
CS 451 Programming Paradigms, Spring 2004 1

Homework 1 — prerequisites — assigned 21 January — due 25 January

1.1 Scheme: basic concepts (10pts)

Give the value which Scheme would return if you entered the following expressions. If it would produce
an error, state what the nature of the error is. If it evaluates to #<procedure>, say so.

• (apply * (map eval ’((+ 1 2) 4)))

• (let ((a 0) (b 1)) (let ((b a) (a b)) (cons b a)))

• (equal? (cons () ()) (list ()))

• (apply (lambda args ’(1 2 3)) ’(4 5 6))

• (apply null? ())

• ((lambda args args) 1 2 3 4)

• (map (lambda (x y) (x y)) ’((lambda (x) x) (lambda (y) y)) ’(x y))

• (apply cons (list 1) (list 2))

• ((lambda (x) x) (lambda (x) x))

• (apply (lambda (x) x) ((lambda (x) x) (list (lambda (x) x))))



CS 451 Programming Paradigms, Spring 2004 2

1.2 Scheme: basic concepts (10pts)

The function iterate takes a function, f , of one argument as its first argument, and an integer, n ≥ 0, as
its second argument. It returns f composed with itself n times:

f ( f (...))
︸ ︷︷ ︸

n times

The function rotate takes a list, ls, and a positive integer, n, as arguments. It returns a list with all elements
of ls rotated to the right n times. For example, (rotate ’(1 2 3 4) 1) should return (2 3 4 1) and (rotate
’(1 2 3 4) 2) should return (3 4 1 2). Write rotate using iterate and iterate using compose. Finally, write
compose.

1.3 Scheme: program understanding (10pts)

Consider the following functions:

(define foo
(lambda (key ls)
(if (null? ls)

#f
(let ((x (car ls)))
(if (eq? key (car x))

x
(foo key (cdr ls)))))))

(define bar
(lambda (n)
(letrec
((loop

(lambda (x acc)
(if (= x 0)

acc
(loop (- x 1) (cons (- x 1) acc))))))

(loop n ()))))

(define mystery
(lambda (ls n)
(cdr (foo n (map cons (bar (length ls)) ls)))))

Describe in your own words what foo and bar do. Give an example input and output for each. Finally,
rewrite mystery without using foo or bar.

1.4 Scheme: higher-order functions (10pts)

Consider the function:



CS 451 Programming Paradigms, Spring 2004 3

g(n) = nn =
n

∏
i=1

n = n ·n · ... ·n
︸ ︷︷ ︸

n times

Now consider the function:

f (m) =
m

∑
n=1

g(n) = 1+2 ·2+3 ·3 ·3+ ...+n ·n · ... ·n
︸ ︷︷ ︸

n times

Write f and g without using explicit recursion (and without using expt), i.e., using apply, map, filter,
iterate, and iota. Hint: Divide and conquer. Use g in your solution to f .

1.5 Java: using a data abstraction (30pts)

The following is a specification of a data abstraction for handling sets of integers:

public class IntSet
{
// OVERVIEW: IntSets are mutable, unbounded sets of integers.
// A typical IntSet is {x1, . . . ,xn}.

// constructors
public IntSet ()
// EFFECTS: Initializes this to be empty.

// methods
public void insert (int x)
// MODIFIES: this
// EFFECTS: Adds x to the elements of this , i.e., this post = this ∪ { x }.

public void remove (int x)
// MODIFIES: this
// EFFECTS: Removes x from this , i.e., this post = this \ { x }.

public boolean isIn (int x)
// EFFECTS: If x is in this returns true else returns false.

public int size ()
// EFFECTS: Returns the cardinality of this.

public int choose () throws EmptyException
// EFFECTS: If this is empty, throws EmptyException else
// returns an arbitrary element of this.

}



CS 451 Programming Paradigms, Spring 2004 4

In this specification, this refers to the state of the receiver object before the method is invoked, and
this post refers to the state of the receiver object after the method has been executed. When a method
does not modify anything, the specification omits the MODIFIES clause.

Write a class Prime that uses the IntSet abstraction as follows.

The class Prime has a static method makeBigger. The method makeBigger accepts as argument
an IntSet that must contain prime numbers alone, and it returns a distinct new IntSet that contains
all the elements that the argument IntSet contains and one additional element, an int which is a
prime number greater than any of the numbers in the argument IntSet.

You may assume that one such int exists—in other words, you may assume that there is a prime number
greater than any in the original set, but not greater than Integer.MAX VALUE. You may not assume
anything else.

Write a specification of the method makeBigger carefully, in the style of the specification of IntSet,
and then implement it. If you wish you may write auxiliary methods in class Prime. The entire class
Prime and any auxiliary methods you write should also be accompanied by specifications. Remember
to use appropriate access control modifiers (public, private).

Write a class Tester that will invoke makeBigger on various test examples.

Note: if you are not familiar with Java, you may do this exercise in another object-oriented programming
language from the following list: C++, Eiffel, Smalltalk, Objective C.

1.6 C programming (30pts)

Write a program in C with the same functionality as the Java program of the preceding exercise.

There must be three .c files, IntSet.c, Prime.c, and Tester.c, as well as corresponding .h
files. You may write additional files as needed.

Make sure that you carefully document how you are representing the object-oriented Java code in the
procedural style of C; in particular, how object state is represented and how method invocations are
represented.

How to turn in

Turn in your code by running

˜clint/handin your-file

on a regular UNM CS machine. You should use whatever filename is appropriate in place of your-file.

Include the following statement with your submission, signed and dated:
I pledge my honor that in the preparation of this assignment I have complied with the University of New
Mexico Board of Regents’ Policy Manual, including Section 4.8, Academic Dishonesty.


