we note that sincos of a random direction exactly gives
us an [z,y] step of unit length; in fact, the new nesting function is even briefer, though we might
want to lower the precision a bit for it.

2: [0, 0] 1: [ [ 0, 0 ]
1: 50 [ 0.1318, 0.9912 ]
[ -0.5965, 0.3061 1]

[0,0] 50 md p 6 RET H YV U’ <# + sincos(random(360.0))> RET
Another v t v u g f sequence will graph this new random walk.

An interesting twist on these random walk functions would be to use complex numbers instead of
2-vectors to represent points on the plane. In the first example, we’d use something like ‘random +
random*(0,1)’, and in the second we could use polar complex numbers with random phase angles.
(This exercise was first suggested in this form by Randal Schwartz.)
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2.7.33 Types Tutorial Exercise 1

If the number is the square root of 7 times a rational number, then its square, divided by «, should
be a rational number.

1: 1.26508260337 1: 0.509433962268 1: 2486645810:4881193627

2P/ cF
Technically speaking this is a rational number, but not one that is likely to have arisen in the
original problem. More likely, it just happens to be the fraction which most closely represents some
irrational number to within 12 digits.

But perhaps our result was not quite exact. Let’s reduce the precision slightly and try again:

1: 0.509433962268 1: 27:53

U p 10 RET cF
Aha! Tt’s unlikely that an irrational number would equal a fraction this simple to within ten digits,
so our original number was probably /277 /53.

Notice that we didn’t need to re-round the number when we reduced the precision. Remember,
arithmetic operations always round their inputs to the current precision before they begin.

2.7.34 Types Tutorial Exercise 2

" is the “obvious” answer. But if ‘17 inf = inf’, then ‘17 inf / inf

‘inf / inf = nan’. Perhaps ‘1
= inf / inf = 17, too.
‘exp(inf) = inf’. It’s tempting to say that the exponential of infinity must be “bigger” than
“regular” infinity, but as far as Calc is concerned all infinities are as just as big. In other words,
as x goes to infinity, ¢ also goes to infinity, but the fact the ¢® grows much faster than z is not

relevant here.

‘exp(-inf) = 0’. Here we have a finite answer even though the input is infinite.

‘sqrt (-inf) = (0, 1) inf’. Remember that (0,1) represents the imaginary number i. Here’s
a derivation: ‘sqrt(-inf) = sqrt((-1) * inf) = sqrt(-1) * sqrt(inf)’. The first part is, by
definition, 4; the second is inf because, once again, all infinities are the same size.

‘sqrt (uinf) = uinf’. In fact, we do know something about the direction because sqrt is defined

to return a value in the right half of the complex plane. But Calc has no notation for this, so it
settles for the conservative answer uinf.

‘abs(uinf) = inf’. No matter which direction x points, ‘abs(x)’ always points along the
positive real axis.

‘In(0) = -inf’. Here we have an infinite answer to a finite input. As in the 1/0 case, Calc will
only use infinities here if you have turned on “infinite” mode. Otherwise, it will treat ‘In(0)’ as
an error.
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2.7.35 Types Tutorial Exercise 3

We can make ‘inf - inf’ be any real number we like, say, a, just by claiming that we added a to
the first infinity but not to the second. This is just as true for complex values of @, so nan can
stand for a complex number. (And, similarly, uinf can stand for an infinity that points in any
direction in the complex plane, such as ‘(0, 1) inf’).

In fact, we can multiply the first inf by two. Surely ‘2 inf - inf = inf’, but also ‘2 inf - inf
= inf - inf = nan’. So nan can even stand for infinity. Obviously it’s just as easy to make it stand
for minus infinity as for plus infinity.

The moral of this story is that “infinity” is a slippery fish indeed, and Calc tries to handle it
by having a very simple model for infinities (only the direction counts, not the “size”); but Calc is
careful to write nan any time this simple model is unable to tell what the true answer is.

2.7.36 Types Tutorial Exercise 4

2: 00 47° 26" 1: 0@ 2’ 47.411765"
1: 17
0@ 47’ 26" RET 17 /
The average song length is two minutes and 47.4 seconds.
2: 0@ 2’ 47.411765" 1: 0@ 3’ 7.411765" 1: 0@ 53° 6.000005"
1: 0@ 0’ 20"
20" + 17 =*

The album would be 53 minutes and 6 seconds long.

2.7.37 Types Tutorial Exercise 5

Let’s suppose it’s January 14, 1991. The easiest thing to do is to keep trying 13ths of months until
Calc reports a Friday. We can do this by manually entering dates, or by using t I:

1: <Wed Feb 13, 1991> 1: <Wed Mar 13, 1991> 1: <Sat Apr 13, 1991>

? <2/13> RET DEL > <3/13> RET t I
(Calc assumes the current year if you don’t say otherwise.)

This is getting tedious—we can keep advancing the date by typing t I over and over again,
but let’s automate the job by using vector mapping. The t I command actually takes a second
“how-many-months” argument, which defaults to one. This argument is exactly what we want to
map over:
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2: <Sat Apr 13, 1991> 1: [<Mon May 13, 1991>, <Thu Jun 13, 1991>,
1: [1, 2, 3, 4, 5, 6] <Sat Jul 13, 1991>, <Tue Aug 13, 1991>,
<Fri Sep 13, 1991>, <Sun Oct 13, 1991>]

v x 6 RET VMtI
Et voila, September 13, 1991 is a Friday.

1: 242

? <sep 13> - <jan 14> RET
And the answer to our original question: 242 days to go.

2.7.38 Types Tutorial Exercise 6

The full rule for leap years is that they occur in every year divisible by four, except that they don’t
occur in years divisible by 100, except that they do in years divisible by 400. We could work out
the answer by carefully counting the years divisible by four and the exceptions, but there is a much
simpler way that works even if we don’t know the leap year rule.

Let’s assume the present year is 1991. Years have 365 days, except that leap years (whenever
they occur) have 366 days. So let’s count the number of days between now and then, and compare
that to the number of years times 365. The number of extra days we find must be equal to the
number of leap years there were.

1: <Mon Jan 1, 10001> 2: <Mon Jan 1, 10001> 1: 2925593
1: <Tue Jan 1, 1991>

’ <jan 1 10001> RET » <jan 1 1991> RET -
3: 2925593 2: 2925593 2: 2925593 1: 1943
2: 10001 1: 8010 1: 2923650
1: 1991

10001 RET 1991 - 365 * -

There will be 1943 leap years before the year 10001. (Assuming, of course, that the algorithm for
computing leap years remains unchanged for that long. See XXX [Date Forms]|, page XXX, for
some interesting background information in that regard.)
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2.7.39 Types Tutorial Exercise 7

The relative errors must be converted to absolute errors so that ‘+/-’ notation may be used.

1: 1. 2: 1.
1: 0.2
20 RET .05 * 4 RET .05 x*

Now we simply chug through the formula.

1: 19.7392088022 1: 394.78 +/- 19.739 1: 6316.5 +/- 706.21

2P 2" % 20 p 1 * 4p .2 RET 2 ~ *
It turns out the v u command will unpack an error form as well as a vector. This saves us some
retyping of numbers.

3: 6316.5 +/- 706.21 2: 6316.5 +/- 706.21
2: 6316.5 1: 0.1118
1: 706.21

RET v u TAB /

Thus the volume is 6316 cubic centimeters, within about 11 percent.

2.7.40 Types Tutorial Exercise 8

The first answer is pretty simple: ‘1 / (0 .. 10) = (0.1 .. inf)’. Since a number in the interval
‘(0 .. 10)’ can get arbitrarily close to zero, its reciprocal can get arbitrarily large, so the answer
is an interval that effectively means, “any number greater than 0.1” but with no upper bound.

The second answer, similarly, is ‘1 / (=10 .. 0) = (=inf .. -0.1)".

Calc normally treats division by zero as an error, so that the formula ‘1 / 0’ is left unsimplified.
Our third problem, ‘1 / [0 .. 10]’, also (potentially) divides by zero because zero is now a member
of the interval. So Calc leaves this one unevaluated, too.

If you turn on “infinite” mode by pressing m i, you will instead get the answer ‘[0.1 .. inf]’,
which includes infinity as a possible value.

The fourth calculation, ‘1 / (=10 .. 10)’, has the same problem. Zero is buried inside the
interval, but it’s still a possible value. It’s not hard to see that the actual result of ‘1 / (-10 ..
10)’ will be either greater than 0.1, or less than —0.1. Thus the interval goes from minus infinity
to plus infinity, with a “hole” in it from —0.1 to 0.1. Calc doesn’t have any way to represent this,
S0 it just reports ‘[-inf .. inf]’ as the answer. It may be disappointing to hear “the answer lies
somewhere between minus infinity and plus infinity, inclusive,” but that’s the best that interval
arithmetic can do in this case.
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2.7.41 Types Tutorial Exercise 9

1: [-3 .. 3] 2: [-3 .. 3] 2: [0 .. 9]
1: [0 .. 9] 1: [-9 .. 9]
[3n..3] RET 2 ~ TAB RET =*

In the first case the result says, “if a number is between —3 and 3, its square is between 0 and 9.”
The second case says, “the product of two numbers each between —3 and 3 is between —9 and 9.”

An interval form is not a number; it is a symbol that can stand for many different numbers.
Two identical-looking interval forms can stand for different numbers.

The same issue arises when you try to square an error form.

2.7.42 Types Tutorial Exercise 10

Testing the first number, we might arbitrarily choose 17 for z.

1: 17 mod 811749613 2: 17 mod 811749613 1: 533694123 mod 811749613
811749612

17 M 811749613 RET 811749612 -
Since 533694123 is (considerably) different from 1, the number 811749613 must not be prime.

It’s awkward to type the number in twice as we did above. There are various ways to avoid
this, and algebraic entry is one. In fact, using a vector mapping operation we can perform several
tests at once. Let’s use this method to test the second number.

2: [17, 42, 100000] 1: [1 mod 15485863, 1 mod ... ]
1: 15485863
[17 42 100000] 15485863 RET VM’ ($$ mod $)"($-1) RET

The result is three ones (modulo n), so it’s very probable that 15485863 is prime. (In fact, this
number is the millionth prime.)

Note that the functions ‘($$~($-1)) mod $’ or ‘$$~($-1) % $ would have been hopelessly inef-
ficient, since they would have calculated the power using full integer arithmetic.

Calc has a k p command that does primality testing. For small numbers it does an exact test;

for large numbers it uses a variant of the Fermat test we used here. You can use k p repeatedly to
prove that a large integer is prime with any desired probability.
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2.7.43 Types Tutorial Exercise 11

There are several ways to insert a calculated number into an HMS form. One way to convert a
number of seconds to an HMS form is simply to multiply the number by an HMS form representing
one second:

1: 31415926.5359 2: 31415926.5359 1: 8726@ 38’ 46.5359"
1. 0@ 0’ 1"
P 1e7 * 0e 0’ 1" *
2: 87260 38’ 46.5359" 1: 6@ 6’ 2.5359" mod 24@ 0’ 0"

1: 150 27’ 16" mod 24Q@ 0’ 0"

X time RET +
It will be just after six in the morning.

The algebraic hms function can also be used to build an HMS form:

1: hms(0, 0, 10000000. pi) 1. 8726@ 38’ 46.5359"

> hms(0, 0, 1le7 pi) RET =
The = key is necessary to evaluate the symbol ‘pi’ to the actual number 3.14159...

2.7.44 Types Tutorial Exercise 12

As we recall, there are 17 songs of about 2 minutes and 47 seconds each.

2: 0@ 27 47" 1: [o@ 3’ 7" .. 0@ 3’ 47"]
1: [0@ 0’ 20" .. 0@ 1’ 0"]

[ oe 20" .. 0@ 1 ] +
1: [0@ 52’ 59." .. 1@ 4’ 19."]

17 *

No matter how long it is, the album will fit nicely on one CD.
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2.7.45 Types Tutorial Exercise 13

Type ’ 1 yr RET u ¢ s RET. The answer is 31557600 seconds.

2.7.46 Types Tutorial Exercise 14

How long will it take for a signal to get from one end of the computer to the other?

1: m/ ¢ 1: 3.3356 ns
>1m / c RET u ¢ ns RET
(Recall, ‘¢’ is a “unit” corresponding to the speed of light.)
1: 3.3356 ns 1: 0.81356 ns / ns 1: 0.81356
2: 4.1 ns
> 4.1 ns RET / u s

Thus a signal could take up to 81 percent of a clock cycle just to go from one place to another
inside the computer, assuming the signal could actually attain the full speed of light. Pretty tight!

2.7.47 Types Tutorial Exercise 15

The speed limit is 55 miles per hour on most highways. We want to find the ratio of Sam’s speed
to the US speed limit.

1: 55 mph 2: 55 mph 3: 11 hr mph / yd
. 1: 5 yd / hr .

’ 55 mph RET > 5 yd/hr RET /
The u s command cancels out these units to get a plain number. Now we take the logarithm
base two to find the final answer, assuming that each successive pill doubles his speed.

1: 19360. 2: 19360. 1: 14.24
1: 2
u s 2 B

Thus Sam can take up to 14 pills without a worry.
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2.7.48 Algebra Tutorial Exercise 1

The result ‘sqrt (x) ~2’ is simplified back to z by the Calculator, but ‘sqrt (x~2)’ is not. (Consider
what happens if £ = —4.) If z is real, this formula could be simplified to ‘abs(x)’, but for general
complex arguments even that is not safe. (See XXX [Declarations], page XXX, for a way to tell
Calc that z is known to be real.)

2.7.49 Algebra Tutorial Exercise 2

Suppose our roots are [a, b, c]. We want a polynomial which is zero when z is any of these values.
The trivial polynomial  — a is zero when x = a, so the product (z — a)(z — b)(z — ¢) will do the
job. We can use a ¢ x to write this in a more familiar form.

1: 34 x - 24 x73 1: [1.19023, -1.19023, 0]
r 2 a P x RET

1: [x - 1.19023, x + 1.19023, x] 1: (x - 1.19023) (x + 1.19023) x
VM’ x-$ RET VR *

1: x73 - 1.41666 x 1: 34 x - 24 x°3
a ¢ x RET 24 n*x ax

Sure enough, our answer (multiplied by a suitable constant) is the same as the original polynomial.

2.7.50 Algebra Tutorial Exercise 3

1: x sin(pi x) 1: (sin(pi x) - pi x cos(pi x)) / pi~2

> x sin(pi x) RET mr a i x RET

1: [y, 1]
2: (sin(pi x) - pi x cos(pi x)) / pi~2

» [y,1] RET TAB



Chapter 2: Tutorial 100

1: [(sin(pi y) - pi y cos(pi y)) / pi~2, (sin(pi) - pi cos(pi)) / pi~2]

VM $ RET

1: (sin(pi y) - pi y cos(pi y)) / pi~2 + (pi cos(pi) - sin(pi)) / pi~2

VR -

1: (sin(3.14159 y) - 3.14159 y cos(3.14159 y)) / 9.8696 - 0.3183

1: [0., -0.95493, 0.63662, -1.5915, 1.2732]

v x 56 RET TAB V M $ RET

2.7.51 Algebra Tutorial Exercise 4

The hard part is that V R + is no longer sufficient to add up all the contributions from the slices,
since the slices have varying coefficients. So first we must come up with a vector of these coefficients.

Here’s one way:

2: -1 2: 3 1: [4, 2, ..., 4]
1: [1, 2, ..., 9] 1: [-1, 1, ..., -1]

1 nvzx 9 RET VM~ 3 TAB -
1: [4, 2, ..., 4, 1] 1: [1, 4, 2, ..., 4, 1]

1] 1 TAB |

Now we compute the function values. Note that for this method we need eleven values, including
both endpoints of the desired interval.

2: [1, 4, 2, ..., 4, 1]
1: 1, 1.1, 1.2, ... , 1.8, 1.9, 2.]

11 RET 1 RET .1 RET C-u v x
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2: [1, 4, 2, ..., 4, 1]
1: [0., 0.084941, 0.16993, ... ]

? sin(x) In(x) RET mr p 5 RET V M § RET
Once again this calls for VM * V R +; a simple * does the same thing.

1. 11.22 1: 1.122 1: 0.374

* Ao 3/
Wow! That’s even better than the result from the Taylor series method.

2.7.52 Rewrites Tutorial Exercise 1

We’ll use Big mode to make the formulas more readable.

2+V 2
1: (2 + sqrt(2)) / (1 + sqrt(2)) 1: —————
‘ 1+V2

> (2+sqrt(2)) / (1+sqrt(2)) RET d B

Multiplying by the conjugate helps because (a + b)(a — b) = a? — b*.

1: (2+v2) (V2 -1)

ar a/(b+c) := ax(b-c) / (b~2-c~2) RET
1: 2+V2 -2 1: V2
a r ax(b+c) := ax*b + axc as

(We could have used a x instead of a rewrite rule for the second step.)

The multiply-by-conjugate rule turns out to be useful in many different circumstances, such as
when the denominator involves sines and cosines or the imaginary constant i.
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2.7.53 Rewrites Tutorial Exercise 2

Here is the rule set:

[ fib(n) := fib(n, 1, 1) :: integer(n) :: n >= 1,

fib(1, x, y) := x,

fib(n, x, y) := fib(n-1, y, x+y) ]
The first rule turns a one-argument fib that people like to write into a three-argument fib that
makes computation easier. The second rule converts back from three-argument form once the
computation is done. The third rule does the computation itself. It basically says that if z and
y are two consecutive Fibonacci numbers, then y and x + y are the next (overlapping) pair of
Fibonacci numbers.

Notice that because the number n was “validated” by the conditions on the first rule, there is
no need to put conditions on the other rules because the rule set would never get that far unless the
input were valid. That further speeds computation, since no extra conditions need to be checked
at every step.

Actually, a user with a nasty sense of humor could enter a bad three-argument fib call directly,
say, ‘£ib(0, 1, 1)’, which would get the rules into an infinite loop. One thing that would help
keep this from happening by accident would be to use something like ‘ZzFib’ instead of £ib as the
name of the three-argument function.

2.7.54 Rewrites Tutorial Exercise 3

He got an infinite loop. First, Calc did as expected and rewrote ‘2 + 3 x’ to ‘£(2, 3, x)’. Then
it looked for ways to apply the rule again, and found that ‘f(2, 3, x)’ looks like ‘a + b x’ with
‘a=0"and ‘b = 1, so it rewrote to ‘£(0, 1, £(2, 3, x))’. It then wrapped another ‘f(0, 1, ...)’
around that, and so on, ad infinitum. Joe should have used M-1 a r to make sure the rule applied
only once.

(Actually, even the first step didn’t work as he expected. What Calc really gives for M-1 a r in
this situation is ‘£(3 x, 1, 2)’, treating 2 as the “variable,” and ‘3 x’ as a constant being added
to it. While this may seem odd, it’s just as valid a solution as the “obvious” one. One way to
fix this would be to add the condition ‘:: variable(x)’ to the rule, to make sure the thing that
matches ‘x’ is indeed a variable, or to change ‘x’ to ‘quote(x)’ on the lefthand side, so that the
rule matches the actual variable ‘x’ rather than letting ‘x’ stand for something else.)

2.7.55 Rewrites Tutorial Exercise 4

Here is a suitable set of rules to solve the first part of the problem:

[ seq(n, ¢) := seq(n/2, c+1) :: n%2 = 0,
seq(n, ¢) := seq(3n+l, c+1) :: n%2 =1 :: n > 1]
Given the initial formula ‘seq(6, 0)’, application of these rules produces the following sequence
of formulas:
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seq( 3, 1)
seq(10, 2)
seq( 5, 3)
seq(16, 4)
seq( 8, 5)
seq( 4, 6)
seq( 2, 7)
seq( 1, 8)
whereupon neither of the rules match, and rewriting stops.

We can pretty this up a bit with a couple more rules:

[ seq(n) := seq(n, 0),
seq(1, c) := c,
-]

Now, given ‘seq(6)’ as the starting configuration, we get 8 as the result.

The change to return a vector is quite simple:

[ seq(n) := seq(n, []1) :: integer(n) :: n > O,
seq(1, v) :=v | 1,
seq(n, v) := seq(®n/2, v | n) :: n)2 = 0,
seq(n, v) seq(3n+l, v | n) :: n%2 =11
Given ‘seq(6)’, the result is ‘'[6, 3, 10, 5, 16, 8, 4, 2, 1]'.

Notice that the n > 1 guard is no longer necessary on the last rule since the n = 1 case is now
detected by another rule. But a guard has been added to the initial rule to make sure the initial
value is suitable before the computation begins.

While still a good idea, this guard is not as vitally important as it was for the fib function,
since calling, say, ‘seq(x, [1)’ will not get into an infinite loop. Calc will not be able to prove the
symbol ‘x’ is either even or odd, so none of the rules will apply and the rewrites will stop right
away.

2.7.56 Rewrites Tutorial Exercise 5

If z is the sum a + b, then ‘nterms(z)’ must be ‘nterms(a)’ plus ‘nterms(d)’. If z is not a sum,
then ‘nterms(z)’ = 1.

[ nterms(a + b) := nterms(a) + nterms(b),
nterms (x) =11
Here we have taken advantage of the fact that earlier rules always match before later rules;
‘nterms (x)’ will only be tried if we already know that ‘x’ is not a sum.

nterms
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2.7.57 Rewrites Tutorial Exercise 6

Just put the rule ‘070 := 1’ into EvalRules. For example, before making this definition we
have:

2: [-2, -1, 0, 1, 2] 1. [1, 1, 070, 1, 1]
1: O
vxx5RET 3- 0 VM-~
But then:
2: [-2, -1, 0, 1, 2] 1: [1, 1, 1, 1, 1]
1: O

U ” 070:=1 RET s t EvalRules RET VM-~
Perhaps more surprisingly, this rule still works with infinite mode turned on. Calc tries

EvalRules before any built-in rules for a function. This allows you to override the default be-
havior of any Calc feature: Even though Calc now wants to evaluate 0° to nan, your rule gets there
first and evaluates it to 1 instead.

Just for kicks, try adding the rule 2+3 := 6 to EvalRules. What happens? (Be sure to remove
this rule afterward, or you might get a nasty surprise when you use Calc to balance your checkbook!)

2.7.58 Rewrites Tutorial Exercise 7

Here is a rule set that will do the job:

[ ax(b + ¢) := a*b + a*c,
opt(a) 0(x"n) + opt(b) 0(x"m) := 0(x"n) :: n <
:: constant(a) :: constant(b),
opt(a) 0(x"n) + opt(b) x™m := 0(x™n) :: n <=m
:: constant(a) :: constant(b),
a 0(x"n) := 0(x"n) :: constant(a),
x"opt(m) 0(x"n) := 0(x"(n+m)),
0(x"n) 0(x"m) := 0(x~(n+m)) 1]
If we really want the + and * keys to operate naturally on power series, we should put these
rules in EvalRules. For testing purposes, it is better to put them in a different variable, say, 0,
first.

The first rule just expands products of sums so that the rest of the rules can assume they have
an expanded-out polynomial to work with. Note that this rule does not mention ‘0’ at all, so it will
apply to any product-of-sum it encounters—this rule may surprise you if you put it into EvalRules!

1]
=]

In the second rule, the sum of two O’s is changed to the smaller O. The optional constant
coefficients are there mostly so that ‘0(x~2) - 0(x"3)’ and ‘0(x"3) - 0(x~2)’ are handled as well
as ‘0(x~2) +0(x"~3)".

The third rule absorbs higher powers of ‘x’ into O’s.
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The fourth rule says that a constant times a negligible quantity is still negligible. (This rule will
also match ‘0(x~3) / 4’, with ‘a = 1/4’.)

The fifth rule rewrites, for example, ‘x~2 0(x~3)’ to ‘0(x"5)’. (It is easy to see that if one of
these forms is negligible, the other is, too.) Notice the ‘x~opt (m)’ to pick up terms like ‘x 0(x~3)".
Optional powers will match ‘x’ as ‘x~1’ but not 1 as ‘x~0’. This turns out to be exactly what we
want here.

The sixth rule is the corresponding rule for products of two O’s.

Another way to solve this problem would be to create a new “data type” that represents
truncated power series. We might represent these as function calls ‘series (coefs, x)’ where coefs
is a vector of coefficients for z°, z', 22, and so on. Rules would exist for sums and products of such
series objects, and as an optional convenience could also know how to combine a series object
with a normal polynomial. (With this, and with a rule that rewrites ‘0(x"n)’ to the equivalent
series form, you could still enter power series in exactly the same notation as before.) Operations
on such objects would probably be more efficient, although the objects would be a bit harder to
read.

Some other symbolic math programs provide a power series data type similar to this. Mathemat-
ica, for example, has an object that looks like ‘PowerSeries[x, x0, coefs, nmin, nmax, den]’,
where x0 is the point about which the power series is taken (we’ve been assuming this was always
zero), and nmin, nmax, and den allow pseudo-power-series with fractional or negative powers. Also,
the PowerSeries objects have a special display format that makes them look like ‘2 x~2 + 0(x"4)’
when they are printed out. (See XXX [Compositions|, page XXX, for a way to do this in Calc,
although for something as involved as this it would probably be better to write the formatting
routine in Lisp.)

2.7.59 Programming Tutorial Exercise 1

Just enter the formula ‘ninteg(sin(t)/t, t, 0, x)’, type Z F, and answer the questions. Since
this formula contains two variables, the default argument list will be ‘(t x)’. We want to change
this to ‘(x)’ since % is really a dummy variable to be used within ninteg.

The exact keystrokes are Z F s Si RET RET C-b C-b DEL DEL RET y. (The C-b C-b DEL DEL are
what fix the argument list.)

2.7.60 Programming Tutorial Exercise 2

One way is to move the number to the top of the stack, operate on it, then move it back: C-x (
M-TAB n M-TAB M-TAB C-x ).

Another way is to negate the top three stack entries, then negate again the top two stack entries:
C-x (M-3nM-2n C-x ).

Finally, it turns out that a negative prefix argument causes a command like n to operate on the
specified stack entry only, which is just what we want: C-x ( M-- 3 n C-x ).

Just for kicks, let’s also do it algebraically: C-x ( > -$$$, $$, $ RET C-x ).
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2.7.61 Programming Tutorial Exercise 3

Each of these functions can be computed using the stack, or using algebraic entry, whichever way

you prefer:
. sinz
Computing —:

Using the saiack: C-x (RETSTAB / C-x ).

Using algebraic entry: C-x ( ’ sin($)/$ RET C-x ).
Computing the logarithm:

Using the stack: ¢C-x ( TABB C-x )

Using algebraic entry: C-x ( ’ 1og($,$$) RET C-x ).
Computing the vector of integers:

Using the stack: C-x (1 RET 1 C-u v x C-x ). (Recall that C-u v x takes the vector size, start-
ing value, and increment from the stack.)

Alternatively: C-x ( ~ v x C-x ). (The ~ key pops a number from the stack and uses it as the
prefix argument for the next command.)

Using algebraic entry: C-x ( ’ index($) RET C-x ).

2.7.62 Programming Tutorial Exercise 4

Here’s one way: C-x (RETVR+ TABv 1/ C-x ).

2.7.63 Programming Tutorial Exercise 5

2: 1 1: 1.61803398502 2: 1.61803398502
1: 20 . 1: 1.61803398875
1 RET 20 Z<&1+7Z> IHP

This answer is quite accurate.

2.7.64 Programming Tutorial Exercise 6

Here is the matrix:

[[O0,1]1 =* [a, b] = [b, a + b]

[1, 111

Thus ‘[0, 1; 1, 1]°n * [1, 1]’ computes Fibonacci numbers n+ 1 and n + 2. Here’s one program
that does the job:

C-x (> [0, 1; 1, 11 = ($-1) * [1, 1] RET v u DEL C-x )
This program is quite efficient because Calc knows how to raise a matrix (or other value) to the
power n in only log, n steps. For example, this program can compute the 1000th Fibonacci number
(a 209-digit integer!) in about 10 steps; even though the Z< ... Z > solution had much simpler
steps, it would have required so many steps that it would not have been practical.
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2.7.65 Programming Tutorial Exercise 7

The trick here is to compute the harmonic numbers differently, so that the loop counter itself
accumulates the sum of reciprocals. We use a separate variable to hold the integer counter.

1: 1 2: 1 1:
1: 4
1t1 1 RET 4 Z(t2r11+s1&7Z)

The body of the loop goes as follows: First save the harmonic sum so far in variable 2. Then delete
it from the stack; the for loop itself will take care of remembering it for us. Next, recall the count
from variable 1, add one to it, and feed its reciprocal to the for loop to use as the step value. The
for loop will increase the “loop counter” by that amount and keep going until the loop counter
exceeds 4.

2: 31 3: 31
1: 3.99498713092 2: 3.99498713092
1: 4.02724519544

rilr?2 RET 31 & +
Thus we find that the 30th harmonic number is 3.99, and the 31st harmonic number is 4.02.

2.7.66 Programming Tutorial Exercise 8

f(z)
fi=)

(Because this definition is long, it will be repeated in concise form below. You can use M-# m
to load it from there. While you are entering a Z ¢ Z > body in a macro, Calc simply collects
keystrokes without executing them. In the following diagrams we’ll pretend Calc actually executed
the keystrokes as you typed them, just for purposes of illustration.)

The first step is to compute the derivative f’'(z) and thus the formula x —

2: sin(cos(x)) - 0.5 3: 4.5
1: 4.5 2: sin(cos(x)) - 0.5
1: -(sin(x) cos(cos(x)))

’ sin(cos(x))-0.5 RET 4.5 mr C-x ( Z ¢ TAB RET a d x RET

2: 4.5
1: x + (sin(cos(x)) - 0.5) / sin(x) cos(cos(x))

/ ? xRET TAB - t 1
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Now, we enter the loop. We’ll use a repeat loop with a 20-repetition limit just in case the
method fails to converge for some reason. (Normally, the Z / command will stop the loop before
all 20 repetitions are done.)

1: 4.5 3: 4.5 2: 4.5
2: x + (sin(cos(x)) ... 1: 5.24196456928
1: 4.5
20 Z < RET r 1 TAB s 1 x RET
This is the new guess for . Now we compare it with the old one to see if we’ve converged.
3: 5.24196 2: 5.24196 1: 5.24196 1: 5.26345856348
2: 5.24196 1: O
1: 4.5
RET M-TAB a= zZ/ Z>Z°’Cx)

The loop converges in just a few steps to this value. To check the result, we can simply substitute
it back into the equation.

2: 5.26345856348
1: 0.499999999997

RET ° sin(cos($)) RET
Let’s test the new definition again:

2: x"2 -9 1: 3.
1: 1
7 x72-9 RET 1 X

Once again, here’s the full Newton’s Method definition:

C-x (Z ° TABRET adxRET / ’ xRETTAB - t1
20 Z < RET r 1 TAB s 1 x RET
RET M-TAB a = Z /
Z >
Z 2
C-x )
It turns out that Calc has a built-in command for applying a formula repeatedly until it converges
to a number. See XXX [Nesting and Fixed Points|, page XXX, to see how to use it.

Also, of course, a R is a built-in command that uses Newton’s method (among others) to look
for numerical solutions to any equation. See XXX [Root Finding], page XXX .
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2.7.67 Programming Tutorial Exercise 9

The first step is to adjust z to be greater than 5. A simple “for” loop will do the job here. If z is
less than 5, we reduce the problem using 1(z) = (2 + 1) — 1/z. We go on to compute 1(z + 1),
and remember to add back a factor of —1/z when we’re done. This step is repeated until z > 5.

(Because this definition is long, it will be repeated in concise form below. You can use M-# m
to load it from there. While you are entering a Z ¢ Z > body in a macro, Calc simply collects
keystrokes without executing them. In the following diagrams we’ll pretend Calc actually executed
the keystrokes as you typed them, just for purposes of illustration.)

1: 1. 1: 1.

1.0 RET C-x (Z° s1 0t 2
Here, variable 1 holds z and variable 2 holds the adjustment factor. If z < 5, we use a loop to
increase it.

(By the way, we started with ‘1.0’ instead of the integer 1 because otherwise the calculation
below will try to do exact fractional arithmetic, and will never converge because fractions compare
equal only if they are exactly equal, not just equal to within the current precision.)

3: 1. 2: 1. 1: 6.
2: 1. 1: 1
1 5
RET 5 a < Z[ 5Z(C &s+2 1s+1 1Z)r1 Z]

1
2z

2: 1.79175946923 2: 1.7084261359 1: -0.57490719743
1: 0.0833333333333 1: 2.28333333333

Now we compute the initial part of the sum: Inz — == minus the adjustment factor.

L r12=xg - r 2 -
Now we evaluate the series. We’ll use another “for” loop counting up the value of 2n. (Calc
does have a summation command, a +, but we’ll use loops just to get more practice with them.)

3: -0.5749 3: -0.5749 4: -0.5749 2: -0.5749
2: 2 2: 1:6 3 1:6 1: 2.3148e-3
1: 40 1: 2 2: 2

1 36.

2 RET 40 Z ( RET k b TAB RET r 1 TAB ° x /
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3: -0.5749 3: -0.5772 2: -0.5772 1: -0.577215664892
2: -0.5749 2: -0.5772 1: 0
1: 2.3148e-3 1: -0.5749

TAB RET M-TAB - RET M-TAB a-= zZ/ 2 Z) Z°’Cx)

This is the value of —y, with a slight bit of roundoff error. To get a full 12 digits, let’s use a
higher precision:

2: -0.577215664892 2: -0.577215664892
1: 1. 1: -0.577215664901532
1. RET p 16 RET X
Here’s the complete sequence of keystrokes:

Cx (Z° s1 0t2
RET5a< Z[ 5Z( &s+2 1s+1 1Z)r1 Z]
Lr12x*x§&-r2-
2 RET 40 Z ( RET k b TAB RET r 1 TAB ~ * /

TAB RET M-TAB - RET M-TAB a = Z /
2 Z)
Z 2
C-x )

2.7.68 Programming Tutorial Exercise 10

Taking the derivative of a term of the form z” will produce a term like nz™~'. Taking the derivative
of a constant produces zero. From this it is easy to see that the nth derivative of a polynomial,
evaluated at x = 0, will equal the coefficient on the ™ term times n!.

(Because this definition is long, it will be repeated in concise form below. You can use M-# m
to load it from there. While you are entering a Z ¢ Z > body in a macro, Calc simply collects
keystrokes without executing them. In the following diagrams we’ll pretend Calc actually executed
the keystrokes as you typed them, just for purposes of illustration.)

2: 5x74 + (x +1)°2 3: 5 x4+ (x +1)°2
1: 6 2: 0

1: 6

>’ 5 x4 + (x+1)"2 RET 6 C-x (Z°¢ [J1t1 OTAB
Variable 1 will accumulate the vector of coefficients.
2: 0 3: 0 2: 5 x4 + ...
1: 5 x74 + ... 2: b x™4 + ... 1: 1
1: 1

Z ( TAB RET 0 s 1 x RET M-TAB ! / s | 1
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Note that s | 1 appends the top-of-stack value to the vector in a variable; it is completely analogous
to s + 1. We could have written instead, r 1 TAB | t 1.

1: 20 x"3 +2x+ 2 1: 0 1. [1, 2, 1, 0, 5, 0, O]

a d x RET 12) DELr 1 Z°’ C-x)
To convert back, a simple method is just to map the coefficients against a table of powers of z.

2: [t1, 2,1, 0, 5, 0, O] 2: [t, 2,1, 0, 5, 0, O]
1: 6 1: [0, 1, 2, 3, 4, 5, 6]

6 RET 1 +0RET 1 C-uv x

2: [1, 2,1, 0, 5, 0, 0] 2: 1 +2x+x"2+5x74

1: [1, x, x°2, x°3, ... ]
> x RET TABV M ~ *
Once again, here are the whole polynomial to/from vector programs:
C-x (Z°“ [1t1 OTAB
Z ( TABRETO s1xRETM-TAB! / s | 1
a d x RET
1Z)r1
Z 2

C-x )

C-x ( 1 +0RET1C-uvzx’>xRETTABVM "~ *x C-x)

2.7.69 Programming Tutorial Exercise 11

First we define a dummy program to go on the z s key. The true z s key is supposed to take two
numbers from the stack and return one number, so DEL as a dummy definition will make sure the
stack comes out right.

2: 4 1: 4 2: 4
1: 2 . 1: 2
4 RET 2 C-x ( DEL C-x ) Z K s RET 2

The last step replaces the 2 that was eaten during the creation of the dummy z s command.
Now we move on to the real definition. The recurrence needs to be rewritten slightly, to the form
s(n,m)=s(n—1,m—1)— (n—1)s(n—1,m).

(Because this definition is long, it will be repeated in concise form below. You can use M-# m to
load it from there.)
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2 4 4. 4 3 4 2 4
1 2 3: 2 2 2 1 2
2: 4 1 0
1: 2
C-x ( M-2 RET a = Z [ DELDEL 1 Z :
4: 4 2 4 2 3 4: 3 4: 3 3: 3
3: 2 1 2 1 2 3: 2 3: 2 2: 2
2: 2 2: 3 2: 3 1 3
1: O 1: 2 1: 1
RET O a=Z1[ DELDEL O Z : TAB 1 - TAB M-2 RET 1 - Z S

(Note that the value 3 that our dummy z s produces is not correct; it is merely a placeholder that
will do just as well for now.)

3: 3 4: 3 3: 3 2: 3 1 -6
2: 3 3: 3 2: 3 1: 9
1 2 2: 3 1 3
1 2

M-TAB M-TAB TAB RET M-TAB zZ S * -
1: -6 2: 4 1 11 2: 11

1: 2 1: 11

Z1zZ1]C-x) Z K s RET DEL 4 RET 2 Z 8 M-RET k s

Even though the result that we got during the definition was highly bogus, once the definition
is complete the z s command gets the right answers.

Here’s the full program once again:

C-x ( M-2 RET a =
Z [ DEL DEL 1
Z : RET 0 a =
Z [ DEL DEL 0
Z: TAB1-TABM-2RET 1 -z s
M-TAB M-TAB TAB RET M-TAB z s * -
z1]
z1]
C-x )

You can read this definition using M-# m (read-kbd-macro) followed by Z K s, without having
to make a dummy definition first, because read-kbd-macro doesn’t need to execute the definition
as it reads it in. For this reason, M-# m is often the easiest way to create recursive programs in
Calc.
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2.7.70 Programming Tutorial Exercise 12

This turns out to be a much easier way to solve the problem. Let’s denote Stirling numbers as calls
of the function ‘s’.

First, we store the rewrite rules corresponding to the definition of Stirling numbers in a conve-
nient variable:

s e StirlingRules RET

[ s(h,n) :=1 :: n >0,

s(n,0) (=0 ::n >0,

s(n,m) := s(n-1,m-1) - (n-1) s(n-1,m) :: n > m :: m > 1 ]
C-c C-c

Now, it’s just a matter of applying the rules:

2: 4 1: s(4, 2) 1: 11
1: 2
4 RET 2 C-x ( ’ s($$,$) RET a r StirlingRules RET C-x )

As in the case of the fib rules, it would be useful to put these rules in EvalRules and to add a
: remember’ condition to the last rule.
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3 Introduction

This chapter is the beginning of the Calc reference manual. It covers basic concepts such as the
stack, algebraic and numeric entry, undo, numeric prefix arguments, etc.

3.1 Basic Commands

To start the Calculator in its standard interface, type M-x calc. By default this creates a pair
of small windows, ‘*Calculator*’ and ‘*Calc Trail*’. The former displays the contents of the
Calculator stack and is manipulated exclusively through Calc commands. It is possible (though
not usually necessary) to create several Calc Mode buffers each of which has an independent stack,
undo list, and mode settings. There is exactly one Calc Trail buffer; it records a list of the results
of all calculations that have been done. The Calc Trail buffer uses a variant of Calc Mode, so
Calculator commands still work when the trail buffer’s window is selected. It is possible to turn
the trail window off, but the ‘*Calc Trail*’ buffer itself still exists and is updated silently. See
XXX [Trail Commands|, page XXX.

In most installations, the M-# ¢ key sequence is a more convenient way to start the Calculator.
Also, M-# M-# and M-# # are synonyms for M-# c unless you last used Calc in its “keypad” mode.

Most Calc commands use one or two keystrokes. Lower- and upper-case letters are distinct.
Commands may also be entered in full M-x form; for some commands this is the only form. As
a convenience, the x key (calc-execute-extended-command) is like M-x except that it enters the
initial string ‘calc-’ for you. For example, the following key sequences are equivalent: S, M-x
calc-sin RET, x sin RET.

The Calculator exists in many parts. When you type M-# ¢, the Emacs “auto-load” mechanism
will bring in only the first part, which contains the basic arithmetic functions. The other parts
will be auto-loaded the first time you use the more advanced commands like trig functions or
matrix operations. This is done to improve the response time of the Calculator in the common
case when all you need to do is a little arithmetic. If for some reason the Calculator fails to load
an extension module automatically, you can force it to load all the extensions by using the M-# L
(calc-load-everything) command. See XXX [Mode Settings|, page XXX .

If you type M-x calc or M-# ¢ with any numeric prefix argument, the Calculator is loaded if
necessary, but it is not actually started. If the argument is positive, the ‘calc-ext’ extensions
are also loaded if necessary. User-written Lisp code that wishes to make use of Calc’s arithmetic
routines can use ‘(calc 0)’ or ‘(calc 1)’ to auto-load the Calculator.

If you type M-# b, then next time you use M-# ¢ you will get a Calculator that uses the full
height of the Emacs screen. When full-screen mode is on, M-# ¢ runs the full-calc command
instead of calc. From the Unix shell you can type ‘emacs -f full-calc’ to start a new Emacs
specifically for use as a calculator. When Calc is started from the Emacs command line like this,
Calc’s normal “quit” commands actually quit Emacs itself.

The M-# o command is like M-# c except that the Calc window is not actually selected. If you
are already in the Calc window, M-# o switches you out of it. (The regular Emacs C-x o command
would also work for this, but it has a tendency to drop you into the Calc Trail window instead,
which M-# o takes care not to do.)
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For one quick calculation, you can type M-# q (quick-calc) which prompts you for a formula
(like ‘2+3/4’). The result is displayed at the bottom of the Emacs screen without ever creating any
special Calculator windows. See XXX [Quick Calculator], page XXX.

Finally, if you are using the X window system you may want to try M-# k (calc-keypad) which
runs Calc with a “calculator keypad” picture as well as a stack display. Click on the keys with the
mouse to operate the calculator. See XXX [Keypad Mode], page XXX.

The q key (calc-quit) exits Calc Mode and closes the Calculator’s window(s). It does not
delete the Calculator buffers. If you type M-x calc again, the Calculator will reappear with the
contents of the stack intact. Typing M-# ¢ or M-# M-# again from inside the Calculator buffer is
equivalent to executing calc-quit; you can think of M-# M-# as toggling the Calculator on and off.

The M-# x command also turns the Calculator off, no matter which user interface (standard,
Keypad, or Embedded) is currently active. It also cancels calc-edit mode if used from there.

The d SPC key sequence (calc-refresh) redraws the contents of the Calculator buffer from
memory. Use this if the contents of the buffer have been damaged somehow.

The o key (calc-realign) moves the cursor back to its “home” position at the bottom of the
Calculator buffer.

The < and > keys are bound to calc-scroll-left and calc-scroll-right. These are just
like the normal horizontal scrolling commands except that they scroll one half-screen at a time by
default. (Calc formats its output to fit within the bounds of the window whenever it can.)

The { and } keys are bound to calc-scroll-down and calc-scroll-up. They scroll up or
down by one-half the height of the Calc window.

The M-# 0 command (calc-reset; that’s M-# followed by a zero) resets the Calculator to its
default state. This clears the stack, resets all the modes, clears the caches (see XXX [Caches],
page XXX), and so on. (It does not erase the values of any variables.) With a numeric prefix
argument, M-# O preserves the contents of the stack but resets everything else.

The M-x calc-version command displays the current version number of Calc and the name of
the person who installed it on your system. (This information is also present in the ‘*Calc Trail*’
buffer, and in the output of the h h command.)

3.2 Help Commands

The ? key (calc-help) displays a series of brief help messages. Some keys (such as b and d)
are prefix keys, like Emacs’ ESC and C-x prefixes. You can type ? after a prefix to see a list of
commands beginning with that prefix. (If the message includes ‘[MORE]’, press ? again to see
additional commands for that prefix.)

The h h (calc-full-help) command displays all the ? responses at once. When printed, this
makes a nice, compact (three pages) summary of Calc keystrokes.

In general, the h key prefix introduces various commands that provide help within Calc. Many
of the h key functions are Calc-specific analogues to the C-h functions for Emacs help.

The h i (calc-info) command runs the Emacs Info system to read this manual on-line. This
is basically the same as typing C-h i (the regular way to run the Info system), then, if Info is not
already in the Calc manual, selecting the beginning of the manual. The M-# i command is another
way to read the Calc manual; it is different from h i in that it works any time, not just inside Calc.
The plain i key is also equivalent to h i, though this key is obsolete and may be replaced with a
different command in a future version of Calc.

M-# q

M-# 0

hi
M-# i



ht
M-# t

h s
M-# s

h k

=3
QC;)Q
= Ao
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The h t (calc-tutorial) command runs the Info system on the Tutorial section of the Calc
manual. It is like h i, except that it selects the starting node of the tutorial rather than the
beginning of the whole manual. (It actually selects the node “Interactive Tutorial” which tells a
few things about using the Info system before going on to the actual tutorial.) The M-# t key is
equivalent to h t (but it works at all times).

The h s (calc-info-summary) command runs the Info system on the Summary node of the
Calc manual. See XXX [Summary|, page XXX. The M-# s key is equivalent to h s.

The h k (calc-describe-key) command looks up a key sequence in the Calc manual. For
example, h k H a S looks up the documentation on the H a S (calc-solve-for) command. This
works by looking up the textual description of the key(s) in the Key Index of the manual, then
jumping to the node indicated by the index.

Most Calc commands do not have traditional Emacs documentation strings, since the h k
command is both more convenient and more instructive. This means the regular Emacs C-h k
(describe-key) command will not be useful for Calc keystrokes.

The h ¢ (calc-describe-key-briefly) command reads a key sequence and displays a brief
one-line description of it at the bottom of the screen. It looks for the key sequence in the Summary
node of the Calc manual; if it doesn’t find the sequence there, it acts just like its regular Emacs
counterpart C-h ¢ (describe-key-briefly). For example, h ¢ H a S gives the description:

H a S runs calc-solve-for: a ‘Ha S’ v => fsolve(a,v) (?=notes)
which means the command H a S or H M-x calc-solve-for takes a value a from the stack, prompts
for a value v, then applies the algebraic function fsolve to these values. The ‘?=notes’ message
means you can now type ? to see additional notes from the summary that apply to this command.

The h f (calc-describe-function) command looks up an algebraic function or a command
name in the Calc manual. The prompt initially contains ‘calcFunc-’; follow this with an algebraic
function name to look up that function in the Function Index. Or, backspace and enter a command
name beginning with ‘calc-’ to look it up in the Command Index. This command will also look
up operator symbols that can appear in algebraic formulas, like ‘%’ and ‘=>’.

The h v (calc-describe-variable) command looks up a variable in the Calc manual. The
prompt initially contains the ‘var-’ prefix; just add a variable name like pi or PlotRejects.

The h b (calc-describe-bindings) command is just like C-h b, except that only local (Calc-
related) key bindings are listed.

The h n or h C-n (calc-view-news) command displays the “news” or change history of Calc.
This is kept in the file ‘README’, which Calc looks for in the same directory as the Calc source files.

The h C-c, h C-d, and h C-w keys display copying, distribution, and warranty information
about Calc. These work by pulling up the appropriate parts of the “Copying” or “Reporting Bugs”
sections of the manual.

3.3 Stack Basics

Calc uses RPN notation. If you are not familar with RPN, see XXX [RPN Tutorial], page XXX.

To add the numbers 1 and 2 in Calc you would type the keys: 1 RET 2 +. (RET corresponds to
the ENTER key on most calculators.) The first three keystrokes “push” the numbers 1 and 2 onto
the stack. The + key always “pops” the top two numbers from the stack, adds them, and pushes
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the result (3) back onto the stack. This number is ready for further calculations: 5 - pushes 5 onto
the stack, then pops the 3 and 5, subtracts them, and pushes the result (—2).

Note that the “top” of the stack actually appears at the bottom of the buffer. A line containing
a single ‘.’ character signifies the end of the buffer; Calculator commands operate on the number(s)
directly above this line. The d t (calc-truncate-stack) command allows you to move the ‘.’
marker up and down in the stack; see XXX [Truncating the Stack|, page XXX .

Stack elements are numbered consecutively, with number 1 being the top of the stack. These
line numbers are ordinarily displayed on the lefthand side of the window. The d 1 (calc-line-
numbering) command controls whether these numbers appear. (Line numbers may be turned off
since they slow the Calculator down a bit and also clutter the display.)

The unshifted letter o (calc-realign) command repositions the cursor to its top-of-stack
“home” position. It also undoes any horizontal scrolling in the window. If you give it a numeric
prefix argument, it instead moves the cursor to the specified stack element.

The RET (or equivalent SPC) key is only required to separate two consecutive numbers. (After
all, if you typed 1 2 by themselves the Calculator would enter the number 12.) If you press RET or
SPC not right after typing a number, the key duplicates the number on the top of the stack. RET *
is thus a handy way to square a number.

The DEL key pops and throws away the top number on the stack. The TAB key swaps the top
two objects on the stack. See XXX [Stack and Trail], page XXX, for descriptions of these and
other stack-related commands.

3.4 Numeric Entry

Pressing a digit or other numeric key begins numeric entry using the minibuffer. The number is
pushed on the stack when you press the RET or SPC keys. If you press any other non-numeric key,
the number is pushed onto the stack and the appropriate operation is performed. If you press a
numeric key which is not valid, the key is ignored.

There are three different concepts corresponding to the word “minus,” typified by a — b (sub-
traction), —z (change-sign), and —5 (negative number). Calc uses three different keys for these
operations, respectively: -, n, and _ (the underscore). The - key subtracts the two numbers on the
top of the stack. The n key changes the sign of the number on the top of the stack or the number
currently being entered. The _ key begins entry of a negative number or changes the sign of the
number currently being entered. The following sequences all enter the number —5 onto the stack:
O RET 5 -, 5 n RET, 5 RET n, _ 5 RET, 5 _ RET.

Some other keys are active during numeric entry, such as # for non-decimal numbers, : for
fractions, and @ for HMS forms. These notations are described later in this manual with the
corresponding data types. See XXX [Data Types], page XXX.

During numeric entry, the only editing key available is DEL.
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3.5 Algebraic Entry

Calculations can also be entered in algebraic form. This is accomplished by typing the apostrophe
key, ’, followed by the expression in standard format: ’ 2+3%4 RET computes 2 + (3 x 4) = 14 and
pushes that on the stack. If you wish you can ignore the RPN aspect of Calc altogether and simply
enter algebraic expressions in this way. You may want to use DEL every so often to clear previous
results off the stack.

You can press the apostrophe key during normal numeric entry to switch the half-entered number
into algebraic entry mode. One reason to do this would be to use the full Emacs cursor motion
and editing keys, which are available during algebraic entry but not during numeric entry.

In the same vein, during either numeric or algebraic entry you can press ¢ (backquote) to switch
to calc-edit mode, where you complete your half-finished entry in a separate buffer. See XXX
[Editing Stack Entries|, page XXX.

If you prefer algebraic entry, you can use the command m a (calc-algebraic-mode) to set
Algebraic mode. In this mode, digits and other keys that would normally start numeric entry
instead start full algebraic entry; as long as your formula begins with a digit you can omit the
apostrophe. Open parentheses and square brackets also begin algebraic entry. You can still do
RPN calculations in this mode, but you will have to press RET to terminate every number: 2 RET
3 RET * 4 RET + would accomplish the same thing as 2*3+4 RET.

If you give a numeric prefix argument like C-u to the m a command, it enables Incomplete
Algebraic mode; this is like regular Algebraic mode except that it applies to the ( and [ keys only.
Numeric keys still begin a numeric entry in this mode.

The m t (calc-total-algebraic-mode) gives you an even stronger algebraic-entry mode, in
which all regular letter and punctuation keys begin algebraic entry. Use this if you prefer typing
sqrt () instead of Q, factor( ) instead of a f, and so on. To type regular Calc commands when
you are in “total” algebraic mode, hold down the META key. Thus M-q is the command to quit Calc,
M-p sets the precision, and M-m t (or M-m M-t, if you prefer) turns total algebraic mode back off
again. Meta keys also terminate algebraic entry, so that 2+3 M-S is equivalent to 2+3 RET M-S. The
symbol ‘Alg*’ will appear in the mode line whenever you are in this mode.

Pressing ’ (the apostrophe) a second time re-enters the previous algebraic formula. You can
then use the normal Emacs editing keys to modify this formula to your liking before pressing RET.

Within a formula entered from the keyboard, the symbol $ represents the number on the top of
the stack. If an entered formula contains any $ characters, the Calculator replaces the top of stack
with that formula rather than simply pushing the formula onto the stack. Thus, > 1+2 RET pushes
3 on the stack, and $*2 RET replaces it with 6. Note that the $ key always initiates algebraic entry;
the ’ is unnecessary if $ is the first character in the new formula.

Higher stack elements can be accessed from an entered formula with the symbols $$, $$$, and
so on. The number of stack elements removed (to be replaced by the entered values) equals the
number of dollar signs in the longest such symbol in the formula. For example, ‘$$+$$$’ adds the
second and third stack elements, replacing the top three elements with the answer. (All information
about the top stack element is thus lost since no single ‘$’ appears in this formula.)

A slightly different way to refer to stack elements is with a dollar sign followed by a number:
‘$1°. ‘$2’, and so on are much like ‘§’, ‘$$’, etc., except that stack entries referred to numerically
are not replaced by the algebraic entry. That is, while ‘$+1’ replaces 5 on the stack with 6, ‘§1+1’
leaves the 5 on the stack and pushes an additional 6.
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If a sequence of formulas are entered separated by commas, each formula is pushed onto the
stack in turn. For example, ‘1,2,3’ pushes those three numbers onto the stack (leaving the 3 at
the top), and ‘$+1,$-1" replaces a 5 on the stack with 4 followed by 6. Also, ‘$,$$’ exchanges the
top two elements of the stack, just like the TAB key.

You can finish an algebraic entry with M-= or M-RET instead of RET. This uses = to evaluate the
variables in each formula that goes onto the stack. (Thus ’ pi RET pushes the variable ‘pi’, but ’
pi M-RET pushes 3.1415.)

If you finish your algebraic entry by pressing LFD (or C-j) instead of RET, Calc disables the
default simplifications (as if by m 0; see XXX [Simplification Modes|, page XXX ) while the entry
is being pushed on the stack. Thus ’> 1+2 RET pushes 3 on the stack, but ’> 1+2 LFD pushes the
formula 1 4+ 2; you might then press = when it is time to evaluate this formula.

3.6 “Quick Calculator” Mode

There is another way to invoke the Calculator if all you need to do is make one or two quick
calculations. Type M-# q (or M-x quick-calc), then type any formula as an algebraic entry. The
Calculator will compute the result and display it in the echo area, without ever actually putting
up a Calc window.

You can use the $ character in a Quick Calculator formula to refer to the previous Quick
Calculator result. Older results are not retained; the Quick Calculator has no effect on the full
Calculator’s stack or trail. If you compute a result and then forget what it was, just run M-# q
again and enter ‘$’ as the formula.

If this is the first time you have used the Calculator in this Emacs session, the M-# q command
will create the *Calculator* buffer and perform all the usual initializations; it simply will refrain
from putting that buffer up in a new window. The Quick Calculator refers to the *Calculator*
buffer for all mode settings. Thus, for example, to set the precision that the Quick Calculator uses,
simply run the full Calculator momentarily and use the regular p command.

If you use M-# q from inside the Calculator buffer, the effect is the same as pressing the apos-
trophe key (algebraic entry).

The result of a Quick calculation is placed in the Emacs “kill ring” as well as being displayed.
A subsequent C-y command will yank the result into the editing buffer. You can also use this to
yank the result into the next M-# q input line as a more explicit alternative to $ notation, or to
yank the result into the Calculator stack after typing M-# c.

If you finish your formula by typing LFD (or C-j) instead of RET, the result is inserted immediately
into the current buffer rather than going into the kill ring.

Quick Calculator results are actually evaluated as if by the = key (which replaces variable names
by their stored values, if any). If the formula you enter is an assignment to a variable using the
‘:=’ operator, say, ‘foo := 2 + 3’ or ‘foo := foo + 1’, then the result of the evaluation is stored in
that Calc variable. See XXX [Store and Recall], page XXX.

If the result is an integer and the current display radix is decimal, the number will also be
displayed in hex and octal formats. If the integer is in the range from 1 to 126, it will also be
displayed as an ASCII character.

For example, the quoted character ‘"x"’ produces the vector result ‘[120]’ (because 120 is the
ASCII code of the lower-case ‘x’; see XXX [Strings], page XXX). Since this is a vector, not an
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integer, it is displayed only according to the current mode settings. But running Quick Calc again
and entering ‘120’ will produce the result ‘120 (16#78, 8#170, x)’ which shows the number in its
decimal, hexadecimal, octal, and ASCII forms.

Please note that the Quick Calculator is not any faster at loading or computing the answer than
the full Calculator; the name “quick” merely refers to the fact that it’s much less hassle to use for
small calculations.

3.7 Numeric Prefix Arguments

Many Calculator commands use numeric prefix arguments. Some, such as d s (calc-sci-
notation), set a parameter to the value of the prefix argument or use a default if you don’t
use a prefix. Others (like d f (calc-fix-notation)) require an argument and prompt for a
number if you don’t give one as a prefix.

As a rule, stack-manipulation commands accept a numeric prefix argument which is interpreted
as an index into the stack. A positive argument operates on the top n stack entries; a negative
argument operates on the nth stack entry in isolation; and a zero argument operates on the entire
stack.

Most commands that perform computations (such as the arithmetic and scientific functions) ac-
cept a numeric prefix argument that allows the operation to be applied across many stack elements.
For unary operations (that is, functions of one argument like absolute value or complex conjugate),
a positive prefix argument applies that function to the top n stack entries simultaneously, and a
negative argument applies it to the nth stack entry only. For binary operations (functions of two
arguments like addition, GCD, and vector concatenation), a positive prefix argument “reduces”
the function across the top n stack elements (for example, C-u 5 + sums the top 5 stack entries;
see XXX [Reducing and Mapping], page XXX ), and a negative argument maps the next-to-top n
stack elements with the top stack element as a second argument (for example, 7 c-u -5 + adds 7
to the top 5 stack elements). This feature is not available for operations which use the numeric
prefix argument for some other purpose.

Numeric prefixes are specified the same way as always in Emacs: Press a sequence of META-digits,
or press ESC followed by digits, or press C-u followed by digits. Some commands treat plain C-u
(without any actual digits) specially.

You can type ~ (calc-num-prefix) to pop an integer from the top of the stack and enter it as
the numeric prefix for the next command. For example, C-u 16 p sets the precision to 16 digits;
an alternate (silly) way to do this would be 2 RET 4 ~ ~ p, i.e., compute 2 to the fourth power and
set the precision to that value.

Conversely, if you have typed a numeric prefix argument the ~ key pushes it onto the stack in
the form of an integer.
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3.8 Undoing Mistakes

The shift-Ukey (calc-undo) undoes the most recent operation. If that operation added or dropped
objects from the stack, those objects are removed or restored. If it was a “store” operation, you
are queried whether or not to restore the variable to its original value. The U key may be pressed
any number of times to undo successively farther back in time; with a numeric prefix argument it
undoes a specified number of operations. The undo history is cleared only by the q (calc-quit)
command. (Recall that M-# c is synonymous with calc-quit while inside the Calculator; this also
clears the undo history.)

Currently the mode-setting commands (like calc-precision) are not undoable. You can undo
past a point where you changed a mode, but you will need to reset the mode yourself.

The shift-D key (calc-redo) redoes an operation that was mistakenly undone. Pressing Uwith a
negative prefix argument is equivalent to executing calc-redo. You can redo any number of times,
up to the number of recent consecutive undo commands. Redo information is cleared whenever
you give any command that adds new undo information, i.e., if you undo, then enter a number on
the stack or make any other change, then it will be too late to redo.

The M-RET key (calc-last-args) is like undo in that it restores the arguments of the most
recent command onto the stack; however, it does not remove the result of that command. Given a
numeric prefix argument, this command applies to the nth most recent command which removed
items from the stack; it pushes those items back onto the stack.

The K (calc-keep-args) command provides a related function to M-RET. See XXX [Stack and
Trail], page XXX.

It is also possible to recall previous results or inputs using the trail. See XXX [Trail Commands],
page XXX.

The standard Emacs C-_ undo key is recognized as a synonym for U.

3.9 Error Messages

Many situations that would produce an error message in other calculators simply create unsimplified
formulas in the Emacs Calculator. For example, 1 RET 0 / pushes the formula 1/0; 0 L pushes the
formula ‘1n(0)’. Floating-point overflow and underflow are also reasons for this to happen.

When a function call must be left in symbolic form, Calc usually produces a message explaining
why. Messages that are probably surprising or indicative of user errors are displayed automatically.
Other messages are simply kept in Calc’s memory and are displayed only if you type w (calc-why).
You can also press w if the same computation results in several messages. (The first message will
end with ‘[w=more]’ in this case.)

The d w (calc-auto-why) command controls when error messages are displayed automatically.
(Calc effectively presses w for you after your computation finishes.) By default, this occurs only for
“important” messages. The other possible modes are to report all messages automatically, or to
report none automatically (so that you must always press w yourself to see the messages).

M-RET
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3.10 Multiple Calculators

It is possible to have any number of Calc Mode buffers at once. Usually this is done by executing
M-x another-calc, which is similar to M-# c except that if a ‘*Calculator*’ buffer already exists,
a new, independent one with a name of the form ‘*Calculator*<n>’ is created. You can also use
the command calc-mode to put any buffer into Calculator mode, but this would ordinarily never
be done.

The q (calc-quit) command does not destroy a Calculator buffer; it only closes its window.
Use M-x kill-buffer to destroy a Calculator buffer.

Each Calculator buffer keeps its own stack, undo list, and mode settings such as precision,
angular mode, and display formats. In Emacs terms, variables such as calc-stack are buffer-local
variables. The global default values of these variables are used only when a new Calculator buffer
is created. The calc-quit command saves the stack and mode settings of the buffer being quit as
the new defaults.

There is only one trail buffer, ‘*Calc Trail*’, used by all Calculator buffers.

3.11 Troubleshooting Commands

This section describes commands you can use in case a computation incorrectly fails or gives the
wrong answer.

See XXX [Reporting Bugs], page XXX, if you find a problem that appears to be due to a bug
or deficiency in Calc.

3.11.1 Autoloading Problems

The Calc program is split into many component files; components are loaded automatically as
you use various commands that require them. Occasionally Calc may lose track of when a certain
component is necessary; typically this means you will type a command and it won’t work because
some function you’ve never heard of was undefined.

If this happens, the easiest workaround is to type M-# L (calc-load-everything) to force all
the parts of Calc to be loaded right away. This will cause Emacs to take up a lot more memory
than it would otherwise, but it’s guaranteed to fix the problem.

If you seem to run into this problem no matter what you do, or if even the M-# L command
crashes, Calc may have been improperly installed. See XXX [Installation], page XXX, for details
of the installation process.
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3.11.2 Recursion Depth

Calc uses recursion in many of its calculations. Emacs Lisp keeps a variable max-1isp-eval-depth
which limits the amount of recursion possible in an attempt to recover from program bugs. If a
calculation ever halts incorrectly with the message “Computation got stuck or ran too long,” use
the M command (calc-more-recursion-depth) to increase this limit. (Of course, this will not
help if the calculation really did get stuck due to some problem inside Calc.)

The limit is always increased (multiplied) by a factor of two. There is also an I M (calc-less-
recursion-depth) command which decreases this limit by a factor of two, down to a minimum
value of 200. The default value is 1000.

These commands also double or halve max-specpdl-size, another internal Lisp recursion limit.
The minimum value for this limit is 600.

3.11.3 Caches

Calc saves certain values after they have been computed once. For example, the P (calc-pi)
command initially “knows” the constant 7w to about 20 decimal places; if the current precision is
greater than this, it will recompute 7 using a series approximation. This value will not need to
be recomputed ever again unless you raise the precision still further. Many operations such as
logarithms and sines make use of similarly cached values such as 5 and In2. The visible effect
of caching is that high-precision computations may seem to do extra work the first time. Other
things cached include powers of two (for the binary arithmetic functions), matrix inverses and

determinants, symbolic integrals, and data points computed by the graphing commands.

If you suspect a Calculator cache has become corrupt, you can use the calc-flush-caches
command to reset all caches to the empty state. (This should only be necessary in the event of
bugs in the Calculator.) The M-# 0 (with the zero key) command also resets caches along with all
other aspects of the Calculator’s state.

3.11.4 Debugging Calc

A few commands exist to help in the debugging of Calc commands. See XXX [Programming],
page XXX, to see the various ways that you can write your own Calc commands.

The Z T (calc-timing) command turns on and off a mode in which the timing of slow commands
is reported in the Trail. Any Calc command that takes two seconds or longer writes a line to the
Trail showing how many seconds it took. This value is accurate only to within one second.

All steps of executing a command are included; in particular, time taken to format the result
for display in the stack and trail is counted. Some prompts also count time taken waiting for them
to be answered, while others do not; this depends on the exact implementation of the command.
For best results, if you are timing a sequence that includes prompts or multiple commands, define
a keyboard macro to run the whole sequence at once. Calc’s X command (see XXX [Keyboard
Macros|, page XXX) will then report the time taken to execute the whole macro.

IM
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Another advantage of the X command is that while it is executing, the stack and trail are not
updated from step to step. So if you expect the output of your test sequence to leave a result
that may take a long time to format and you don’t wish to count this formatting time, end your
sequence with a DEL keystroke to clear the result from the stack. When you run the sequence with
X, Calc will never bother to format the large result.

Another thing Z T does is to increase the Emacs variable gc-cons-threshold to a much higher
value (two million; the usual default in Calc is 250,000) for the duration of each command. This
generally prevents garbage collection during the timing of the command, though it may cause your
Emacs process to grow abnormally large. (Garbage collection time is a major unpredictable factor
in the timing of Emacs operations.)

Another command that is useful when debugging your own Lisp extensions to Calc is M-x
calc-pass-errors, which disables the error handler that changes the “max-lisp-eval-depth
exceeded” message to the much more friendly “Computation got stuck or ran too long.” This
handler interferes with the Emacs Lisp debugger’s debug-on-error mode. Errors are reported in
the handler itself rather than at the true location of the error. After you have executed calc-
pass-errors, Lisp errors will be reported correctly but the user-friendly message will be lost.
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4 Data Types

This chapter discusses the various types of objects that can be placed on the Calculator stack, how
they are displayed, and how they are entered. (See XXX [Data Type Formats|, page XXX, for
information on how these data types are represented as underlying Lisp objects.)

Integers, fractions, and floats are various ways of describing real numbers. HMS forms also
for many purposes act as real numbers. These types can be combined to form complex numbers,
modulo forms, error forms, or interval forms. (But these last four types cannot be combined
arbitrarily: error forms may not contain modulo forms, for example.) Finally, all these types of
numbers may be combined into vectors, matrices, or algebraic formulas.

4.1 Integers

The Calculator stores integers to arbitrary precision. Addition, subtraction, and multiplication
of integers always yields an exact integer result. (If the result of a division or exponentiation of
integers is not an integer, it is expressed in fractional or floating-point form according to the current
Fraction Mode. See XXX [Fraction Mode|, page XXX.)

A decimal integer is represented as an optional sign followed by a sequence of digits. Grouping
(see XXX [Grouping Digits], page XXX ) can be used to insert a comma at every third digit for
display purposes, but you must not type commas during the entry of numbers.

A non-decimal integer is represented as an optional sign, a radix between 2 and 36, a ‘# symbol,
and one or more digits. For radix 11 and above, the letters A through Z (upper- or lower-case)
count as digits and do not terminate numeric entry mode. See XXX [Radix Modes|, page XXX,
for how to set the default radix for display of integers. Numbers of any radix may be entered at
any time. If you press # at the beginning of a number, the current display radix is used.

4.2 Fractions

A fraction is a ratio of two integers. Fractions are traditionally written “2/3” but Calc uses the
notation ‘2:3". (The / key performs RPN division; the following two sequences push the number
‘2:3’ on the stack: 2 : 3 RET, or 2 RET 3 / assuming Fraction Mode has been enabled.) When the
Calculator produces a fractional result it always reduces it to simplest form, which may in fact be
an integer.

Fractions may also be entered in a three-part form, where ‘2:3:4’ represents two-and-three-
quarters. See XXX [Fraction Formats|, page XXX, for fraction display formats.

Non-decimal fractions are entered and displayed as ‘radix#num:denom’ (or in the analogous
three-part form). The numerator and denominator always use the same radix.



Chapter 4: Data Types 126

4.3 Floats

A floating-point number or float is a number stored in scientific notation. The number of significant
digits in the fractional part is governed by the current floating precision (see XXX [Precision],
page XXX). The range of acceptable values is from 107399999 (inclusive) to 10%09°% (exclusive),
plus the corresponding negative values and zero.

Calculations that would exceed the allowable range of values (such as ‘exp(exp(20))’) are left
in symbolic form by Calc. The messages “floating-point overflow” or “floating-point underflow”
indicate that during the calculation a number would have been produced that was too large or
too close to zero, respectively, to be represented by Calc. This does not necessarily mean the final
result would have overflowed, just that an overflow occurred while computing the result. (In fact,
it could report an underflow even though the final result would have overflowed!)

If a rational number and a float are mixed in a calculation, the result will in general be expressed
as a float. Commands that require an integer value (such as k g [gcd]) will also accept integer-valued
floats, i.e., floating-point numbers with nothing after the decimal point.

Floats are identified by the presence of a decimal point and/or an exponent. In general a float
consists of an optional sign, digits including an optional decimal point, and an optional exponent
consisting of an ‘e’, an optional sign, and up to seven exponent digits. For example, ‘23.5e-2" is
23.5 times ten to the minus-second power, or 0.235.

Floating-point numbers are normally displayed in decimal notation with all significant figures
shown. Exceedingly large or small numbers are displayed in scientific notation. Various other
display options are available. See XXX [Float Formats|, page XXX.

Floating-point numbers are stored in decimal, not binary. The result of each operation is
rounded to the nearest value representable in the number of significant digits specified by the
current precision, rounding away from zero in the case of a tie. Thus (in the default display mode)
what you see is exactly what you get. Some operations such as square roots and transcendental
functions are performed with several digits of extra precision and then rounded down, in an effort to
make the final result accurate to the full requested precision. However, accuracy is not rigorously
guaranteed. If you suspect the validity of a result, try doing the same calculation in a higher
precision. The Calculator’s arithmetic is not intended to be IEEE-conformant in any way.

While floats are always stored in decimal, they can be entered and displayed in any radix just
like integers and fractions. The notation ‘radix#ddd.ddd’ is a floating-point number whose digits
are in the specified radix. Note that the ‘.’ is more aptly referred to as a “radix point” than as
a decimal point in this case. The number ‘8#123.4567’ is defined as ‘8#1234567 * 8°-4’. If the
radix is 14 or less, you can use ‘e’ notation to write a non-decimal number in scientific notation.
The exponent is written in decimal, and is considered to be a power of the radix: ‘8#1234567e-4’.
If the radix is 15 or above, the letter ‘e’ is a digit, so scientific notation must be written out, e.g.,
‘16#123.4567%16"2’. The first two exercises of the Modes Tutorial explore some of the properties
of non-decimal floats.
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4.4 Complex Numbers

There are two supported formats for complex numbers: rectangular and polar. The default format
is rectangular, displayed in the form ‘(real,imag)’ where real is the real part and imag is the
imaginary part, each of which may be any real number. Rectangular complex numbers can also be
displayed in ‘a+bi’ notation; see XXX [Complex Formats|, page XXX.

Polar complex numbers are displayed in the form ‘(r;#)’ where r is the nonnegative magnitude
and @ is the argument or phase angle. The range of # depends on the current angular mode
(see XXX [Angular Modes|, page XXX); it is generally between —180 and +180 degrees or the
equivalent range in radians.

Complex numbers are entered in stages using incomplete objects. See XXX [Incomplete Ob-
jects], page XXX.

Operations on rectangular complex numbers yield rectangular complex results, and similarly for
polar complex numbers. Where the two types are mixed, or where new complex numbers arise (as
for the square root of a negative real), the current Polar Mode is used to determine the type. See
XXX [Polar Mode|, page XXX.

A complex result in which the imaginary part is zero (or the phase angle is 0 or 180 degrees or
7 radians) is automatically converted to a real number.

4.5 Infinities

The word inf represents the mathematical concept of infinity. Calc actually has three slightly
different infinity-like values: inf, uinf, and nan. These are just regular variable names (see XXX
[Variables], page XXX ); you should avoid using these names for your own variables because Calc
gives them special treatment. Infinities, like all variable names, are normally entered using algebraic
entry.

Mathematically speaking, it is not rigorously correct to treat “infinity” as if it were a number,
but mathematicians often do so informally. When they say that ‘1 / inf = 0’, what they really
mean is that 1/z, as = becomes larger and larger, becomes arbitrarily close to zero. So you can
imagine that if z got “all the way to infinity,” then 1/z would go all the way to zero. Similarly, when
they say that ‘exp(inf) = inf’, they mean that e grows without bound as = grows. The symbol
‘~inf’ likewise stands for an infinitely negative real value; for example, we say that ‘exp(-inf) =
0’. You can have an infinity pointing in any direction on the complex plane: ‘sqrt (-inf) = i inf’.

The same concept of limits can be used to define 1/0. We really want the value that 1/x
approaches as z approaches zero. But if all we have is 1/0, we can’t tell which direction z was
coming from. If z was positive and decreasing toward zero, then we should say that ‘1 / 0 = inf’.
But if x was negative and increasing toward zero, the answer is ‘1 / 0 = -inf’. In fact, x could be
an imaginary number, giving the answer ‘i inf’ or ‘-i inf’. Calc uses the special symbol ‘uinf’
to mean undirected infinity, i.e., a value which is infinitely large but with an unknown sign (or
direction on the complex plane).

Calc actually has three modes that say how infinities are handled. Normally, infinities never

arise from calculations that didn’t already have them. Thus, 1/0 is treated simply as an error and
left unevaluated. The m i (calc-infinite-mode) command (see XXX [Infinite Mode], page XXX)
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enables a mode in which 1/0 evaluates to uinf instead. There is also an alternative type of infinite
mode which says to treat zeros as if they were positive, so that ‘1 / 0 = inf’. While this is less
mathematically correct, it may be the answer you want in some cases.

Since all infinities are “as large” as all others, Calc simplifies, e.g., ‘6 inf’ to ‘inf’. Another
example is ‘6 - inf = -inf’, where the ‘-inf’ is so large that adding a finite number like five to
it does not affect it. Note that ‘a - inf’ also results in ‘-inf’; Calc assumes that variables like a
always stand for finite quantities. Just to show that infinities really are all the same size, note that
‘sqrt (inf) = inf~2 = exp(inf) = inf’ in Calc’s notation.

It’s not so easy to define certain formulas like ‘O * inf’ and ‘inf / inf’. Depending on where
these zeros and infinities came from, the answer could be literally anything. The latter formula
could be the limit of z/z (giving a result of one), or 2z/z (giving two), or z?/z (giving inf), or
z/z? (giving zero). Calc uses the symbol nan to represent such an indeterminate value. (The name
“nan” comes from analogy with the “NAN” concept of IEEE standard arithmetic; it stands for
“Not A Number.” This is somewhat of a misnomer, since nan does stand for some number or
infinity, it’s just that which number it stands for cannot be determined.) In Calc’s notation, ‘0 *
inf = nan’ and ‘inf / inf = nan’. A few other common indeterminate expressions are ‘inf - inf’
and ‘inf ~ 0’. Also, ‘0 / 0 = nan’ if you have turned on “infinite mode” (as described above).

Infinities are especially useful as parts of intervals. See XXX [Interval Forms|, page XXX .

4.6 Vectors and Matrices

The vector data type is flexible and general. A vector is simply a list of zero or more data objects.
When these objects are numbers, the whole is a vector in the mathematical sense. When these
objects are themselves vectors of equal (nonzero) length, the whole is a matrix. A vector which is
not a matrix is referred to here as a plain vector.

A vector is displayed as a list of values separated by commas and enclosed in square brackets:
‘[1, 2, 3]’. Thus the following is a 2 row by 3 column matrix: ‘[[1, 2, 3], [4, 5, 6]1]". Vec-
tors, like complex numbers, are entered as incomplete objects. See XXX [Incomplete Objects],
page XXX. During algebraic entry, vectors are entered all at once in the usual brackets-and-
commas form. Matrices may be entered algebraically as nested vectors, or using the shortcut
notation ‘[1, 2, 3; 4, 5, 6]°, with rows separated by semicolons. The commas may usually be
omitted when entering vectors: ‘[1 2 3]’. Curly braces may be used in place of brackets: ‘{1, 2,
3}’, but the commas are required in this case.

Traditional vector and matrix arithmetic is also supported; see XXX [Basic Arithmetic],
page XXX and see XXX [Matrix Functions], page XXX. Many other operations are applied to
vectors element-wise. For example, the complex conjugate of a vector is a vector of the complex
conjugates of its elements.

Algebraic functions for building vectors include ‘vec(a, b, ¢)’ to build ‘[a, b, c]’, ‘cvec(a,
n, m)’ to build an n X m matrix of ‘a’s, and ‘index(n)’ to build a vector of integers from 1 to ‘n’.
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4.7 Strings

Character strings are not a special data type in the Calculator. Rather, a string is represented
simply as a vector all of whose elements are integers in the range 0 to 255 (ASCII codes). You can
enter a string at any time by pressing the " key. Quotation marks and backslashes are written ‘\"’
and ‘\\’, respectively, inside strings. Other notations introduced by backslashes are:

\a 7 \"~@ 0

\b 8 \"a-z 1-26
\e 27 \"[ 27
\f 12 \ AN 28
\n 10 \"] 29
\r 13 \"" 30
\t 9 \"_ 31

\"? 127

Finally, a backslash followed by three octal digits produces any character from its ASCII code.

Strings are normally displayed in vector-of-integers form. The d " (calc-display-strings)
command toggles a mode in which any vectors of small integers are displayed as quoted strings
instead.

The backslash notations shown above are also used for displaying strings. Characters 128 and
above are not translated by Calc; unless you have an Emacs modified for 8-bit fonts, these will
show up in backslash-octal-digits notation. For characters below 32, and for character 127, Calc
uses the backslash-letter combination if there is one, or otherwise uses a ‘\~’ sequence.

The only Calc feature that uses strings is compositions; see XXX [Compositions|, page XXX.
Strings also provide a convenient way to do conversions between ASCII characters and integers.

There is a string function which provides a different display format for strings. Basically,
‘string(s)’, where s is a vector of integers in the proper range, is displayed as the correspond-
ing string of characters with no surrounding quotation marks or other modifications. Thus
‘string("ABC")’ (or ‘string([65 66 67])’) will look like ‘ABC’ on the stack. This happens regard-
less of whether d " has been used. The only way to turn it off is to use d U (unformatted language
mode) which will display ‘string("ABC")’ instead.

Control characters are displayed somewhat differently by string. Characters below 32, and
character 127, are shown using ‘~’ notation (same as shown above, but without the backslash).
The quote and backslash characters are left alone, as are characters 128 and above.

The bstring function is just like string except that the resulting string is breakable across
multiple lines if it doesn’t fit all on one line. Potential break points occur at every space character
in the string.

4.8 HMS Forms

HMS stands for Hours-Minutes-Seconds; when used as an angular argument, the interpretation
is Degrees-Minutes-Seconds. All functions that operate on angles accept HMS forms. These are
interpreted as degrees regardless of the current angular mode. It is also possible to use HMS as the
angular mode so that calculated angles are expressed in degrees, minutes, and seconds.

dll

string

bstring
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The default format for HMS values is ‘hours@ mins’ secs"’. During entry, the letters ‘h’ (for
“hours”) or ‘o’ (approximating the “degrees” symbol) are accepted as well as ‘@, ‘m’ is accepted
in place of ‘»’; and ‘s’ is accepted in place of ‘"’. The hours value is an integer (or integer-valued
float). The mins value is an integer or integer-valued float between 0 and 59. The secs value is a
real number between 0 (inclusive) and 60 (exclusive). A positive HMS form is interpreted as hours
+ mins/60 + secs/3600. A negative HMS form is interpreted as —hours — mins/60 — secs/3600.
Display format for HMS forms is quite flexible. See XXX [HMS Formats]|, page XXX.

HMS forms can be added and subtracted. When they are added to numbers, the numbers are
interpreted according to the current angular mode. HMS forms can also be multiplied and divided
by real numbers. Dividing two HMS forms produces a real-valued ratio of the two angles.

Just for kicks, M-x calc-time pushes the current time of day on the stack as an HMS form.

4.9 Date Forms

A date form represents a date and possibly an associated time. Simple date arithmetic is supported:
Adding a number to a date produces a new date shifted by that many days; adding an HMS form
to a date shifts it by that many hours. Subtracting two date forms computes the number of days
between them (represented as a simple number). Many other operations, such as multiplying two
date forms, are nonsensical and are not allowed by Calc.

Date forms are entered and displayed enclosed in ‘< >’ brackets. The default format is, e.g.,
‘<Wed Jan 9, 1991>’ for dates, or ‘<3:32:20pm Wed Jan 9, 1991>’ for dates with times. Input is
flexible; date forms can be entered in any of the usual notations for dates and times. See XXX
[Date Formats], page XXX.

Date forms are stored internally as numbers, specifically the number of days since midnight
on the morning of January 1 of the year 1 AD. If the internal number is an integer, the form
represents a date only; if the internal number is a fraction or float, the form represents a date
and time. For example, ‘<6:00am Wed Jan 9, 1991>’ is represented by the number 726842.25. The
standard precision of 12 decimal digits is enough to ensure that a (reasonable) date and time can
be stored without roundoff error.

If the current precision is greater than 12, date forms will keep additional digits in the seconds
position. For example, if the precision is 15, the seconds will keep three digits after the decimal
point. Decreasing the precision below 12 may cause the time part of a date form to become
inaccurate. This can also happen if astronomically high years are used, though this will not be an
issue in everyday (or even everymillenium) use. Note that date forms without times are stored as
exact integers, so roundoff is never an issue for them.

You can use the v p (calc-pack) and v u (calc-unpack) commands to get at the numerical
representation of a date form. See XXX [Packing and Unpacking], page XXX.

Date forms can go arbitrarily far into the future or past. Negative year numbers represent years
BC. Calc uses a combination of the Gregorian and Julian calendars, following the history of Great
Britain and the British colonies. This is the same calendar that is used by the cal program in
most Unix implementations.

Some historical background: The Julian calendar was created by Julius Caesar in the year 46
BC as an attempt to fix the gradual drift caused by the lack of leap years in the calendar used until
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that time. The Julian calendar introduced an extra day in all years divisible by four. After some
initial confusion, the calendar was adopted around the year we call 8 AD. Some centuries later
it became apparent that the Julian year of 365.25 days was itself not quite right. In 1582 Pope
Gregory XIII introduced the Gregorian calendar, which added the new rule that years divisible by
100, but not by 400, were not to be considered leap years despite being divisible by four. Many
countries delayed adoption of the Gregorian calendar because of religious differences; in Britain it
was put off until the year 1752, by which time the Julian calendar had fallen eleven days behind
the true seasons. So the switch to the Gregorian calendar in early September 1752 introduced a
discontinuity: The day after Sep 2, 1752 is Sep 14, 1752. Calc follows this convention. To take
another example, Russia waited until 1918 before adopting the new calendar, and thus needed to
remove thirteen days (between Feb 1, 1918 and Feb 14, 1918). This means that Calc’s reckoning
will be inconsistent with Russian history between 1752 and 1918, and similarly for various other
countries.

Today’s timekeepers introduce an occasional “leap second” as well, but Calc does not take these
minor effects into account. (If it did, it would have to report a non-integer number of days between,
say, ‘<12:00am Mon Jan 1, 1900>’ and ‘<12:00am Sat Jan 1, 2000>’.)

Calc uses the Julian calendar for all dates before the year 1752, including dates BC when the
Julian calendar technically had not yet been invented. Thus the claim that day number —10000 is
called “August 16, 28 BC” should be taken with a grain of salt.

Please note that there is no “year 0”; the day before ‘<Sat Jan 1, +1>’ is ‘<Fri Dec 31, -1>".
These are days 0 and —1 respectively in Calc’s internal numbering scheme.

Another day counting system in common use is, confusingly, also called “Julian.” It was invented
in 1583 by Joseph Justus Scaliger, who named it in honor of his father Julius Caesar Scaliger. For
obscure reasons he chose to start his day numbering on Jan 1, 4713 BC at noon, which in Calc’s
scheme is —1721423.5 (recall that Calc starts at midnight instead of noon). Thus to convert a Calc
date code obtained by unpacking a date form into a Julian day number, simply add 1721423.5.
The Julian code for ‘6:00am Jan 9, 1991’ is 2448265.75. The built-in t J command performs this
conversion for you.

The Unix operating system measures time as an integer number of seconds since midnight, Jan
1, 1970. To convert a Calc date value into a Unix time stamp, first subtract 719164 (the code for
‘<Jan 1, 1970>’), then multiply by 86400 (the number of seconds in a day) and press R to round
to the nearest integer. If you have a date form, you can simply subtract the day ‘<Jan 1, 1970>’
instead of unpacking and subtracting 719164. Likewise, divide by 86400 and add ‘<Jan 1, 1970>’
to convert from Unix time to a Calc date form. (Note that Unix normally maintains the time in
the GMT time zone; you may need to subtract five hours to get New York time, or eight hours
for California time. The same is usually true of Julian day counts.) The built-in t U command
performs these conversions.

4.10 Modulo Forms

A modulo form is a real number which is taken modulo (i.e., within an integer multiple of) some
value M. Arithmetic modulo M often arises in number theory. Modulo forms are written ‘c mod
M’, where a and M are real numbers or HMS forms, and 0 < a < M. In many applications a and
M will be integers but this is not required.
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Modulo forms are not to be confused with the modulo operator ‘4’. The expression ‘27 % 10’
means to compute 27 modulo 10 to produce the result 7. Further computations treat this 7 as just
a regular integer. The expression ‘27 mod 10’ produces the result ‘7 mod 10’; further computations
with this value are again reduced modulo 10 so that the result always lies in the desired range.

When two modulo forms with identical M’s are added or multiplied, the Calculator simply adds
or multiplies the values, then reduces modulo M. If one argument is a modulo form and the other
a plain number, the plain number is treated like a compatible modulo form. It is also possible to
raise modulo forms to powers; the result is the value raised to the power, then reduced modulo M.
(When all values involved are integers, this calculation is done much more efficiently than actually
computing the power and then reducing.)

Two modulo forms ‘a mod M’ and ‘b mod M’ can be divided if a, b, and M are all integers.
The result is the modulo form which, when multiplied by ‘b mod M’, produces ‘ac mod M’. If there
is no solution to this equation (which can happen only when M is non-prime), or if any of the
arguments are non-integers, the division is left in symbolic form. Other operations, such as square
roots, are not yet supported for modulo forms. (Note that, although ‘(a mod M)~ .5’ will compute
a “modulo square root” in the sense of reducing y/a modulo M, this is not a useful definition from
the number-theoretical point of view.)

To create a modulo form during numeric entry, press the shift-M key to enter the word ‘mod’. As
a special convenience, pressing shift-M a second time automatically enters the value of M that was
most recently used before. During algebraic entry, either type ‘mod’ by hand or press M-m (that’s
META-m). Once again, pressing this a second time enters the current modulo.

You can also use v p and 7 to modify modulo forms. See XXX [Building Vectors], page XXX.
See XXX [Basic Arithmetic], page XXX.

It is possible to mix HMS forms and modulo forms. For example, an HMS form modulo 24
could be used to manipulate clock times; an HMS form modulo 360 would be suitable for angles.
Making the modulo M also be an HMS form eliminates troubles that would arise if the angular
mode were inadvertently set to Radians, in which case ‘2@ 0’ 0" mod 24’ would be interpreted as
two degrees modulo 24 radians!

Modulo forms cannot have variables or formulas for components. If you enter the formula ‘(x +
2) mod 5’, Calc propagates the modulus to each of the coefficients: ‘(1 mod 5) x + (2 mod 5)°.

The algebraic function ‘makemod (a, m)’ builds the modulo form ‘a mod m’.

4.11 Error Forms

An error form is a number with an associated standard deviation, as in ‘2.3 +/- 0.12’. The
notation ‘z +/- ¢’ stands for an uncertain value which follows a normal or Gaussian distribution of
mean z and standard deviation or “error” o. Both the mean and the error can be either numbers
or formulas. Generally these are real numbers but the mean may also be complex. If the error is
negative or complex, it is changed to its absolute value. An error form with zero error is converted
to a regular number by the Calculator.

All arithmetic and transcendental functions accept error forms as input. Operations on the
mean-value part work just like operations on regular numbers. The error part for any function
f(x) (such as sinz) is defined by the error of z times the derivative of f evaluated at the mean
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value of z. For a two-argument function f(z,y) (such as addition) the error is the square root of
the sum of the squares of the errors due to = and y.

o +/=0) = 1) +/- o | T2

of (z,y)
or

of (z,y)

2 2
+ 1o

) ( 1oy )
Note that this definition assumes the errors in z and gy are uncorrelated. A side effect of this
definition is that ‘(2 +/- 1) * (2 +/- 1)’ is not the same as ‘(2 +/- 1) ~2’; the former represents
the product of two independent values which happen to have the same probability distributions,
and the latter is the product of one random value with itself. The former will produce an answer
with less error, since on the average the two independent errors can be expected to cancel out.

f(.Z' +/- Oz, Y +/- Uy) :f(l',y) +/- \/(G:U

Consult a good text on error analysis for a discussion of the proper use of standard deviations.
Actual errors often are neither Gaussian-distributed nor uncorrelated, and the above formulas
are valid only when errors are small. As an example, the error arising from ‘sin(x +/- o)’ is
‘o abs(cos(z))’. When z is close to zero, cos z is close to one so the error in the sine is close to o;
this makes sense, since sinz is approximately x near zero, so a given error in z will produce about
the same error in the sine. Likewise, near 90 degrees cos z is nearly zero and so the computed error
is small: The sine curve is nearly flat in that region, so an error in = has relatively little effect
on the value of sinz. However, consider ‘sin(90 +/- 1000)’. The cosine of 90 is zero, so Calc
will report zero error! We get an obviously wrong result because we have violated the small-error
approximation underlying the error analysis. If the error in z had been small, the error in sinzx
would indeed have been negligible.

To enter an error form during regular numeric entry, use the p (“plus-or-minus”) key to type
the ‘“+/-" symbol. (If you try actually typing ‘+/-’ the + key will be interpreted as the Calculator’s
+ command!) Within an algebraic formula, you can press M-p to type the ‘+/-’ symbol, or type it
out by hand.

Error forms and complex numbers can be mixed; the formulas shown above are used for complex
numbers, too; note that if the error part evaluates to a complex number its absolute value (or the
square root of the sum of the squares of the absolute values of the two error contributions) is used.
Mathematically, this corresponds to a radially symmetric Gaussian distribution of numbers on the
complex plane. However, note that Calc considers an error form with real components to represent
a real number, not a complex distribution around a real mean.

Error forms may also be composed of HMS forms. For best results, both the mean and the error
should be HMS forms if either one is.

The algebraic function ‘sdev(a, b)’ builds the error form ‘a +/- b’.

+/-

sdev
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4.12 Interval Forms

An interval is a subset of consecutive real numbers. For example, the interval ‘[2 .. 4]’ represents
all the numbers from 2 to 4, inclusive. If you multiply it by the interval ‘[0.5 .. 2]’ you obtain
‘[1 .. 8]". This calculation represents the fact that if you multiply some number in the range
‘[2 .. 4]’ by some other number in the range ‘[0.5 .. 2], your result will lie in the range from
1 to 8. Interval arithmetic is used to get a worst-case estimate of the possible range of values a
computation will produce, given the set of possible values of the input.

Calc supports several varieties of intervals, including closed intervals of the type shown above,
open intervals such as ‘(2 .. 4)’, which represents the range of numbers from 2 to 4 exclusive, and
semi-open intervals in which one end uses a round parenthesis and the other a square bracket. In
mathematical terms,

[2..4] means 2<z<4
[2..4) means 2<z<4
(2..4] means 2<z<4

(2..4) means 2<z<4

The lower and upper limits of an interval must be either real numbers (or HMS or date forms),
or symbolic expressions which are assumed to be real-valued, or ‘-inf’ and ‘inf’. In general the
lower limit must be less than the upper limit. A closed interval containing only one value, ‘[3 ..
3]’, is converted to a plain number (3) automatically. An interval containing no values at all (such
as ‘[3 .. 2]7 or ‘[2 .. 2)’) can be represented but is not guaranteed to behave well when used in
arithmetic. Note that the interval ‘[3 .. inf)’ represents all real numbers greater than or equal
to 3, and ‘(-inf .. inf)’ represents all real numbers. In fact, ‘[-inf .. inf]’ represents all real
numbers including the real infinities.

Intervals are entered in the notation shown here, either as algebraic formulas, or using incomplete
forms. (See XXX [Incomplete Objects|, page XXX.) In algebraic formulas, multiple periods in a
row are collected from left to right, so that ‘1...1e2’ is interpreted as ‘1.0 .. 1e2’ rather than ‘1
.. 0.1e2’. Add spaces or zeros if you want to get the other interpretation. If you omit the lower
or upper limit, a default of ‘~inf’ or ‘inf’ (respectively) is furnished.

“Infinite mode” also affects operations on intervals (see XXX [Infinities], page XXX). Calc
will always introduce an open infinity, as in ‘1 / (0 .. 2] = [0.5 .. inf)’. But closed infinities,
‘0 /1[0..2] =[0.5.. inf]’, arise only in infinite mode; otherwise they are left unevaluated.
Note that the “direction” of a zero is not an issue in this case since the zero is always assumed
to be continuous with the rest of the interval. For intervals that contain zero inside them Calc is
forced to give the result, ‘1 / (-2 .. 2) = [-inf .. inf]’.

While it may seem that intervals and error forms are similar, they are based on entirely different
concepts of inexact quantities. An error form ‘z +/- ¢’ means a variable is random, and its value
could be anything but is “probably” within one ¢ of the mean value z. An interval ‘[a .. b]’
means a variable’s value is unknown, but guaranteed to lie in the specified range. Error forms
are statistical or “average case” approximations; interval arithmetic tends to produce “worst case”
bounds on an answer.

Intervals may not contain complex numbers, but they may contain HMS forms or date forms.

See XXX [Set Operations|, page XXX, for commands that interpret interval forms as subsets
of the set of real numbers.
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The algebraic function ‘intv(n, a, b)’ builds an interval form from ‘a’ to ‘v’; ‘n’ is an integer  intv
code which must be 0 for ‘(..)’, 1 for ‘(..]’, 2 for ‘[..)’, or 3 for ‘[..]".

Please note that in fully rigorous interval arithmetic, care would be taken to make sure that the
computation of the lower bound rounds toward minus infinity, while upper bound computations
round toward plus infinity. Calc’s arithmetic always uses a round-to-nearest mode, which means
that roundoff errors could creep into an interval calculation to produce intervals slightly smaller
than they ought to be. For example, entering ‘[1..2]’ and pressing Q 2 ~ should yield the interval
‘[1..2]" again, but in fact it yields the (slightly too small) interval ‘[1..1.9999999]" due to
roundoff error.

4.13 Incomplete Objects

When (or [ is typed to begin entering a complex number or vector, respectively, the effect is to
push an incomplete complex number or vector onto the stack. The , key adds the value(s) at the
top of the stack onto the current incomplete object. The ) and ] keys “close” the incomplete object
after adding any values on the top of the stack in front of the incomplete object.

As a result, the sequence of keystrokes [ 2 , 3 RET 2 * , 9 ] pushes the vector ‘[2, 6, 9]’ onto
the stack. Likewise, (1 , 2 @ ) pushes the complex number ‘(1, 1.414)’ (approximately).

- ~ rm
~

If several values lie on the stack in front of the incomplete object, all are collected and appended
to the object. Thus the , key is redundant: [ 2 RET 3 RET 2 * 9 ]. Some people prefer the
equivalent SPC key to RET.

As a special case, typing , immediately after (, [, or , adds a zero or duplicates the preceding
value in the list being formed. Typing DEL during incomplete entry removes the last item from the
list.

The ; key is used in the same way as , to create polar complex numbers: (1 ; 2 ). When ;
entering a vector, ; is useful for creating a matrix. In particular, [ [ 1,2 ;3,4 ;5,611 is
equivalentto [ [1,2]1,[3,41,[5,611].

Incomplete entry is also used to enter intervals. For example, [ 2 .. 4 ) enters a semi-open
interval. Note that when you type the first period, it will be interpreted as a decimal point, but
when you type a second period immediately afterward, it is re-interpreted as part of the interval
symbol. Typing .. corresponds to executing the calc-dots command.

If you find incomplete entry distracting, you may wish to enter vectors and complex numbers
as algebraic formulas by pressing the apostrophe key.

4.14 Variables

A variable is somewhere between a storage register on a conventional calculator, and a variable in a
programming language. (In fact, a Calc variable is really just an Emacs Lisp variable that contains
a Calc number or formula.) A variable’s name is normally composed of letters and digits. Calc also
allows apostrophes and # signs in variable names. The Calc variable foo corresponds to the Emacs
Lisp variable var-foo. Commands like s s (calc-store) that operate on variables can be made
to use any arbitrary Lisp variable simply by backspacing over the ‘var-’ prefix in the minibuffer.
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In a command that takes a variable name, you can either type the full name of a variable, or
type a single digit to use one of the special convenience variables var-q0 through var-q9. For
example, 3 s s 2 stores the number 3 in variable var-q2, and 3 s s foo RET stores that number in
variable var-foo.

To push a variable itself (as opposed to the variable’s value) on the stack, enter its name as an
algebraic expression using the apostrophe (?) key. Variable names in algebraic formulas implicitly
have ‘var-’ prefixed to their names. The ‘#’ character in variable names used in algebraic formulas
corresponds to a dash ‘-’ in the Lisp variable name. If the name contains any dashes, the prefix
‘var-’ is not automatically added. Thus the two formulas ‘foo + 1’ and ‘var#foo + 1’ both refer
to the same variable.

The = (calc-evaluate) key “evaluates” a formula by replacing all variables in the formula
which have been given values by a calc-store or calc-let command by their stored values. Other
variables are left alone. Thus a variable that has not been stored acts like an abstract variable in
algebra; a variable that has been stored acts more like a register in a traditional calculator. With
a positive numeric prefix argument, = evaluates the top n stack entries; with a negative argument,
= evaluates the nth stack entry.

S S

A few variables are called special constants. Their names are ‘e’, ‘pi’, ‘i’, ‘phi’, and ‘gamma’.
(See XXX [Scientific Functions|, page XXX.) When they are evaluated with =, their values are
calculated if necessary according to the current precision or complex polar mode. If you wish to
use these symbols for other purposes, simply undefine or redefine them using calc-store.

The variables ‘inf’, ‘uinf’, and ‘nan’ stand for infinite or indeterminate values. It’s best not
to use them as regular variables, since Calc uses special algebraic rules when it manipulates them.
Calc displays a warning message if you store a value into any of these special variables.

See XXX [Store and Recall], page XXX, for a discussion of commands dealing with variables.

4.15 Formulas

When you press the apostrophe key you may enter any expression or formula in algebraic form.
(Calc uses the terms “expression” and “formula” interchangeably.) An expression is built up of
numbers, variable names, and function calls, combined with various arithmetic operators. Paren-
theses may be used to indicate grouping. Spaces are ignored within formulas, except that spaces
are not permitted within variable names or numbers. Arithmetic operators, in order from highest
to lowest precedence, and with their equivalent function names, are:

‘_’ [subscr] (subscripts);

postfix ‘%’ [percent] (as in ‘25% = 0.25’);

prefix ‘+” and ‘-’ [neg] (as in ‘-x’) and prefix ‘!’ [1Inot] (logical “not,” as in ‘!x’);

‘+/-" [sdev] (the standard deviation symbol) and ‘mod’ [makemod] (the symbol for modulo forms);

postfix ‘!’ [fact] (factorial, as in ‘n!’) and postfix ‘!'!’ [dfact] (double factorial);

‘~? [pow] (raised-to-the-power-of);
7 [mul];
¢/’ [div], ‘%’ [mod] (modulo), and ‘\’ [idiv] (integer division);
infix ‘+’ [add] and ‘-’ [sub] (as in ‘x-y’);
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‘|’ [vconcat] (vector concatenation);

relations ‘=’ [eq], ‘!=’ [neq], ‘<’ [Lt], >’ [gt], ‘<=’ [leq], and ‘>=’ [geq];
‘%&’ [1land] (logical “and”);

‘11’ [Lor] (logical “or”);

the C-style “if” operator ‘a?b:c’ [if];

‘111" [pnot] (rewrite pattern “not”);

‘%&&’ [pand] (rewrite pattern “and”);

‘111" [por] (rewrite pattern “or”);

4 bl

:=" [assign] (for assignments and rewrite rules);

‘::” [condition] (rewrite pattern condition);

‘=>’ [evalto].

Note that, unlike in usual computer notation, multiplication binds more strongly than division:
‘axb/c*d’ is equivalent to ‘c‘—g.

The multiplication sign ‘*’ may be omitted in many cases. In particular, if the righthand side is a
number, variable name, or parenthesized expression, the ‘*’ may be omitted. Implicit multiplication
has the same precedence as the explicit ‘*’ operator. The one exception to the rule is that a variable
name followed by a parenthesized expression, as in ‘f (x)’, is interpreted as a function call, not an
implicit ‘*’. In many cases you must use a space if you omit the ‘*’: ‘2a’ is the same as ‘2*a’, and
‘a b’ is the same as ‘a*b’, but ‘ab’ is a variable called ab, not the product of ‘a’ and ‘b’! Also note
that ‘f (x)’ is still a function call.

The rules are slightly different for vectors written with square brackets. In vectors, the
space character is interpreted (like the comma) as a separator of elements of the vector. Thus
‘[ 2a b+c d ]’ is equivalent to ‘[2*a, b+c, d]’, whereas ‘2a b+c d’ is equivalent to ‘2*a*b + c*d’.
Note that spaces around the brackets, and around explicit commas, are ignored. To force spaces to
be interpreted as multiplication you can enclose a formula in parentheses as in ‘[(a b) 2(c d)]’,
which is interpreted as ‘[a*b, 2*c*d]’. An implicit comma, is also inserted between ‘] [, as in the
matrix ‘[[1 2] [3 4]]°.

Vectors that contain commas (not embedded within nested parentheses or brackets) do not treat
spaces specially: ‘[a b, 2 ¢ 4]’ is a vector of two elements. Also, if it would be an error to treat
spaces as separators, but not otherwise, then Calc will ignore spaces: ‘[a - b]’ is a vector of one
element, but ‘[a -b]’ is a vector of two elements. Finally, vectors entered with curly braces instead
of square brackets do not give spaces any special treatment. When Calc displays a vector that
does not contain any commas, it will insert parentheses if necessary to make the meaning clear:

‘[(ab)]’

The expression ‘56%-2’ is ambiguous; is this five-percent minus two, or five modulo minus-two?
Calc always interprets the leftmost symbol as an infix operator preferentially (modulo, in this case),
so you would need to write ‘(56%) -2’ to get the former interpretation.

A function call is, e.g., ‘sin(1+x)’. Function names follow the same rules as variable names
except that the default prefix ‘calcFunc-’ is used (instead of ‘var-’) for the internal Lisp form.
Most mathematical Calculator commands like calc-sin have function equivalents like sin. If no
Lisp function is defined for a function called by a formula, the call is left as it is during algebraic
manipulation: ‘f(x+y)’ is left alone. Beware that many innocent-looking short names like in and
re have predefined meanings which could surprise you; however, single letters or single letters
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followed by digits are always safe to use for your own function names. See XXX [Function Index],
page XXX.

In the documentation for particular commands, the notation H S (calc-sinh) [sinh] means
that the key sequence H S, the command M-x calc-sinh, and the algebraic function sinh(x) all
represent the same operation.

Commands that interpret (“parse”) text as algebraic formulas include algebraic entry (?), editing
commands like ¢ which parse the contents of the editing buffer when you finish, the M-# g and M-# r
commands, the C-y command, the X window system “paste” mouse operation, and Embedded
Mode. All of these operations use the same rules for parsing formulas; in particular, language
modes (see XXX [Language Modes|, page XXX ) affect them all in the same way.

When you read a large amount of text into the Calculator (say a vector which represents a big
set of rewrite rules; see XXX [Rewrite Rules], page XXX), you may wish to include comments in
the text. Calc’s formula parser ignores the symbol ‘%%’ and anything following it on a line:

[ a+ b, %% the sum of "a" and "b"
c +d,
%% last line is coming up:
e+ f]
This is parsed exactly the same as ‘[ a+b, c+d, e+ f]".

See XXX [Syntax Tables], page XXX, for a way to create your own operators and other input
notations. See XXX [Compositions], page XXX, for a way to create new display formats.

See XXX [Algebra], page XXX, for commands for manipulating formulas symbolically.
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5 Stack and Trail Commands

This chapter describes the Calc commands for manipulating objects on the stack and in the trail
buffer. (These commands operate on objects of any type, such as numbers, vectors, formulas, and
incomplete objects.)

5.1 Stack Manipulation Commands

To duplicate the top object on the stack, press RET or SPC (two equivalent keys for the calc-enter
command). Given a positive numeric prefix argument, these commands duplicate several elements
at the top of the stack. Given a negative argument, these commands duplicate the specified element
of the stack. Given an argument of zero, they duplicate the entire stack. For example, with ‘10 20
30’ on the stack, RET creates ‘10 20 30 30’, C-u 2 RET creates ‘10 20 30 20 30’, C-u - 2 RET creates
‘10 20 30 20’, and C-u O RET creates ‘10 20 30 10 20 30’.

The LFD (calc-over) command (on a key marked Line-Feed if you have it, else on C-j) is like
calc-enter except that the sign of the numeric prefix argument is interpreted oppositely. Also,
with no prefix argument the default argument is 2. Thus with ‘10 20 30’ on the stack, LFD and
C-u 2 LFD are both equivalent to C-u - 2 RET, producing ‘10 20 30 20’.

To remove the top element from the stack, press DEL (calc-pop). The C-d key is a synonym
for DEL. (If the top element is an incomplete object with at least one element, the last element is
removed from it.) Given a positive numeric prefix argument, several elements are removed. Given
a negative argument, the specified element of the stack is deleted. Given an argument of zero, the
entire stack is emptied. For example, with ‘10 20 30’ on the stack, DEL leaves ‘10 20’, C-u 2 DEL
leaves ‘10’, C-u - 2 DEL leaves ‘10 30’, and C-u O DEL leaves an empty stack.

The M-DEL (calc-pop-above) command is to DEL what LFD is to RET: It interprets the sign of
the numeric prefix argument in the opposite way, and the default argument is 2. Thus M-DEL by
itself removes the second-from-top stack element, leaving the first, third, fourth, and so on; M-3
M-DEL deletes the third stack element.

To exchange the top two elements of the stack, press TAB (calc-roll-down). Given a positive
numeric prefix argument, the specified number of elements at the top of the stack are rotated
downward. Given a negative argument, the entire stack is rotated downward the specified number
of times. Given an argument of zero, the entire stack is reversed top-for-bottom. For example,
with ‘10 20 30 40 50’ on the stack, TAB creates ‘10 20 30 50 40’, C-u 3 TAB creates ‘10 20 50 30
40’, C-u - 2 TAB creates ‘40 50 10 20 30’, and C-u 0 TAB creates ‘50 40 30 20 10’.

The command M-TAB (calc-roll-up) is analogous to TAB except that it rotates upward instead
of downward. Also, the default with no prefix argument is to rotate the top 3 elements. For
example, with ‘10 20 30 40 50’ on the stack, M-TAB creates ‘10 20 40 50 30’, C-u 4 M-TAB creates
‘10 30 40 50 20’, C-u - 2 M-TAB creates ‘30 40 50 10 20’, and C-u O M-TAB creates ‘50 40 30 20
10’.

A good way to view the operation of TAB and M-TAB is in terms of moving a particular element
to a new position in the stack. With a positive argument n, TAB moves the top stack element down
to level n, making room for it by pulling all the intervening stack elements toward the top. M-TAB

RET
SPC

LFD

DEL

M-DEL

TAB

M-TAB
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moves the element at level n up to the top. (Compare with LFD, which copies instead of moving
the element in level n.)

With a negative argument —n, TAB rotates the stack to move the object in level n to the deepest
place in the stack, and the object in level n+ 1 to the top. M-TAB rotates the deepest stack element
to be in level n, also putting the top stack element in level n + 1.

See XXX [Selecting Subformulas], page XXX, for a way to apply these commands to any portion
of a vector or formula on the stack.

5.2 Editing Stack Entries

The backquote, ¢ (calc-edit) command creates a temporary buffer (‘#*Calc Edit#’) for editing the
top-of-stack value using regular Emacs commands. With a numeric prefix argument, it edits the
specified number of stack entries at once. (An argument of zero edits the entire stack; a negative
argument edits one specific stack entry.)

When you are done editing, press M-# M-# to finish and return to Calc. The RET and LFD
keys also work to finish most sorts of editing, though in some cases Calc leaves RET with its usual
meaning (“insert a newline”) if it’s a situation where you might want to insert new lines into the
editing buffer. The traditional Emacs “finish” key sequence, C-c C-c, also works to finish editing
and may be easier to type, depending on your keyboard.

When you finish editing, the Calculator parses the lines of text in the ‘*Calc Edit*’ buffer as
numbers or formulas, replaces the original stack elements in the original buffer with these new
values, then kills the ‘*Calc Edit*’ buffer. The original Calculator buffer continues to exist during
editing, but for best results you should be careful not to change it until you have finished the edit.
You can also cancel the edit by pressing M-# x.

The formula is normally reevaluated as it is put onto the stack. For example, editing ‘a + 2’ to
‘3 + 2’ and pressing M-# M-# will push 5 on the stack. If you use LFD to finish, Calc will put the
result on the stack without evaluating it.

If you give a prefix argument to M-# M-# (or C-c C-c), Calc will not kill the ‘*Calc Edit*’
buffer. You can switch back to that buffer and continue editing if you wish. However, you should
understand that if you initiated the edit with ¢, the M-# M-# operation will be programmed to
replace the top of the stack with the new edited value, and it will do this even if you have rearranged
the stack in the meanwhile. This is not so much of a problem with other editing commands, though,
such as s e (calc-edit-variable; see XXX [Operations on Variables|, page XXX).

If the calc-edit command involves more than one stack entry, each line of the ‘*Calc Editx*’
buffer is interpreted as a separate formula. Otherwise, the entire buffer is interpreted as one
formula, with line breaks ignored. (You can use C-o or C-q C-j to insert a newline in the buffer
without pressing RET.)

The ¢ key also works during numeric or algebraic entry. The text entered so far is moved to the
*Calc Edit* buffer for more extensive editing than is convenient in the minibuffer.
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5.3 Trail Commands

The commands for manipulating the Calc Trail buffer are two-key sequences beginning with the t
prefix.

The t d (calc-trail-display) command turns display of the trail on and off. Normally the
trail display is toggled on if it was off, off if it was on. With a numeric prefix of zero, this command
always turns the trail off; with a prefix of one, it always turns the trail on. The other trail-
manipulation commands described here automatically turn the trail on. Note that when the trail
is off values are still recorded there; they are simply not displayed. To set Emacs to turn the trail
off by default, type t d and then save the mode settings with m m (calc-save-modes).

The t i (calc-trail-in) and t o (calc-trail-out) commands switch the cursor into and out
of the Calc Trail window. In practice they are rarely used, since the commands shown below are
a more convenient way to move around in the trail, and they work “by remote control” when the
cursor is still in the Calculator window.

There is a trail pointer which selects some entry of the trail at any given time. The trail pointer
looks like a ‘>’ symbol right before the selected number. The following commands operate on the
trail pointer in various ways.

The t y (calc-trail-yank) command reads the selected value in the trail and pushes it onto
the Calculator stack. It allows you to re-use any previously computed value without retyping. With
a numeric prefix argument n, it yanks the value n lines above the current trail pointer.

The t < (calc-trail-scroll-left) and t > (calc-trail-scroll-right) commands horizon-
tally scroll the trail window left or right by one half of its width.

The t n (calc-trail-next) and t p (calc-trail-previous) commands move the trail pointer
down or up one line. The t f (calc-trail-forward) and t b (calc-trail-backward) commands
move the trail pointer down or up one screenful at a time. All of these commands accept numeric
prefix arguments to move several lines or screenfuls at a time.

The t [ (calc-trail-first) and t ] (calc-trail-last) commands move the trail pointer to
the first or last line of the trail. The t h (calc-trail-here) command moves the trail pointer to
the cursor position; unlike the other trail commands, t h works only when Calc Trail is the selected
window.

The t s (calc-trail-isearch-forward)and t r (calc-trail-isearch-backward)commands
perform an incremental search forward or backward through the trail. You can press RET to
terminate the search; the trail pointer moves to the current line. If you cancel the search with C-g,
the trail pointer stays where it was when the search began.

The t m (calc-trail-marker) command allows you to enter a line of text of your own choosing
into the trail. The text is inserted after the line containing the trail pointer; this usually means it
is added to the end of the trail. Trail markers are useful mainly as the targets for later incremental
searches in the trail.

The t k (calc-trail-kill) command removes the selected line from the trail. The line is saved
in the Emacs kill ring suitable for yanking into another buffer, but it is not easy to yank the text
back into the trail buffer. With a numeric prefix argument, this command kills the n lines below
or above the selected one.

The t . (calc-full-trail-vectors) command is described elsewhere; see XXX [Vector and
Matrix Formats]|, page XXX.
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5.4 Keep Arguments

The K (calc-keep-args) command acts like a prefix for the following command. It prevents that
command from removing its arguments from the stack. For example, after 2 RET 3 +, the stack
contains the sole number 5, but after 2 RET 3 K +, the stack contains the arguments and the result:
‘235

This works for all commands that take arguments off the stack. As another example, K a s
simplifies a formula, pushing the simplified version of the formula onto the stack after the original
formula (rather than replacing the original formula).

Note that you could get the same effect by typing RET a s, copying the formula and then
simplifying the copy. One difference is that for a very large formula the time taken to format the
intermediate copy in RET a s could be noticeable; K a s would avoid this extra work.

Even stack manipulation commands are affected. TAB works by popping two values and pushing
them back in the opposite order, so 2 RET 3 K TAB produces ‘2 3 3 2.

A few Calc commands provide other ways of doing the same thing. For example, ’ sin($)
replaces the number on the stack with its sine using algebraic entry; to push the sine and keep
the original argument you could use either ’ sin($1) or K ’ sin($). See XXX [Algebraic Entry],
page XXX. Also, the s s command is effectively the same as K s t. See XXX [Storing Variables],
page XXX.

Keyboard macros may interact surprisingly with the K prefix. If you have defined a keyboard
macro to be, say, ‘Q +’ to add one number to the square root of another, then typing K X will
execute K @ +, probably not what you expected. The K prefix will apply to just the first command
in the macro rather than the whole macro.

If you execute a command and then decide you really wanted to keep the argument, you can
press M-RET (calc-last-args). This command pushes the last arguments that were popped by
any command onto the stack. Note that the order of things on the stack will be different than with
K: 2 RET 3 + M-RET leaves ‘6 2 3’ on the stack instead of ‘2 3 5. See XXX [Undo|, page XXX.
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6 Mode Settings

This chapter describes commands that set modes in the Calculator. They do not affect the contents
of the stack, although they may change the appearance or interpretation of the stack’s contents.

6.1 General Mode Commands

You can save all of the current mode settings in your ‘. emacs’ file with the m m (calc-save-modes)
command. This will cause Emacs to reestablish these modes each time it starts up. The modes
saved in the file include everything controlled by the m and d prefix keys, the current precision and
binary word size, whether or not the trail is displayed, the current height of the Calc window, and
more. The current interface (used when you type M-# M-#) is also saved. If there were already saved
mode settings in the file, they are replaced. Otherwise, the new mode information is appended to
the end of the file.

The m R (calc-mode-record-mode) command tells Calc to record the new mode settings (as if
by pressing m m) every time a mode setting changes. If Embedded Mode is enabled, other options
are available; see XXX [Mode Settings in Embedded Mode], page XXX.

The m F (calc-settings-file-name) command allows you to choose a different place than your
‘.emacs’ file for m m, Z P, and similar commands to save permanent information. You are prompted
for a file name. All Calc modes are then reset to their default values, then settings from the file you
named are loaded if this file exists, and this file becomes the one that Calc will use in the future for
commands like m m. The default settings file name is ‘*/.emacs’. You can see the current file name
by giving a blank response to the m F prompt. See also the discussion of the calc-settings-file
variable; see XXX [Installation], page XXX.

If the file name you give contains the string ‘.emacs’ anywhere inside it, m F will not automati-
cally load the new file. This is because you are presumably switching to your ‘*/.emacs’ file, which
may contain other things you don’t want to reread. You can give a numeric prefix argument of 1
to m F to force it to read the file no matter what its name. Conversely, an argument of —1 tells m F
not to read the new file. An argument of 2 or —2 tells m F not to reset the modes to their defaults
beforehand, which is useful if you intend your new file to have a variant of the modes present in
the file you were using before.

The m x (calc-always-load-extensions) command enables a mode in which the first use of
Calc loads the entire program, including all extensions modules. Otherwise, the extensions modules
will not be loaded until the various advanced Calc features are used. Since this mode only has
effect when Calc is first loaded, m x is usually followed by m m to make the mode-setting permanent.
To load all of Calc just once, rather than always in the future, you can press M-# L.

The m S (calc-shift-prefix) command enables a mode in which all of Calc’s letter prefix keys
may be typed shifted as well as unshifted. If you are typing, say, a S (calc-solve-for) quite often
you might find it easier to turn this mode on so that you can type 4 S instead. When this mode
is enabled, the commands that used to be on those single shifted letters (e.g., 4 (calc-abs)) can
now be invoked by pressing the shifted letter twice: A A. Note that the v prefix key always works
both shifted and unshifted, and the z and Z prefix keys are always distinct. Also, the h prefix is
not affected by this mode. Press m S again to disable shifted-prefix mode.

m F
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6.2 Precision

The p (calc-precision) command controls the precision to which floating-point calculations are
carried. The precision must be at least 3 digits and may be arbitrarily high, within the limits of
memory and time. This affects only floats: Integer and rational calculations are always carried out
with as many digits as necessary.

The p key prompts for the current precision. If you wish you can instead give the precision as
a numeric prefix argument.

Many internal calculations are carried to one or two digits higher precision than normal. Results
are rounded down afterward to the current precision. Unless a special display mode has been
selected, floats are always displayed with their full stored precision, i.e., what you see is what you
get. Reducing the current precision does not round values already on the stack, but those values
will be rounded down before being used in any calculation. The ¢ 0 through ¢ 9 commands (see
XXX [Conversions|, page XXX) can be used to round an existing value to a new precision.

It is important to distinguish the concepts of precision and accuracy. In the normal usage of these
words, the number 123.4567 has a precision of 7 digits but an accuracy of 4 digits. The precision
is the total number of digits not counting leading or trailing zeros (regardless of the position of
the decimal point). The accuracy is simply the number of digits after the decimal point (again not
counting trailing zeros). In Calc you control the precision, not the accuracy of computations. If
you were to set the accuracy instead, then calculations like ‘exp(100)’ would generate many more
digits than you would typically need, while ‘exp(-100)’ would probably round to zero! In Calc,
both these computations give you exactly 12 (or the requested number of) significant digits.

The only Calc features that deal with accuracy instead of precision are fixed-point display mode
for floats (d f; see XXX [Float Formats], page XXX), and the rounding functions like floor and
round (see XXX [Integer Truncation], page XXX). Also, ¢ 0 through ¢ 9 deal with both precision
and accuracy depending on the magnitudes of the numbers involved.

If you need to work with a particular fixed accuracy (say, dollars and cents with two digits
after the decimal point), one solution is to work with integers and an “implied” decimal point.
For example, $8.99 divided by 6 would be entered 899 RET 6 /, yielding 149.833 (actually $1.49833
with our implied decimal point); pressing R would round this to 150 cents, i.e., $1.50.

See XXX [Floats|, page XXX, for still more on floating-point precision and related issues.

6.3 Inverse and Hyperbolic Flags

There is no single-key equivalent to the calc-arcsin function. Instead, you must first press I
(calc-inverse) to set the Inverse Flag, then press S (calc-sin). The I key actually toggles the
Inverse Flag. When this flag is set, the word ‘Inv’ appears in the mode line.

Likewise, the H key (calc-hyperbolic) sets or clears the Hyperbolic Flag, which transforms
calc-sin into calc-sinh. If both of these flags are set at once, the effect will be calc-arcsinh.
(The Hyperbolic flag is also used by some non-trigonometric commands; for example H L computes
a base-10, instead of base-e, logarithm.)
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Command names like calc-arcsin are provided for completeness, and may be executed with
x or M-x. Their effect is simply to toggle the Inverse and/or Hyperbolic flags and then execute the
corresponding base command (calc-sin in this case).

The Inverse and Hyperbolic flags apply only to the next Calculator command, after which they
are automatically cleared. (They are also cleared if the next keystroke is not a Calc command.)
Digits you type after I or H (or K) are treated as prefix arguments for the next command, not as
numeric entries. The same is true of C-u, but not of the minus sign (K - means to subtract and
keep arguments).

The third Calc prefix flag, K (keep-arguments), is discussed elsewhere. See XXX [Keep Argu-
ments|, page XXX.

6.4 Calculation Modes

The commands in this section are two-key sequences beginning with the m prefix. (That’s the letter
m, not the META key.) The ‘m a’ (calc-algebraic-mode) command is described elsewhere (see XXX
[Algebraic Entry], page XXX).

6.4.1 Angular Modes

The Calculator supports three notations for angles: radians, degrees, and degrees-minutes-seconds.
When a number is presented to a function like sin that requires an angle, the current angular
mode is used to interpret the number as either radians or degrees. If an HMS form is presented to
sin, it is always interpreted as degrees-minutes-seconds.

Functions that compute angles produce a number in radians, a number in degrees, or an HMS
form depending on the current angular mode. If the result is a complex number and the cur-
rent mode is HMS, the number is instead expressed in degrees. (Complex-number calculations
would normally be done in radians mode, though. Complex numbers are converted to degrees by
calculating the complex result in radians and then multiplying by 180 over =.)

Them r (calc-radians-mode), m d (calc-degrees-mode), and m h (calc-hms-mode) commands
control the angular mode. The current angular mode is displayed on the Emacs mode line. The
default angular mode is degrees.

6.4.2 Polar Mode

The Calculator normally “prefers” rectangular complex numbers in the sense that rectangular form
is used when the proper form can not be decided from the input. This might happen by multiplying
a rectangular number by a polar one, by taking the square root of a negative real number, or by
entering ( 2 SPC 3 ).

The m p (calc-polar-mode) command toggles complex-number preference between rectangular
and polar forms. In polar mode, all of the above example situations would produce polar complex
numbers.

mr
md
mh

m p
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6.4.3 Fraction Mode

Division of two integers normally yields a floating-point number if the result cannot be expressed as
an integer. In some cases you would rather get an exact fractional answer. One way to accomplish
this is to multiply fractions instead: 6 RET 1:4 * produces 3:2 even though 6 RET 4 / produces 1.5.

To set the Calculator to produce fractional results for normal integer divisions, use the m f
(calc-frac-mode) command. For example, 8/4 produces 2 in either mode, but 6/4 produces 3:2
in Fraction Mode, 1.5 in Float Mode.

At any time you can use c¢ f (calc-float) to convert a fraction to a float, or ¢ F (calc-
fraction) to convert a float to a fraction. See XXX [Conversions|, page XXX.

6.4.4 Infinite Mode

The Calculator normally treats results like 1/0 as errors; formulas like this are left in unsimplified
form. But Calc can be put into a mode where such calculations instead produce “infinite” results.

The m i (calc-infinite-mode) command turns this mode on and off. When the mode is off,
infinities do not arise except in calculations that already had infinities as inputs. (One exception is
that infinite open intervals like ‘[0 .. inf)’ can be generated; however, intervals closed at infinity
(‘[0 .. inf]’) will not be generated when infinite mode is off.)

With infinite mode turned on, ‘1 / 0’ will generate uinf, an undirected infinity. See XXX
[Infinities], page XXX, for a discussion of the difference between inf and uinf. Also, 0/0 evaluates
to nan, the “indeterminate” symbol. Various other functions can also return infinities in this mode;
for example, ‘In(0) = -inf’, and ‘gamma(-7) = uinf’. Once again, note that ‘exp(inf) = inf’
regardless of infinite mode because this calculation has infinity as an input.

The m i command with a numeric prefix argument of zero, i.e., C-u O m i, turns on a “positive
infinite mode” in which zero is treated as positive instead of being directionless. Thus, ‘1 / 0 = inf’
and ‘-1 / 0 = -inf’ in this mode. Note that zero never actually has a sign in Calc; there are no
separate representations for +0 and —0. Positive infinite mode merely changes the interpretation
given to the single symbol, ‘0’. One consequence of this is that, while you might expect ‘1 / -0 =
-inf’, actually ‘1 / -0’ is equivalent to ‘1 / 0’, which is equal to positive inf.

6.4.5 Symbolic Mode

Calculations are normally performed numerically wherever possible. For example, the calc-sqrt
command, or sqrt function in an algebraic expression, produces a numeric answer if the argument
is a number or a symbolic expression if the argument is an expression: 2 g pushes 1.4142 but > x+1
RET Q@ pushes ‘sqrt (x+1)".

In symbolic mode, controlled by the m s (calc-symbolic-mode) command, functions which
would produce inexact, irrational results are left in symbolic form. Thus 16 Q pushes 4, but 2 g
pushes ‘sqrt(2)’.
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The shift-N (calc-eval-num) command evaluates numerically the expression at the top of the
stack, by temporarily disabling calc-symbolic-mode and executing = (calc-evaluate). Given
a numeric prefix argument, it also sets the floating-point precision to the specified value for the
duration of the command.

To evaluate a formula numerically without expanding the variables it contains, you can use the
key sequence m s a vm s (this uses calc-alg-evaluate, which resimplifies but doesn’t evaluate
variables.)

6.4.6 Matrix and Scalar Modes

Calc sometimes makes assumptions during algebraic manipulation that are awkward or incorrect
when vectors and matrices are involved. Calc has two modes, matrix mode and scalar mode, which
modify its behavior around vectors in useful ways.

Press m v (calc-matrix-mode) once to enter matrix mode. In this mode, all objects are assumed
to be matrices unless provably otherwise. One major effect is that Calc will no longer consider
multiplication to be commutative. (Recall that in matrix arithmetic, ‘A*B’ is not the same as
‘BxA’.) This assumption affects rewrite rules and algebraic simplification. Another effect of this
mode is that calculations that would normally produce constants like 0 and 1 (e.g., a — a and a/a,
respectively) will now produce function calls that represent “generic” zero or identity matrices:
‘idn(0)’, ‘idn(1)’. The idn function ‘idn(a,n)’ returns a times an nxn identity matrix; if n is
omitted, it doesn’t know what dimension to use and so the idn call remains in symbolic form.
However, if this generic identity matrix is later combined with a matrix whose size is known, it
will be converted into a true identity matrix of the appropriate size. On the other hand, if it is
combined with a scalar (as in ‘idn(1) + 2’), Calc will assume it really was a scalar after all and
produce, e.g., 3.

Press m v a second time to get scalar mode. Here, objects are assumed not to be vectors or
matrices unless provably so. For example, normally adding a variable to a vector, as in ‘[x, y, z]
+ a’, will leave the sum in symbolic form because as far as Calc knows, ‘a’ could represent either a
number or another 3-vector. In scalar mode, ‘a’ is assumed to be a non-vector, and the addition is
evaluated to ‘[x+a, y+a, z+al’.

Press m v a third time to return to the normal mode of operation.

If you press m v with a numeric prefix argument n, you get a special “dimensioned matrix mode”
in which matrices of unknown size are assumed to be nxn square matrices. Then, the function call
‘idn (1)’ will expand into an actual matrix rather than representing a “generic” matrix.

Of course these modes are approximations to the true state of affairs, which is probably that
some quantities will be matrices and others will be scalars. One solution is to “declare” certain
variables or functions to be scalar-valued. See XXX [Declarations|, page XXX, to see how to make
declarations in Calc.

There is nothing stopping you from declaring a variable to be scalar and then storing a matrix
in it; however, if you do, the results you get from Calc may not be valid. Suppose you let Calc get
the result ‘[x+a, y+a, z+a]’ shown above, and then stored ‘[1, 2, 3]’ in ‘a’. The result would
not be the same as for ‘[x, y, z] + [1, 2, 3]’, but that’s because you have broken your earlier
promise to Calc that ‘a’ would be scalar.
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Another way to mix scalars and matrices is to use selections (see XXX [Selecting Subformulas],
page XXX). Use matrix mode when operating on your formula normally; then, to apply scalar
mode to a certain part of the formula without affecting the rest just select that part, change into
scalar mode and press = to resimplify the part under this mode, then change back to matrix mode
before deselecting.

6.4.7 Automatic Recomputation

The evaluates-to operator, ‘=>’, has the special property that any ‘=>’ formulas on the stack are
recomputed whenever variable values or mode settings that might affect them are changed. See
XXX [Evaluates-To Operator|, page XXX.

The m C (calc-auto-recompute) command turns this automatic recomputation on and off. If
you turn it off, Calc will not update ‘=>’ operators on the stack (nor those in the attached Embedded
Mode buffer, if there is one). They will not be updated unless you explicitly do so by pressing =
or until you press m C to turn recomputation back on. (While automatic recomputation is off, you
can think of m C m C as a command to update all ‘=>" operators while leaving recomputation off.)

To update ‘=>’ operators in an Embedded buffer while automatic recomputation is off, use M-# u.
See XXX [Embedded Mode], page XXX.

6.4.8 Working Messages

Since the Calculator is written entirely in Emacs Lisp, which is not designed for heavy numerical
work, many operations are quite slow. The Calculator normally displays the message ‘Working. ..’
in the echo area during any command that may be slow. In addition, iterative operations such
as square roots and trigonometric functions display the intermediate result at each step. Both of
these types of messages can be disabled if you find them distracting.

Type m w (calc-working) with a numeric prefix of 0 to disable all “working” messages. Use a
numeric prefix of 1 to enable only the plain ‘Working. ..’ message. Use a numeric prefix of 2 to
see intermediate results as well. With no numeric prefix this displays the current mode.

While it may seem that the “working” messages will slow Calc down considerably, experiments

have shown that their impact is actually quite small. But if your terminal is slow you may find
that it helps to turn the messages off.
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6.5 Simplification Modes

The current simplification mode controls how numbers and formulas are “normalized” when being
taken from or pushed onto the stack. Some normalizations are unavoidable, such as rounding
floating-point results to the current precision, and reducing fractions to simplest form. Others,
such as simplifying a formula like a + a (or 2 4+ 3), are done by default but can be turned off when
necessary.

When you press a key like + when 2 and 3 are on the stack, Calc pops these numbers, normalizes
them, creates the formula 2 + 3, normalizes it, and pushes the result. Of course the standard rules
for normalizing 2 + 3 will produce the result 5.

Simplification mode commands consist of the lower-case m prefix key followed by a shifted letter.
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The m 0 (calc-no-simplify-mode) command turns off all optional simplifications. These would
leave a formula like 2 + 3 alone. In fact, nothing except simple numbers are ever affected by
normalization in this mode.

The m N (calc-num-simplify-mode) command turns off simplification of any formulas except
those for which all arguments are constants. For example, 1+ 2 is simplified to 3, and a+ (2 —2) is
simplified to a + 0 but no further, since one argument of the sum is not a constant. Unfortunately,
(a + 2) — 2 is not simplified because the top-level ‘=’ operator’s arguments are not both constant
numbers (one of them is the formula a +2). A constant is a number or other numeric object (such
as a constant error form or modulo form), or a vector all of whose elements are constant.

The m D (calc-default-simplify-mode) command restores the default simplifications for all
formulas. This includes many easy and fast algebraic simplifications such as a 4+ 0 to a, and a + 2a
to 3a, as well as evaluating functions like deriv(z?, z) to 2z.

The m B (calc-bin-simplify-mode) mode applies the default simplifications to a result and
then, if the result is an integer, uses the b ¢ (calc-clip) command to clip the integer according to
the current binary word size. See XXX [Binary Functions], page XXX . Real numbers are rounded
to the nearest integer and then clipped; other kinds of results (after the default simplifications) are
left alone.

The m A (calc-alg-simplify-mode) mode does algebraic simplification; it applies all the de-
fault simplifications, and also the more powerful (and slower) simplifications made by a s (calc-
simplify). See XXX [Algebraic Simplifications], page XXX.

The m E (calc-ext-simplify-mode) mode does “extended” algebraic simplification, as by the
a e (calc-simplify-extended) command. See XXX [Unsafe Simplifications|, page XXX.

The m U (calc-units-simplify-mode) mode does units simplification; it applies the command
u s (calc-simplify-units), which in turn is a superset of a s. In this mode, variable names which
are identifiable as unit names (like ‘mm’ for “millimeters”) are simplified with their unit definitions
in mind.

A common technique is to set the simplification mode down to the lowest amount of simplification
you will allow to be applied automatically, then use manual commands like a s and ¢ ¢ (calc-
clean) to perform higher types of simplifications on demand. See XXX [Algebraic Definitions],
page XXX, for another sample use of no-simplification mode.

6.6 Declarations

A declaration is a statement you make that promises you will use a certain variable or function in
a restricted way. This may give Calc the freedom to do things that it couldn’t do if it had to take
the fully general situation into account.
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6.6.1 Declaration Basics

The s d (calc-declare-variable) command is the easiest way to make a declaration for a variable.
This command prompts for the variable name, then prompts for the declaration. The default at
the declaration prompt is the previous declaration, if any. You can edit this declaration, or press
C-k to erase it and type a new declaration. (Or, erase it and press RET to clear the declaration,
effectively “undeclaring” the variable.)

A declaration is in general a vector of type symbols and range values. If there is only one type
symbol or range value, you can write it directly rather than enclosing it in a vector. For example,
s d foo RET real RET declares foo to be a real number, and s d bar RET [int, const, [1..6]]
RET declares bar to be a constant integer between 1 and 6. (Actually, you can omit the outermost
brackets and Calc will provide them for you: s d bar RET int, const, [1..6] RET.)

Declarations in Calc are kept in a special variable called Decls. This variable encodes the set
of all outstanding declarations in the form of a matrix. Each row has two elements: A variable or
vector of variables declared by that row, and the declaration specifier as described above. You can
use the s D command to edit this variable if you wish to see all the declarations at once. See XXX
[Operations on Variables|, page XXX, for a description of this command and the s p command
that allows you to save your declarations permanently if you wish.

Items being declared can also be function calls. The arguments in the call are ignored; the effect
is to say that this function returns values of the declared type for any valid arguments. The s d
command declares only variables, so if you wish to make a function declaration you will have to
edit the Decls matrix yourself.

For example, the declaration matrix

[ [ foo, real ]
[ [j, k, n], int ]
[ £(1,2,3), [0 .. inf) 1 1]
declares that foo represents a real number, j, k and n represent integers, and the function f always
returns a real number in the interval shown.

If there is a declaration for the variable A1l, then that declaration applies to all variables that
are not otherwise declared. It does not apply to function names. For example, using the row
‘[A11, real]’ says that all your variables are real unless they are explicitly declared without real
in some other row. The s d command declares A11 if you give a blank response to the variable-name
prompt.

6.6.2 Kinds of Declarations

The type-specifier part of a declaration (that is, the second prompt in the s d command) can be a
type symbol, an interval, or a vector consisting of zero or more type symbols followed by zero or
more intervals or numbers that represent the set of possible values for the variable.

[[a, [1, 2, 3, 4, 5] ]
[ b, [1 .. 5] ]
[ c, [int, 1 .. 5] 11
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Here a is declared to contain one of the five integers shown; b is any number in the interval from
1 to 5 (any real number since we haven’t specified), and c is any integer in that interval. Thus the
declarations for a and ¢ are nearly equivalent (see below).

The type-specifier can be the empty vector ‘[]1’ to say that nothing is known about a given
variable’s value. This is the same as not declaring the variable at all except that it overrides any
A11 declaration which would otherwise apply.

The initial value of Decls is the empty vector ‘[1’. If Decls has no stored value or if the value
stored in it is not valid, it is ignored and there are no declarations as far as Calc is concerned. (The
s d command will replace such a malformed value with a fresh empty matrix, ‘[1’, before recording
the new declaration.) Unrecognized type symbols are ignored.

The following type symbols describe what sorts of numbers will be stored in a variable:

int Integers.

numint Numerical integers. (Integers or integer-valued floats.)

frac Fractions. (Rational numbers which are not integers.)

rat Rational numbers. (Either integers or fractions.)

float Floating-point numbers.

real Real numbers. (Integers, fractions, or floats. Actually, intervals and error forms with

real components also count as reals here.)

pos Positive real numbers. (Strictly greater than zero.)
nonneg Nonnegative real numbers. (Greater than or equal to zero.)
number Numbers. (Real or complex.)

Calc uses this information to determine when certain simplifications of formulas are safe. For
example, ‘(x"y) "z’ cannot be simplified to ‘x~(y z)’ in general; for example, ‘((-3)"2)"1:2’ is
3, but ‘(-3)~(2*1:2) = (-3)"1’ is —3. However, this simplification is safe if z is known to be an
integer, or if x is known to be a nonnegative real number. If you have given declarations that allow
Calc to deduce either of these facts, Calc will perform this simplification of the formula.

Calc can apply a certain amount of logic when using declarations. For example, ‘(x"y) ~(2n+1)’
will be simplified if n has been declared int; Calc knows that an integer times an integer, plus an
integer, must always be an integer. (In fact, Calc would simplify ‘(-x) ~(2n+1)’ to ‘= (x~(2n+1))’
since it is able to determine that ‘2n+1’ must be an odd integer.)

Similarly, ‘(abs (x) “y) ~z’ will be simplified to ‘abs (x) " (y z)’ because Calc knows that the abs
function always returns a nonnegative real. If you had a myabs function that also had this property,
you could get Calc to recognize it by adding the row ‘[myabs() , nonneg]’ to the Decls matrix.

One instance of this simplification is ‘sqrt (x~2)’ (since the sqrt function is effectively a one-half
power). Normally Calc leaves this formula alone. After the command s d x RET real RET, however,
it can simplify the formula to ‘abs(x)’. And after s d x RET nonneg RET, Calc can simplify this
formula all the way to ‘x’.
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If there are any intervals or real numbers in the type specifier, they comprise the set of possible
values that the variable or function being declared can have. In particular, the type symbol real
is effectively the same as the range ‘[-inf .. inf]’ (note that infinity is included in the range of
possible values); pos is the same as ‘(0 .. inf]’, and nonneg is the same as ‘[0 .. inf]’. Saying
‘[real, [-5 .. 5]1]’ is redundant because the fact that the variable is real can be deduced just
from the interval, but ‘[int, [-5 .. 5]]1” and ‘[rat, [-5 .. 5]1]’ are useful combinations.

Note that the vector of intervals or numbers is in the same format used by Calc’s set-
manipulation commands. See XXX [Set Operations|, page XXX.

The type specifier ‘[1, 2, 3]’ is equivalent to ‘[numint, 1, 2, 3]’, not to ‘[int, 1, 2, 3]'. In
other words, the range of possible values means only that the variable’s value must be numerically
equal to a number in that range, but not that it must be equal in type as well. Calc’s set operations
act the same way; ‘in(2, [1., 2., 3.]1)’ and ‘in(1.5, [1:2, 3:2, 5:2])’ both report “true.”

If you use a conflicting combination of type specifiers, the results are unpredictable. An example
is ‘[pos, [0 .. 5]1]1’, where the interval does not lie in the range described by the type symbol.

“Real” declarations mostly affect simplifications involving powers like the one described above.
Another case where they are used is in the a P command which returns a list of all roots of a
polynomial; if the variable has been declared real, only the real roots (if any) will be included in
the list.

“Integer” declarations are used for simplifications which are valid only when certain values are
integers (such as ‘(x"y) "z’ shown above).

Another command that makes use of declarations is a s, when simplifying equations and in-
equalities. It will cancel x from both sides of ‘a x = b x’ only if it is sure x is non-zero, say, because
it has a pos declaration. To declare specifically that x is real and non-zero, use ‘[[-inf .. 0), (0

. inf]]’. (There is no way in the current notation to say that x is nonzero but not necessarily
real.) The a e command does “unsafe” simplifications, including cancelling ‘x’ from the equation
when ‘x’ is not known to be nonzero.

Another set of type symbols distinguish between scalars and vectors.

scalar The value is not a vector.
vector The value is a vector.
matrix The value is a matrix (a rectangular vector of vectors).

These type symbols can be combined with the other type symbols described above; ‘[int,
matrix]’ describes an object which is a matrix of integers.

Scalar /vector declarations are used to determine whether certain algebraic operations are safe.
For example, ‘[a, b, c] + x’ is normally not simplified to ‘[a + x, b + x, ¢ + x]’, but it will be if x
has been declared scalar. On the other hand, multiplication is usually assumed to be commutative,
but the terms in ‘x y’ will never be exchanged if both x and y are known to be vectors or matrices.
(Calc currently never distinguishes between vector and matrix declarations.)

See XXX [Matrix Mode], page XXX, for a discussion of “matrix mode” and “scalar mode,”
which are similar to declaring ‘[A11, matrix]’ or ‘[A11l, scalar]’ but much more convenient.

One more type symbol that is recognized is used with the H a d command for taking total
derivatives of a formula. See XXX [Calculus], page XXX.
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const The value is a constant with respect to other variables.

Calc does not check the declarations for a variable when you store a value in it. However, storing
—3.5 in a variable that has been declared pos, int, or matrix may have unexpected effects; Calc
may evaluate ‘sqrt(x~2)’ to 3.5 if it substitutes the value first, or to —3.5 if x was declared pos
and the formula ‘sqrt(x~2)’ is simplified to ‘x’ before the value is substituted. Before using a
variable for a new purpose, it is best to use s d or s D to check to make sure you don’t still have
an old declaration for the variable that will conflict with its new meaning.

6.6.3 Functions for Declarations

Calc has a set of functions for accessing the current declarations in a convenient manner. These
functions return 1 if the argument can be shown to have the specified property, or 0 if the argument
can be shown not to have that property; otherwise they are left unevaluated. These functions
are suitable for use with rewrite rules (see XXX [Conditional Rewrite Rules], page XXX) or
programming constructs (see XXX [Conditionals in Macros|, page XXX). They can be entered
only using algebraic notation. See XXX [Logical Operations|, page XXX, for functions that perform
other tests not related to declarations.

For example, ‘dint (17)’ returns 1 because 17 is an integer, as do ‘dint (n)’ and ‘dint (2 n - 3)’
if n has been declared int, but ‘dint (2.5)’ and ‘dint (n + 0.5)’ return 0. Calc consults knowledge
of its own built-in functions as well as your own declarations: ‘dint (floor(x))’ returns 1.

The dint function checks if its argument is an integer. The dnatnum function checks if its
argument is a natural number, i.e., a nonnegative integer. The dnumint function checks if its
argument is numerically an integer, i.e., either an integer or an integer-valued float. Note that
these and the other data type functions also accept vectors or matrices composed of suitable
elements, and that real infinities ‘inf’ and ‘-inf’ are considered to be integers for the purposes of
these functions.

The drat function checks if its argument is rational, i.e., an integer or fraction. Infinities count
as rational, but intervals and error forms do not.

The dreal function checks if its argument is real. This includes integers, fractions, floats, real
error forms, and intervals.

The dimag function checks if its argument is imaginary, i.e., is mathematically equal to a real
number times i.

The dpos function checks for positive (but nonzero) reals. The dneg function checks for negative
reals. The dnonneg function checks for nonnegative reals, i.e., reals greater than or equal to zero.
Note that the a s command can simplify an expression like z > 0 to 1 or 0 using dpos, and that
a s is effectively applied to all conditions in rewrite rules, so the actual functions dpos, dneg, and
dnonneg are rarely necessary.

The dnonzero function checks that its argument is nonzero. This includes all nonzero real or
complex numbers, all intervals that do not include zero, all nonzero modulo forms, vectors all of
whose elements are nonzero, and variables or formulas whose values can be deduced to be nonzero.
It does not include error forms, since they represent values which could be anything including zero.
(This is also the set of objects considered “true” in conditional contexts.)
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The deven function returns 1 if its argument is known to be an even integer (or integer-valued
float); it returns 0 if its argument is known not to be even (because it is known to be odd or a
non-integer). The a s command uses this to simplify a test of the form ‘x % 2 = 0’. There is also
an analogous dodd function.

The drange function returns a set (an interval or a vector of intervals and/or numbers; see
XXX [Set Operations], page XXX ) that describes the set of possible values of its argument. If the
argument is a variable or a function with a declaration, the range is copied from the declaration.
Otherwise, the possible signs of the expression are determined using a method similar to dpos, etc.,
and a suitable set like ‘[0 .. inf]’ is returned. If the expression is not provably real, the drange
function remains unevaluated.

The dscalar function returns 1 if its argument is provably scalar, or 0 if its argument is provably
non-scalar. It is left unevaluated if this cannot be determined. (If matrix mode or scalar mode
are in effect, this function returns 1 or 0, respectively, if it has no other information.) When Calc
interprets a condition (say, in a rewrite rule) it considers an unevaluated formula to be “false.”
Thus, ‘dscalar(a)’ is “true” only if a is provably scalar, and ‘!dscalar(a)’is “true” only if a is
provably non-scalar; both are “false” if there is insufficient information to tell.

6.7 Display Modes

The commands in this section are two-key sequences beginning with the d prefix. The d 1 (calc-
line-numbering) and d b (calc-line-breaking) commands are described elsewhere; see XXX
[Stack Basics], page XXX and see XXX [Normal Language Modes|, page XXX, respectively.
Display formats for vectors and matrices are also covered elsewhere; see XXX [Vector and Matrix
Formats|, page XXX.

One thing all display modes have in common is their treatment of the H prefix. This prefix
causes any mode command that would normally refresh the stack to leave the stack display alone.
The word “Dirty” will appear in the mode line when Calc thinks the stack display may not reflect
the latest mode settings.

The d RET (calc-refresh-top) command reformats the top stack entry according to all the
current modes. Positive prefix arguments reformat the top n entries; negative prefix arguments
reformat the specified entry, and a prefix of zero is equivalent to d SPC (calc-refresh), which re-
formats the entire stack. For example, H d s M-2 d RET changes to scientific notation but reformats
only the top two stack entries in the new mode.

The I prefix has another effect on the display modes. The mode is set only temporarily; the

top stack entry is reformatted according to that mode, then the original mode setting is restored.
In other words, I d s is equivalent to Hd s d RET H d (old mode).

deven
dodd

drange

dscalar

d RET
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6.7.1 Radix Modes

Calc normally displays numbers in decimal (base-10 or radix-10) notation. Calc can actually
display in any radix from two (binary) to 36. When the radix is above 10, the letters A to Z are
used as digits. When entering such a number, letter keys are interpreted as potential digits rather
than terminating numeric entry mode.

The key sequences d 2, d 8, d 6, and d 0 select binary, octal, hexadecimal, and decimal as the
current display radix, respectively. Numbers can always be entered in any radix, though the current
radix is used as a default if you press # without any initial digits. A number entered without a #
is always interpreted as decimal.

To set the radix generally, use d r (calc-radix) and enter an integer from 2 to 36. You can
specify the radix as a numeric prefix argument; otherwise you will be prompted for it.

Integers normally are displayed with however many digits are necessary to represent the integer
and no more. The d z (calc-leading-zeros) command causes integers to be padded out with
leading zeros according to the current binary word size. (See XXX [Binary Functions]|, page XXX,
for a discussion of word size.) If the absolute value of the word size is w, all integers are displayed
with at least enough digits to represent 2% — 1 in the current radix. (Larger integers will still be
displayed in their entirety.)

6.7.2 Grouping Digits

Long numbers can be hard to read if they have too many digits. For example, the factorial of 30
is 33 digits long! Press d g (calc-group-digits) to enable grouping mode, in which digits are
displayed in clumps of 3 or 4 (depending on the current radix) separated by commas.

The d g command toggles grouping on and off. With a numerix prefix of 0, this command
displays the current state of the grouping flag; with an argument of minus one it disables grouping;
with a positive argument N it enables grouping on every N digits. For floating-point numbers,
grouping normally occurs only before the decimal point. A negative prefix argument —N enables
grouping every N digits both before and after the decimal point.

The d , (calc-group-char) command allows you to choose any character as the grouping
separator. The default is the comma character. If you find it difficult to read vectors of large
integers grouped with commas, you may wish to use spaces or some other character instead. This
command takes the next character you type, whatever it is, and uses it as the digit separator. As
a special case, d , \ selects ‘\,” (TEX’s thin-space symbol) as the digit separator.

Please note that grouped numbers will not generally be parsed correctly if re-read in textual
form, say by the use of M-# y and M-# g. (See XXX [Kill and Yank], page XXX, for details on these
commands.) One exception is the ‘\,’ separator, which doesn’t interfere with parsing because it is
ignored by TEX language mode.
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6.7.3 Float Formats

Floating-point quantities are normally displayed in standard decimal form, with scientific notation
used if the exponent is especially high or low. All significant digits are normally displayed. The
commands in this section allow you to choose among several alternative display formats for floats.

The d n (calc-normal-notation) command selects the normal display format. All significant
figures in a number are displayed. With a positive numeric prefix, numbers are rounded if necessary
to that number of significant digits. With a negative numerix prefix, the specified number of
significant digits less than the current precision is used. (Thus C-u -2 d n displays 10 digits if the
current precision is 12.)

The d f (calc-fix-notation) command selects fixed-point notation. The numeric argument
is the number of digits after the decimal point, zero or more. This format will relax into scientific
notation if a nonzero number would otherwise have been rounded all the way to zero. Specifying a
negative number of digits is the same as for a positive number, except that small nonzero numbers
will be rounded to zero rather than switching to scientific notation.

The d s (calc-sci-notation) command selects scientific notation. A positive argument sets
the number of significant figures displayed, of which one will be before and the rest after the
decimal point. A negative argument works the same as for d n format. The default is to display
all significant digits.

The d e (calc-eng-notation) command selects engineering notation. This is similar to scien-
tific notation except that the exponent is rounded down to a multiple of three, with from one to
three digits before the decimal point. An optional numeric prefix sets the number of significant
digits to display, as for d s.

It is important to distinguish between the current precision and the current display format.
After the commands C-u 10 p and C-u 6 d n the Calculator computes all results to ten significant
figures but displays only six. (In fact, intermediate calculations are often carried to one or two more
significant figures, but values placed on the stack will be rounded down to ten figures.) Numbers
are never actually rounded to the display precision for storage, except by commands like C-k and
M-# y which operate on the actual displayed text in the Calculator buffer.

The d . (calc-point-char) command selects the character used as a decimal point. Normally
this is a period; users in some countries may wish to change this to a comma. Note that this is
only a display style; on entry, periods must always be used to denote floating-point numbers, and
commas to separate elements in a list.

6.7.4 Complex Formats

There are three supported notations for complex numbers in rectangular form. The default is
as a pair of real numbers enclosed in parentheses and separated by a comma: ‘(a,b)’. The d ¢
(calc-complex-notation) command selects this style.

The other notations are d i (calc-i-notation), in which numbers are displayed in ‘a+bi’ form,
and d j (calc-j-notation) which displays the form ‘a+bj’ preferred in some disciplines.

Complex numbers are normally entered in ‘(a,b)’ format. If you enter ‘2+3i’ as an algebraic
formula, it will be stored as the formula ‘2 + 3 * i’. However, if you use = to evaluate this formula

di
dj
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and you have not changed the variable ‘i’, the ‘i’ will be interpreted as ‘(0,1)’ and the formula
will be simplified to ‘(2,3)’. Other commands (like calc-sin) will not interpret the formula ‘2 +
3 * i’ as a complex number. See XXX [Variables], page XXX, under “special constants.”

6.7.5 Fraction Formats

Display of fractional numbers is controlled by the d o (calc-over-notation) command. By default,
a number like eight thirds is displayed in the form ‘8:3’. The d o command prompts for a one- or
two-character format. If you give one character, that character is used as the fraction separator.
Common separators are ‘:” and ‘/’. (During input of numbers, the : key must be used regardless of
the display format; in particular, the / is used for RPN-style division, not for entering fractions.)

If you give two characters, fractions use “integer-plus-fractional-part” notation. For example,
the format ‘+/° would display eight thirds as ‘2+2/3’. If two colons are present in a number being
entered, the number is interpreted in this form (so that the entries 2:2:3 and 8:3 are equivalent).

It is also possible to follow the one- or two-character format with a number. For example:
110’ or ‘+/3’. In this case, Calc adjusts all fractions that are displayed to have the specified
denominator, if possible. Otherwise it adjusts the denominator to be a multiple of the specified
value. For example, in ‘:6’ mode the fraction 1:6 will be unaffected, but 2:3 will be displayed as
4:6, 1:2 will be displayed as 3:6, and 1:8 will be displayed as 3:24. Integers are also affected by
this mode: 3 is displayed as 18:6. Note that the format ‘:1’ writes fractions the same as ‘:’, but it
writes integers as n:1.

The fraction format does not affect the way fractions or integers are stored, only the way they
appear on the screen. The fraction format never affects floats.

6.7.6 HMS Formats

The d h (calc-hms-notation) command controls the display of HMS (hours-minutes-seconds)
forms. It prompts for a string which consists basically of an “hours” marker, optional punctuation,
a “minutes” marker, more optional punctuation, and a “seconds” marker. Punctuation is zero or
more spaces, commas, or semicolons. The hours marker is one or more non-punctuation characters.
The minutes and seconds markers must be single non-punctuation characters.

The default HMS format is ‘@ > "', producing HMS values of the form ‘23@ 30’ 15.75"’. The
format ‘deg, ms’ would display this same value as ‘23deg, 30m15.75s’. During numeric entry, the
h or o keys are recognized as synonyms for @ regardless of display format. The m and s keys are
recognized as synonyms for ’ and ", respectively, but only if an @ (or h or o) has already been
typed; otherwise, they have their usual meanings (m- prefix and s- prefix). Thus, 5", 0@ 5 ",
and 0 h 5 s are some of the ways to enter the quantity “five seconds.” The ’ key is recognized as
“minutes” only if @ (or h or o) has already been pressed; otherwise it means to switch to algebraic
entry.
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6.7.7 Date Formats

The d d (calc-date-notation) command controls the display of date forms (see XXX [Date
Forms]|, page XXX). It prompts for a string which contains letters that represent the various parts
of a date and time. To show which parts should be omitted when the form represents a pure date
with no time, parts of the string can be enclosed in ‘< >’ marks. If you don’t include ‘< >’ markers
in the format, Calc guesses at which parts, if any, should be omitted when formatting pure dates.

The default format is: ‘<H:mm:SSpp >Www Mmm D, YYYY’. An example string in this format is
‘3:32pm Wed Jan 9, 1991’. If you enter a blank format string, this default format is reestablished.

Calc uses ‘< >’ notation for nameless functions as well as for dates. See XXX [Specifying
Operators|, page XXX. To avoid confusion with nameless functions, your date formats should
avoid using the ‘#’ character.

6.7.7.1 Date Formatting Codes

When displaying a date, the current date format is used. All characters except for letters and
‘<’ and >’ are copied literally when dates are formatted. The portion between ‘< >’ markers is
omitted for pure dates, or included for date/time forms. Letters are interpreted according to the
table below.

When dates are read in during algebraic entry, Calc first tries to match the input string to the
current format either with or without the time part. The punctuation characters (including spaces)
must match exactly; letter fields must correspond to suitable text in the input. If this doesn’t work,
Calc checks if the input is a simple number; if so, the number is interpreted as a number of days
since Jan 1, 1 AD. Otherwise, Calc tries a much more relaxed and flexible algorithm which is
described in the next section.

Weekday names are ignored during reading.

Two-digit year numbers are interpreted as lying in the range from 1941 to 2039. Years outside
that range are always entered and displayed in full. Year numbers with a leading ‘+’ sign are always
interpreted exactly, allowing the entry and display of the years 1 through 99 AD.

Here is a complete list of the formatting codes for dates:

Y Year: “91” for 1991, “7” for 2007, “+23” for 23 AD.
YY Year: “91” for 1991, “07” for 2007, “+23” for 23 AD.
BY Year: “91” for 1991, “ 7” for 2007, “+23” for 23 AD.
YYY Year: “1991” for 1991, “23” for 23 AD.

YYYY Year: “1991” for 1991, “+23” for 23 AD.
aa Year: “ad” or blank.

AA Year: “AD” or blank.
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aaa Year: “ad ” or blank. (Note trailing space.)
AAA Year: “AD ” or blank.
aaaa Year: “a.d.” or blank.

AAAA Year: “A.D.” or blank.

bb Year: “bc” or blank.

BB Year: “BC” or blank.

bbb Year: “ bc” or blank. (Note leading space.)
BBB Year: “ BC” or blank.

bbbb Year: “b.c.” or blank.

BBBB Year: “B.C.” or blank.

M Month: “8” for August.
MM Month: “08” for August.
BM Month: “ 8” for August.

MMM Month: “AUG” for August.
Mmm Month: “Aug” for August.
mmm Month: “aug” for August.
MMMM  Month: “AUGUST” for August.

Mmmm  Month: “August” for August.

D Day: “7” for 7th day of month.

DD Day: “07” for 7th day of month.

BD Day: “ 77 for 7th day of month.

W Weekday: “0” for Sunday, “6” for Saturday.

WWW Weekday: “SUN” for Sunday.
Www Weekday: “Sun” for Sunday.
WWW Weekday: “sun” for Sunday.
WWWW  Weekday: “SUNDAY” for Sunday.

Wwww Weekday: “Sunday” for Sunday.
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d Day of year: “34” for Feb. 3.

ddd Day of year: “034” for Feb. 3.

bdd Day of year: “ 34” for Feb. 3.

h Hour: “5” for 5 AM; “17” for 5 PM.
hh Hour: “05” for 5 AM; “17” for 5 PM.
bh Hour: “ 5” for 5 AM; “17” for 5 PM.
H Hour: “5” for 5 AM and 5 PM.

HH Hour: “05” for 5 AM and 5 PM.

BH Hour: “5” for 5 AM and 5 PM.

AM/PM: “a” or “p”.

P AM/PM: “A” or “P”.

PP AM/PM: “am” or “pm”.
PP AM/PM: “AM” or “PM”.
pPPPP AM/PM: “a.m.” or “p.m.”.

PPPP AM/PM: “A.M.” or “P.M.”.

m Minutes: “7” for 7.

mm Minutes: “07” for 7.

bm Minutes: “ 7” for 7.

S Seconds: “7” for 7; “7.23” for 7.23.

Ss Seconds: “07” for 7; “07.23” for 7.23.

bs Seconds: “ 77 for 7; “ 7.23” for 7.23.

SS Optional seconds: “07” for 7; blank for 0.

BS Optional seconds: “ 7”7 for 7; blank for 0.

N Numeric date/time: “726842.25” for 6:00am Wed Jan 9, 1991.
n Numeric date: “726842” for any time on Wed Jan 9, 1991.

J Julian date/time: “2448265.75” for 6:00am Wed Jan 9, 1991.

J Julian date: “2448266” for any time on Wed Jan 9, 1991.
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Unix time: “663400800” for 6:00am Wed Jan 9, 1991.

Brackets suppression. An “X” at the front of the format causes the surrounding ‘< >’
delimiters to be omitted when formatting dates. Note that the brackets are still required
for algebraic entry.

If “SS” or “BS” (optional seconds) is preceded by a colon, the colon is also omitted if the seconds
part is zero.

If “bb,” “bbb” or “bbbb” or their upper-case equivalents appear in the format, then negative
year numbers are displayed without a minus sign. Note that “aa” and “bb” are mutually exclusive.
Some typical usages would be ‘YYYY AABB’; ‘AAAYYYYBBB’; ‘YYYYBBB’.

The formats “YY,” “YYYY,” “MM,” “DD,” “ddd,” “hh,” “HH,” “mm,” “ss,” and “SS” actually
match any number of digits during reading unless several of these codes are strung together with
no punctuation in between, in which case the input must have exactly as many digits as there are
letters in the format.

The 4,” “J,” and “U” formats do not make any time zone adjustment. They effectively
use ‘julian(x,0)’ and ‘unixtime(x,0)’ to make the conversion; see XXX [Date Arithmetic],
page XXX.

6.7.7.2 Free-Form Dates

When reading a date form during algebraic entry, Calc falls back on the algorithm described here
if the input does not exactly match the current date format. This algorithm generally “does the
right thing” and you don’t have to worry about it, but it is described here in full detail for the
curious.

Calc does not distinguish between upper- and lower-case letters while interpreting dates.

First, the time portion, if present, is located somewhere in the text and then removed. The
remaining text is then interpreted as the date.

A time is of the form ‘hh:mm:ss’, possibly with the seconds part omitted and possibly with an
AM/PM indicator added to indicate 12-hour time. If the AM/PM is present, the minutes may
also be omitted. The AM/PM part may be any of the words ‘am’, ‘pm’, ‘noon’, or ‘midnight’; each
of these may be abbreviated to one letter, and the alternate forms ‘a.m.’, ‘p.m.’, and ‘mid’ are
also understood. Obviously ‘noon’ and ‘midnight’ are allowed only on 12:00:00. The words ‘noon’,
‘mid’, and ‘midnight’ are also recognized with no number attached.

If there is no AM/PM indicator, the time is interpreted in 24-hour format.

To read the date portion, all words and numbers are isolated from the string; other characters
are ignored. All words must be either month names or day-of-week names (the latter of which are
ignored). Names can be written in full or as three-letter abbreviations.

Large numbers, or numbers with ‘+’ or ‘-’ signs, are interpreted as years. If one of the other
numbers is greater than 12, then that must be the day and the remaining number in the input is
therefore the month. Otherwise, Calc assumes the month, day and year are in the same order that
they appear in the current date format. If the year is omitted, the current year is taken from the

system clock.
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If there are too many or too few numbers, or any unrecognizable words, then the input is
rejected.

If there are any large numbers (of five digits or more) other than the year, they are ignored
on the assumption that they are something like Julian dates that were included along with the
traditional date components when the date was formatted.

One of the words ‘ad’, ‘a.d.’, ‘bc’, or ‘b.c.’ may optionally be used; the latter two are equivalent
to a minus sign on the year value.

If you always enter a four-digit year, and use a name instead of a number for the month, there
is no danger of ambiguity.

6.7.7.3 Standard Date Formats

There are actually ten standard date formats, numbered 0 through 9. Entering a blank line at the
d d command’s prompt gives you format number 1, Calc’s usual format. You can enter any digit
to select the other formats.

To create your own standard date formats, give a numeric prefix argument from 0 to 9 to the
d d command. The format you enter will be recorded as the new standard format of that number,
as well as becoming the new current date format. You can save your formats permanently with the
m m command (see XXX [Mode Settings], page XXX).

0 ‘N’ (Numerical format)

1 ‘<H:mm:SSpp >Www Mmm D, YYYY’ (American format)

2 ‘D Mmm YYYY<, h:mm:SS>’ (European format)

3 ‘Www Mmm BD< hh:mm:ss> YYYY’ (Unix written date format)
4 ‘M/D/Y< H:mm:SSpp>’ (American slashed format)

5 ‘D.M.Y< h:mm:S8S>’ (European dotted format)

6 ‘M-D-Y< H:mm:SSpp>’ (American dashed format)

7 ‘D-M-Y< h:mm:SS>’ (European dashed format)

8 ‘j<, h:mm:ss>’ (Julian day plus time)

9 ‘YYddd< hh:mm:ss>’ (Year-day format)
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6.7.8 Truncating the Stack

The d t (calc-truncate-stack) command moves the ‘.’ line that marks the top-of-stack up or
down in the Calculator buffer. The number right above that line is considered to the be at the top
of the stack. Any numbers below that line are “hidden” from all stack operations. This is similar
to the Emacs “narrowing” feature, except that the values below the ‘.’ are visible, just temporarily
frozen. This feature allows you to keep several independent calculations running at once in different
parts of the stack, or to apply a certain command to an element buried deep in the stack.

Pressing d t by itself moves the ‘.’ to the line the cursor is on. Thus, this line and all those
below it become hidden. To un-hide these lines, move down to the end of the buffer and press d t.
With a positive numeric prefix argument 7, d t hides the bottom n values in the buffer. With a
negative argument, it hides all but the top n values. With an argument of zero, it hides zero values,
i.e., moves the ‘.’ all the way down to the bottom.

The d [ (calc-truncate-up) and d ] (calc-truncate-down) commands move the ‘.” up or

down one line at a time (or several lines with a prefix argument).

6.7.9 Justification

Values on the stack are normally left-justified in the window. You can control this arrangement
by typing d < (calc-left-justify), d > (calc-right-justify), or d = (calc-center-justify).
For example, in right-justification mode, stack entries are displayed flush-right against the right
edge of the window.

If you change the width of the Calculator window you may have to type d SPC (calc-refresh)
to re-align right-justified or centered text.

Right-justification is especially useful together with fixed-point notation (see d f; calc-fix-
notation). With these modes together, the decimal points on numbers will always line up.

With a numeric prefix argument, the justification commands give you a little extra control over
the display. The argument specifies the horizontal “origin” of a display line. It is also possible
to specify a maximum line width using the d b command (see XXX [Normal Language Modes|,
page XXX). For reference, the precise rules for formatting and breaking lines are given below.
Notice that the interaction between origin and line width is slightly different in each justification
mode.

In left-justified mode, the line is indented by a number of spaces given by the origin (default
zero). If the result is longer than the maximum line width, if given, or too wide to fit in the Calc
window otherwise, then it is broken into lines which will fit; each broken line is indented to the
origin.

In right-justified mode, lines are shifted right so that the rightmost character is just before the
origin, or just before the current window width if no origin was specified. If the line is too long
for this, then it is broken; the current line width is used, if specified, or else the origin is used as a
width if that is specified, or else the line is broken to fit in the window.

In centering mode, the origin is the column number of the center of each stack entry. If a line
width is specified, lines will not be allowed to go past that width; Calc will either indent less or
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break the lines if necessary. If no origin is specified, half the line width or Calc window width is
used.

Note that, in each case, if line numbering is enabled the display is indented an additional four
spaces to make room for the line number. The width of the line number is taken into account
when positioning according to the current Calc window width, but not when positioning by explicit
origins and widths. In the latter case, the display is formatted as specified, and then uniformly
shifted over four spaces to fit the line numbers.

6.7.10 Labels

The d { (calc-left-label) command prompts for a string, then displays that string to the left of
every stack entry. If the entries are left-justified (see XXX [Justification], page XXX), then they
will appear immediately after the label (unless you specified an origin greater than the length of
the label). If the entries are centered or right-justified, the label appears on the far left and does
not affect the horizontal position of the stack entry.

Give a blank string (with d { RET) to turn the label off.

The d } (calc-right-label) command similarly adds a label on the righthand side. It does
not affect positioning of the stack entries unless they are right-justified. Also, if both a line width
and an origin are given in right-justified mode, the stack entry is justified to the origin and the
righthand label is justified to the line width.

One application of labels would be to add equation numbers to formulas you are manipulating
in Calc and then copying into a document (possibly using Embedded Mode). The equations would
typically be centered, and the equation numbers would be on the left or right as you prefer.

6.8 Language Modes

The commands in this section change Calc to use a different notation for entry and display of
formulas, corresponding to the conventions of some other common language such as Pascal or TEX.
Objects displayed on the stack or yanked from the Calculator to an editing buffer will be formatted
in the current language; objects entered in algebraic entry or yanked from another buffer will be
interpreted according to the current language.

The current language has no effect on things written to or read from the trail buffer, nor does
it affect numeric entry. Only algebraic entry is affected. You can make even algebraic entry ignore
the current language and use the standard notation by giving a numeric prefix, e.g., C-u ’.

For example, suppose the formula ‘2*a[1] + atan(a[2])’ occurs in a C program; elsewhere in
the program you need the derivatives of this formula with respect to ‘a[1]’ and ‘a[2]’. First,
type d C to switch to C notation. Now use C-u M-# g to grab the formula into the Calculator, a d
a[1] RET to differentiate with respect to the first variable, and M-# y to yank the formula for the
derivative back into your C program. Press U to undo the differentiation and repeat with a d a[2]
RET for the other derivative.

Without being switched into C mode first, Calc would have misinterpreted the brackets in ‘a[1]’
and ‘a[2]’, would not have known that atan was equivalent to Calc’s built-in arctan function, and

d {

d }
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would have written the formula back with notations (like implicit multiplication) which would not
have been legal for a C program.

As another example, suppose you are maintaining a C program and a TEX document, each of
which needs a copy of the same formula. You can grab the formula from the program in C mode,
switch to TEX mode, and yank the formula into the document in TEX math-mode format.

Language modes are selected by typing the letter d followed by a shifted letter key.

6.8.1 Normal Language Modes

The d N (calc-normal-language) command selects the usual notation for Calc formulas, as de-
scribed in the rest of this manual. Matrices are displayed in a multi-line tabular format, but all
other objects are written in linear form, as they would be typed from the keyboard.

The d 0 (calc-flat-language) command selects a language identical with the normal one,
except that matrices are written in one-line form along with everything else. In some applications
this form may be more suitable for yanking data into other buffers.

Even in one-line mode, long formulas or vectors will still be split across multiple lines if they
exceed the width of the Calculator window. The d b (calc-line-breaking) command turns this
line-breaking feature on and off. (It works independently of the current language.) If you give a
numeric prefix argument of five or greater to the d b command, that argument will specify the line
width used when breaking long lines.

The d B (calc-big-language) command selects a language which uses textual approximations
to various mathematical notations, such as powers, quotients, and square roots:

\l b
in place of ‘sqrt((a+1)/b + ¢c~2)".

Subscripts like ‘a_i’ are displayed as actual subscripts in “big” mode. Double subscripts,
‘a_i_j’ (‘subscr(subscr(a, i), j)’) are displayed as ‘a’ with subscripts separated by commas:
‘i, j’. They must still be entered in the usual underscore notation.

One slight ambiguity of Big notation is that

3

4

can represent either the negative rational number —3:4, or the actual expression ‘-=(3/4)’; but the
latter formula would normally never be displayed because it would immediately be evaluated to
—3:4 or —0.75, so this ambiguity is not a problem in typical use.

Non-decimal numbers are displayed with subscripts. Thus there is no way to tell the differ-
ence between ‘16#C2’ and ‘C2_16’, though generally you will know which interpretation is correct.
Logarithms ‘log(x,b)’ and ‘logl0(x)’ also use subscripts in Big mode.

In Big mode, stack entries often take up several lines. To aid readability, stack entries are
separated by a blank line in this mode. You may find it useful to expand the Calc window’s height
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using C-x ~ (enlarge-window) or to make the Calc window the only one on the screen with C-x 1
(delete-other-windows).

Long lines are currently not rearranged to fit the window width in Big mode, so you may need
to use the < and > keys to scroll across a wide formula. For really big formulas, you may even need
to use { and } to scroll up and down.

The d U (calc-unformatted-language) command altogether disables the use of operator no-
tation in formulas. In this mode, the formula shown above would be displayed:

sqrt (add(div(add(a, 1), b), pow(c, 2)))

These four modes differ only in display format, not in the format expected for algebraic entry.
The standard Calc operators work in all four modes, and unformatted notation works in any
language mode (except that Mathematica mode expects square brackets instead of parentheses).

6.8.2 C, FORTRAN, and Pascal Modes

The d C (calc-c-language) command selects the conventions of the C language for display and
entry of formulas. This differs from the normal language mode in a variety of (mostly minor) ways.
In particular, C language operators and operator precedences are used in place of Calc’s usual ones.
For example, ‘a”b’ means ‘xor(a,b)’ in C mode; a value raised to a power is written as a function
call, ‘pow(a,b)’.

In C mode, vectors and matrices use curly braces instead of brackets. Octal and hexadecimal
values are written with leading ‘0’ or ‘Ox’ rather than using the ‘# symbol. Array subscripting
is translated into subscr calls, so that ‘a[i]’ in C mode is the same as ‘a_i’ in normal mode.
Assignments turn into the assign function, which Calc normally displays using the ‘:=" symbol.

The variables var-pi and var-e would be displayed ‘pi’ and ‘e’ in normal mode, but in C mode
they are displayed as ‘M_PI’ and ‘M_E’, corresponding to the names of constants typically provided
in the ‘math.h>’ header. Functions whose names are different in C are translated automatically
for entry and display purposes. For example, entering ‘asin(x)’ will push the formula ‘arcsin(x)’
onto the stack; this formula will be displayed as ‘asin(x)’ as long as C mode is in effect.

The d P (calc-pascal-language) command selects Pascal conventions. Like C mode, Pascal
mode interprets array brackets and uses a different table of operators. Hexadecimal numbers
are entered and displayed with a preceding dollar sign. (Thus the regular meaning of $2 during
algebraic entry does not work in Pascal mode, though $ (and $$, etc.) not followed by digits works
the same as always.) No special provisions are made for other non-decimal numbers, vectors, and
S0 on, since there is no universally accepted standard way of handling these in Pascal.

The d F (calc-fortran-language) command selects FORTRAN conventions. Various function
names are transformed into FORTRAN equivalents. Vectors are written as ‘/1, 2, 3/°, and may
be entered this way or using square brackets. Since FORTRAN uses round parentheses for both
function calls and array subscripts, Calc displays both in the same way; ‘a(i)’ is interpreted as a
function call upon reading, and subscripts must be entered as ‘subscr(a, i)’. Also, if the variable
a has been declared to have type vector or matrix then ‘a(i)’ will be parsed as a subscript. (See
XXX [Declarations], page XXX.) Usually it doesn’t matter, though; if you enter the subscript
expression ‘a(i)’ and Calc interprets it as a function call, you’ll never know the difference unless
you switch to another language mode or replace a with an actual vector (or unless a happens to be
the name of a built-in function!).

dU

dC

d F
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Underscores are allowed in variable and function names in all of these language modes. The
underscore here is equivalent to the ‘#’ in normal mode, or to hyphens in the underlying Emacs
Lisp variable names.

FORTRAN and Pascal modes normally do not adjust the case of letters in formulas. Most
built-in Calc names use lower-case letters. If you use a positive numeric prefix argument with d P
or d F, these modes will use upper-case letters exclusively for display, and will convert to lower-case
on input. With a negative prefix, these modes convert to lower-case for display and input.

6.8.3 TgX Language Mode

The d T (calc-tex-language) command selects the conventions of “math mode” in the TEX
typesetting language, by Donald Knuth. Formulas are entered and displayed in TEX notation, as
in ‘\sin\left( a \over b \right)’. Math formulas are usually enclosed by ‘¢ $ signs in TEX;
these should be omitted when interfacing with Calc. To Calc, the ‘$’ sign has the same meaning it
always does in algebraic formulas (a reference to an existing entry on the stack).

Complex numbers are displayed as in ‘3 + 4i’. Fractions and quotients are written using \over;
binomial coefficients are written with \choose. Interval forms are written with \1dots, and error
forms are written with \pm. Absolute values are written as in ‘|x + 1|’, and the floor and ceiling
functions are written with \1floor, \rfloor, etc. The words \left and \right are ignored when
reading formulas in TEX mode. Both inf and uinf are written as \infty; when read, \infty
always translates to inf.

Function calls are written the usual way, with the function name followed by the arguments in
parentheses. However, functions for which TEX has special names (like \sin) will use curly braces
instead of parentheses for very simple arguments. During input, curly braces and parentheses work
equally well for grouping, but when the document is formatted the curly braces will be invisible.
Thus the printed result is sin 2z but sin(2 + z).

Function and variable names not treated specially by TEX are simply written out as-is, which
will cause them to come out in italic letters in the printed document. If you invoke d T with
a positive numeric prefix argument, names of more than one character will instead be written
‘\hbox{name}’. The ‘\hbox{ }’ notation is ignored during reading. If you use a negative prefix
argument, such function names are written ‘\name’, and function names that begin with \ during
reading have the \ removed. (Note that in this mode, long variable names are still written with
\hbox. However, you can always make an actual variable name like \bar in any TEX mode.)

During reading, text of the form ‘\matrix{ ... }’ is replaced by ‘[ ... ]1’. The same also

applies to \pmatrix and \bmatrix. The symbol ‘&’ is interpreted as a comma, and the symbols
“\cr’ and ‘\\’ are interpreted as semicolons. During output, matrices are displayed in ‘\matrix{ a
& b \\ ¢ & d}’ format; you may need to edit this afterwards to change \matrix to \pmatrix or \\
to \cr.

Accents like \tilde and \bar translate into function calls internally (‘tilde(x)’, ‘bar(x)’).
The \underline sequence is treated as an accent. The \vec accent corresponds to the function
name Vec, because vec is the name of a built-in Calc function. The following table shows the
accents in Calc, TEX, and eqn (described in the next section):
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Calc TeX eqn
acute \acute

bar \bar bar
breve \breve

check \check

dot \dot dot
dotdot \ddot dotdot
dyad dyad
grave \grave

hat \hat hat
Prime prime
tilde \tilde tilde
under \underline under
Vec \vec vec

The ‘=>’ (evaluates-to) operator appears as a \to symbol: ‘{a \to b}’. TEX defines \to as
an alias for \rightarrow. However, if the ‘=>’ is the top-level expression being formatted, a
slightly different notation is used: ‘\evalto a \to b’. The \evalto word is ignored by Calc’s input
routines, and is undefined in TEX. You will typically want to include one of the following definitions
at the top of a TEX file that uses \evalto:

\def\evalto{}
\def\evalto#1\to{}

The first definition formats evaluates-to operators in the usual way. The second causes only the
b part to appear in the printed document; the a part and the arrow are hidden. Another definition
you may wish to use is ‘\let\to=\Rightarrow’ which causes \to to appear more like Calc’s ‘=>’
symbol. See XXX [Evaluates-To Operator|, page XXX, for a discussion of evalto.

The complete set of TEX control sequences that are ignored during reading is:

\hbox \mbox \text \left \right

\, \> \: \; \! \quad \gquad \hfil \hfill

\displaystyle \textstyle \dsize \tsize

\scriptstyle \scriptscriptstyle \ssize \ssize

\rm \bf \it \sl \roman \bold \italic \slanted

\cal \mit \Cal \Bbb \frak \goth

\evalto

Note that, because these symbols are ignored, reading a TEX formula into Calc and writing it

back out may lose spacing and font information.

Also, the “discretionary multiplication sign” ‘\*’ is read the same as ‘*’.

Here are some examples of how various Calc formulas are formatted in TEX:

sin(a”2 / b_i)
\sin\left( a”2 \over b_i \right)

sin a_2
b
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[(3, 4), 3:4, 3 +/- 4, [3 .. inf)]
[3 + 4i, {3 \over 4}, 3 \pm 4, [3 \ldots \infty)]

[3+4z’,%,3i4,[3...oo)]

[abs(a), abs(a / b), floor(a), ceil(a / b)]
[lal, \left| a \over b \right],
\1floor a \rfloor, \left\lceil a \over b \right\rceil]

lal, 3]

[sin(a), sin(2 a), sin(2 + a), sin(a / b)]
[\sin{a}, \sin{2 a}, \sin(2 + a),
\sin\left( {a \over b} \right)]

lal, |3

[sin a, sin 2a, sin(2 + a), sin (%)]

First with plain d T, then with C-u d T, then finally with C-u - d T (using the example definition
‘\def\foo#1{\tilde F(#1)}:

[f(a), foo(bar), sin(pi)]

[f(a), foo(bar), \sin\pil

[£f(a), \hbox{foo}(\hbox{bar}), \sin{\pi}]
[£f(a), \foo{\hbox{bar}}, \sin{\pil}]

[f(a), foo(bar),sin 7]
[f(a),foo(bar), sin 7]
[f(a), F(bar), sin 7]
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First with ‘\def\evalto{}’, then with ‘\def\evalto#1\to{}’:

2 +3=>5
\evalto 2 + 3 \to 5

243 —5

First with standard \to, then with ‘\let\to\Rightarrow’

[2+3=>5,a/2=>(Md+c)/ 2]
[{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}]

a b+c
[2+3—>5,§—> 5 ]

a b+c
2 bt
[+3:>5,2:> 5 ]

Matrices normally, then changing \matrix to \pmatrix:

[[la/b,0]1, [0, 2°(x+1)]]1
\matrix{ {a \over b} & 0 \\ 0 & 2°{(x + 1D} }
\pmatrix{ {a \over b} & 0 \\ 0 & 2°{(x + 1)} }

7 0
0 2(:c+1)
a9
0 2(m+1)

6.8.4 Eqn Language Mode

Eqn is another popular formatter for math formulas. It is designed for use with the TROFF

text formatter, and comes standard with many versions of Unix. The d E (calc-eqn-language)
command selects eqn notation.

The eqn language’s main idiosyncrasy is that whitespace plays a significant part in the parsing
of the language. For example, ‘sqrt x+1 + y’ treats ‘x+1’ as the argument of the sqrt operator.

Eqn also understands more conventional grouping using curly braces: ‘sqrt{x+1} + y’. Braces are
required only when the argument contains spaces.
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In Calc’s eqn mode, however, curly braces are required to delimit arguments of operators like
sqrt. The first of the above examples would treat only the ‘x’” as the argument of sqrt, and in fact
‘sin x+1’ would be interpreted as ‘sin * x + 1’, because sin is not a special operator in the eqn
language. If you always surround the argument with curly braces, Calc will never misunderstand.

Calc also understands parentheses as grouping characters. Another peculiarity of eqn’s syntax
makes it advisable to separate words with spaces from any surrounding characters that aren’t curly
braces, so Calc writes ‘sin ( x + y )’ in eqn mode. (The spaces around sin are important to make
eqn recognize that sin should be typeset in a roman font, and the spaces around x and y are a
good idea just in case the eqn document has defined special meanings for these names, too.)

Powers and subscripts are written with the sub and sup operators, respectively. Note that the
caret symbol ‘" is treated the same as a space in eqn mode, as is the *~’ symbol (these are used to
introduce spaces of various widths into the typeset output of eqn).

[Xa]

As in TEX mode, Calc’s formatter omits parentheses around the arguments of functions like
1n and sin if they are “simple-looking”; in this case Calc surrounds the argument with braces,
separated by a ‘~’ from the function name: ‘sin~{x}’.

Font change codes (like ‘roman x’) and positioning codes (like ‘~’ and ‘down n x’) are ignored by
the eqn reader. Also ignored are the words left, right, mark, and lineup. Quotation marks in
eqn mode input are treated the same as curly braces: ‘sqrt "1+x"’ is equivalent to ‘sqrt {1+x}’;
this is only an approximation to the true meaning of quotes in eqn, but it is good enough for most
uses.

Accent codes (‘x dot’) are handled by treating them as function calls (‘dot (x)’) internally. See
XXX [TeX Language Mode|, page XXX for a table of these accent functions. The prime accent is
treated specially if it occurs on a variable or function name: ‘f prime prime ( x prime )’ is stored
internally as ‘f’’ (x’)’. For example, taking the derivative of ‘f (2 x)’ with a d x will produce ‘2
£7(2 x)’, which eqn mode will display as ‘2 f prime ( 2 x)’.

Assignments are written with the ‘<=’ (left-arrow) symbol, and evalto operators are written
with ‘=>’ or ‘evalto ... =>’ (see XXX [TeX Language Mode], page XXX, for a discussion of this).
The regular Calc symbols ‘:=" and ‘=>" are also recognized for these operators during reading.

Vectors in eqn mode use regular Calc square brackets, but matrices are formatted as ‘matrix {
ccol { aabove b } ... }. The words 1col and rcol are recognized as synonyms for ccol during
input, and are generated instead of ccol if the matrix justification mode so specifies.

6.8.5 Mathematica Language Mode

The d M (calc-mathematica-language) command selects the conventions of Mathematica, a pow-
erful and popular mathematical tool from Wolfram Research, Inc. Notable differences in Math-
ematica mode are that the names of built-in functions are capitalized, and function calls use
square brackets instead of parentheses. Thus the Calc formula ‘sin(2 x)’ is entered and displayed
‘8in[2 x]’ in Mathematica mode.

Vectors and matrices use curly braces in Mathematica. Complex numbers are written ‘3 + 4 I’.
The standard special constants in Calc are written Pi, E, I, GoldenRatio, EulerGamma, Infinity,
ComplexInfinity, and Indeterminate in Mathematica mode. Non-decimal numbers are written,
e.g., ‘16~ "7£ff’. Floating-point numbers in scientific notation are written ‘1.23%10.°3’. Subscripts
use double square brackets: ‘a[[i]]’.
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6.8.6 Maple Language Mode

The d W (calc-maple-language) command selects the conventions of Maple, another mathematical
tool from the University of Waterloo.

Maple’s language is much like C. Underscores are allowed in symbol names; square brackets are
used for subscripts; explicit ‘*’s for multiplications are required. Use either ‘*’ or ‘**’ to denote
pOWers.

Maple uses square brackets for lists and curly braces for sets. Calc interprets both notations
as vectors, and displays vectors with square brackets. This means Maple sets will be converted to
lists when they pass through Calc. As a special case, matrices are written as calls to the function
matrix, given a list of lists as the argument, and can be read in this form or with all-capitals
MATRIX.

The Maple interval notation ‘2 .. 3’ has no surrounding brackets; Calc reads ‘2 .. 3’ as the
closed interval ‘[2 .. 3]’, and writes any kind of interval as ‘2 .. 3’. This means you cannot see
the difference between an open and a closed interval while in Maple display mode.

¢

Maple writes complex numbers as ‘3 + 4*I’. Its special constants are Pi, E, I, and infinity
(all three of inf, uinf, and nan display as infinity). Floating-point numbers are written
‘1.23%10.73’.

Among things not currently handled by Calc’s Maple mode are the various quote symbols,
procedures and functional operators, and inert (‘&’) operators.

6.8.7 Compositions

There are several composition functions which allow you to get displays in a variety of formats
similar to those in Big language mode. Most of these functions do not evaluate to anything; they
are placeholders which are left in symbolic form by Calc’s evaluator but are recognized by Calc’s
display formatting routines.

Two of these, string and bstring, are described elsewhere. See XXX [Strings|, page XXX.
For example, ‘string("ABC")’ is displayed as ‘ABC’. When viewed on the stack it will be indistin-
guishable from the variable ABC, but internally it will be stored as ‘string([65, 66, 67])’ and can
still be manipulated this way; for example, the selection and vector commands j 1 v v j u would
select the vector portion of this object and reverse the elements, then deselect to reveal a string
whose characters had been reversed.

The composition functions do the same thing in all language modes (although their components
will of course be formatted in the current language mode). The one exception is Unformatted
mode (d U), which does not give the composition functions any special treatment. The functions
are discussed here because of their relationship to the language modes.

d W
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6.8.7.1 Composition Basics

Compositions are generally formed by stacking formulas together horizontally or vertically in various
ways. Those formulas are themselves compositions. TEX users will find this analogous to TEX’s
“boxes.” Each multi-line composition has a baseline; horizontal compositions use the baselines to
decide how formulas should be positioned relative to one another. For example, in the Big mode
formula

the second term of the sum is four lines tall and has line three as its baseline. Thus when the term
is combined with 17, line three is placed on the same level as the baseline of 17.

Another important composition concept is precedence. This is an integer that represents the
binding strength of various operators. For example, ‘*’ has higher precedence (195) than ‘+’ (180),
which means that ‘(a * b) + ¢’ will be formatted without the parentheses, but ‘a * (b + ¢)’ will
keep the parentheses.

The operator table used by normal and Big language modes has the following precedences:

_ 1200 (subscrlpts)
% 1100  (as in n%)

- 1000  (as in -n)

! 1000 (asin !n)
mod 400

+/- 300

' 210 (asinn!?)

! 210 (as in n!)

200

195 (or implicit multiplication)

%h\ 190

- 180 (as in a+b)

170

160 (and other relations)

& 110
| 100
90
1 85

&& 80
I

)

75
50

= N —®A— + ¥
. I

HH 45

=> 40

The general rule is that if an operator with precedence n occurs as an argument to an operator

with precedence m, then the argument is enclosed in parentheses if n < m. Top-level expres-

sions and expressions which are function arguments, vector components, etc., are formatted with
precedence zero (so that they normally never get additional parentheses).
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For binary left-associative operators like ‘+’, the righthand argument is actually formatted with
one-higher precedence than shown in the table. This makes sure ‘(a + b) + ¢’ omits the parentheses,
but the unnatural form ‘a + (b + ¢)’ keeps its parentheses. Right-associative operators like ‘~’
format the lefthand argument with one-higher precedence.

The cprec function formats an expression with an arbitrary precedence. For example,
‘cprec(abc, 185)’ will combine into sums and products as follows: ‘7 + abc’, ‘7 (abc)’ (because
this cprec form has higher precedence than addition, but lower precedence than multiplication).

A final composition issue is line breaking. Calc uses two different strategies for “flat” and
“non-flat” compositions. A non-flat composition is anything that appears on multiple lines (not
counting line breaking). Examples would be matrices and Big mode powers and quotients. Non-flat
compositions are displayed exactly as specified. If they come out wider than the current window,
you must use horizontal scrolling (< and >) to view them.

Flat compositions, on the other hand, will be broken across several lines if they are too wide to
fit the window. Certain points in a composition are noted internally as break points. Calc’s general
strategy is to fill each line as much as possible, then to move down to the next line starting at the
first break point that didn’t fit. However, the line breaker understands the hierarchical structure of
formulas. It will not break an “inner” formula if it can use an earlier break point from an “outer”
formula instead. For example, a vector of sums might be formatted as:

[a+b+c,d+e+ £,
g+h+i, j+k+1, m]
If the ‘m’ can fit, then so, it seems, could the ‘g’. But Calc prefers to break at the comma since the
comma is part of a “more outer” formula. Calc would break at a plus sign only if it had to, say, if
the very first sum in the vector had itself been too large to fit.

Of the composition functions described below, only choriz generates break points. The bstring
function (see XXX [Strings|, page XXX) also generates breakable items: A break point is added
after every space (or group of spaces) except for spaces at the very beginning or end of the string.

Composition functions themselves count as levels in the formula hierarchy, so a choriz that is
a component of a larger choriz will be less likely to be broken. As a special case, if a bstring
occurs as a component of a choriz or choriz-like object (such as a vector or a list of arguments
in a function call), then the break points in that bstring will be on the same level as the break
points of the surrounding object.

6.8.7.2 Horizontal Compositions

The choriz function takes a vector of objects and composes them horizontally. For example,
‘choriz([17, a b/c, d])’ formats as ‘17a b / ¢d’ in normal language mode, or as

ab
17---d
c
in Big language mode. This is actually one case of the general function ‘choriz(vec, sep, prec)’,

where either or both of sep and prec may be omitted. Prec gives the precedence to use when
formatting each of the components of vec. The default precedence is the precedence from the
surrounding environment.

cprec

choriz
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Sep is a string (i.e., a vector of character codes as might be entered with " " notation) which
should separate components of the composition. Also, if sep is given, the line breaker will allow
lines to be broken after each occurrence of sep. If sep is omitted, the composition will not be
breakable (unless any of its component compositions are breakable).

For example, ‘2 choriz([a, bc, d=e], "+ ", 180)’ is formatted as ‘2a+bc+ (d=¢e)’.
To get the choriz to have precedence 180 “outwards” as well as “inwards,” enclose it in a cprec
form: ‘2 cprec(choriz(...), 180)’ formats as ‘2 (a+bc+ (d=-¢e))’.

The baseline of a horizontal composition is the same as the baselines of the component compo-
sitions, which are all aligned.

6.8.7.3 Vertical Compositions

The cvert function makes a vertical composition. Each component of the vector is centered in
a column. The baseline of the result is by default the top line of the resulting composition. For
example, ‘f (cvert([a, bb, cccl), cvert([a”2 + 1, b~2]))’ formats in Big mode as

f(a, 2 )
bb a + 1
ccc 2
b
There are several special composition functions that work only as components of a vertical
composition. The cbase function controls the baseline of the vertical composition; the baseline
will be the same as the baseline of whatever component is enclosed in cbase. Thus ‘f (cvert([a,
cbase(bb), cccl), cvert([a~2 + 1, cbase(b~2)]))’ displays as

f(bb , b )
ccc
There are also ctbase and cbbase functions which make the baseline of the vertical com-

position equal to the top or bottom line (rather than the baseline) of that component. Thus
‘cvert ([cbase(a / b)]) + cvert([ctbase(a / b)]) + cvert([cbbase(a / b)])’ gives

There should be only one cbase, ctbase, or cbbase function in a given vertical composition.
These functions can also be written with no arguments: ‘ctbase()’ is a zero-height object which
means the baseline is the top line of the following item, and ‘cbbase ()’ means the baseline is the
bottom line of the preceding item.

The crule function builds a “rule,” or horizontal line, across a vertical composition. By it-

self ‘crule()’ uses ‘-’ characters to build the rule. You can specify any other character, e.g.,
‘crule("=")’. The argument must be a character code or vector of exactly one character code. It
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is repeated to match the width of the widest item in the stack. For example, a quotient with a
thick line is ‘cvert([a + 1, cbase(crule("=")), b~2])":

Finally, the functions clvert and crvert act exactly like cvert except that the items are left-
or right-justified in the stack. Thus ‘clvert([a, bb, ccc]) + crvert([a, bb, ccc])’ gives:

a + a
bb bb
ccc  ccc

Like choriz, the vertical compositions accept a second argument which gives the precedence to
use when formatting the components. Vertical compositions do not support separator strings.

6.8.7.4 Other Compositions

The csup function builds a superscripted expression. For example, ‘csup(a, b)’ looks the same as
‘a”b’ does in Big language mode. This is essentially a horizontal composition of ‘a’ and ‘b’, where
‘D’ is shifted up so that its bottom line is one above the baseline.

Likewise, the csub function builds a subscripted expression. This shifts ‘b’ down so that its
top line is one below the bottom line of ‘a’ (note that this is not quite analogous to csup). Other
arrangements can be obtained by using choriz and cvert directly.

The cflat function formats its argument in “flat” mode, as obtained by ‘d 0’, if the current
language mode is normal or Big. It has no effect in other language modes. For example, ‘a”(b/c)’
is formatted by Big mode like ‘csup(a, cflat(b/c))’ to improve its readability.

The cspace function creates horizontal space. For example, ‘cspace (4)’ is effectively the same
as ‘string(" ")’. A second string (i.e., vector of characters) argument is repeated instead of the
space character. For example, ‘cspace(4, "ab")’ looks like ‘abababab’. If the second argument
is not a string, it is formatted in the normal way and then several copies of that are composed
together: ‘cspace(4, a~2)’ yields

2222
aaaa
If the number argument is zero, this is a zero-width object.
The cvspace function creates vertical space, or a vertical stack of copies of a certain string or
formatted object. The baseline is the center line of the resulting stack. A numerical argument of
zero will produce an object which contributes zero height if used in a vertical composition.

There are also ctspace and cbspace functions which create vertical space with the baseline
the same as the baseline of the top or bottom copy, respectively, of the second argument. Thus
‘cvspace(2, a/b) + ctspace(2, a/b) + cbspace(2, a/b)’ displays as:

clvert
crvert

csup

csub

cflat

cspace

cvspace

ctspace
cbspace



cwidth

cheight

cascent
cdescent
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6.8.7.5 Information about Compositions

The functions in this section are actual functions; they compose their arguments according to the
current language and other display modes, then return a certain measurement of the composition
as an integer.

The cwidth function measures the width, in characters, of a composition. For example,
‘cwidth(a + b)’ is 5, and ‘cwidth(a / b)’ is 5 in normal mode, 1 in Big mode, and 11 in TEX
mode (for ‘{a \over b}’). The argument may involve the composition functions described in this
section.

The cheight function measures the height of a composition. This is the total number of lines
in the argument’s printed form.

The functions cascent and cdescent measure the amount of the height that is above (and
including) the baseline, or below the baseline, respectively. Thus ‘cascent(x) + cdescent(x)’
always equals ‘cheight (x)’. For a one-line formula like ‘a + b’, cascent returns 1 and cdescent
returns 0. For ‘a / b’ in Big mode, cascent returns 2 and cdescent returns 1. The only formula
for which cascent will return zero is ‘cvspace (0)’ or equivalents.

6.8.7.6 User-Defined Compositions

The Z C (calc-user-define-composition) command lets you define the display format for any
algebraic function. You provide a formula containing a certain number of argument variables on
the stack. Any time Calc formats a call to the specified function in the current language mode and
with that number of arguments, Calc effectively replaces the function call with that formula with
the arguments replaced.

Calc builds the default argument list by sorting all the variable names that appear in the
formula into alphabetical order. You can edit this argument list before pressing RET if you wish.
Any variables in the formula that do not appear in the argument list will be displayed literally;
any arguments that do not appear in the formula will not affect the display at all.

You can define formats for built-in functions, for functions you have defined with Z F (see XXX
[Algebraic Definitions|, page XXX), or for functions which have no definitions but are being used
as purely syntactic objects. You can define different formats for each language mode, and for each
number of arguments, using a succession of Z € commands. When Calc formats a function call, it
first searches for a format defined for the current language mode (and number of arguments); if
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there is none, it uses the format defined for the Normal language mode. If neither format exists,
Calc uses its built-in standard format for that function (usually just ‘func(args)’).

If you execute Z C with the number 0 on the stack instead of a formula, any defined formats for
the function in the current language mode will be removed. The function will revert to its standard
format.

For example, the default format for the binomial coefficient function ‘choose(n, m)’ in the Big
language mode is

n

()

m
You might prefer the notation,

¢
nm
To define this notation, first make sure you are in Big mode, then put the formula
choriz([cvert([cvspace(1), n]), C, cvert([cvspace(1l), m])])

on the stack and type Z C. Answer the first prompt with choose. The second prompt will be the
default argument list of ‘(C m n)’. Edit this list to be ‘(n m)’ and press RET. Now, try it out: For
example, turn simplification off with m 0 and enter ‘choose(a,b) + choose(7,3)’ as an algebraic
entry.

c + C
ab 73
As another example, let’s define the usual notation for Stirling numbers of the first kind,
‘stirl(n, m)’. This is just like the regular format for binomial coefficients but with square brackets
instead of parentheses.

choriz([string("["), cvert([n, cbase(cvspace(1)), m]), string("1")]1)
Now type Z C stirl RET, edit the argument list to ‘(n m)’, and type RET.

The formula provided to Z C usually will involve composition functions, but it doesn’t have
to. Putting the formula ‘a + b + ¢’ onto the stack and typing Z C foo RET RET would define the
function ‘foo(x,y,z)’ to display like ‘x + y + z’. This “sum” will act exactly like a real sum
for all formatting purposes (it will be parenthesized the same, and so on). However it will be
computationally unrelated to a sum. For example, the formula ‘2 * foo(1, 2, 3)’ will display as
‘2 (1 + 2+ 3)’. Operator precedences have caused the “sum” to be written in parentheses, but
the arguments have not actually been summed. (Generally a display format like this would be
undesirable, since it can easily be confused with a real sum.)

The special function eval can be used inside a Z C composition formula to cause all or part
of the formula to be evaluated at display time. For example, if the formula is ‘a + eval(b + c)’,
then ‘foo(1, 2, 3)’ will be displayed as ‘1 + 5’. Evaluation will use the default simplifications,
regardless of the current simplification mode. There are also evalsimp and evalextsimp which
simplify as if by a s and a e (respectively). Note that these “functions” operate only in the context
of composition formulas (and also in rewrite rules, where they serve a similar purpose; see XXX
[Rewrite Rules], page XXX). On the stack, a call to eval will be left in symbolic form.

It is not a good idea to use eval except as a last resort. It can cause the display of formulas to
be extremely slow. For example, while ‘eval(a + b)’ might seem quite fast and simple, there are
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several situations where it could be slow. For example, ‘a’ and/or ‘b’ could be polar complex num-
bers, in which case doing the sum requires trigonometry. Or, ‘a’ could be the factorial ‘fact (100)’
which is unevaluated because you have typed m 0; eval will evaluate it anyway to produce a large,
unwieldy integer.

You can save your display formats permanently using the Z P command (see XXX [Creating
User Keys|, page XXX).

6.8.8 Syntax Tables

Syntax tables do for input what compositions do for output: They allow you to teach custom
notations to Calc’s formula parser. Calc keeps a separate syntax table for each language mode.

(Note that the Calc “syntax tables” discussed here are completely unrelated to the syntax tables
described in the Emacs manual.)

The Z S (calc-edit-user-syntax) command edits the syntax table for the current language
mode. If you want your syntax to work in any language, define it in the normal language mode.
Type M-# M-# to finish editing the syntax table, or M-# x to cancel the edit. The m m command saves
all the syntax tables along with the other mode settings; see XXX [General Mode Commands],
page XXX.

6.8.8.1 Syntax Table Basics

Parsing is the process of converting a raw string of characters, such as you would type in during
algebraic entry, into a Calc formula. Calc’s parser works in two stages. First, the input is broken
down into tokens, such as words, numbers, and punctuation symbols like ‘+’, ‘:=’, and ‘+/-’. Space
between tokens is ignored (except when it serves to separate adjacent words). Next, the parser
matches this string of tokens against various built-in syntactic patterns, such as “an expression
followed by ‘+’ followed by another expression” or “a name followed by (’, zero or more expressions
separated by commas, and ¢)’.”

A syntax table is a list of user-defined syntax rules, which allow you to specify new patterns
to define your own favorite input notations. Calc’s parser always checks the syntax table for the
current language mode, then the table for the normal language mode, before it uses its built-in
rules to parse an algebraic formula you have entered. Each syntax rule should go on its own line; it
consists of a pattern, a ‘:=" symbol, and a Calc formula with an optional condition. (Syntax rules
resemble algebraic rewrite rules, but the notation for patterns is completely different.)

A syntax pattern is a list of tokens, separated by spaces. Except for a few special symbols,
tokens in syntax patterns are matched literally, from left to right. For example, the rule,

foo () := 243
would cause Calc to parse the formula ‘4+foo()*5’ as if it were ‘4+(2+3)*5’. Notice that the
parentheses were written as two separate tokens in the rule. As a result, the rule works for both
‘foo()’ and ‘foo ( )’. If we had written the rule as ‘foo () := 2+3’, then Calc would treat ‘()’
as a single, indivisible token, so that ‘foo( )’ would not be recognized by the rule. (It would be
parsed as a regular zero-argument function call instead.) In fact, this rule would also make trouble
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for the rest of Calc’s parser: An unrelated formula like ‘bar ()’ would now be tokenized into ‘bar
()’ instead of ‘bar ( )’, so that the standard parser for function calls would no longer recognize it!

While it is possible to make a token with a mixture of letters and punctuation symbols, this is
not recommended. It is better to break it into several tokens, as we did with ‘foo ()’ above.

The symbol ‘#’ in a syntax pattern matches any Calc expression. On the righthand side, the
things that matched the ‘#’s can be referred to as ‘#1’, ‘#2’, and so on (where ‘#1’ matches the
leftmost ‘#’ in the pattern). For example, these rules match a user-defined function, prefix operator,
infix operator, and postfix operator, respectively:

foo ( # ) := myfunc(#1)
foo # := myprefix(#1)
# foo # := myinfix(#1,#2)
# foo := mypostfix(#1)
Thus ‘foo(3)’ will parse as ‘myfunc(3)’, and ‘2+3 foo’ will parse as ‘mypostfix(2+3)’.

It is important to write the first two rules in the order shown, because Calc tries rules in order
from first to last. If the pattern ‘foo # came first, it would match anything that could match the
‘foo ( # )’ rule, since an expression in parentheses is itself a valid expression. Thus the ‘foo ( # )’
rule would never get to match anything. Likewise, the last two rules must be written in the order
shown or else ‘3 foo 4’ will be parsed as ‘mypostfix(3) * 4’. (Of course, the best way to avoid
these ambiguities is not to use the same symbol in more than one way at the same time! In
case you're not convinced, try the following exercise: How will the above rules parse the input
‘f00(3,4)’, if at all? Work it out for yourself, then try it in Calc and see.)

Calc is quite flexible about what sorts of patterns are allowed. The only rule is that every
pattern must begin with a literal token (like ‘foo’ in the first two patterns above), or with a ‘#’
followed by a literal token (as in the last two patterns). After that, any mixture is allowed, although
putting two ‘#’s in a row will not be very useful since two expressions with nothing between them
will be parsed as one expression that uses implicit multiplication.

As a more practical example, Maple uses the notation ‘sum(a(i), i=1..10)’ for sums, which
Calc’s Maple mode doesn’t recognize at present. To handle this syntax, we simply add the rule,

sum ((# , # =# .. # ) := sum(#1,#2,#3,#4)
to the Maple mode syntax table. As another example, C mode can’t read assignment operators
like ‘++” and ‘*=". We can define these operators quite easily:

# *x= # := muleq(#1,#2)

# ++ := postinc(#1)

++ # := preinc(#1)
To complete the job, we would use corresponding composition functions and Z C to cause these
functions to display in their respective Maple and C notations. (Note that the C example ignores
issues of operator precedence, which are discussed in the next section.)

You can enclose any token in quotes to prevent its usual interpretation in syntax patterns:

# ":=" # := becomes(#1,#2)

Quotes also allow you to include spaces in a token, although once again it is generally better to
use two tokens than one token with an embedded space. To include an actual quotation mark in a
quoted token, precede it with a backslash. (This also works to include backslashes in tokens.)

# "bad token" # "/\"\\" # := silly(#1,#2,#3)
This will parse ‘3 bad token 4 /"\ 5’ to ‘silly(3,4,5)".



Chapter 6: Mode Settings 182

The token # has a predefined meaning in Calc’s formula parser; it is not legal to use ‘"#"’ in a
syntax rule. However, longer tokens that include the ‘#’ character are allowed. Also, while ‘"$"’
and ‘"\""’ are allowed as tokens, their presence in the syntax table will prevent those characters
from working in their usual ways (referring to stack entries and quoting strings, respectively).

Finally, the notation ‘%%’ anywhere in a syntax table causes the rest of the line to be ignored as
a comment.

6.8.8.2 Precedence

Different operators are generally assigned different precedences. By default, an operator defined
by a rule like

# foo # := foo(#1,#2)

will have an extremely low precedence, so that ‘2*¥3+4 foo 5 == 6’ will be parsed as ‘(2*3+4) foo
(5 == 6)’. To change the precedence of an operator, use the notation ‘#/p’ in place of ‘#’, where p
is an integer precedence level. For example, 185 lies between the precedences for ‘+’ and ‘*’, so if
we change this rule to

#/185 foo #/186 := foo(#1,#2)

then ‘2+3 foo 45’ will be parsed as ‘2+(3 foo (4%5))’. Also, because we’ve given the righthand
expression slightly higher precedence, our new operator will be left-associative: ‘1 foo 2 foo 3’ will
be parsed as ‘(1 foo 2) foo 3’. By raising the precedence of the lefthand expression instead, we
can create a right-associative operator.

See XXX [Composition Basics], page XXX, for a table of precedences of the standard Calc
operators. For the precedences of operators in other language modes, look in the Calc source file
‘calc-lang.el’.

6.8.8.3 Advanced Syntax Patterns

To match a function with a variable number of arguments, you could write

foo ( # ) := myfunc(#1)

foo (# , # ) := myfunc(#1,#2)

foo (# , # , # ) := myfunc(#1,#2,#3)
but this isn’t very elegant. To match variable numbers of items, Calc uses some notations inspired
regular expressions and the “extended BNF” style used by some language designers.

foo ( { # }*, ) := apply(myfunc,#1)

The token ‘{’ introduces a repeated or optional portion. One of the three tokens ‘}*’, ‘}+’,
or ‘}?’ ends the portion. These will match zero or more, one or more, or zero or one copies of
the enclosed pattern, respectively. In addition, ‘}*’ and ‘}+’ can be followed by a separator token
(with no space in between, as shown above). Thus ‘{ # }*,’ matches nothing, or one expression,
or several expressions separated by commas.

A complete ‘{ ... } item matches as a vector of the items that matched inside it. For example,
the above rule will match ‘foo(1,2,3)’ to get ‘apply (myfunc, [1,2,3])’. The Calc apply function
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takes a function name and a vector of arguments and builds a call to the function with those
arguments, so the net result is the formula ‘myfunc(1,2,3)’.

If the body of a ‘{ ... }’ contains several ‘#’s (or nested ‘{ ...} constructs), then the items
will be strung together into the resulting vector. If the body does not contain anything but literal
tokens, the result will always be an empty vector.

foo ( { # , # }+, ) := bar(#1)

foo ( { { # }*, }*; ) := matrix(#1)
will parse ‘foo(1,2,3,4)"as ‘bar([1,2,3,4])’,and ‘foo(1,2;3,4)’as ‘matrix([[1,2],[3,4]1]1)".
Also, after some thought it’s easy to see how this pair of rules will parse ‘foo(1,2,3)’ as
‘matrix([[1,2,3]1]1)’, since the first rule will only match an even number of arguments. The
rule

foo (#{ , # , # }7 ) := bar(#1,#2)

will parse ‘foo(2,3,4)’ as ‘bar(2,[3,4])’, and ‘foo(2)’ as ‘bar(2,[]1)’.
The notation ‘{ ... }?.’ (note the trailing period) works just the same as regular ‘{ ... }?’,

except that it does not count as an argument; the following two rules are equivalent:

foo ( # , { also }? # ) := bar(#1,#3)

foo ( # , { also }?7. # ) := bar(#1,#2)
Note that in the first case the optional text counts as ‘#2’, which will always be an empty vector,
but in the second case no empty vector is produced.

Another variant is ‘{ ... }7$’, which means the body is optional only at the end of the input
formula. All built-in syntax rules in Calc use this for closing delimiters, so that during algebraic
entry you can type [sqrt(2), sqrt (3 RET, omitting the closing parenthesis and bracket. Calc
does this automatically for trailing )’, ‘1’, and >’ tokens in syntax rules, but you can use ‘{ ...
}7$’ explicitly to get this effect with any token (such as ‘"}"’ or ‘end’). Like ‘{ ... }7.’, this
notation does not count as an argument. Conversely, you can use quotes, as in ‘")"’, to prevent a
closing-delimiter token from being automatically treated as optional.

Calc’s parser does not have full backtracking, which means some patterns will not work as you
might expect:

foo ({# , }7 # , # ) := bar(#1,#2,#3)

Here we are trying to make the first argument optional, so that ‘foo(2,3)’ parses as ‘bar([1,2,3)".
Unfortunately, Calc first tries to match ‘2,’ against the optional part of the pattern, finds a match,
and so goes ahead to match the rest of the pattern. Later on it will fail to match the second comma,
but it doesn’t know how to go back and try the other alternative at that point. One way to get
around this would be to use two rules:

foo (# , # , # ) := bar([#1],#2,#3)

foo ( # , # ) := bar([],#1,#2)

More precisely, when Calc wants to match an optional or repeated part of a pattern, it scans
forward attempting to match that part. If it reaches the end of the optional part without failing,
it “finalizes” its choice and proceeds. If it fails, though, it backs up and tries the other alternative.
Thus Calc has “partial” backtracking. A fully backtracking parser would go on to make sure the
rest of the pattern matched before finalizing the choice.
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6.8.8.4 Conditional Syntax Rules

It is possible to attach a condition to a syntax rule. For example, the rules

foo ( # ) := ifoo(#1) :: integer(#1)

foo ( # ) := gfoo(#1)
will parse ‘foo(3)’ as ‘1foo(3)’, but will parse ‘foo(3.5)’ and ‘foo(x)’ as calls to gfoo. Any
number of conditions may be attached; all must be true for the rule to succeed. A condition is
“true” if it evaluates to a nonzero number. See XXX [Logical Operations], page XXX, for a list of
Calc functions like integer that perform logical tests.

The exact sequence of events is as follows: When Calc tries a rule, it first matches the pattern as
usual. It then substitutes ‘#1°, ‘#2’, etc., in the conditions, if any. Next, the conditions are simplified
and evaluated in order from left to right, as if by the a s algebra command (see XXX [Simplifying
Formulas], page XXX ). Each result is true if it is a nonzero number, or an expression that can be
proven to be nonzero (see XXX [Declarations|, page XXX). If the results of all conditions are true,
the expression (such as ‘ifoo(#1)’) has its ‘#’s substituted, and that is the result of the parse. If
the result of any condition is false, Calc goes on to try the next rule in the syntax table.

Syntax rules also support let conditions, which operate in exactly the same way as they do in
algebraic rewrite rules. See XXX [Other Features of Rewrite Rules|, page XXX, for details. A
let condition is always true, but as a side effect it defines a variable which can be used in later
conditions, and also in the expression after the ‘:=’ sign:

foo ( # ) := hifoo(x) :: let(x := #1 + 0.5) :: dnumint(x)

The dnumint function tests if a value is numerically an integer, i.e., either a true integer or an
integer-valued float. This rule will parse foo with a half-integer argument, like ‘fo0(3.5)’, to a
call like ‘hifoo(4.)’.

The lefthand side of a syntax rule let must be a simple variable, not the arbitrary pattern that
is allowed in rewrite rules.

The matches function is also treated specially in syntax rule conditions (again, in the same
way as in rewrite rules). See XXX [Matching Commands], page XXX. If the matching pattern
contains meta-variables, then those meta-variables may be used in later conditions and in the result
expression. The arguments to matches are not evaluated in this situation.

sum ( # , # ) := sum(#1,a,b,c) :: matches(#2, a=[b..c])

This is another way to implement the Maple mode sum notation. In this approach, we allow ‘#2’ to
equal the whole expression ‘i=1..10’. Then, we use matches to break it apart into its components.
If the expression turns out not to match the pattern, the syntax rule will fail. Note that Z S always
uses Calc’s normal language mode for editing expressions in syntax rules, so we must use regular
Calc notation for the interval ‘[b..c]’ that will correspond to the Maple mode interval ‘1..10".
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6.9 The Modes Variable

The m g (calc-get-modes) command pushes onto the stack a vector of numbers that describes the
various mode settings that are in effect. With a numeric prefix argument, it pushes only the nth
mode, i.e., the nth element of this vector. Keyboard macros can use the m g command to modify
their behavior based on the current mode settings.

The modes vector is also available in the special variable Modes. In other words, m g is like s r
Modes RET. It will not work to store into this variable; in fact, if you do, Modes will cease to track
the current modes. (The m g command will continue to work, however.)

In general, each number in this vector is suitable as a numeric prefix argument to the associated
mode-setting command. (Recall that the ~ key takes a number from the stack and gives it as a
numeric prefix to the next command.)

The elements of the modes vector are as follows:

1. Current precision. Default is 12; associated command is p.
2. Binary word size. Default is 32; associated command is b w.

3. Stack size (not counting the value about to be pushed by m g). This is zero if m g is executed
with an empty stack.

4. Number radix. Default is 10; command is d r.

5. Floating-point format. This is the number of digits, plus the constant 0 for normal notation,
10000 for scientific notation, 20000 for engineering notation, or 30000 for fixed-point notation.
These codes are acceptable as prefix arguments to the d n command, but note that this may
lose information: For example, d s and C-u 12 d s have similar (but not quite identical) effects
if the current precision is 12, but they both produce a code of 10012, which will be treated
by d n as C-u 12 d s. If the precision then changes, the float format will still be frozen at 12
significant figures.

6. Angular mode. Default is 1 (degrees). Other values are 2 (radians) and 3 (HMS). The m d
command accepts these prefixes.

Symbolic mode. Value is 0 or 1; default is 0. Command is m s.
Fraction mode. Value is 0 or 1; default is 0. Command is m f.

© ®© N

Polar mode. Value is 0 (rectangular) or 1 (polar); default is 0. Command is m p.

10. Matrix/scalar mode. Default value is —1. Value is 0 for scalar mode, —2 for matrix mode, or
N for N x N matrix mode. Command is m v.

11. Simplification mode. Default is 1. Value is —1 for off (m 0), 0 for m N, 2 for m B, 3 for m 4, 4 for
mE, or 5 for m U. The m D command accepts these prefixes.

12. Infinite mode. Default is —1 (off). Value is 1 if the mode is on, or 0 if the mode is on with

positive zeros. Command is m i.

For example, the sequence M-1 m g RET 2 + ~ p increases the precision by two, leaving a copy of
the old precision on the stack. Later, ~ p will restore the original precision using that stack value.
(This sequence might be especially useful inside a keyboard macro.)

As another example, M-3m g 1 - ~ DEL deletes all but the oldest (bottommost) stack entry.

Yet another example: The HP-48 “round” command rounds a number to the current displayed
precision. You could roughly emulate this in Calc with the sequence M-5m g 10000 7 ~ ¢ c. (This
would not work for fixed-point mode, but it wouldn’t be hard to do a full emulation with the help
of the Z [ and Z ] programming commands. See XXX [Conditionals in Macros|, page XXX .)
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6.10 The Calc Mode Line

This section is a summary of all symbols that can appear on the Calc mode line, the highlighted
bar that appears under the Calc stack window (or under an editing window in Embedded Mode).

The basic mode line format is:
--%%-Calc: 12 Deg other modes (Calculator)

The ‘%%’ is the Emacs symbol for “read-only”; it shows that regular Emacs commands are not
allowed to edit the stack buffer as if it were text.

The word ‘Calc:’ changes to ‘CalcEmbed:’ if Embedded Mode is enabled. The words after this
describe the various Calc modes that are in effect.

The first mode is always the current precision, an integer. The second mode is always the
angular mode, either Deg, Rad, or Hms.

Here is a complete list of the remaining symbols that can appear on the mode line:

Alg Algebraic mode (m a; see XXX [Algebraic Entry], page XXX).
Algl( Incomplete algebraic mode (C-u m a).

Alg* Total algebraic mode (m t).

Symb Symbolic mode (m s; see XXX [Symbolic Mode], page XXX).

Matrix Matrix mode (m v; see XXX [Matrix Mode|, page XXX).
Matrixn  Dimensioned matrix mode (C-u n m v).

Scalar Scalar mode (m v; see XXX [Matrix Mode|, page XXX).

Polar Polar complex mode (m p; see XXX [Polar Mode]|, page XXX).
Frac Fraction mode (m f; see XXX [Fraction Mode], page XXX).
Inf Infinite mode (m i; see XXX [Infinite Mode], page XXX).
+Inf Positive infinite mode (C-u 0 m i).

NoSimp Default simplifications off (m 0; see XXX [Simplification Modes|, page XXX).
NumSimp  Default simplifications for numeric arguments only (m N).

BinSimpw Binary-integer simplification mode; word size w (m B, b w).

AlgSimp  Algebraic simplification mode (m 4).

ExtSimp Extended algebraic simplification mode (m E).

UnitSimp Units simplification mode (m U).

Bin Current radix is 2 (d 2; see XXX [Radix Modes], page XXX).
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Oct
Hex
Radixn
Zero
Big
Flat
Unform
C
Pascal
Fortran
TeX
Egn
Math
Maple
Normn
Fixn
Sci
Scin
Eng
Engn
Leftn
Right
Rightn
Center
Centern
Widn

Wide

Current radix is 8 (d 8).

Current radix is 16 (d 6).

Current radix is n (d r).

Leading zeros (d z; see XXX [Radix Modes], page XXX).

Big language mode (d B; see XXX [Normal Language Modes|, page XXX).
One-line normal language mode (d 0).

Unformatted language mode (d U).

C language mode (d C; see XXX [C FORTRAN Pascal], page XXX).

Pascal language mode (d P).

FORTRAN language mode (d F).

TEX language mode (d T; see XXX [TeX Language Mode|, page XXX).

Eqn language mode (d E; see XXX [Eqn Language Mode], page XXX).
Mathematica language mode (d M; see XXX [Mathematica Language Mode], page XXX).
Maple language mode (d W; see XXX [Maple Language Mode], page XXX).
Normal float mode with n digits (d n; see XXX [Float Formats|, page XXX).
Fixed point mode with n digits after the point (d f).

Scientific notation mode (d s).

Scientific notation with n digits (d s).

Engineering notation mode (d e).

Engineering notation with n digits (d e).

Left-justified display indented by n (d <; see XXX [Justification], page XXX).
Right-justified display (d >).

Right-justified display with width n (d >).

Centered display (d =).

Centered display with center column n (d =).

Line breaking with width n (d b; see XXX [Normal Language Modes|, page XXX).

No line breaking (d b).
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Break
Save
Local
LocEdit
LocPerm
Global

Manual

Graph
Sel
Dirty
Inv
Hyp
Keep

Narrow
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Selections show deep structure (j b; see XXX [Making Selections|, page XXX).
Record modes in ‘*/.emacs’ (m R; see XXX [General Mode Commands]|, page XXX).
Record modes in Embedded buffer (m R).

Record modes as editing-only in Embedded buffer (m R).

Record modes as permanent-only in Embedded buffer (m R).

Record modes as global in Embedded buffer (m R).

Automatic recomputation turned off (m C; see XXX [Automatic Recomputation],
page XXX).

GNUPLOT process is alive in background (see XXX [Graphics], page XXX).
Top-of-stack has a selection (Embedded only; see XXX [Making Selections|, page XXX).
The stack display may not be up-to-date (see XXX [Display Modes|, page XXX).
“Inverse” prefix was pressed (I; see XXX [Inverse and Hyperbolic], page XXX).
“Hyperbolic” prefix was pressed (H).

“Keep-arguments” prefix was pressed (K).

Stack is truncated (d t; see XXX [Truncating the Stack], page XXX).

In addition, the symbols Active and “Active can appear as minor modes on an Embedded
buffer’s mode line. See XXX [Embedded Mode|, page XXX.
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7 Arithmetic Functions

This chapter describes the Calc commands for doing simple calculations on numbers, such as
addition, absolute value, and square roots. These commands work by removing the top one or two
values from the stack, performing the desired operation, and pushing the result back onto the stack.
If the operation cannot be performed, the result pushed is a formula instead of a number, such as
‘2/0’ (because division by zero is illegal) or ‘sqrt (x)’ (because the argument ‘x’ is a formula).

Most of the commands described here can be invoked by a single keystroke. Some of the more
obscure ones are two-letter sequences beginning with the f (“functions”) prefix key.

See XXX [Prefix Arguments|, page XXX, for a discussion of the effect of numeric prefix argu-
ments on commands in this chapter which do not otherwise interpret a prefix argument.

7.1 Basic Arithmetic

The + (calc-plus) command adds two numbers. The numbers may be any of the standard Calc
data types. The resulting sum is pushed back onto the stack.

If both arguments of + are vectors or matrices (of matching dimensions), the result is a vector
or matrix sum. If one argument is a vector and the other a scalar (i.e., a non-vector), the scalar
is added to each of the elements of the vector to form a new vector. If the scalar is not a number,
the operation is left in symbolic form: Suppose you added ‘x’ to the vector ‘[1,2]’. You may
want the result ‘[1+x,2+x]’, or you may plan to substitute a 2-vector for ‘x’ in the future. Since
the Calculator can’t tell which interpretation you want, it makes the safest assumption. See XXX
[Reducing and Mapping], page XXX, for a way to add ‘x’ to every element of a vector.

If either argument of + is a complex number, the result will in general be complex. If one
argument is in rectangular form and the other polar, the current Polar Mode determines the form
of the result. If Symbolic Mode is enabled, the sum may be left as a formula if the necessary
conversions for polar addition are non-trivial.

If both arguments of + are HMS forms, the forms are added according to the usual conventions
of hours-minutes-seconds notation. If one argument is an HMS form and the other is a number,
that number is converted from degrees or radians (depending on the current Angular Mode) to
HMS format and then the two HMS forms are added.

If one argument of + is a date form, the other can be either a real number, which advances the
date by a certain number of days, or an HMS form, which advances the date by a certain amount
of time. Subtracting two date forms yields the number of days between them. Adding two date
forms is meaningless, but Calc interprets it as the subtraction of one date form and the negative of
the other. (The negative of a date form can be understood by remembering that dates are stored
as the number of days before or after Jan 1, 1 AD.)

If both arguments of + are error forms, the result is an error form with an appropriately computed
standard deviation. If one argument is an error form and the other is a number, the number is
taken to have zero error. Error forms may have symbolic formulas as their mean and/or error
parts; adding these will produce a symbolic error form result. However, adding an error form to a
plain symbolic formula (as in ‘(a +/- b) + ¢’) will not work, for the same reasons just mentioned
for vectors. Instead you must write ‘(a +/- b) + (c +/- 0)".
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If both arguments of + are modulo forms with equal values of M, or if one argument is a modulo
form and the other a plain number, the result is a modulo form which represents the sum, modulo
M, of the two values.

If both arguments of + are intervals, the result is an interval which describes all possible sums of
the possible input values. If one argument is a plain number, it is treated as the interval ‘[x .. x]°.

If one argument of + is an infinity and the other is not, the result is that same infinity. If both
arguments are infinite and in the same direction, the result is the same infinity, but if they are
infinite in different directions the result is nan.

The - (calc-minus) command subtracts two values. The top number on the stack is subtracted
from the one behind it, so that the computation 5 RET 2 - produces 3, not —3. All options available
for + are available for - as well.

The * (calc-times) command multiplies two numbers. If one argument is a vector and the
other a scalar, the scalar is multiplied by the elements of the vector to produce a new vector. If
both arguments are vectors, the interpretation depends on the dimensions of the vectors: If both
arguments are matrices, a matrix multiplication is done. If one argument is a matrix and the other
a plain vector, the vector is interpreted as a row vector or column vector, whichever is dimensionally
correct. If both arguments are plain vectors, the result is a single scalar number which is the dot
product of the two vectors.

If one argument of * is an HMS form and the other a number, the HMS form is multiplied by
that amount. It is an error to multiply two HMS forms together, or to attempt any multiplication
involving date forms. Error forms, modulo forms, and intervals can be multiplied; see the comments
for addition of those forms. When two error forms or intervals are multiplied they are considered to
be statistically independent; thus, ‘[-2 .. 3] * [-2 .. 3]"is ‘[-6 .. 9]’, whereas ‘[-2 .. 3] = 2’
is ‘[0 .. 9]".

The / (calc-divide) command divides two numbers. When dividing a scalar B by a square
matrix A, the computation performed is B times the inverse of A. This also occurs if B is itself a
vector or matrix, in which case the effect is to solve the set of linear equations represented by B.
If B is a matrix with the same number of rows as A, or a plain vector (which is interpreted here as
a column vector), then the equation AX = B is solved for the vector or matrix X. Otherwise, if
B is a non-square matrix with the same number of columns as A, the equation X A = B is solved.
If you wish a vector B to be interpreted as a row vector to be solved as XA = B, make it into
a one-row matrix with C-u 1 v p first. To force a left-handed solution with a square matrix B,
transpose A and B before dividing, then transpose the result.

HMS forms can be divided by real numbers or by other HMS forms. Error forms can be divided
in any combination of ways. Modulo forms where both values and the modulo are integers can be
divided to get an integer modulo form result. Intervals can be divided; dividing by an interval that
encompasses zero or has zero as a limit will result in an infinite interval.

The ~ (calc-power) command raises a number to a power. If the power is an integer, an exact
result is computed using repeated multiplications. For non-integer powers, Calc uses Newton’s
method or logarithms and exponentials. Square matrices can be raised to integer powers. If either
argument is an error (or interval or modulo) form, the result is also an error (or interval or modulo)
form.

If you press the I (inverse) key first, the I ~ command computes an Nth root: 125 RET3 I °
computes the number 5. (This is entirely equivalent to 125 RET 1:3 ~.)
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The \ (calc-idiv) command divides two numbers on the stack to produce an integer result.
It is equivalent to dividing with /, then rounding down with F (calc-floor), only a bit more
convenient and efficient. Also, since it is an all-integer operation when the arguments are integers,
it avoids problems that / F would have with floating-point roundoff.

The 7 (calc-mod) command performs a “modulo” (or “remainder”) operation. Mathematically,
‘al%b = a - (a\b) *b’, and is defined for all real numbers a and b (except b = 0). For positive b, the
result will always be between 0 (inclusive) and b (exclusive). Modulo does not work for HMS forms
and error forms. If g is a modulo form, its modulo is changed to b, which must be positive real
number.

The : (calc-fdiv) command [fdiv function in a formula] divides the two integers on the top of
the stack to produce a fractional result. This is a convenient shorthand for enabling Fraction Mode
(with m f) temporarily and using ‘/’. Note that during numeric entry the : key is interpreted as a
fraction separator, so to divide 8 by 6 you would have to type 8 RET 6 RET :. (Of course, in this
case, it would be much easier simply to enter the fraction directly as 8:6 RET!)

The n (calc-change-sign) command negates the number on the top of the stack. It works on
numbers, vectors and matrices, HMS forms, date forms, error forms, intervals, and modulo forms.

The 4 (calc-abs) [abs] command computes the absolute value of a number. The result of abs is
always a nonnegative real number: With a complex argument, it computes the complex magnitude.
With a vector or matrix argument, it computes the Frobenius norm, i.e., the square root of the
sum of the squares of the absolute values of the elements. The absolute value of an error form is
defined by replacing the mean part with its absolute value and leaving the error part the same.
The absolute value of a modulo form is undefined. The absolute value of an interval is defined in
the obvious way.

The f A (calc-abssqr) [abssqr] command computes the absolute value squared of a number,
vector or matrix, or error form.

The f s (calc-sign) [sign] command returns 1 if its argument is positive, —1 if its argument
is negative, or 0 if its argument is zero. In algebraic form, you can also write ‘sign(a,x)’ which
evaluates to ‘x * sign(a)’, i.e., either ‘x’, ‘-x’, or zero depending on the sign of ‘a’.

The & (calc-inv) [inv] command computes the reciprocal of a number, i.e., 1/z. Operating on
a square matrix, it computes the inverse of that matrix.

The @ (calc-sqrt) [sqrt] command computes the square root of a number. For a negative
real argument, the result will be a complex number whose form is determined by the current Polar
Mode.

The f h (calc-hypot) [hypot] command computes the square root of the sum of the squares of
two numbers. That is, ‘hypot (a,b)’ is the length of the hypotenuse of a right triangle with sides
a and b. If the arguments are complex numbers, their squared magnitudes are used.

The f Q (calc-isqrt) [isqrt] command computes the integer square root of an integer. This
is the true square root of the number, rounded down to an integer. For example, ‘isqrt (10)’
produces 3. Note that, like \ [idiv], this uses exact integer arithmetic throughout to avoid roundoff
problems. If the input is a floating-point number or other non-integer value, this is exactly the
same as ‘floor(sqrt(x))’.

The f n (calc-min) [min] and f x (calc-max) [max| commands take the minimum or maximum
of two real numbers, respectively. These commands also work on HMS forms, date forms, intervals,
and infinities. (In algebraic expressions, these functions take any number of arguments and return
the maximum or minimum among all the arguments.)
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The f M (calc-mant-part) [mant| function extracts the “mantissa” part m of its floating-point
argument; f X (calc-xpon-part) [xpon] extracts the “exponent” part e. The original number is
equal to m x 10¢, where m is in the interval ‘[1.0 .. 10.0)’ except that m = e = 0 if the original
number is zero. For integers and fractions, mant returns the number unchanged and xpon returns
zero. The v u (calc-unpack) command can also be used to “unpack” a floating-point number; this
produces an integer mantissa and exponent, with the constraint that the mantissa is not a multiple
of ten (again except for the m = e = 0 case).

The f S (calc-scale-float) [scf] function scales a number by a given power of ten. Thus,
‘scf (mant (x) , xpon(x)) = x’ for any real ‘x’. The second argument must be an integer, but the
first may actually be any numeric value. For example, ‘scf(5,-2) = 0.05" or ‘1:20’ depending on
the current Fraction Mode.

The f [ (calc-decrement) [decr] and f ] (calc-increment) [incr| functions decrease or in-
crease a number by one unit. For integers, the effect is obvious. For floating-point numbers, the
change is by one unit in the last place. For example, incrementing ‘12.3456’ when the current
precision is 6 digits yields ‘12.3457’. If the current precision had been 8 digits, the result would
have been ‘12.345601’. Incrementing ‘0.0’ produces 1077, where p is the current precision. These
operations are defined only on integers and floats. With numeric prefix arguments, they change
the number by 7 units.

Note that incrementing followed by decrementing, or vice-versa, will almost but not quite always
cancel out. Suppose the precision is 6 digits and the number ‘9.99999’ is on the stack. Incrementing
will produce ‘10.0000’; decrementing will produce ‘9.9999’. One digit has been dropped. This is
an unavoidable consequence of the way floating-point numbers work.

Incrementing a date/time form adjusts it by a certain number of seconds. Incrementing a pure
date form adjusts it by a certain number of days.

7.2 Integer Truncation

There are four commands for truncating a real number to an integer, differing mainly in their
treatment of negative numbers. All of these commands have the property that if the argument is
an integer, the result is the same integer. An integer-valued floating-point argument is converted
to integer form.

If you press H (calc-hyperbolic) first, the result will be expressed as an integer-valued floating-
point number.

The F (calc-floor) [floor or ffloor| command truncates a real number to the next lower
integer, i.e., toward minus infinity. Thus 3.6 F produces 3, but _3.6 F produces —4.

The I F (calc-ceiling) [ceil or fceil] command truncates toward positive infinity. Thus
3.6 I F produces 4, and _3.6 I F produces —3.

The R (calc-round) [round or fround| command rounds to the nearest integer. When the
fractional part is .5 exactly, this command rounds away from zero. (All other rounding in the
Calculator uses this convention as well.) Thus 3.5 R produces 4 but 3.4 R produces 3; _3.5R
produces —4.
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The I R (calc-trunc) [trunc or ftrunc] command truncates toward zero. In other words, it
“chops off” everything after the decimal point. Thus 3.6 I R produces 3 and _3.6 I R produces
—3.

These functions may not be applied meaningfully to error forms, but they do work for intervals.
As a convenience, applying floor to a modulo form floors the value part of the form. Applied to
a vector, these functions operate on all elements of the vector one by one. Applied to a date form,
they operate on the internal numerical representation of dates, converting a date/time form into a
pure date.

There are two more rounding functions which can only be entered in algebraic notation. The
roundu function is like round except that it rounds up, toward plus infinity, when the fractional
part is .5. This distinction matters only for negative arguments. Also, rounde rounds to an even
number in the case of a tie, rounding up or down as necessary. For example, ‘rounde (3.5)’ and
‘rounde (4.5)" both return 4, but ‘rounde (5.5) returns 6. The advantage of round-to-even is that
the net error due to rounding after a long calculation tends to cancel out to zero. An important
subtle point here is that the number being fed to rounde will already have been rounded to the
current precision before rounde begins. For example, ‘rounde (2.500001)’ with a current precision
of 6 will incorrectly, or at least surprisingly, yield 2 because the argument will first have been
rounded down to 2.5 (which rounde sees as an exact tie between 2 and 3).

Each of these functions, when written in algebraic formulas, allows a second argument which
specifies the number of digits after the decimal point to keep. For example, ‘round (123.4567, 2)’
will produce the answer 123.46, and ‘round(123.4567, -1)’ will produce 120 (i.e., the cutoff is
one digit to the left of the decimal point). A second argument of zero is equivalent to no second
argument at all.

To compute the fractional part of a number (i.e., the amount which, when added to ‘floor (N)’,
will produce N) just take N modulo 1 using the % command.

Note also the \ (integer quotient), f I (integer logarithm), and f @ (integer square root) com-
mands, which are analogous to /, B, and @, respectively, except that they take integer arguments
and return the result rounded down to an integer.

7.3 Complex Number Functions

The J (calc-conj) [conj] command computes the complex conjugate of a number. For complex
number a + bi, the complex conjugate is a — bi. If the argument is a real number, this command
leaves it the same. If the argument is a vector or matrix, this command replaces each element by
its complex conjugate.

2

The G (calc-argument) [arg] command computes the “argument” or polar angle of a complex
number. For a number in polar notation, this is simply the second component of the pair ‘(r;0)’.
The result is expressed according to the current angular mode and will be in the range —180 degrees
(exclusive) to +180 degrees (inclusive), or the equivalent range in radians.

The calc-imaginary command multiplies the number on the top of the stack by the imaginary
number ¢ = (0,1). This command is not normally bound to a key in Calc, but it is available on
the IMAG button in Keypad Mode.

IR
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The f r (calc-re) [re] command replaces a complex number by its real part. This command
has no effect on real numbers. (As an added convenience, re applied to a modulo form extracts
the value part.)

The f i (calc-im) [im] command replaces a complex number by its imaginary part; real numbers
are converted to zero. With a vector or matrix argument, these functions operate element-wise.

The v p (calc-pack) command can pack the top two numbers on the the stack into a composite
object such as a complex number. With a prefix argument of —1, it produces a rectangular complex
number; with an argument of —2, it produces a polar complex number. (Also, see XXX [Building
Vectors], page XXX.)

The v u (calc-unpack) command takes the complex number (or other composite object) on the
top of the stack and unpacks it into its separate components.

7.4 Conversions

The commands described in this section convert numbers from one form to another; they are
two-key sequences beginning with the letter c.

The ¢ f (calc-float) [pfloat] command converts the number on the top of the stack to
floating-point form. For example, 23 is converted to 23.0, 3:2 is converted to 1.5, and 2.3 is left
the same. If the value is a composite object such as a complex number or vector, each of the
components is converted to floating-point. If the value is a formula, all numbers in the formula are
converted to floating-point. Note that depending on the current floating-point precision, conversion
to floating-point format may lose information.

As a special exception, integers which appear as powers or subscripts are not floated by ¢ f. If
you really want to float a power, you can use a j s command to select the power followed by c f.
Because ¢ f cannot examine the formula outside of the selection, it does not notice that the thing
being floated is a power. See XXX [Selecting Subformulas], page XXX.

The normal ¢ f command is “pervasive” in the sense that it applies to all numbers throughout
the formula. The pfloat algebraic function never stays around in a formula; ‘pfloat(a + 1)’
changes to ‘a + 1.0’ as soon as it is evaluated.

With the Hyperbolic flag, H ¢ f [float| operates only on the number or vector of numbers at the
top level of its argument. Thus, ‘float (1)’ is 1.0, but ‘float(a + 1)’ is left unevaluated because
its argument is not a number.

You should use H ¢ f if you wish to guarantee that the final value, once all the variables have
been assigned, is a float; you would use ¢ f if you wish to do the conversion on the numbers that
appear right now.

The ¢ F (calc-fraction) [pfrac] command converts a floating-point number into a fractional
approximation. By default, it produces a fraction whose decimal representation is the same as the
input number, to within the current precision. You can also give a numeric prefix argument to
specify a tolerance, either directly, or, if the prefix argument is zero, by using the number on top
of the stack as the tolerance. If the tolerance is a positive integer, the fraction is correct to within
that many significant figures. If the tolerance is a non-positive integer, it specifies how many digits
fewer than the current precision to use. If the tolerance is a floating-point number, the fraction is
correct to within that absolute amount.
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The pfrac function is pervasive, like pfloat. There is also a non-pervasive version, H ¢ F [frac],
which is analogous to H ¢ f discussed above.

The ¢ d (calc-to-degrees) [deg] command converts a number into degrees form. The value
on the top of the stack may be an HMS form (interpreted as degrees-minutes-seconds), or a real
number which will be interpreted in radians regardless of the current angular mode.

The ¢ r (calc-to-radians) [rad] command converts an HMS form or angle in degrees into an
angle in radians.

The ¢ h (calc-to-hms) [hms] command converts a real number, interpreted according to the
current angular mode, to an HMS form describing the same angle. In algebraic notation, the hms
function also accepts three arguments: ‘hms(h, m, s)’. (The three-argument version is indepen-
dent of the current angular mode.)

The calc-from-hms command converts the HMS form on the top of the stack into a real number
according to the current angular mode.

The ¢ p (calc-polar) command converts the complex number on the top of the stack from polar
to rectangular form, or from rectangular to polar form, whichever is appropriate. Real numbers are
left the same. This command is equivalent to the rect or polar functions in algebraic formulas,
depending on the direction of conversion. (It uses polar, except that if the argument is already a
polar complex number, it uses rect instead. The I ¢ p command always uses rect.)

The ¢ ¢ (calc-clean) [pclean| command “cleans” the number on the top of the stack. Floating
point numbers are re-rounded according to the current precision. Polar numbers whose angular
components have strayed from the —180 to +180 degree range are normalized. (Note that results
will be undesirable if the current angular mode is different from the one under which the number
was produced!) Integers and fractions are generally unaffected by this operation. Vectors and
formulas are cleaned by cleaning each component number (i.e., pervasively).

If the simplification mode is set below the default level, it is raised to the default level for the
purposes of this command. Thus, ¢ ¢ applies the default simplifications even if their automatic
application is disabled. See XXX [Simplification Modes]|, page XXX.

A numeric prefix argument to ¢ c sets the floating-point precision to that value for the duration
of the command. A positive prefix (of at least 3) sets the precision to the specified value; a negative
or zero prefix decreases the precision by the specified amount.

The keystroke sequences ¢ 0 through ¢ 9 are equivalent to ¢ ¢ with the corresponding negative
prefix argument. If roundoff errors have changed 2.0 into 1.999999, typing ¢ 1 to clip off one
decimal place often conveniently does the trick.

The ¢ ¢ command with a numeric prefix argument, and the ¢ 0 through ¢ 9 commands, also
“clip” very small floating-point numbers to zero. If the exponent is less than or equal to the negative
of the specified precision, the number is changed to 0.0. For example, if the current precision is
12, then ¢ 2 changes the vector ‘[1e-8, 1e-9, 1e-10, 1e-11]"to ‘[1e-8, 1e-9, 0, 0]’. Numbers
this small generally arise from roundoff noise.

If the numbers you are using really are legitimately this small, you should avoid using the ¢ 0
through ¢ 9 commands. (The plain ¢ ¢ command rounds to the current precision but does not clip
small numbers.)

One more property of ¢ 0 through ¢ 9, and of ¢ ¢ with a prefix argument, is that integer-valued
floats are converted to plain integers, so that ¢ 1on ‘[1., 1.5, 2., 2.5, 3.1’ produces ‘[1, 1.5,
2, 2.5, 3]’. This is not done for huge numbers (‘1€100’ is technically an integer-valued float, but
you wouldn’t want it automatically converted to a 100-digit integer).
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With the Hyperbolic flag, H ¢ ¢ and H ¢ 0 through H ¢ 9 operate non-pervasively [clean].

7.5 Date Arithmetic

The commands described in this section perform various conversions and calculations involving date
forms (see XXX [Date Forms], page XXX ). They use the t (for time/date) prefix key followed by
shifted letters.

The simplest date arithmetic is done using the regular + and - commands. In particular, adding
a number to a date form advances the date form by a certain number of days; adding an HMS form
to a date form advances the date by a certain amount of time; and subtracting two date forms
produces a difference measured in days. The commands described here provide additional, more
specialized operations on dates.

Many of these commands accept a numeric prefix argument; if you give plain C-u as the prefix,
these commands will instead take the additional argument from the top of the stack.

7.5.1 Date Conversions

The t D (calc-date) [date] command converts a date form into a number, measured in days since
Jan 1, 1 AD. The result will be an integer if date is a pure date form, or a fraction or float if date
is a date/time form. Or, if its argument is a number, it converts this number into a date form.

With a numeric prefix argument, t D takes that many objects (up to six) from the top of the
stack and interprets them in one of the following ways:

The ‘date (year, month, day)’ function builds a pure date form out of the specified year, month,
and day, which must all be integers. Year is a year number, such as 1991 (not the same as 91!).
Month must be an integer in the range 1 to 12; day must be in the range 1 to 31. If the specified
month has fewer than 31 days and day is too large, the equivalent day in the following month will
be used.

The ‘date (month, day)’ function builds a pure date form using the current year, as determined
by the real-time clock.

The ‘date (year, month, day, hms)’ function builds a date/time form using an hms form.

The ‘date(year, month, day, hour, minute, second)’ function builds a date/time form. hour
should be an integer in the range 0 to 23; minute should be an integer in the range 0 to 59; second
should be any real number in the range ‘[0 .. 60)’. The last two arguments default to zero if
omitted.

The t J (calc-julian) [julian] command converts a date form into a Julian day count, which
is the number of days since noon on Jan 1, 4713 BC. A pure date is converted to an integer Julian
count representing noon of that day. A date/time form is converted to an exact floating-point
Julian count, adjusted to interpret the date form in the current time zone but the Julian day count
in Greenwich Mean Time. A numeric prefix argument allows you to specify the time zone; see
XXX [Time Zones|, page XXX. Use a prefix of zero to suppress the time zone adjustment. Note
that pure date forms are never time-zone adjusted.

This command can also do the opposite conversion, from a Julian day count (either an integer
day, or a floating-point day and time in the GMT zone), into a pure date form or a date/time form
in the current or specified time zone.



Chapter 7: Arithmetic Functions 197

The t U (calc-unix-time) [unixtime| command converts a date form into a Unix time value,
which is the number of seconds since midnight on Jan 1, 1970, or vice-versa. The numeric result
will be an integer if the current precision is 12 or less; for higher precisions, the result may be a
float with (precision—12) digits after the decimal. Just as for t J, the numeric time is interpreted
in the GMT time zone and the date form is interpreted in the current or specified zone. Some
systems use Unix-like numbering but with the local time zone; give a prefix of zero to suppress the
adjustment if so.

The t C (calc-convert-time-zones) [tzconv] command converts a date form from one time
zone to another. You are prompted for each time zone name in turn; you can answer with any
suitable Calc time zone expression (see XXX [Time Zones|, page XXX). If you answer either
prompt with a blank line, the local time zone is used for that prompt. You can also answer the
first prompt with $ to take the two time zone names from the stack (and the date to be converted
from the third stack level).

7.5.2 Date Functions

The t N (calc-now) [now] command pushes the current date and time on the stack as a date form.
The time is reported in terms of the specified time zone; with no numeric prefix argument, t N
reports for the current time zone.

The t P (calc-date-part) command extracts one part of a date form. The prefix argument
specifies the part; with no argument, this command prompts for a part code from 1 to 9. The
various part codes are described in the following paragraphs.

The M-1 t P [year] function extracts the year number from a date form as an integer, e.g.,
1991. This and the following functions will also accept a real number for an argument, which is
interpreted as a standard Calc day number. Note that this function will never return zero, since
the year 1 BC immediately precedes the year 1 AD.

The M-2 t P [month] function extracts the month number from a date form as an integer in the
range 1 to 12.

The M-3 t P [day] function extracts the day number from a date form as an integer in the range
1 to 31.

The M-4 t P [hour]| function extracts the hour from a date form as an integer in the range 0
(midnight) to 23. Note that 24-hour time is always used. This returns zero for a pure date form.
This function (and the following two) also accept HMS forms as input.

The M-5 t P [minute| function extracts the minute from a date form as an integer in the range
0 to 59.

The M-6 t P [second] function extracts the second from a date form. If the current precision is
12 or less, the result is an integer in the range 0 to 59. For higher precisions, the result may instead
be a floating-point number.

The M-7 t P [weekday| function extracts the weekday number from a date form as an integer in
the range 0 (Sunday) to 6 (Saturday).

The M-8 t P [yearday] function extracts the day-of-year number from a date form as an integer
in the range 1 (January 1) to 366 (December 31 of a leap year).
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The M-9 t P [time] function extracts the time portion of a date form as an HMS form. This
returns ‘0@ 0’ 0"’ for a pure date form.

The t M (calc-new-month) [newmonth] command computes a new date form that represents the
first day of the month specified by the input date. The result is always a pure date form; only the
year and month numbers of the input are retained. With a numeric prefix argument n in the range
from 1 to 31, t M computes the nth day of the month. (If n is greater than the actual number of
days in the month, or if n is zero, the last day of the month is used.)

The t Y (calc-new-year) [newyear| command computes a new pure date form that represents
the first day of the year specified by the input. The month, day, and time of the input date form
are lost. With a numeric prefix argument n in the range from 1 to 366, t Y computes the nth day
of the year (366 is treated as 365 in non-leap years). A prefix argument of 0 computes the last day
of the year (December 31). A negative prefix argument from —1 to —12 computes the first day of
the nth month of the year.

The t W (calc-new-week) [newweek| command computes a new pure date form that represents
the Sunday on or before the input date. With a numeric prefix argument, it can be made to use
any day of the week as the starting day; the argument must be in the range from 0 (Sunday) to 6
(Saturday). This function always subtracts between 0 and 6 days from the input date.

Here’s an example use of newweek: Find the date of the next Wednesday after a given date.
Using M-3 t W or ‘newweek(d, 3)’ will give you the preceding Wednesday, so ‘newweek (d+7, 3)’
will give you the following Wednesday. A further look at the definition of newweek shows that
if the input date is itself a Wednesday, this formula will return the Wednesday one week in the
future. An exercise for the reader is to modify this formula to yield the same day if the input is
already a Wednesday. Another interesting exercise is to preserve the time-of-day portion of the
input (newweek resets the time to midnight; hint: how can newweek be defined in terms of the
weekday function?).

The ‘pwday (date)’ function (not on any key) computes the day-of-month number of the Sunday
on or before date. With two arguments, ‘pwday(date, day)’ computes the day number of the
Sunday on or before day number day of the month specified by date. The day must be in the range
from 7 to 31; if the day number is greater than the actual number of days in the month, the true
number of days is used instead. Thus ‘pwday(date, 7)’ finds the first Sunday of the month, and
‘pwday (date, 31)’ finds the last Sunday of the month. With a third weekday argument, pwday can
be made to look for any day of the week instead of Sunday.

The t I (calc-inc-month) [incmonth| command increases a date form by one month, or by an
arbitrary number of months specified by a numeric prefix argument. The time portion, if any, of
the date form stays the same. The day also stays the same, except that if the new month has fewer
days the day number may be reduced to lie in the valid range. For example, ‘incmonth(<Jan 31,
1991>)’ produces ‘<Feb 28, 1991>’. Because of this, t I t I and M-2 t I do not always give the
same results (‘<Mar 28, 1991>’ versus ‘<Mar 31, 1991>’ in this case).

The ‘incyear(date, step)’ function increases a date form by the specified number of years,
which may be any positive or negative integer. Note that ‘incyear(d, n)’ is equivalent to
‘incmonth(d, 12*n)’, but these do not have simple equivalents in terms of day arithmetic be-
cause months and years have varying lengths. If the step argument is omitted, 1 year is assumed.
There is no keyboard command for this function; use C-u 12 t I instead.

There is no newday function at all because F [floor]| serves this purpose. Similarly, instead of
incday and incweek simply use d + n or d 4 Tn.
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See XXX [Basic Arithmetic], page XXX, for the £ ] [incr] command which can adjust a
date/time form by a certain number of seconds.

7.5.3 Business Days

Often time is measured in “business days” or “working days,” where weekends and holidays are
skipped. Calc’s normal date arithmetic functions use calendar days, so that subtracting two consec-
utive Mondays will yield a difference of 7 days. By contrast, subtracting two consecutive Mondays
would yield 5 business days (assuming two-day weekends and the absence of holidays).

The t + (calc-business-days-plus) [badd] and t - (calc-business-days-minus) |[bsub]
commands perform arithmetic using business days. For t +, one argument must be a date form
and the other must be a real number (positive or negative). If the number is not an integer, then
a certain amount of time is added as well as a number of days; for example, adding 0.5 business
days to a time in Friday evening will produce a time in Monday morning. It is also possible to add
an HMS form; adding ‘12@ 0’ 0"’ also adds half a business day. For t -, the arguments are either
a date form and a number or HMS form, or two date forms, in which case the result is the number
of business days between the two dates.

By default, Calc considers any day that is not a Saturday or Sunday to be a business day. You
can define any number of additional holidays by editing the variable Holidays. (There is an s H
convenience command for editing this variable.) Initially, Holidays contains the vector ‘[sat,
sun]’. Entries in the Holidays vector may be any of the following kinds of objects:

e Date forms (pure dates, not date/time forms). These specify particular days which are to be
treated as holidays.

e Intervals of date forms. These specify a range of days, all of which are holidays (e.g., Christmas
week). See XXX [Interval Forms|, page XXX.

e Nested vectors of date forms. Each date form in the vector is considered to be a holiday.

e Any Calc formula which evaluates to one of the above three things. If the formula involves
the variable y, it stands for a yearly repeating holiday; y will take on various year numbers
like 1992. For example, ‘date(y, 12, 25)’ specifies Christmas day, and ‘newweek(date(y,
11, 7), 4) + 21’ specifies Thanksgiving (which is held on the fourth Thursday of November).
If the formula involves the variable m, that variable takes on month numbers from 1 to 12:
‘date(y, m, 15)’ is a holiday that takes place on the 15th of every month.

e A weekday name, such as sat or sun. This is really a variable whose name is a three-letter,
lower-case day name.

¢ An interval of year numbers (integers). This specifies the span of years over which this holiday
list is to be considered valid. Any business-day arithmetic that goes outside this range will
result in an error message. Use this if you are including an explicit list of holidays, rather than
a formula to generate them, and you want to make sure you don’t accidentally go beyond the
last point where the holidays you entered are complete. If there is no limiting interval in the
Holidays vector, the default ‘[1 .. 2737] is used. (This is the absolute range of years for
which Calc’s business-day algorithms will operate.)

e An interval of HMS forms. This specifies the span of hours that are to be considered one
business day. For example, if this range is ‘[9@ 0> 0" .. 17@ 0’ 0"]’ (i.e., 9am to 5pm), then

t +
t -
badd
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the business day is only eight hours long, so that 1.5t + on ‘<4:00pm Fri Dec 13, 1991>’
will add one business day and four business hours to produce ‘<12:00pm Tue Dec 17, 1991>’.
Likewise, t - will now express differences in time as fractions of an eight-hour day. Times
before 9am will be treated as 9am by business date arithmetic, and times at or after 5pm will
be treated as 4:59:59pm. If there is no HMS interval in Holidays, the full 24-hour day ‘[0
0’ 0" .. 24 0’ 0"]’ is assumed. (Regardless of the type of bounds you specify, the interval is
treated as inclusive on the low end and exclusive on the high end, so that the work day goes
from 9am up to, but not including, 5pm.)

If the Holidays vector is empty, then t + and t - will act just like + and - because there will
then be no difference between business days and calendar days.

Calc expands the intervals and formulas you give into a complete list of holidays for internal
use. This is done mainly to make sure it can detect multiple holidays. (For example, ‘<Jan 1,
1989>’ is both New Year’s Day and a Sunday, but Calc’s algorithms take care to count it only once
when figuring the number of holidays between two dates.)

Since the complete list of holidays for all the years from 1 to 2737 would be huge, Calc actually
computes only the part of the list between the smallest and largest years that have been involved
in business-day calculations so far. Normally, you won’t have to worry about this. Keep in mind,
however, that if you do one calculation for 1992, and another for 1792, even if both involve only a
small range of years, Calc will still work out all the holidays that fall in that 200-year span.

If you add a (positive) number of days to a date form that falls on a weekend or holiday, the
date form is treated as if it were the most recent business day. (Thus adding one business day to a
Friday, Saturday, or Sunday will all yield the following Monday.) If you subtract a number of days
from a weekend or holiday, the date is effectively on the following business day. (So subtracting
one business day from Saturday, Sunday, or Monday yields the preceding Friday.) The difference
between two dates one or both of which fall on holidays equals the number of actual business days
between them. These conventions are consistent in the sense that, if you add n business days to
any date, the difference between the result and the original date will come out to n business days.
(It can’t be completely consistent though; a subtraction followed by an addition might come out a
bit differently, since t + is incapable of producing a date that falls on a weekend or holiday.)

There is a holiday function, not on any keys, that takes any date form and returns 1 if that
date falls on a weekend or holiday, as defined in Holidays, or 0 if the date is a business day.

7.5.4 Time Zones

Time zones and daylight savings time are a complicated business. The conversions to and from
Julian and Unix-style dates automatically compute the correct time zone and daylight savings
adjustment to use, provided they can figure out this information. This section describes Calc’s
time zone adjustment algorithm in detail, in case you want to do conversions in different time
zones or in case Calc’s algorithms can’t determine the right correction to use.

Adjustments for time zones and daylight savings time are done by t U, t J, t N, and t C, but
not by any other commands. In particular, ‘<may 1 1991> - <apr 1 1991>’ evaluates to exactly
30 days even though there is a daylight-savings transition in between. This is also true for Julian
pure dates: ‘julian(<may 1 1991>) - julian(<apr 1 1991>)’. But Julian and Unix date/times
will adjust for daylight savings time: ‘julian(<12am may 1 1991>) - julian(<12am apr 1 1991>)’
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evaluates to ‘29.95834’ (that’s 29 days and 23 hours) because one hour was lost when daylight
savings commenced on April 7, 1991.

In brief, the idiom ‘julian(datel) - julian(date2)’ computes the actual number of 24-hour
periods between two dates, whereas ‘datel - date2’ computes the number of calendar days between
two dates without taking daylight savings into account.

The calc-time-zone [tzone| command converts the time zone specified by its numeric prefix
argument into a number of seconds difference from Greenwich mean time (GMT). If the argument
is a number, the result is simply that value multiplied by 3600. Typical arguments for North
America are 5 (Eastern) or 8 (Pacific). If Daylight Savings time is in effect, one hour should be
subtracted from the normal difference.

If you give a prefix of plain C-u, calc-time-zone (like other date arithmetic commands that
include a time zone argument) takes the zone argument from the top of the stack. (In the case
of t J and t U, the normal argument is then taken from the second-to-top stack position.) This
allows you to give a non-integer time zone adjustment. The time-zone argument can also be an
HMS form, or it can be a variable which is a time zone name in upper- or lower-case. For example
‘tzone (PST) = tzone(8)’ and ‘tzone(pdt) = tzone(7)’ (for Pacific standard and daylight savings
times, respectively).

North American and European time zone names are defined as follows; note that for each
time zone there is one name for standard time, another for daylight savings time, and a third for
“generalized” time in which the daylight savings adjustment is computed from context.

YST PST MST CST EST AST NST GMT  WET MET MEZ
9 8 7 6 5 4 3.5 0 -1 -2 -2

YDT PDT MDT CDT EDT ADT NDT BST WETDST METDST MESZ
8 7 6 5 4 3 2.5 -1 -2 -3 -3

YGT PGT MGT CGT EGT AGT NGT BGT WEGT MEGT MEGZ
9/8 8/7 7/6 6/5 5/4 4/3 3.5/2.5 0/-1 -1/-2 -2/-3 -2/-3
To define time zone names that do not appear in the above table, you must modify the Lisp
variable math-tzone-names. This is a list of lists describing the different time zone names; its
structure is best explained by an example. The three entries for Pacific Time look like this:

( ¢ "PST" 8 0 ) ; Name as an upper-case string, then standard
( "PDT" 8 -1 ) ; adjustment, then daylight savings adjustment.
( "PGT" 8 "PST" "PDT" ) ) ; Generalized time zone.

With no arguments, calc-time-zone or ‘tzone ()’ obtains an argument from the Calc variable
TimeZone if a value has been stored for that variable. If not, Calc runs the Unix ‘date’ command
and looks for one of the above time zone names in the output; if this does not succeed, ‘tzone ()’
leaves itself unevaluated. The time zone name in the ‘date’ output may be followed by a signed
adjustment, e.g., ‘GMT+5’ or ‘GMT+0500’ which specifies a number of hours and minutes to be added
to the base time zone. Calc stores the time zone it finds into TimeZone to speed later calls to
‘tzone ().

The special time zone name local is equivalent to no argument, i.e., it uses the local time zone
as obtained from the date command.

If the time zone name found is one of the standard or daylight savings zone names from the
above table, and Calc’s internal daylight savings algorithm says that time and zone are consistent

tzone
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(e.g., PDT accompanies a date that Calc’s algorithm would also consider to be daylight savings, or
PST accompanies a date that Calc would consider to be standard time), then Calc substitutes the
corresponding generalized time zone (like PGT).

If your system does not have a suitable ‘date’ command, you may wish to put a ‘(setq
var-TimeZone ...)  in your Emacs initialization file to set the time zone. The easiest way to
do this is to edit the TimeZone variable using Calc’s s T command, then use the s p (calc-
permanent-variable) command to save the value of TimeZone permanently.

The t Jand t U commands with no numeric prefix arguments do the same thing as ‘tzone()’. If
the current time zone is a generalized time zone, e.g., EGT, Calc examines the date being converted
to tell whether to use standard or daylight savings time. But if the current time zone is explicit,
e.g., EST or EDT, then that adjustment is used exactly and Calc’s daylight savings algorithm is not
consulted.

Some places don’t follow the usual rules for daylight savings time. The state of Arizona, for
example, does not observe daylight savings time. If you run Calc during the winter season in
Arizona, the Unix date command will report MST time zone, which Calc will change to MGT. If you
then convert a time that lies in the summer months, Calc will apply an incorrect daylight savings
time adjustment. To avoid this, set your TimeZone variable explicitly to MST to force the use of
standard, non-daylight-savings time.

By default Calc always considers daylight savings time to begin at 2 a.m. on the first Sunday
of April, and to end at 2 a.m. on the last Sunday of October. This is the rule that has been in
effect in North America since 1987. If you are in a country that uses different rules for computing
daylight savings time, you have two choices: Write your own daylight savings hook, or control time
zones explicitly by setting the TimeZone variable and/or always giving a time-zone argument for
the conversion functions.

The Lisp variable math-daylight-savings-hook holds the name of a function that is used to
compute the daylight savings adjustment for a given date. The default is math-std-daylight-
savings, which computes an adjustment (either 0 or —1) using the North American rules given
above.

The daylight savings hook function is called with four arguments: The date, as a floating-point
number in standard Calc format; a six-element list of the date decomposed into year, month, day,
hour, minute, and second, respectively; a string which contains the generalized time zone name in
upper-case, e.g., "WEGT"; and a special adjustment to be applied to the hour value when converting
into a generalized time zone (see below).

The Lisp function math-prev-weekday-in-month is useful for daylight savings computations.
This is an internal version of the user-level pwday function described in the previous section. It
takes four arguments: The floating-point date value, the corresponding six-element date list, the
day-of-month number, and the weekday number (0-6).

The default daylight savings hook ignores the time zone name, but a more sophisticated hook
could use different algorithms for different time zones. It would also be possible to use different
algorithms depending on the year number, but the default hook always uses the algorithm for 1987
and later. Here is a listing of the default daylight savings hook:

(defun math-std-daylight-savings (date dt zone bump)
(cond ((< (nth 1 dt) 4) 0)
((= (nth 1 dt) 4)
(let ((sunday (math-prev-weekday-in-month date dt 7 0)))
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(cond ((< (nth 2 dt) sunday) 0)
((= (nth 2 dt) sunday)
(if (>= (nth 3 dt) (+ 3 bump)) -1 0))
(t -1
((< (nth 1 dt) 10) -1)
((= (nth 1 dt) 10)
(let ((sunday (math-prev-weekday-in-month date dt 31 0)))
(cond ((< (nth 2 dt) sunday) -1)
((= (nth 2 dt) sunday)
(if (>= (nth 3 dt) (+ 2 bump)) 0 -1))
(t 00)))
(t 0))
)
The bump parameter is equal to zero when Calc is converting from a date form in a generalized
time zone into a GMT date value. It is —1 when Calc is converting in the other direction. The
adjustments shown above ensure that the conversion behaves correctly and reasonably around the
2 a.m. transition in each direction.

There is a “missing” hour between 2 a.m. and 3 a.m. at the beginning of daylight savings time;
converting a date/time form that falls in this hour results in a time value for the following hour,
from 3 a.m. to 4 a.m. At the end of daylight savings time, the hour from 1 a.m. to 2 a.m. repeats
itself; converting a date/time form that falls in in this hour results in a time value for the first
manifestion of that time (not the one that occurs one hour later).

If math-daylight-savings-hook is nil, then the daylight savings adjustment is always taken
to be zero.

In algebraic formulas, ‘tzone (zone, date)’ computes the time zone adjustment for a given zone
name at a given date. The date is ignored unless zone is a generalized time zone. If date is a
date form, the daylight savings computation is applied to it as it appears. If date is a numeric
date value, it is adjusted for the daylight-savings version of zone before being given to the daylight
savings hook. This odd-sounding rule ensures that the daylight-savings computation is always done
in local time, not in the GMT time that a numeric date is typically represented in.

The ‘dsadj(date, zone)’ function computes the daylight savings adjustment that is appropriate
for date in time zone zone. If zone is explicitly in or not in daylight savings time (e.g., PDT or PST)
the date is ignored. If zone is a generalized time zone, the algorithms described above are used. If
zone is omitted, the computation is done for the current time zone.

See XXX [Reporting Bugs|, page XXX, for the address of Calc’s author, if you should wish
to contribute your improved versions of math-tzone-names and math-daylight-savings-hook to
the Calc distribution.

7.6 Financial Functions

Calc’s financial or business functions use the b prefix key followed by a shifted letter. (The b prefix
followed by a lower-case letter is used for operations on binary numbers.)

Note that the rate and the number of intervals given to these functions must be on the same
time scale, e.g., both months or both years. Mixing an annual interest rate with a time expressed
in months will give you very wrong answers!

dsadj
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It is wise to compute these functions to a higher precision than you really need, just to make
sure your answer is correct to the last penny; also, you may wish to check the definitions at the
end of this section to make sure the functions have the meaning you expect.

7.6.1 Percentages

The M-J (calc-percent) command takes a percentage value, say 5.4, and converts it to an
equivalent actual number. For example, 5.4 M-7 enters 0.054 on the stack. (That’s the META or
ESC key combined with 7.)

Actually, M-7 creates a formula of the form ‘6.4%’. You can enter ‘5.4%’ yourself during algebraic
entry. The ‘)’ operator simply means, “the preceding value divided by 100.” The ‘4’ operator has
very high precedence, so that ‘1+8%’ is interpreted as ‘1+(8%)’, not as ‘(1+8)%’. (The ‘)’ operator
is just a postfix notation for the percent function, just like ‘20!’ is the notation for ‘fact (20)’, or
twenty-factorial.)

The formula ‘5.4%’ would normally evaluate immediately to 0.054, but the M-7 command sup-
presses evaluation as it puts the formula onto the stack. However, the next Calc command that
uses the formula ‘6.47%’ will evaluate it as its first step. The net effect is that you get to look at
‘6.4%’ on the stack, but Calc commands see it as ‘0.054’, which is what they expect.

In particular, ‘6.4%’ and ‘0.054’ are suitable values for the rate arguments of the various financial
functions, but the number ‘6.4’ is probably not suitable—it represents a rate of 540 percent!

The key sequence M-7 * effectively means “percent-of.” For example, 68 RET 25 M-J, * computes
17, which is 25% of 68 (and also 68% of 25, which comes out to the same thing).

The ¢ / (calc-convert-percent) command converts the value on the top of the stack from
numeric to percentage form. For example, if 0.08 is on the stack, ¢ % converts it to ‘8%’. The
quantity is the same, it’s just represented differently. (Contrast this with M=%, which would convert
this number to ‘0.08%’.) The = key is a convenient way to convert a formula like ‘8% back to
numeric form, 0.08.

To compute what percentage one quantity is of another quantity, use / ¢ %. For example,
17 RET 68 / c 1 displays ‘25%’.

The b % (calc-percent-change) [relch| command calculates the percentage change from one
number to another. For example, 40 RET 50 b J produces the answer ‘25%’, since 50 is 25% larger
than 40. A negative result represents a decrease: 50 RET 40 b % produces ‘-20%’, since 40 is 20%
smaller than 50. (The answers are different in magnitude because, in the first case, we’re increasing
by 25% of 40, but in the second case, we're decreasing by 20% of 50.) The effect of 40 RET 50 b }
is to compute (50 — 40) /40, converting the answer to percentage form as if by ¢ 7.

7.6.2 Future Value

The b F (calc-fin-fv) [fv] command computes the future value of an investment. It takes three
arguments from the stack: ‘fv(rate, n, payment)’. If you give payments of payment every year
for n years, and the money you have paid earns interest at rate per year, then this function tells
you what your investment would be worth at the end of the period. (The actual interval doesn’t
have to be years, as long as n and rate are expressed in terms of the same intervals.) This function
assumes payments occur at the end of each interval.
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The I b F [fvb] command does the same computation, but assuming your payments are at the
beginning of each interval. Suppose you plan to deposit $1000 per year in a savings account earning
5.4% interest, starting right now. How much will be in the account after five years? fvb(5.4%,
5, 1000) = 5870.73. Thus you will have earned $870 worth of interest over the years. Using the
stack, this calculation would have been 5.4 M-7 5 RET 1000 I b F. Note that the rate is expressed
as a number between 0 and 1, not as a percentage.

The H b F [£fv1] command computes the future value of an initial lump sum investment. Suppose
you could deposit those five thousand dollars in the bank right now; how much would they be worth
in five years? fv1(5.4%, 5, 5000) = 6503.89.

The algebraic functions fv and fvb accept an optional fourth argument, which is used as an
initial lump sum in the sense of fv1. In other words, fv(rate, n, payment, initial) = fv(rate, n,
payment) + fvl(rate, n, initial).

To illustrate the relationships between these functions, we could do the fvb calculation “by
hand” using fvl. The final balance will be the sum of the contributions of our five deposits at
various times. The first deposit earns interest for five years: fv1(5.4%, 5, 1000) = 1300.78. The
second deposit only earns interest for four years: fv1(5.4%, 4, 1000) = 1234.13. And so on down
to the last deposit, which earns one year’s interest: fv1(5.4%, 1, 1000) = 1054.00. The sum of
these five values is, sure enough, $5870.73, just as was computed by fvb directly.

What does fv(5.4%, 5, 1000) = 5569.96 mean? The payments are now at the ends of the
periods. The end of one year is the same as the beginning of the next, so what this really means
is that we’ve lost the payment at year zero (which contributed $1300.78), but we’re now counting
the payment at year five (which, since it didn’t have a chance to earn interest, counts as $1000).
Indeed, 5569.96 = 5870.73 — 1300.78 + 1000 (give or take a bit of roundoff error).

7.6.3 Present Value

The b P (calc-fin-pv) [pv] command computes the present value of an investment. Like fv, it
takes three arguments: pv(rate, n, payment). It computes the present value of a series of regular
payments. Suppose you have the chance to make an investment that will pay $2000 per year over
the next four years; as you receive these payments you can put them in the bank at 9% interest. You
want to know whether it is better to make the investment, or to keep the money in the bank where
it earns 9% interest right from the start. The calculation pv (9%, 4, 2000) gives the result 6479.44.
If your initial investment must be less than this, say, $6000, then the investment is worthwhile.
But if you had to put up $7000, then it would be better just to leave it in the bank.

Here is the interpretation of the result of pv: You are trying to compare the return from the
investment you are considering, which is fv(9%, 4, 2000) = 9146.26, with the return from leaving
the money in the bank, which is fv1(9%, 4, x) where x is the amount of money you would have
to put up in advance. The pv function finds the break-even point, x = 6479.44, at which fv1(9%,
4, 6479.44) is also equal to 9146.26. This is the largest amount you should be willing to invest.

The I b P [pvb] command solves the same problem, but with payments occurring at the begin-
ning of each interval. It has the same relationship to fvb as pv has to fv. For example pvb(9%,
4, 2000) = 7062.59, a larger number than pv produced because we get to start earning interest
on the return from our investment sooner.
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The H b P [pvl] command computes the present value of an investment that will pay off in one
lump sum at the end of the period. For example, if we get our $8000 all at the end of the four
years, pv1(9%, 4, 8000) = 5667 .40. This is much less than pv reported, because we don’t earn any
interest on the return from this investment. Note that pvl and fvl are simple inverses: fv1(9%,
4, 5667.40) = 8000.

You can give an optional fourth lump-sum argument to pv and pvb; this is handled in exactly
the same way as the fourth argument for fv and fvb.

The b N (calc-fin-npv) [npv] command computes the net present value of a series of irregular
investments. The first argument is the interest rate. The second argument is a vector which
represents the expected return from the investment at the end of each interval. For example, if the
rate represents a yearly interest rate, then the vector elements are the return from the first year,
second year, and so on.

Thus, npv (9%, [2000,2000,2000,2000]) = pv(9%, 4, 2000) = 6479.44. Obviously this func-
tion is more interesting when the payments are not all the same!

The npv function can actually have two or more arguments. Multiple arguments are interpreted
in the same way as for the vector statistical functions like vsum. See XXX [Single-Variable Statis-
tics], page XXX. Basically, if there are several payment arguments, each either a vector or a plain
number, all these values are collected left-to-right into the complete list of payments. A numeric
prefix argument on the b N command says how many payment values or vectors to take from the
stack.

The I b N [npvb] command computes the net present value where payments occur at the begin-
ning of each interval rather than at the end.

7.6.4 Related Financial Functions

The functions in this section are basically inverses of the present value functions with respect to
the various arguments.

The b M (calc-fin-pmt) [pmt] command computes the amount of periodic payment necessary
to amortize a loan. Thus pmt (rate, n, amount) equals the value of payment such that pv(rate,
n, payment) = amount.

The I b M [pmtb] command does the same computation but using pvb instead of pv. Like pv
and pvb, these functions can also take a fourth argument which represents an initial lump-sum
investment.

The H b M key just invokes the fvl function, which is the inverse of pvl. There is no explicit
pmtl function.

The b # (calc-fin-nper) [nper| command computes the number of regular payments necessary
to amortize a loan. Thus nper(rate, payment, amount) equals the value of n such that pv(rate,
n, payment) = amount. If payment is too small ever to amortize a loan for amount at interest rate
rate, the nper function is left in symbolic form.

The I b # [nperb] command does the same computation but using pvb instead of pv. You can
give a fourth lump-sum argument to these functions, but the computation will be rather slow in
the four-argument case.
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The Hb # [nperl] command does the same computation using pvl. By exchanging payment
and amount you can also get the solution for fvl. For example, nperl (8%, 2000, 1000) = 9.0086,
so if you place $1000 in a bank account earning 8%, it will take nine years to grow to $2000.

The b T (calc-fin-rate) [rate] command computes the rate of return on an investment. This
is also an inverse of pv: rate(n, payment, amount) computes the value of rate such that pv(rate,
n, payment) = amount. The result is expressed as a formula like ‘6.3%’.

The I b T [rateb] and H b T [ratel] commands solve the analogous equations with pvb or pvl
in place of pv. Also, rate and rateb can accept an optional fourth argument just like pv and pvb.
To redo the above example from a different perspective, ratel (9, 2000, 1000) = 8.00597%, which
says you will need an interest rate of 8% in order to double your account in nine years.

The b I (calc-fin-irr) [irr] command is the analogous function to rate but for net present
value. Its argument is a vector of payments. Thus irr(payments) computes the rate such that
npv (rate, payments) = 0; this rate is known as the internal rate of return.

The I b I [irrb] command computes the internal rate of return assuming payments occur at
the beginning of each period.

7.6.5 Depreciation Functions

The functions in this section calculate depreciation, which is the amount of value that a possession
loses over time. These functions are characterized by three parameters: cost, the original cost of
the asset; salvage, the value the asset will have at the end of its expected “useful life”; and life, the
number of years (or other periods) of the expected useful life.

There are several methods for calculating depreciation that differ in the way they spread the
depreciation over the lifetime of the asset.

The b S (calc-fin-sln) [sln] command computes the “straight-line” depreciation. In this
method, the asset depreciates by the same amount every year (or period). For example,
‘s1n(12000, 2000, 5)’ returns 2000. The asset costs $12000 initially and will be worth $2000
after five years; it loses $2000 per year.

The b Y (calc-fin-syd) [syd] command computes the accelerated “sum-of-years’-digits” de-
preciation. Here the depreciation is higher during the early years of the asset’s life. Since the
depreciation is different each year, b Y takes a fourth period parameter which specifies which year
is requested, from 1 to life. If period is outside this range, the syd function will return zero.

The b D (calc-fin-ddb) [ddb| command computes an accelerated depreciation using the double-
declining balance method. It also takes a fourth period parameter.

For symmetry, the sln function will accept a period parameter as well, although it will ignore
its value except that the return value will as usual be zero if period is out of range.

For example, pushing the vector [1,2,3,4,5] (perhaps with v x 5) and then mapping V M ’
[s1n(12000,2000,5,$%), syd(12000,2000,5,$), ddb(12000,2000,5,$)] RET produces a matrix
that allows us to compare the three depreciation methods:

[ [ 2000, 3333, 4800 ]
[ 2000, 2667, 2880 ]
[ 2000, 2000, 1728 ]
[ 2000, 1333, 592 ]
[ 2000, 667, 0 11
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(Values have been rounded to nearest integers in this figure.) We see that sln depreciates by the
same amount each year, syd depreciates more at the beginning and less at the end, and ddb weights
the depreciation even more toward the beginning.

Summing columns with V R : + yields [10000, 10000, 10000]; the total depreciation in any method
is (by definition) the difference between the cost and the salvage value.

7.6.6 Definitions

For your reference, here are the actual formulas used to compute Calc’s financial functions.

Calc will not evaluate a financial function unless the rate or n argument is known. However,
payment or amount can be a variable. Calc expands these functions according to the formulas
below for symbolic arguments only when you use the a " (calc-expand-formula) command, or
when taking derivatives or integrals or solving equations involving the functions.

1 n_1
£v(r,n,p) = p%

(1+r)"™-1)(1+r)
fvl(r,n,p) = p(l+r)"
1—-(1+7r)~"

pv(r,n,p) =p

1-0Q4+r)™1Q+r)

pvl(r,n,p) =p(l+r)™"
npv(r,[a,b,c]) =a(l+7) " +b(1+7)"2+c(1+7)7?

pvb(r,n,p) = p

npvb(r, [a,b,c]) = a+b(1+7)7" +c(l +7)7?
(@—=z(l+r)™")r
1—(1+7r)-"
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ratel(n,p,a) = o



Chapter 7: Arithmetic Functions 209

c—s
l
(c—s)i—p+1)
I(1+1)/2
2(c — depreciation so far)
l

sln(c, s,l) =

syd(c, s,l,p) =

ddb(c, s,l,p) =

In pmt and pmtb, z = 0 if omitted.

These functions accept any numeric objects, including error forms, intervals, and even (though
not very usefully) complex numbers. The above formulas specify exactly the behavior of these
functions with all sorts of inputs.

Note that if the first argument to the log in nper is negative, nper leaves itself in symbolic
form rather than returning a (financially meaningless) complex number.

‘rate (num, pmt, amt)’ solves the equation ‘pv(rate, num, pmt) = amt’ for ‘rate’ using Ha R
(calc-find-root), with the interval ‘[.01% .. 100%]’ for an initial guess. The rateb function is
the same except that it uses pvb. Note that ratel can be solved directly; its formula is shown in
the above list.

Similarly, ‘irr(pmts)’ solves the equation ‘npv(rate, pmts) = 0’ for ‘rate’.

If you give a fourth argument to nper or nperb, Calc will also use H a R to solve the equation
using an initial guess interval of ‘[0 .. 100]".

A fourth argument to fv simply sums the two components calculated from the above formulas
for fv and fvl. The same is true of fvb, pv, and pvb.

The ddb function is computed iteratively; the “book” value starts out equal to cost, and decreases
according to the above formula for the specified number of periods. If the book value would decrease
below salvage, it only decreases to salvage and the depreciation is zero for all subsequent periods.
The ddb function returns the amount the book value decreased in the specified period.

The Calc financial function names were borrowed mostly from Microsoft Excel and Borland’s
Quattro. The ratel function corresponds to ‘@CGR’ in Borland’s Reflex. The nper and nperl
functions correspond to ‘@TERM’ and ‘@CTERM’ in Quattro, respectively. Beware that the Calc
functions may take their arguments in a different order than the corresponding functions in your
favorite spreadsheet.

7.7 Binary Number Functions

The commands in this chapter all use two-letter sequences beginning with the b prefix.

The “binary” operations actually work regardless of the currently displayed radix, although
their results make the most sense in a radix like 2, 8, or 16 (as obtained by the d 2, d 8, or d 6
commands, respectively). You may also wish to enable display of leading zeros with d z. See XXX
[Radix Modes|, page XXX .

The Calculator maintains a current word size w, an arbitrary positive or negative integer. For
a positive word size, all of the binary operations described here operate modulo 2*. In particular,
negative arguments are converted to positive integers modulo 2% by all binary functions.

If the word size is negative, binary operations produce 2’s complement integers from —2~%~1 to
2=w~! —1 inclusive. Either mode accepts inputs in any range; the sign of w affects only the results
produced.
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The b ¢ (calc-clip) [clip] command can be used to clip a number by reducing it modulo 2%.
The commands described in this chapter automatically clip their results to the current word size.
Note that other operations like addition do not use the current word size, since integer addition
generally is not “binary.” (However, see XXX [Simplification Modes], page XXX, calc-bin-
simplify-mode.) For example, with a word size of 8 bits b ¢ converts a number to the range 0 to
255; with a word size of —8 b ¢ converts to the range —128 to 127.

The default word size is 32 bits. All operations except the shifts and rotates allow you to specify
a different word size for that one operation by giving a numeric prefix argument: C-u 8 b ¢ clips
the top of stack to the range 0 to 255 regardless of the current word size. To set the word size
permanently, use b w (calc-word-size). This command displays a prompt with the current word
size; press RET immediately to keep this word size, or type a new word size at the prompt.

When the binary operations are written in symbolic form, they take an optional second (or third)
word-size parameter. When a formula like ‘and(a,b)’ is finally evaluated, the word size current
at that time will be used, but when ‘and(a,b,-8)’ is evaluated, a word size of —8 will always be
used. A symbolic binary function will be left in symbolic form unless the all of its argument(s) are
integers or integer-valued floats.

If either or both arguments are modulo forms for which M is a power of two, that power of two
is taken as the word size unless a numeric prefix argument overrides it. The current word size is
never consulted when modulo-power-of-two forms are involved.

The b a (calc-and) [and| command computes the bitwise AND of the two numbers on the top
of the stack. In other words, for each of the w binary digits of the two numbers (pairwise), the
corresponding bit of the result is 1 if and only if both input bits are 1: ‘and (2#1100, 2#1010) =
2#1000°.

The b o (calc-or) [or] command computes the bitwise inclusive OR of two numbers. A bit is
1 if either of the input bits, or both, are 1: ‘or (2#1100, 2#1010) = 2#1110°.

The b x (calc-xor) [xor| command computes the bitwise exclusive OR of two numbers. A bit
is 1 if exactly one of the input bits is 1: ‘xor (2#1100, 2#1010) = 2#0110’.

The b d (calc-diff) [diff] command computes the bitwise difference of two numbers; this is
defined by ‘diff(a,b) = and(a,not(b))’, so that ‘diff (2#1100, 2#1010) = 2#0100’.

The b n (calc-not) [not] command computes the bitwise NOT of a number. A bit is 1 if the
input bit is 0 and vice-versa.

The b1 (calc-1shift-binary) [1sh] command shifts a number left by one bit, or by the
number of bits specified in the numeric prefix argument. A negative prefix argument performs a
logical right shift, in which zeros are shifted in on the left. In symbolic form, ‘1sh(a)’ is short for
‘Ish(a,1)’, which in turn is short for ‘1sh(a,n,w)’. Bits shifted “off the end,” according to the
current word size, are lost.

The H b 1 command also does a left shift, but it takes two arguments from the stack (the value to
shift, and, at top-of-stack, the number of bits to shift). This version interprets the prefix argument
just like the regular binary operations, i.e., as a word size. The Hyperbolic flag has a similar effect
on the rest of the binary shift and rotate commands.

The b r (calc-rshift-binary) [rsh] command shifts a number right by one bit, or by the
number of bits specified in the numeric prefix argument: ‘rsh(a,n) = 1sh(a,-n)’.

The b L (calc-1shift-arith) [ash| command shifts a number left. It is analogous to 1sh, ex-
cept that if the shift is rightward (the prefix argument is negative), an arithmetic shift is performed
as described below.
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The b R (calc-rshift-arith) [rash] command performs an “arithmetic” shift to the right, in
which the leftmost bit (according to the current word size) is duplicated rather than shifting in
zeros. This corresponds to dividing by a power of two where the input is interpreted as a signed,
twos-complement number. (The distinction between the ‘rsh’ and ‘rash’ operations is totally
independent from whether the word size is positive or negative.) With a negative prefix argument,
this performs a standard left shift.

The b t (calc-rotate-binary) [rot] command rotates a number one bit to the left. The
leftmost bit (according to the current word size) is dropped off the left and shifted in on the right.
With a numeric prefix argument, the number is rotated that many bits to the left or right.

See XXX [Set Operations], page XXX, for the b p and b u commands that pack and unpack
binary integers into sets. (For example, b u unpacks the number ‘2#11001’ to the set of bit-numbers
‘[0, 3, 4]’.) Type b u V # to count the number of “1” bits in a binary integer.

Another interesting use of the set representation of binary integers is to reverse the bits in, say,
a 32-bit integer. Type b u to unpack; type 31 TAB - to replace each bit-number in the set with 31
minus that bit-number; type b p to pack the set back into a binary integer.
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8 Scientific Functions

The functions described here perform trigonometric and other transcendental calculations. They
generally produce floating-point answers correct to the full current precision. The H (Hyperbolic)
and I (Inverse) flag keys must be used to get some of these functions from the keyboard.

One miscellanous command is shift-P (calc-pi), which pushes the value of 7 (at the current
precision) onto the stack. With the Hyperbolic flag, it pushes the value e, the base of natural
logarithms. With the Inverse flag, it pushes Euler’s constant  (about 0.5772). With both Inverse
and Hyperbolic, it pushes the “golden ratio” ¢ (about 1.618). (At present, Euler’s constant is
not available to unlimited precision; Calc knows only the first 100 digits.) In Symbolic mode,

2 bL? &

these commands push the actual variables ‘pi’, ‘e’, ‘gamma’, and ‘phi’, respectively, instead of their
values; see XXX [Symbolic Mode], page XXX.

The @ (calc-sqrt) [sqrt] function is described elsewhere; see XXX [Basic Arithmetic],
page XXX. With the Inverse flag [sqr], this command computes the square of the argument.

See XXX [Prefix Arguments|, page XXX, for a discussion of the effect of numeric prefix argu-
ments on commands in this chapter which do not otherwise interpret a prefix argument.

8.1 Logarithmic Functions

The shift-L (calc-1n) [1n] command computes the natural logarithm of the real or complex number
on the top of the stack. With the Inverse flag it computes the exponential function instead, although
this is redundant with the E command.

The shift-E (calc-exp) [exp] command computes the exponential, i.e., e raised to the power of
the number on the stack. The meanings of the Inverse and Hyperbolic flags follow from those for
the calc-1n command.

The H L (calc-1og10) [Log10] command computes the common (base-10) logarithm of a number.
(With the Inverse flag [exp10], it raises ten to a given power.) Note that the common logarithm of
a complex number is computed by taking the natural logarithm and dividing by In 10.

The B (calc-log) [log] command computes a logarithm to any base. For example, 1024 RET 2
B produces 10, since 2'® = 1024. In certain cases like ‘log(3,9)’, the result will be either 1:2 or
0.5 depending on the current Fraction Mode setting. With the Inverse flag [alog], this command
is similar to ~ except that the order of the arguments is reversed.

The f I (calc-ilog) [ilog] command computes the integer logarithm of a number to any
base. The number and the base must themselves be positive integers. This is the true logarithm,
rounded down to an integer. Thus ilog(x,10) is 3 for all z in the range from 1000 to 9999. If
both arguments are positive integers, exact integer arithmetic is used; otherwise, this is equivalent
to ‘floor(log(x,b))’.

The f E (calc-expml) [expmi] command computes e” — 1, but using an algorithm that produces
a more accurate answer when the result is close to zero, i.e., when e” is close to one.

The £ L (calc-1npl) [1npl] command computes In(z + 1), producing a more accurate answer
when z is close to zero.
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8.2 Trigonometric/Hyperbolic Functions

The shift-S (calc-sin) [sin] command computes the sine of an angle or complex number. If
the input is an HMS form, it is interpreted as degrees-minutes-seconds; otherwise, the input is
interpreted according to the current angular mode. It is best to use Radians mode when operating
on complex numbers.

Calc’s “units” mechanism includes angular units like deg, rad, and grad. While ‘sin(45 deg)’
is not evaluated all the time, the u s (calc-simplify-units) command will simplify ‘sin(45
deg)’ by taking the sine of 45 degrees, regardless of the current angular mode. See XXX [Basic
Operations on Units], page XXX.

Also, the symbolic variable pi is not ordinarily recognized in arguments to trigonometric func-
tions, as in ‘sin(3 pi / 4)’, but the a s (calc-simplify) command recognizes many such formulas
when the current angular mode is radians and symbolic mode is enabled; this example would be
replaced by ‘sqrt(2) / 2. See XXX [Symbolic Mode], page XXX. Beware, this simplification
occurs even if you have stored a different value in the variable ‘pi’; this is one reason why changing
built-in variables is a bad idea. Arguments of the form x plus a multiple of 7/2 are also simplified.
Calc includes similar formulas for cos and tan.

The a s command knows all angles which are integer multiples of 7/12, /10, or /8 radians.
In degrees mode, analogous simplifications occur for integer multiples of 15 or 18 degrees, and for
arguments plus multiples of 90 degrees.

With the Inverse flag, calc-sin computes an arcsine. This is also available as the calc-arcsin
command or arcsin algebraic function. The returned argument is converted to degrees, radians,
or HMS notation depending on the current angular mode.

With the Hyperbolic flag, calc-sin computes the hyperbolic sine, also available as calc-sinh
[sinh]. With the Hyperbolic and Inverse flags, it computes the hyperbolic arcsine (calc-arcsinh)
[arcsinh].

The shift-C (calc-cos) [cos] command computes the cosine of an angle or complex number, and
shift-T (calc-tan) [tan] computes the tangent, along with all the various inverse and hyperbolic
variants of these functions.

The £ T (calc-arctan2) [arctan2| command takes two numbers from the stack and computes
the arc tangent of their ratio. The result is in the full range from —180 (exclusive) to +180
(inclusive) degrees, or the analogous range in radians. A similar result would be obtained with
/ followed by I T, but the value would only be in the range from —90 to +90 degrees since the
division loses information about the signs of the two components, and an error might result from an
explicit division by zero which arctan2 would avoid. By (arbitrary) definition, ‘arctan2(0,0)=0".

The calc-sincos [sincos] command computes the sine and cosine of a number, returning them
as a vector of the form ‘[cos, sin]’. With the Inverse flag [arcsincos], this command takes a two-
element vector as an argument and computes arctan2 of the elements. (This command does not
accept the Hyperbolic flag.)
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8.3 Advanced Mathematical Functions

Calc can compute a variety of less common functions that arise in various branches of mathematics.
All of the functions described in this section allow arbitrary complex arguments and, except as
noted, will work to arbitrarily large precisions. They can not at present handle error forms or
intervals as arguments.

NOTE: These functions are still experimental. In particular, their accuracy is not guaranteed
in all domains. It is advisable to set the current precision comfortably higher than you actually
need when using these functions. Also, these functions may be impractically slow for some values
of the arguments.

The f g (calc-gamma) [gamma] command computes the Euler gamma function. For positive
integer arguments, this is related to the factorial function: ‘gamma(n+1) = fact(n)’. For general
complex arguments the gamma function can be defined by the following definite integral: I'(a) =
fooo t*tetdt. (The actual implementation uses far more efficient computational methods.)

The f G (calc-inc-gamma) [gammaP| command computes the incomplete gamma function, de-
noted ‘P(a,x)’. This is defined by the integral, P(a,z) = (; t*'e'dt) /T(a). This implies that
‘gammaP (a,inf) = 1’ for any a (see the definition of the normal gamma function).

Several other varieties of incomplete gamma function are defined. The complement of P(a,x),
called Q(a,z) =1 — P(a,z) by some authors, is computed by the I f G [gammaQ] command. You
can think of this as taking the other half of the integral, from z to infinity.

The functions corresponding to the integrals that define P(a,z) and Q(a,z) but without the
normalizing 1/T'(a) factor are called 7y(a,z) and I'(a,z), respectively. You can obtain these using
the H f G [gammag] and I H f G [gammaG] commands.

The f b (calc-beta) [beta] command computes the Euler beta function, which is defined in

terms of the gamma function as B(a,b) = I'(a)T'(b)/T'(a + b), or by B(a,b) fo o1 — )’ 1dt.
The f B (calc-inc- beta) [betall command computes the incomplete beta functlon I (m, a,b).
It is defined by I(z,a,b) = (f; t*~*(1 —t)*~'dt) /B(a,b). Once again, the H (hyperbolic) prefix

gives the correspondmg un—normahzed version [betaB].

The f e (calc-erf) [erf] command computes the error function erf(z) = % I e~t'dt. The

complementary error function I f e (calc-erfc) [erfc] is the corresponding integral from ‘x’ to
infinity; the sum erf(z) + erfc(z) = 1.

The f j (calc-bessel-J) [besJ] and f y (calc-bessel-Y) [besY] commands compute the Bessel
functions of the first and second kinds, respectively. In ‘besJ(n,x)’ and ‘besY(n,x)’ the “order”
parameter n is often an integer, but is not required to be one. Calc’s implementation of the Bessel
functions currently limits the precision to 8 digits, and may not be exact even to that precision.
Use with care!
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8.4 Branch Cuts and Principal Values

All of the logarithmic, trigonometric, and other scientific functions are defined for complex numbers
as well as for reals. This section describes the values returned in cases where the general result
is a family of possible values. Calc follows section 12.5.3 of Steele’s Common Lisp, the Language,
second edition, in these matters. This section will describe each function briefly; for a more detailed
discussion (including some nifty diagrams), consult Steele’s book.

Note that the branch cuts for arctan and arctanh were changed between the first and second
editions of Steele. Versions of Calc starting with 2.00 follow the second edition.

The new branch cuts exactly match those of the HP-28/48 calculators. They also match those of
Mathematica 1.2, except that Mathematica’s arctan cut is always in the right half of the complex
plane, and its arctanh cut is always in the top half of the plane. Calc’s cuts are continuous with
quadrants I and III for arctan, or IT and IV for arctanh.

Note: The current implementations of these functions with complex arguments are designed
with proper behavior around the branch cuts in mind, not efficiency or accuracy. You may need to
increase the floating precision and wait a while to get suitable answers from them.

For ‘sqrt (a+bi)’: When a < 0 and b is small but positive or zero, the result is close to the +i
axis. For b small and negative, the result is close to the —i axis. The result always lies in the right
half of the complex plane.

For ‘In(a+bi)’: The real part is defined as ‘In(abs(a+bi))’. The imaginary part is defined as
‘arg(a+bi) = arctan2(b,a)’. Thus the branch cuts for sqrt and 1n both lie on the negative real
axis.

The following table describes these branch cuts in another way. If the real and imaginary parts
of z are as shown, then the real and imaginary parts of f(z) will be as shown. Here eps stands for
a small positive value; each occurrence of eps may stand for a different small value.

z sqrt (z) 1n(z)
+, 0 +, O any, O
-, 0 0, + any, pi
-, +eps +eps, + +eps, +
-, -eps +eps, - +eps, -

For ‘z17z2’: This is defined by ‘exp(1n(z1)*z2)’. One interesting consequence of this is that
‘(-8)"1:3’ does not evaluate to —2 as you might expect, but to the complex number (1.,1.732).
Both of these are valid cube roots of —8 (as is (1.,—1.732)); Calc chooses a perhaps less-obvious
root for the sake of mathematical consistency.

For ‘arcsin(z)’: This is defined by ‘-i*1n(i*z + sqrt(1-z~2))’. The branch cuts are on the
real axis, less than —1 and greater than 1.

For ‘arccos(z)’: This is defined by ‘-i*1n(z + i*sqrt(1-z~2))’, or equivalently by ‘pi/2 -
arcsin(z)’. The branch cuts are on the real axis, less than —1 and greater than 1.

For ‘arctan(z)’: This is defined by ‘(In(1+i*z) - In(1-i*z)) / (2*i)’. The branch cuts are
on the imaginary axis, below —¢ and above ;.

For ‘arcsinh(z)’: This is defined by ‘In(z + sqrt(1+z~2))’. The branch cuts are on the
imaginary axis, below —i and above 3.
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For ‘arccosh(z)’: This is defined by ‘In(z + (z+1)*sqrt ((z-1)/(z+1)))’. The branch cut is
on the real axis less than 1.

For ‘arctanh(z)’: This is defined by ‘(1n(1+z) - 1In(1-z)) / 2’. The branch cuts are on the
real axis, less than —1 and greater than 1.

The following tables for arcsin, arccos, and arctan assume the current angular mode is
radians. The hyperbolic functions operate independently of the angular mode.

z arcsin(z) arccos(z)
(-1..1), (-pi/2..pi/2), O (0..pi), O
(-1..1), +eps (-pi/2..pi/2), +eps (0..pi), -eps
(-1..1), -eps (-pi/2..pi/2), -eps (0..pi), +eps

<-1, -pi/2, + pi, -
<-1, +eps -pi/2 + eps, + pi - eps, -
<-1, -eps -pi/2 + eps, - pi - eps, +
>1, pi/2, - 0, +
>1, +eps pi/2 - eps, + +eps, -
>1, -eps pi/2 - eps, - +eps, +

z arccosh(z) arctanh(z)
(-1..1), 0, (0..pi) any, 0
(-1..1), +eps +eps, (0..pi) any, +eps
(-1..1), -eps +eps, (-pi..0) any, -eps

<-1, +, pi -, pi/2
<-1, +eps +, pi - eps -, pi/2 - eps
<-1, -eps +, -pi + eps -, -pi/2 + eps
>1, +, 0 +, -pi/2
>1, +eps +, +eps +, pi/2 - eps
>1, -eps +, -eps +, -pi/2 + eps

z arcsinh(z) arctan(z)

0, (-1..1) 0, (-pi/2..pi/2) 0, any

0, <-1 -, -pi/2 -pi/2, -
+eps, <-1 +, -pi/2 + eps pi/2 - eps, -
-eps, <-1 -, -pi/2 + eps -pi/2 + eps, -

0, >1 +, pi/2 pi/2, +
+eps, >1 +, pi/2 - eps pi/2 - eps, +
-eps, >1 -, pi/2 - eps -pi/2 + eps, +

Finally, the following identities help to illustrate the relationship between the complex trigono-
metric and hyperbolic functions. They are valid everywhere, including on the branch cuts.

sin(i*z) = i*sinh(z) arcsin(i*z) = i*arcsinh(z)
cos(ixz) = cosh(z) arcsinh(i*z) = i*arcsin(z)
tan(i*z) = ixtanh(z) arctan(i*z) = i*arctanh(z)
sinh(i*z) = i*sin(z) cosh(i*z) = cos(z)

The “advanced math” functions (gamma, Bessel,

etc.) are also defined for general complex
arguments, but their branch cuts and principal values are not rigorously specified at present.
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8.5 Random Numbers

The k r (calc-random) [random] command produces random numbers of various sorts.

Given a positive numeric prefix argument M, it produces a random integer N in the range
0 < N < M. Each of the M values appears with equal probability.

With no numeric prefix argument, the k r command takes its argument from the stack instead.
Once again, if this is a positive integer M the result is a random integer less than M. However,
note that while numeric prefix arguments are limited to six digits or so, an M taken from the stack
can be arbitrarily large. If M is negative, the result is a random integer in the range M < N < 0.

If the value on the stack is a floating-point number M, the result is a random floating-point
number N in the range 0 < N < M or M < N < (), according to the sign of M.

If M is zero, the result is a Gaussian-distributed random real number; the distribution has a
mean of zero and a standard deviation of one. The algorithm used generates random numbers in
pairs; thus, every other call to this function will be especially fast.

If M is an error form m +/- o where m and o are both real numbers, the result uses a Gaussian
distribution with mean m and standard deviation o.

If M is an interval form, the lower and upper bounds specify the acceptable limits of the
random numbers. If both bounds are integers, the result is a random integer in the specified
range. If either bound is floating-point, the result is a random real number in the specified range.
If the interval is open at either end, the result will be sure not to equal that end value. (This
makes a big difference for integer intervals, but for floating-point intervals it’s relatively minor:
with a precision of 6, ‘random([1.0..2.0))’ will return any of one million numbers from 1.00000
to 1.99999; ‘random([1.0..2.0])’ may additionally return 2.00000, but the probability of this
happening is extremely small.)

If M is a vector, the result is one element taken at random from the vector. All elements of the
vector are given equal probabilities.

The sequence of numbers produced by k r is completely random by default, i.e., the sequence
is seeded each time you start Calc using the current time and other information. You can get a
reproducible sequence by storing a particular “seed value” in the Calc variable RandSeed. Any
integer will do for a seed; integers of from 1 to 12 digits are good. If you later store a different
integer into RandSeed, Calc will switch to a different pseudo-random sequence. If you “unstore”
RandSeed, Calc will re-seed itself from the current time. If you store the same integer that you used
before back into RandSeed, you will get the exact same sequence of random numbers as before.

The calc-rrandom command (not on any key) produces a random real number between zero
and one. It is equivalent to ‘random(1.0)".

The k a (calc-random-again) command produces another random number, re-using the most
recent value of M. With a numeric prefix argument n, it produces n more random numbers using
that value of M.

The k h (calc-shuffle) command produces a vector of several random values with no dupli-
cates. The value on the top of the stack specifies the set from which the random values are drawn,
and may be any of the M formats described above. The numeric prefix argument gives the length
of the desired list. (If you do not provide a numeric prefix argument, the length of the list is taken
from the top of the stack, and M from second-to-top.)

kr
random

k h
shuffle
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If M is a floating-point number, zero, or an error form (so that the random values are being
drawn from the set of real numbers) there is little practical difference between using k h and using
k r several times. But if the set of possible values consists of just a few integers, or the elements of
a vector, then there is a very real chance that multiple k r’s will produce the same number more
than once. The k h command produces a vector whose elements are always distinct. (Actually,
there is a slight exception: If M is a vector, no given vector element will be drawn more than once,
but if several elements of M are equal, they may each make it into the result vector.)

One use of k h is to rearrange a list at random. This happens if the prefix argument is equal
to the number of values in the list: [1, 1.5, 2, 2.5, 3] 5 k h might produce the permuted list
‘[2.5, 1, 1.5, 3, 2]’. As a convenient feature, if the argument n is negative it is replaced by the
size of the set represented by M. Naturally, this is allowed only when M specifies a small discrete
set of possibilities.

To do the equivalent of k h but with duplications allowed, given M on the stack and with n just
entered as a numeric prefix, use v b to build a vector of copies of M, then use VM k r to “map”
the normal k r function over the elements of this vector. See XXX [Matrix Functions|, page XXX.

8.5.1 Random Number Generator

Calc’s random number generator uses several methods to ensure that the numbers it produces are
highly random. Knuth’s Art of Computer Programming, Volume II, contains a thorough description
of the theory of random number generators and their measurement and characterization.

If RandSeed has no stored value, Calc calls Emacs’ built-in random function to get a stream of
random numbers, which it then treats in various ways to avoid problems inherent in the simple
random number generators that many systems use to implement random.

When Calc’s random number generator is first invoked, it “seeds” the low-level random sequence

using the time of day, so that the random number sequence will be different every time you use
Calc.

Since Emacs Lisp doesn’t specify the range of values that will be returned by its random function,
Calc exercises the function several times to estimate the range. When Calc subsequently uses the
random function, it takes only 10 bits of the result near the most-significant end. (It avoids at
least the bottom four bits, preferably more, and also tries to avoid the top two bits.) This strategy
works well with the linear congruential generators that are typically used to implement random.

If RandSeed contains an integer, Calc uses this integer to seed an “additive congruential” method
(Knuth’s algorithm 3.2.2A, computing X,,_s5 — X,,_24). This method expands the seed value into
a large table which is maintained internally; the variable RandSeed is changed from, e.g., 42 to the
vector [42] to indicate that the seed has been absorbed into this table. When RandSeed contains a
vector, k r and related commands continue to use the same internal table as last time. There is no
way to extract the complete state of the random number generator so that you can restart it from
any point; you can only restart it from the same initial seed value. A simple way to restart from
the same seed is to type s r RandSeed to get the seed vector, v u to unpack it back into a number,
then s t RandSeed to reseed the generator with that number.

Calc uses a “shuffling” method as described in algorithm 3.2.2B of Knuth. It fills a table with
13 random 10-bit numbers. Then, to generate a new random number, it uses the previous number
to index into the table, picks the value it finds there as the new random number, then replaces that
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table entry with a new value obtained from a call to the base random number generator (either
the additive congruential generator or the random function supplied by the system). If there are
any flaws in the base generator, shuffling will tend to even them out. But if the system provides
an excellent random function, shuffling will not damage its randomness.

To create a random integer of a certain number of digits, Calc builds the integer three decimal
digits at a time. For each group of three digits, Calc calls its 10-bit shuffling random number
generator (which returns a value from 0 to 1023); if the random value is 1000 or more, Calc throws
it out and tries again until it gets a suitable value.

To create a random floating-point number with precision p, Calc simply creates a random p-digit
integer and multiplies by 107?. The resulting random numbers should be very clean, but note that
relatively small numbers will have few significant random digits. In other words, with a precision
of 12, you will occasionally get numbers on the order of 1072 or 107'°, but those numbers will only
have two or three random digits since they correspond to small integers times 10~'2.

To create a random integer in the interval ‘[0 .. m)’, Calc counts the digits in m, creates a
random integer with three additional digits, then reduces modulo m. Unless m is a power of ten
the resulting values will be very slightly biased toward the lower numbers, but this bias will be less
than 0.1%. (For example, if m is 42, Calc will reduce a random integer less than 100000 modulo 42
to get a result less than 42. It is easy to show that the numbers 40 and 41 will be only 2380/2381
as likely to result from this modulo operation as numbers 39 and below.) If m is a power of ten,
however, the numbers should be completely unbiased.

The Gaussian random numbers generated by ‘random(0.0)’ use the “polar” method described
in Knuth section 3.4.1C. This method generates a pair of Gaussian random numbers at a time, so
only every other call to ‘random(0.0)’ will require significant calculations.

8.6 Combinatorial Functions

Commands relating to combinatorics and number theory begin with the k key prefix.

The k g (calc-gcd) [ged] command computes the Greatest Common Divisor of two integers. It
also accepts fractions; the GCD of two fractions is defined by taking the GCD of the numerators,
and the LCM of the denominators. This definition is consistent with the idea that ‘a / gcd(a,x)’
should yield an integer for any ‘a’ and ‘x’. For other types of arguments, the operation is left in
symbolic form.

The k 1 (calc-lcm) [lcm] command computes the Least Common Multiple of two integers or
fractions. The product of the LCM and GCD of two numbers is equal to the product of the
numbers.

The k E (calc-extended-gcd) [egcd] command computes the GCD of two integers z and y and
returns a vector [g,a,b] where g = ged(z,y) = azx + by.

The ! (calc-factorial) [fact]| command computes the factorial of the number at the top
of the stack. If the number is an integer, the result is an exact integer. If the number is an
integer-valued float, the result is a floating-point approximation. If the number is a non-integral
real number, the generalized factorial is used, as defined by the Euler Gamma function. Please
note that computation of large factorials can be slow; using floating-point format will help since
fewer digits must be maintained. The same is true of many of the commands in this section.

kg
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k1
lcm

k E
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fact
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The k d (calc-double-factorial) [dfact] command computes the “double factorial” of an
integer. For an even integer, this is the product of even integers from 2 to N. For an odd integer,
this is the product of odd integers from 3 to N. If the argument is an integer-valued float, the
result is a floating-point approximation. This function is undefined for negative even integers. The
notation N!! is also recognized for double factorials.

The k ¢ (calc-choose) [choose| command computes the binomial coefficient N-choose-M,
where M is the number on the top of the stack and N is second-to-top. If both arguments are
integers, the result is an exact integer. Otherwise, the result is a floating-point approximation. The

binomial coefficient is defined for all real numbers by W—,M)'

The Hk ¢ (calc-perm) [perm] command computes the number-of-permutations function
(NiVJ!M)! .

The k b (calc-bernoulli-number) [bern| command computes a given Bernoulli number. The
value at the top of the stack is a nonnegative integer n that specifies which Bernoulli number is
desired. The H k b command computes a Bernoulli polynomial, taking n from the second-to-top
position and z from the top of the stack. If z is a variable or formula the result is a polynomial in
x; if £ is a number the result is a number.

The k e (calc-euler-number) [euler| command similarly computes an Euler number, and
H k e computes an Euler polynomial. Bernoulli and Euler numbers occur in the Taylor expansions
of several functions.

The k s (calc-stirling-number) [stirl] command computes a Stirling number of the first
kind [::l] , given two integers n and m on the stack. The H k s [stir2] command computes a Stirling
number of the second kind {::z} These are the number of m-cycle permutations of n objects, and
the number of ways to partition n objects into m non-empty sets, respectively.

The k p (calc-prime-test) command checks if the integer on the top of the stack is prime.
For integers less than eight million, the answer is always exact and reasonably fast. For larger
integers, a probabilistic method is used (see Knuth vol. II, section 4.5.4, algorithm P). The number
is first checked against small prime factors (up to 13). Then, any number of iterations of the
algorithm are performed. Each step either discovers that the number is non-prime, or substantially
increases the certainty that the number is prime. After a few steps, the chance that a number was
mistakenly described as prime will be less than one percent. (Indeed, this is a worst-case estimate
of the probability; in practice even a single iteration is quite reliable.) After the k p command,
the number will be reported as definitely prime or non-prime if possible, or otherwise “probably”
prime with a certain probability of error.

The normal k p command performs one iteration of the primality test. Pressing k p repeatedly
for the same integer will perform additional iterations. Also, k p with a numeric prefix performs the
specified number of iterations. There is also an algebraic function ‘prime (n)’ or ‘prime(n,iters)’
which returns 1 if n is (probably) prime and 0 if not.

The k f (calc-prime-factors) [prfac| command attempts to decompose an integer into its
prime factors. For numbers up to 25 million, the answer is exact although it may take some time.
The result is a vector of the prime factors in increasing order. For larger inputs, prime factors
above 5000 may not be found, in which case the last number in the vector will be an unfactored
integer greater than 25 million (with a warning message). For negative integers, the first element
of the list will be —1. For inputs —1, 0, and 1, the result is a list of the same number.
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The k n (calc-next-prime) [nextprime| command finds the next prime above a given number.
Essentially, it searches by calling calc-prime-test on successive integers until it finds one that
passes the test. This is quite fast for integers less than eight million, but once the probabilistic
test comes into play the search may be rather slow. Ordinarily this command stops for any prime
that passes one iteration of the primality test. With a numeric prefix argument, a number must
pass the specified number of iterations before the search stops. (This only matters when searching
above eight million.) You can always use additional k p commands to increase your certainty that
the number is indeed prime.

The I k n (calc-prev-prime) [prevprime| command analogously finds the next prime less than
a given number.

The k t (calc-totient) [totient] command computes the Euler “totient” function ¢(n), the
number of integers less than n which are relatively prime to n.

The k m (calc-moebius) [moebius] command computes the Mobius g function. If the input
number is a product of k distinct factors, this is (—1)*. If the input number has any duplicate

factors (i.e., can be divided by the same prime more than once), the result is zero.

8.7 Probability Distribution Functions

The functions in this section compute various probability distributions. For continuous distribu-
tions, this is the integral of the probability density function from z to infinity. (These are the “upper
tail” distribution functions; there are also corresponding “lower tail” functions which integrate from
minus infinity to z.) For discrete distributions, the upper tail function gives the sum from z to
infinity; the lower tail function gives the sum from minus infinity up to, but not including, x.

To integrate from z to y, just use the distribution function twice and subtract. For example,
the probability that a Gaussian random variable with mean 2 and standard deviation 1 will lie in
the range from 2.5 to 2.8 is ‘utpn(2.5,2,1) - utpn(2.8,2,1)’ (“the probability that it is greater
than 2.5, but not greater than 2.8”), or equivalently ‘1tpn(2.8,2,1) - 1tpn(2.5,2,1)’.

The k B (calc-utpb) [utpb] function uses the binomial distribution. Push the parameters n, p,
and then x onto the stack; the result (‘utpb(x,n,p)’) is the probability that an event will occur x
or more times out of n trials, if its probability of occurring in any given trial is p. The I k B [1tpb]
function is the probability that the event will occur fewer than x times.

The other probability distribution functions similarly take the form k X (calc-utpx) [utpx]
and I k X [1tpx]|, for various letters x. The arguments to the algebraic functions are the value
of the random variable first, then whatever other parameters define the distribution. Note these
are among the few Calc functions where the order of the arguments in algebraic form differs from
the order of arguments as found on the stack. (The random variable comes last on the stack, so
that you can type, e.g., 2 RET 1 RET 2.5 k N M-RET DEL 2.8 k N -, using M-RET DEL to recover the
original arguments but substitute a new value for z.)

The ‘utpc(x,v)’ function uses the chi-square distribution with v degrees of freedom. It is the
probability that a model is correct if its chi-square statistic is x.

The ‘utpf (F,v1,v2)’ function uses the F distribution, used in various statistical tests. The
parameters 14 and v, are the degrees of freedom in the numerator and denominator, respectively,
used in computing the statistic F'.
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The ‘utpn(x,m,s)’ function uses a normal (Gaussian) distribution with mean m and standard
deviation o. It is the probability that such a normal-distributed random variable would exceed z.

The ‘utpp(n,x)’ function uses a Poisson distribution with mean z. It is the probability that n
or more such Poisson random events will occur.

The ‘utpt (t,v)’ function uses the Student’s “t” distribution with v degrees of freedom. It is
the probability that a t-distributed random variable will be greater than ¢. (Note: This computes
the distribution function A(t|v) where A(0|v) = 1 and A(oco|v) — 0. The UTPT operation on the
HP-48 uses a different definition which returns half of Calc’s value: ‘UTPT(t,v) = .5*utpt(t,v)’.)

While Calc does not provide inverses of the probability distribution functions, the a R command
can be used to solve for the inverse. Since the distribution functions are monotonic, a R is guaranteed
to be able to find a solution given any initial guess. See XXX [Numerical Solutions|, page XXX.
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9 Vector/Matrix Functions

Many of the commands described here begin with the v prefix. (For convenience, the shift-V prefix is
equivalent to v.) The commands usually apply to both plain vectors and matrices; some apply only
to matrices or only to square matrices. If the argument has the wrong dimensions the operation is
left in symbolic form.

Vectors are entered and displayed using ‘[a,b,c]’ notation. Matrices are vectors of which
all elements are vectors of equal length. (Though none of the standard Calc commands use this
concept, a three-dimensional matrix or rank-3 tensor could be defined as a vector of matrices, and
o on.)

9.1 Packing and Unpacking

2

Calc’s “pack” and “unpack” commands collect stack entries to build composite objects such as
vectors and complex numbers. They are described in this chapter because they are most often used
to build vectors.

The v p (calc-pack) [pack] command collects several elements from the stack into a matrix,
complex number, HMS form, error form, etc. It uses a numeric prefix argument to specify the kind
of object to be built; this argument is referred to as the “packing mode.” If the packing mode is
a nonnegative integer, a vector of that length is created. For example, C-u 5 v p will pop the top
five stack elements and push back a single vector of those five elements. (C-u 0 v p simply creates
an empty vector.)

The same effect can be had by pressing [ to push an incomplete vector on the stack, using TAB
(calc-roll-down) to sneak the incomplete object up past a certain number of elements, and then
pressing ] to complete the vector.

Negative packing modes create other kinds of composite objects:

-1 Two values are collected to build a complex number. For example, 5 RET 7 C-u -1 v p
creates the complex number (5,7). The result is always a rectangular complex number.
The two input values must both be real numbers, i.e., integers, fractions, or floats. If
they are not, Calc will instead build a formula like ‘a + (0, 1) b’. (The other packing
modes also create a symbolic answer if the components are not suitable.)

—2 Two values are collected to build a polar complex number. The first is the magnitude;
the second is the phase expressed in either degrees or radians according to the current
angular mode.

-3 Three values are collected into an HMS form. The first two values (hours and minutes)
must be integers or integer-valued floats. The third value may be any real number.

—4 Two values are collected into an error form. The inputs may be real numbers or
formulas.

-5 Two values are collected into a modulo form. The inputs must be real numbers.
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—6 Two values are collected into the interval ‘[a .. b]’. The inputs may be real numbers,
HMS or date forms, or formulas.

-7 Two values are collected into the interval ‘[a .. b)’.

-8 Two values are collected into the interval ‘(a .. b]’.

-9 Two values are collected into the interval ‘(a .. b)’.

—10 Two integer values are collected into a fraction.

—11 Two values are collected into a floating-point number. The first is the mantissa; the

second, which must be an integer, is the exponent. The result is the mantissa times
ten to the power of the exponent.

—12 This is treated the same as —11 by the v p command. When unpacking, —12 specifies
that a floating-point mantissa is desired.

—13 A real number is converted into a date form.

—14 Three numbers (year, month, day) are packed into a pure date form.

—15 Six numbers are packed into a date/time form.

With any of the two-input negative packing modes, either or both of the inputs may be vectors.
If both are vectors of the same length, the result is another vector made by packing corresponding
elements of the input vectors. If one input is a vector and the other is a plain number, the number
is packed along with each vector element to produce a new vector. For example, C-u -4 v p could
be used to convert a vector of numbers and a vector of errors into a single vector of error forms;
C-u -5 v p could convert a vector of numbers and a single number M into a vector of numbers
modulo M.

If you don’t give a prefix argument to v p, it takes the packing mode from the top of the stack.
The elements to be packed then begin at stack level 2. Thus 1 RET 2 RET 4 n v p is another way
to enter the error form ‘1 +/- 2’.

If the packing mode taken from the stack is a vector, the result is a matrix with the dimen-
sions specified by the elements of the vector, which must each be integers. For example, if the
packing mode is ‘[2, 3]’, then six numbers will be taken from the stack and returned in the form
‘[[a, b, c], [d, e, £1]".

If any elements of the vector are negative, other kinds of packing are done at that level as
described above. For example, ‘[2, 3, -4]’ takes 12 objects and creates a 2 x 3 matrix of error
forms: ‘[[a +/-b, c +/-d ... 1]1". Also, ‘[-4, -10]’ will convert four integers into an error form
consisting of two fractions: ‘a:b +/- c:d’.

There is an equivalent algebraic function, ‘pack (mode, items)’ where mode is a packing mode
(an integer or a vector of integers) and items is a vector of objects to be packed (re-packed,
really) according to that mode. For example, ‘pack([3, -4], [a,b,c,d,e,f])’ yields ‘[a +/- D,
c +/-d, e +/- £f]’. The function is left in symbolic form if the packing mode is illegal, or if the
number of data items does not match the number of items required by the mode.
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The v u (calc-unpack) command takes the vector, complex number, HMS form, or other
composite object on the top of the stack and “unpacks” it, pushing each of its elements onto the
stack as separate objects. Thus, it is the “inverse” of v p. If the value at the top of the stack is a
formula, v u unpacks it by pushing each of the arguments of the top-level operator onto the stack.

You can optionally give a numeric prefix argument to v u to specify an explicit (un)packing
mode. If the packing mode is negative and the input is actually a vector or matrix, the result will
be two or more similar vectors or matrices of the elements. For example, given the vector ‘[a +/- b,
c~2, d +/- 7], the result of C-u -4 v u will be the two vectors ‘[a, ¢~2, d]’ and ‘[b, 0, 7]".

Note that the prefix argument can have an effect even when the input is not a vector. For
example, if the input is the number —5, then c¢-u -1 v u yields —5 and 0 (the components of —5
when viewed as a rectangular complex number); C-u -2 v u yields 5 and 180 (assuming degrees
mode); and C-u -10 v u yields —5 and 1 (the numerator and denominator of —5, viewed as a
rational number). Plain v u with this input would complain that the input is not a composite
object.

Unpacking mode —11 converts a float into an integer mantissa and an integer exponent, where
the mantissa is not divisible by 10 (except that 0.0 is represented by a mantissa and exponent of 0).
Unpacking mode —12 converts a float into a floating-point mantissa and integer exponent, where
the mantissa (for non-zero numbers) is guaranteed to lie in the range [1 .. 10). In both cases, the
mantissa is shifted left or right (and the exponent adjusted to compensate) in order to satisfy these
constraints.

Positive unpacking modes are treated differently than for v p. A mode of 1 is much like plain v u
with no prefix argument, except that in addition to the components of the input object, a suitable
packing mode to re-pack the object is also pushed. Thus, C-u 1 v u followed by v p will re-build
the original object.

A mode of 2 unpacks two levels of the object; the resulting re-packing mode will be a vector of
length 2. This might be used to unpack a matrix, say, or a vector of error forms. Higher unpacking
modes unpack the input even more deeply.

There are two algebraic functions analogous to v u. The ‘unpack (mode, item)’ function unpacks
the item using the given mode, returning the result as a vector of components. Here the mode
must be an integer, not a vector. For example, ‘unpack(-4, a +/- b)’ returns ‘[a, b]l’, as does
‘unpack(l, a +/-b)".

The unpackt function is like unpack but instead of returning a simple vector of items, it returns
a vector of two things: The mode, and the vector of items. For example, ‘unpackt (1, 2:3 +/-
1:4)’ returns ‘[-4, [2:3, 1:4]]1°, and ‘unpackt(2, 2:3 +/- 1:4)’ returns ‘[[-4, -10], [2, 3,
1, 411°. The identity for re-building the original object is ‘apply(pack, unpackt(n, x)) = x’.
(The apply function builds a function call given the function name and a vector of arguments.)

Subscript notation is a useful way to extract a particular part of an object. For example, to get
the numerator of a rational number, you can use ‘unpack(-10, x)_1".
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9.2 Building Vectors

Vectors and matrices can be added, subtracted, multiplied, and divided; see XXX [Basic Arith-
metic|, page XXX .

The | (calc-concat) command “concatenates” two vectors into one. For example, after
[1,2]7[3, 411, the stack will contain the single vector ‘[1, 2, 3, 4]’. If the arguments
are matrices, the rows of the first matrix are concatenated with the rows of the second. (In other
words, two matrices are just two vectors of row-vectors as far as | is concerned.)

If either argument to | is a scalar (a non-vector), it is treated like a one-element vector for
purposes of concatenation: 1 [ 2 , 3 ] | produces the vector ‘[1, 2, 3]’. Likewise, if one argument
is a matrix and the other is a plain vector, the vector is treated as a one-row matrix.

The H | (calc-append) [append] command concatenates two vectors without any special cases.
Both inputs must be vectors. Whether or not they are matrices is not taken into account. If either
argument is a scalar, the append function is left in symbolic form. See also cons and rcons below.

The I | and H I | commands are similar, but they use their two stack arguments in the opposite
order. Thus I | is equivalent to TAB |, but possibly more convenient and also a bit faster.

The v d (calc-diag) [diag] function builds a diagonal square matrix. The optional numeric
prefix gives the number of rows and columns in the matrix. If the value at the top of the stack is a
vector, the elements of the vector are used as the diagonal elements; the prefix, if specified, must
match the size of the vector. If the value on the stack is a scalar, it is used for each element on the
diagonal, and the prefix argument is required.

To build a constant square matrix, e.g., a 3 X 3 matrix filled with ones, use 0 M-3 vd 1 +, i.e.,
build a zero matrix first and then add a constant value to that matrix. (Another alternative would
be to use v b and v a; see below.)

The v i (calc-ident) [idn| function builds an identity matrix of the specified size. It is a
convenient form of v d where the diagonal element is always one. If no prefix argument is given,
this command prompts for one.

In algebraic notation, ‘idn(a,n)’ acts much like ‘diag(a,n)’, except that a is required to be
a scalar (non-vector) quantity. If n is omitted, ‘idn(a)’ represents a times an identity matrix
of unknown size. Calc can operate algebraically on such generic identity matrices, and if one is
combined with a matrix whose size is known, it is converted automatically to an identity matrix
of a suitable matching size. The v i command with an argument of zero creates a generic identity
matrix, ‘idn(1)’. Note that in dimensioned matrix mode (see XXX [Matrix Mode|, page XXX),
generic identity matrices are immediately expanded to the current default dimensions.

The v x (calc-index) [index]| function builds a vector of consecutive integers from 1 to n, where
n is the numeric prefix argument. If you do not provide a prefix argument, you will be prompted
to enter a suitable number. If n is negative, the result is a vector of negative integers from n to —1.

With a prefix argument of just C-u, the v x command takes three values from the stack: n, start,
and incr (with incr at top-of-stack). Counting starts at start and increases by incr for successive
vector elements. If start or n is in floating-point format, the resulting vector elements will also be
floats. Note that start and incr may in fact be any kind of numbers or formulas.

When start and incr are specified, a negative n has a different interpretation: It causes a
geometric instead of arithmetic sequence to be generated. For example, ‘index (-3, a, b)’ produces
‘[a, ab, ab~2]’. If you omit incr in the algebraic form, ‘index(n, start)’, the default value for
incr is one for positive n or two for negative n.
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The v b (calc-build-vector) [cvec| function builds a vector of n copies of the value on the
top of the stack, where n is the numeric prefix argument. In algebraic formulas, ‘cvec(x,n,m)’ can
also be used to build an n-by-m matrix of copies of x. (Interactively, just use v b twice: once to
build a row, then again to build a matrix of copies of that row.)

The v h (calc-head) [head]| function returns the first element of a vector. The I v h (calc-
tail) [tail] function returns the vector with its first element removed. In both cases, the argument
must be a non-empty vector.

The v k (calc-cons) [cons] function takes a value h and a vector t from the stack, and produces
the vector whose head is h and whose tail is t. This is similar to |, except if h is itself a vector, |
will concatenate the two vectors whereas cons will insert h at the front of the vector t.

Each of these three functions also accepts the Hyperbolic flag [rhead, rtail, rcons] in which
case t instead represents the last single element of the vector, with h representing the remain-
der of the vector. Thus the vector ‘[a, b, ¢, d] = cons(a, [b, ¢, d]) =rcons([a, b, c], d) .
Also, ‘head([a, b, ¢, d]) =a’, ‘tail([a, b, ¢, d]) = [b, ¢, d]’, ‘rhead([a, b, ¢, d]) = [a,
b, c1’, and ‘rtail([a, b, ¢, d]) =d’.

9.3 Extracting Vector Elements

The v r (calc-mrow) [mrow| command extracts one row of the matrix on the top of the stack, or
one element of the plain vector on the top of the stack. The row or element is specified by the
numeric prefix argument; the default is to prompt for the row or element number. The matrix or
vector is replaced by the specified row or element in the form of a vector or scalar, respectively.

With a prefix argument of C-u only, v r takes the index of the element or row from the top of
the stack, and the vector or matrix from the second-to-top position. If the index is itself a vector
of integers, the result is a vector of the corresponding elements of the input vector, or a matrix of
the corresponding rows of the input matrix. This command can be used to obtain any permutation
of a vector.

With C-u, if the index is an interval form with integer components, it is interpreted as a range
of indices and the corresponding subvector or submatrix is returned.

Subscript notation in algebraic formulas (‘a_b’) stands for the Calc function subscr, which
is synonymous with mrow. Thus, ‘[x, y, z]_k’ produces z, y, or z if k is one, two, or three,
respectively. A double subscript (‘M_i_j’, equivalent to ‘subscr(subscr(M, i), j)’) will access
the element at row %, column j of a matrix. The a _ (calc-subscript) command creates a subscript
formula ‘a_b’ out of two stack entries. (It is on the a “algebra” prefix because subscripted variables
are often used purely as an algebraic notation.)

Given a negative prefix argument, v r instead deletes one row or element from the matrix or
vector on the top of the stack. Thus C-u 2 v r replaces a matrix with its second row, but C-u -2
v r replaces the matrix with the same matrix with its second row removed. In algebraic form this
function is called mrrow.

Given a prefix argument of zero, v r extracts the diagonal elements of a square matrix in the
form of a vector. In algebraic form this function is called getdiag.
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The v ¢ (calc-mcol) [mcol or mrcol] command is the analogous operation on columns of a
matrix. Given a plain vector it extracts (or removes) one element, just like v r. If the index in C-u
v ¢ is an interval or vector and the argument is a matrix, the result is a submatrix with only the
specified columns retained (and possibly permuted in the case of a vector index).

To extract a matrix element at a given row and column, use v r to extract the row as a vector,
then v ¢ to extract the column element from that vector. In algebraic formulas, it is often more
convenient to use subscript notation: ‘m_i_j’ gives row ¢, column j of matrix m.

The v s (calc-subvector) [subvec| command extracts a subvector of a vector. The arguments
are the vector, the starting index, and the ending index, with the ending index in the top-of-stack
position. The starting index indicates the first element of the vector to take. The ending index
indicates the first element past the range to be taken. Thus, ‘subvec([a, b, ¢, d, el, 2, 4)’
produces the subvector ‘[b, c]’. You could get the same result using ‘mrow([a, b, c, d, €],

[2..4).

If either the start or the end index is zero or negative, it is interpreted as relative to the end of
the vector. Thus ‘subvec([a, b, ¢, d, el, 2, -2)’ also produces ‘[b, c]’. In the algebraic form,
the end index can be omitted in which case it is taken as zero, i.e., elements from the starting
element to the end of the vector are used. The infinity symbol, inf, also has this effect when used
as the ending index.

With the Inverse flag, I v s [rsubvec] removes a subvector from a vector. The arguments are
interpreted the same as for the normal v s command. Thus, ‘rsubvec([a, b, ¢, d, e], 2, 4)’
produces ‘[a, d, e]’. It is always true that subvec and rsubvec return complementary parts of
the input vector.

See XXX [Selecting Subformulas|, page XXX, for an alternative way to operate on vectors one
element at a time.

9.4 Manipulating Vectors

The v 1 (calc-vlength) [vlen] command computes the length of a vector. The length of a non-
vector is considered to be zero. Note that matrices are just vectors of vectors for the purposes of
this command.

With the Hyperbolic flag, H v 1 [mdims| computes a vector of the dimensions of a vector, ma-
trix, or higher-order object. For example, ‘mdims([[a,b,c], [d,e,f]])’ returns ‘[2, 3]’ since its
argument is a 2 X 3 matrix.

The v f (calc-vector-find) [find] command searches along a vector for the first element equal
to a given target. The target is on the top of the stack; the vector is in the second-to-top position.
If a match is found, the result is the index of the matching element. Otherwise, the result is zero.
The numeric prefix argument, if given, allows you to select any starting index for the search.

The v a (calc-arrange-vector) [arrange] command rearranges a vector to have a certain
number of columns and rows. The numeric prefix argument specifies the number of columns; if
you do not provide an argument, you will be prompted for the number of columns. The vector or
matrix on the top of the stack is flattened into a plain vector. If the number of columns is nonzero,
this vector is then formed into a matrix by taking successive groups of n elements. If the number
of columns does not evenly divide the number of elements in the vector, the last row will be short
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and the result will not be suitable for use as a matrix. For example, with the matrix ‘[[1, 2],
[3, 411’ on the stack, v a 4 produces ‘[[1, 2, 3, 411’ (a 1 X 4 matrix), v a 1 produces ‘[[1],
[2]1, [31, [411’ (a 4 x 1 matrix), v a 2 produces ‘[[1, 2], [3, 411’ (the original 2 x 2 matrix),
v a 3 produces ‘[[1, 2, 3], [4]]’ (not a matrix), and v a 0 produces the flattened list ‘[1, 2,
3, 4]".

The V S (calc-sort) [sort] command sorts the elements of a vector into increasing order. Real
numbers, real infinities, and constant interval forms come first in this ordering; next come other
kinds of numbers, then variables (in alphabetical order), then finally come formulas and other kinds
of objects; these are sorted according to a kind of lexicographic ordering with the useful property
that one vector is less or greater than another if the first corresponding unequal elements are less
or greater, respectively. Since quoted strings are stored by Calc internally as vectors of ASCII
character codes (see XXX [Strings|, page XXX ), this means vectors of strings are also sorted into
alphabetical order by this command.

The I VS [rsort] command sorts a vector into decreasing order.

The V G (calc-grade) [grade, rgrade| command produces an index table or permutation vector
which, if applied to the input vector (as the index of C-u v r, say), would sort the vector. A
permutation vector is just a vector of integers from 1 to n, where each integer occurs exactly once.
One application of this is to sort a matrix of data rows using one column as the sort key; extract
that column, grade it with V G, then use the result to reorder the original matrix with C-u v r.
Another interesting property of the V G command is that, if the input is itself a permutation vector,
the result will be the inverse of the permutation. The inverse of an index table is a rank table,
whose kth element says where the kth original vector element will rest when the vector is sorted.
To get a rank table, just use VG V G.

With the Inverse flag, I V G produces an index table that would sort the input into decreasing
order. Note that VS and V G use a “stable” sorting algorithm, i.e., any two elements which are
equal will not be moved out of their original order. Generally there is no way to tell with V S, since
two elements which are equal look the same, but with V G this can be an important issue. In the
matrix-of-rows example, suppose you have names and telephone numbers as two columns and you
wish to sort by phone number primarily, and by name when the numbers are equal. You can sort
the data matrix by names first, and then again by phone numbers. Because the sort is stable, any
two rows with equal phone numbers will remain sorted by name even after the second sort.

The V H (calc-histogram) [histogram| command builds a histogram of a vector of numbers.
Vector elements are assumed to be integers or real numbers in the range [0..n) for some “number
of bins” n, which is the numeric prefix argument given to the command. The result is a vector of
n counts of how many times each value appeared in the original vector. Non-integers in the input
are rounded down to integers. Any vector elements outside the specified range are ignored. (You
can tell if elements have been ignored by noting that the counts in the result vector don’t add up
to the length of the input vector.)

With the Hyperbolic flag, H V H pulls two vectors from the stack. The second-to-top vector is
the list of numbers as before. The top vector is an equal-sized list of “weights” to attach to the
elements of the data vector. For example, if the first data element is 4.2 and the first weight is 10,
then 10 will be added to bin 4 of the result vector. Without the hyperbolic flag, every element has
a weight of one.

The v t (calc-transpose) [trn] command computes the transpose of the matrix at the top of
the stack. If the argument is a plain vector, it is treated as a row vector and transposed into a
one-column matrix.
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The v v (calc-reverse-vector) [vec| command reverses a vector end-for-end. Given a matrix,
it reverses the order of the rows. (To reverse the columns instead, just use v t v v v t. The same
principle can be used to apply other vector commands to the columns of a matrix.)

The v m (calc-mask-vector) [vmask| command uses one vector as a mask to extract elements
of another vector. The mask is in the second-to-top position; the target vector is on the top of
the stack. These vectors must have the same length. The result is the same as the target vector,
but with all elements which correspond to zeros in the mask vector deleted. Thus, for example,
‘vmask([1, 0, 1, 0, 1], [a, b, ¢, d, e])’ produces ‘[a, c, e]’. See XXX [Logical Operations],
page XXX.

The v e (calc-expand-vector) [vexp] command expands a vector according to another mask
vector. The result is a vector the same length as the mask, but with nonzero elements replaced by
successive elements from the target vector. The length of the target vector is normally the number
of nonzero elements in the mask. If the target vector is longer, its last few elements are lost. If the
target vector is shorter, the last few nonzero mask elements are left unreplaced in the result. Thus
‘vexp([2, 0, 3, 0, 71, [a, b]l)’ produces ‘[a, 0, b, 0, 71".

With the Hyperbolic flag, H v e takes a filler value from the top of the stack; the mask and
target vectors come from the third and second elements of the stack. This filler is used where the
magk is zero: ‘vexp([2, 0, 3, 0, 7], [a, bl, z)’ produces ‘[a, z, ¢, z, 7]’. If the filler value
is itself a vector, then successive values are taken from it, so that the effect is to interleave two
vectors according to the mask: ‘vexp([2, 0, 3, 7, 0, 0], [a, b], [x, y])’ produces ‘[a, x, b,
7,7y, 0]

Another variation on the masking idea is to combine ‘[a, b, ¢, d, e]’ with the mask ‘[1, 0,
1, 0, 1]’ to produce ‘[a, 0, ¢, 0, e]’. You can accomplish this with V M a &, mapping the logical
“and” operation across the two vectors. See XXX [Logical Operations|, page XXX. Note that the
7 : operation also discussed there allows other types of masking using vectors.

9.5 Vector and Matrix Arithmetic

Basic arithmetic operations like addition and multiplication are defined for vectors and matrices as
well as for numbers. Division of matrices, in the sense of multiplying by the inverse, is supported.
(Division by a matrix actually uses LU-decomposition for greater accuracy and speed.) See XXX
[Basic Arithmetic], page XXX.

The following functions are applied element-wise if their arguments are vectors or matrices:
change-sign, conj, arg, re, im, polar, rect, clean, float, frac. See XXX [Function Index],
page XXX.

The V J (calc-conj-transpose) [ctrn] command computes the conjugate transpose of its
argument, i.e., ‘conj(trn(x))’.

The 4 (calc-abs) [abs] command computes the Frobenius norm of a vector or matrix argument.
This is the square root of the sum of the squares of the absolute values of the elements of the vector
or matrix. If the vector is interpreted as a point in two- or three-dimensional space, this is the
distance from that point to the origin.

The v n (calc-rnorm) [rnorm| command computes the row norm, or infinity-norm, of a vector
or matrix. For a plain vector, this is the maximum of the absolute values of the elements. For a
matrix, this is the maximum of the row-absolute-value-sums, i.e., of the sums of the absolute values
of the elements along the various rows.
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The V N (calc-cnorm) [cnorm| command computes the column norm, or one-norm, of a vector
or matrix. For a plain vector, this is the sum of the absolute values of the elements. For a matrix,
this is the maximum of the column-absolute-value-sums. General k-norms for k£ other than one or
infinity are not provided.

The V C (calc-cross) [cross| command computes the right-handed cross product of two vec-
tors, each of which must have exactly three elements.

The & (calc-inv) [inv] command computes the inverse of a square matrix. If the matrix is
singular, the inverse operation is left in symbolic form. Matrix inverses are recorded so that once
an inverse (or determinant) of a particular matrix has been computed, the inverse and determinant
of the matrix can be recomputed quickly in the future.

If the argument to & is a plain number z, this command simply computes 1/z. This is okay,
because the ‘/’ operator also does a matrix inversion when dividing one by a matrix.

The VD (calc-mdet) [det] command computes the determinant of a square matrix.

The V L (calc-mlud) [lud] command computes the LU decomposition of a matrix. The result
is a list of three matrices which, when multiplied together left-to-right, form the original matrix.
The first is a permutation matrix that arises from pivoting in the algorithm, the second is lower-
triangular with ones on the diagonal, and the third is upper-triangular.

The V T (calc-mtrace) [tr] command computes the trace of a square matrix. This is defined
as the sum of the diagonal elements of the matrix.

9.6 Set Operations using Vectors

Calc includes several commands which interpret vectors as sets of objects. A set is a collection of
objects; any given object can appear only once in the set. Calc stores sets as vectors of objects
in sorted order. Objects in a Calc set can be any of the usual things, such as numbers, variables,
or formulas. Two set elements are considered equal if they are identical, except that numerically
equal numbers like the integer 4 and the float 4.0 are considered equal even though they are not
“identical.” Variables are treated like plain symbols without attached values by the set operations;
subtracting the set ‘[b]’ from ‘[a, b]’ always yields the set ‘[a]’ even though if the variables ‘a’
and ‘b’ both equalled 17, you might expect the answer ‘[1’.

If a set contains interval forms, then it is assumed to be a set of real numbers. In this case,
all set operations require the elements of the set to be only things that are allowed in intervals:
Real numbers, plus and minus infinity, HMS forms, and date forms. If there are variables or other
non-real objects present in a real set, all set operations on it will be left in unevaluated form.

If the input to a set operation is a plain number or interval form a, it is treated like the one-
element vector ‘[al’. The result is always a vector, except that if the set consists of a single interval,
the interval itself is returned instead.

See XXX [Logical Operations|, page XXX, for the in function which tests if a certain value is
a member of a given set. To test if the set A is a subset of the set B, use ‘vdiff (A, B) = [1°.

The V+ (calc-remove-duplicates) [rdup] command converts an arbitrary vector into set
notation. It works by sorting the vector as if by V S, then removing duplicates. (For example,
[a, 5, 4, a, 4.0] is sorted to ‘[4, 4.0, 5, a, a]’ and then reduced to ‘[4, 5, a]’). Overlapping
intervals are merged as necessary. You rarely need to use V + explicitly, since all the other set-based
commands apply V + to their inputs before using them.
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The V V (calc-set-union) [vunion| command computes the union of two sets. An object is in
the union of two sets if and only if it is in either (or both) of the input sets. (You could accomplish
the same thing by concatenating the sets with |, then using V +.)

The V = (calc-set-intersect) [vint] command computes the intersection of two sets. An
object is in the intersection if and only if it is in both of the input sets. Thus if the input sets are
disjoint, i.e., if they share no common elements, the result will be the empty vector ‘[1’. Note that
the characters V and ~ were chosen to be close to the conventional mathematical notation for set
union (A U B) and intersection (A N B).

The V - (calc-set-difference) [vdiff| command computes the difference between two sets.
An object is in the difference A — B if and only if it is in A but not in B. Thus subtracting
‘[y,z]’ from a set will remove the elements ‘y’ and ‘z’ if they are present. You can also think of
this as a general set complement operator; if A is the set of all possible values, then A — B is the
“complement” of B. Obviously this is only practical if the set of all possible values in your problem
is small enough to list in a Calc vector (or simple enough to express in a few intervals).

The V X (calc-set-xor) [vxor| command computes the “exclusive-or,” or “symmetric differ-
ence” of two sets. An object is in the symmetric difference of two sets if and only if it is in one,
but not both, of the sets. Objects that occur in both sets “cancel out.”

The V ~ (calc-set-complement) [vcompl] command computes the complement of a set with
respect to the real numbers. Thus ‘vcompl(x)’ is equivalent to ‘vdiff ([-inf .. inf], x)’. For
example, ‘vcompl ([2, (3 .. 4]])’ evaluates to ‘[[-inf .. 2), (2 .. 3], (4 .. inf]]".

The V F (calc-set-floor) [vfloor| command reinterprets a set as a set of integers. Any non-
integer values, and intervals that do not enclose any integers, are removed. Open intervals are
converted to equivalent closed intervals. Successive integers are converted into intervals of integers.
For example, the complement of the set ‘[2, 6, 7, 8]’ is messy, but if you wanted the complement
with respect to the set of integers you could type V~ VF to get ‘[[-inf .. 1], [3 .. 5], [9 ..
inf]]’.

The V E (calc-set-enumerate) [venum| command converts a set of integers into an explicit
vector. Intervals in the set are expanded out to lists of all integers encompassed by the intervals.
This only works for finite sets (i.e., sets which do not involve ‘~inf’ or ‘inf’).

The V : (calc-set-span) [vspan] command converts any set of reals into an interval form that
encompasses all its elements. The lower limit will be the smallest element in the set; the upper limit
will be the largest element. For an empty set, ‘vspan([])’ returns the empty interval ‘[0 .. 0)’.

The V # (calc-set-cardinality) [vcard] command counts the number of integers in a set.
The result is the length of the vector that would be produced by V E, although the computation is
much more efficient than actually producing that vector.

Another representation for sets that may be more appropriate in some cases is binary numbers.
If you are dealing with sets of integers in the range 0 to 49, you can use a 50-bit binary number
where a particular bit is 1 if the corresponding element is in the set. See XXX [Binary Functions],
page XXX, for a list of commands that operate on binary numbers. Note that many of the above set
operations have direct equivalents in binary arithmetic: b o (calc-or), b a (calc-and), b d (calc-
diff), b x (calc-xor), and b n (calc-not), respectively. You can use whatever representation for
sets is most convenient to you.

The b u (calc-unpack-bits) [vunpack| command converts an integer that represents a set in
binary into a set in vector/interval notation. For example, ‘vunpack(67)’ returns ‘[[0 .. 1], 6]".
If the input is negative, the set it represents is semi-infinite: ‘vunpack(-4) = [2 .. inf)’. Use VE
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afterwards to expand intervals to individual values if you wish. Note that this command uses the
b (binary) prefix key.

The b p (calc-pack-bits) [vpack] command converts the other way, from a vector or interval
representing a set of nonnegative integers into a binary integer describing the same set. The set
may include positive infinity, but must not include any negative numbers. The input is interpreted
as a set of integers in the sense of V F (vfloor). Beware that a simple input like ‘[100]’ can result
in a huge integer representation (2'%°, a 31-digit integer, in this case).

9.7 Statistical Operations on Vectors

The commands in this section take vectors as arguments and compute various statistical measures
on the data stored in the vectors. The references used in the definitions of these functions are
Bevington’s Data Reduction and Error Analysis for the Physical Sciences, and Numerical Recipes
by Press, Flannery, Teukolsky and Vetterling.

The statistical commands use the u prefix key followed by a shifted letter or other character.
See XXX [Manipulating Vectors|, page XXX, for a description of V H (calc-histogram).

See XXX [Curve Fitting], page XXX, for the a F command for doing least-squares fits to
statistical data.

See XXX [Probability Distribution Functions|, page XXX, for several common probability
distribution functions.

9.7.1 Single-Variable Statistics

These functions do various statistical computations on single vectors. Given a numeric prefix
argument, they actually pop n objects from the stack and combine them into a data vector. Each
object may be either a number or a vector; if a vector, any sub-vectors inside it are “flattened” as
if by v a 0; see XXX [Manipulating Vectors|, page XXX . By default one object is popped, which
(in order to be useful) is usually a vector.

If an argument is a variable name, and the value stored in that variable is a vector, then the
stored vector is used. This method has the advantage that if your data vector is large, you can
avoid the slow process of manipulating it directly on the stack.

These functions are left in symbolic form if any of their arguments are not numbers or vectors,
e.g., if an argument is a formula, or a non-vector variable. However, formulas embedded within
vector arguments are accepted; the result is a symbolic representation of the computation, based
on the assumption that the formula does not itself represent a vector. All varieties of numbers such
as error forms and interval forms are acceptable.

Some of the functions in this section also accept a single error form or interval as an argument.
They then describe a property of the normal or uniform (respectively) statistical distribution
described by the argument. The arguments are interpreted in the same way as the M argument
of the random number function k r. In particular, an interval with integer limits is considered an
integer distribution, so that ‘[2 .. 6)’ is the same as ‘[2 .. 5]’. An interval with at least one
floating-point limit is a continuous distribution: ‘[2.0 .. 6.0)’ is not the same as ‘[2.0 .. 5.0]"!
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The u # (calc-vector-count) [vcount| command computes the number of data values repre-
sented by the inputs. For example, ‘vcount (1, [2, 3], [[4, 5], [1, x, y]1)’ returns 7. If the
argument is a single vector with no sub-vectors, this simply computes the length of the vector.

The u + (calc-vector-sum) [vsum] command computes the sum of the data values. The u *
(calc-vector-prod) [vprod] command computes the product of the data values. If the input is
a single flat vector, these are the same as VR + and VR * (see XXX [Reducing and Mapping],
page XXX).

The u X (calc-vector-max) [vmax| command computes the maximum of the data values, and the
u N (calc-vector-min) [vmin| command computes the minimum. If the argument is an interval,
this finds the minimum or maximum value in the interval. (Note that ‘vmax([2..6)) =5’ as
described above.) If the argument is an error form, this returns plus or minus infinity.

The u M (calc-vector-mean) [vmean| command computes the average (arithmetic mean) of the
data values. If the inputs are error forms z +/- o, this is the weighted mean of the x values with

weights 1/02.
i
2

g;
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If the inputs are not error forms, this is simply the sum of the values divided by the count of the
values.

/’l‘:

Note that a plain number can be considered an error form with error ¢ = 0. If the input to u M
is a mixture of plain numbers and error forms, the result is the mean of the plain numbers, ignoring
all values with non-zero errors. (By the above definitions it’s clear that a plain number effectively
has an infinite weight, next to which an error form with a finite weight is completely negligible.)

This function also works for distributions (error forms or intervals). The mean of an error form
‘a +/- b’ is simply a. The mean of an interval is the mean of the minimum and maximum values
of the interval.

The I u M(calc-vector-mean-error) [vmeane| command computes the mean of the data points
expressed as an error form. This includes the estimated error associated with the mean. If the
inputs are error forms, the error is the square root of the reciprocal of the sum of the reciprocals
of the squares of the input errors. (L.e., the variance is the reciprocal of the sum of the reciprocals

of the variances.)
1
2

Tu = 1
2.5

o
If the inputs are plain numbers, the error is equal to the standard deviation of the values divided
by the square root of the number of values. (This works out to be equivalent to calculating the
standard deviation and then assuming each value’s error is equal to this standard deviation.)

The H u M (calc-vector-median) [vmedian| command computes the median of the data values.
The values are first sorted into numerical order; the median is the middle value after sorting. (If
the number of data values is even, the median is taken to be the average of the two middle values.)
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The median function is different from the other functions in this section in that the arguments
must all be real numbers; variables are not accepted even when nested inside vectors. (Otherwise
it is not possible to sort the data values.) If any of the input values are error forms, their error
parts are ignored.

The median function also accepts distributions. For both normal (error form) and uniform
(interval) distributions, the median is the same as the mean.

The HI u M (calc-vector-harmonic-mean) [vhmean| command computes the harmonic mean
of the data values. This is defined as the reciprocal of the arithmetic mean of the reciprocals of the
values.

N
>,
Z;
The u G (calc-vector-geometric-mean) [vgmean| command computes the geometric mean of

the data values. This is the Nth root of the product of the values. This is also equal to the exp of
the arithmetic mean of the logarithms of the data values.

exp (Z In xl> = (H wl) N

The H u G [agmean| command computes the “arithmetic-geometric mean” of two numbers taken
from the stack. This is computed by replacing the two numbers with their arithmetic mean and
geometric mean, then repeating until the two values converge.

a; + b;
Giy1 = — 2 : bit1 = Vaib;

Another commonly used mean, the RMS (root-mean-square), can be computed for a vector of
numbers simply by using the 4 command.

The u S (calc-vector-sdev) [vsdev] command computes the standard deviation o of the data
values. If the values are error forms, the errors are used as weights just as for u M. This is the
sample standard deviation, whose value is the square root of the sum of the squares of the differences
between the values and the mean of the N values, divided by N — 1.

1 A
2 E AP
T TN (2 — 1)

This function also applies to distributions. The standard deviation of a single error form is
simply the error part. The standard deviation of a continuous interval happens to equal the
difference between the limits, divided by v/12. The standard deviation of an integer interval is the
same as the standard deviation of a vector of those integers.

The I u S (calc-vector-pop-sdev) [vpsdev] command computes the population standard de-
viation. It is defined by the same formula as above but dividing by N instead of by N — 1. The
population standard deviation is used when the input represents the entire set of data values in
the distribution; the sample standard deviation is used when the input represents a sample of the
set of all data values, so that the mean computed from the input is itself only an estimate of the

true mean. .
0% = N Z(ﬂ%‘ — u)?

For error forms and continuous intervals, vpsdev works exactly like vsdev. For integer intervals,
it computes the population standard deviation of the equivalent vector of integers.
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